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Overview of the talk

• Introduction

• Background and Overview of MPM

• Machine Learning Methods in MPM

• Applications of Machine Learning in MPM
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• Applications of Machine Learning in MPM

• Future Directions and Challenges

• Conclusion

• Q&A and Discussion



Introduction

• Mineral prospectivity mapping (MPM) aims to delineate areas favorable for mineral exploration, being time-
saving, cost effective and environmentally neutral exploration technique

• MPM can be thus used to find exploration target areas for critical raw materials (CRM) 

• Machine learning can enhance MPM by learning from data and automating complex processes
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• Machine learning can enhance MPM by learning from data and automating complex processes



Dynamic mineral prospectivity mapping and mineral systems

The mineral prospectivity mapping 
workflow includes the following steps: 

1. Mineral system model

Selecting primary data
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2. Selecting primary data

3. Creating the proxies to the mappable 
critical parameters.

4. Data integration using appropriate 
methods.

5. Model validation.



Overview & History
•• Data preprocessing philosophyData preprocessing philosophy
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Courtesy of Dr. Stephen Gardoll
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Background and Overview of MPM

• Two main approaches

• Empirical approach:
• The algorithm finds the dependencies by itself
• We need training points
• We can find only what we know already (based on training)
• Weights of evidence, artificial neural networks, random forests, regression
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• Weights of evidence, artificial neural networks, random forests, regression

• Conceptual approach:
• We know controlling factors and use that knowledge
• We do not need training points
• Can test easily different models
• Fuzzy logic, mathematical rules

• Digital maps allow quantitative analysis of data and numerical modeling for MPM -> Vast 
exploration data requires GIS based data-analysis and spatial data mining techniques

• Some of the challenges associated with MPM are coming from data scarcity and uncertainty

Modified from: Andreas Knobloch, Beak Consultants



Machine learning

• Machine learning is a field of study in artificial intelligence that focuses on the 
development of algorithms and statistical models that enable computer systems to learn 
and improve from experience, without being explicitly programmed. 

• In other words, machine learning is the process of training a computer to automatically 
recognize patterns and make predictions based on data inputs, without human 
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recognize patterns and make predictions based on data inputs, without human 
intervention or explicit instructions. 

• Machine learning algorithms are designed to identify patterns in the data, learn from 
those patterns, and use that knowledge to make predictions or decisions about new data 
inputs. 

• Machine learning has a wide range of applications, including natural language processing, 
computer vision, robotics, data analytics and mineral prospectivity mapping.



Machine learning: supervised and un-supervised

• Supervised machine learning methods can be used in mineral 
prospectivity mapping to develop predictive models that 
identify areas with high mineral potential based on labeled 
data. 
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• Un-supervised machine learning methods can be used in 
mineral prospectivity mapping to identify patterns and 
relationships within the data sets without relying on labeled 
data. 

From: Chudasama et al. (2021)



Supervised machine learning methods in MPM

• Decision Trees:

• This is a type of machine learning algorithm that can be used for both classification1 and 
regression2 tasks. It works by recursively splitting the data into subsets based on the most 
important features, and it can be used to identify the key factors that contribute to mineral 
prospectivity
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prospectivity

• Random Forest:

• This is a popular ensemble machine learning algorithm that can be used for classification and 
regression tasks. It builds multiple decision trees during training and outputs the class that is the 
mode of the classes of the individual trees. In mineral prospectivity mapping, it can be used to 
classify areas into different categories based on the geological, geochemical, and geophysical data.

• Does not necessarily require a lot of labelled data for training

• 1Classification is a supervised machine learning method where the model tries to predict the correct label of a given input data.
• 2 Regression analysis is a set of statistical methods used for the estimation of relationships between a dependent variable and one or 

more independent variables. 



Supervised machine learning methods in MPM
• Support Vector Machine:

• This is commonly used machine learning algorithm that can be used for 
classification and regression tasks. It works by finding a hyperplane that separates 
the data into different categories, and it can be used to classify areas based on 
their mineral prospectivity. SVM can be particularly effective when dealing with 
complex and non-linear geological boundaries.

Logistic Regression:
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Poonia et al. (2022)
• Logistic Regression:

• This is a type of machine learning algorithm that is commonly used for binary 
classification tasks. In mineral prospectivity mapping, it can be used to classify 
areas as either having high or low mineral potential based on the geological, 
geochemical, and geophysical data.

• Artificial Neural Networks:

• This is a type of machine learning algorithm that is inspired by the structure and 
function of the human brain. It can be used for both classification and regression
tasks, and it can be trained to recognize patterns in the geological, geochemical, 
and geophysical data to identify areas with high mineral prospectivity.

Poonia et al. (2022)



Supervised machine learning methods in MPM

• Boosting Algorithms (e.g., AdaBoost, Gradient Boosting):

• Collective techniques that create a strong classifier from a number of 
weak classifiers. 

• These methods are used to improve the predictive strength and 
accuracy of mineral prospectivity models by focusing on areas difficult 
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accuracy of mineral prospectivity models by focusing on areas difficult 
to classify in previous rounds of modeling.

• Deep Learning (e.g., Convolutional Neural Networks):

• A class of neural network that is particularly powerful for analyzing 
visual imagery and is known for its ability to pick up on patterns not 
visible to the human eye. 

• Although more complex and requiring significant amounts of data and 
computing power, deep learning can be used to process and analyze 
multi-dimensional geospatial data, potentially identifying subtle features 
associated with mineral deposits.



Un-supervised machine learning methods in MPM

• Cluster Analysis:
• This method involves grouping similar data points into clusters based on their similarities or 

distances. 
• In mineral prospectivity mapping, it can be used to group areas with similar geological, 

geochemical, and geophysical features, which can then be analyzed to identify patterns and 
relationships.
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• Principal Component Analysis (PCA):
• This method involves transforming the data into a new set of variables, called principal 

components, that capture the most important variations in the data. 
• In mineral prospectivity mapping, PCA can be used to reduce the dimensionality of the data 

and identify the most important variables that contribute to mineral potential.

• Self-Organizing Maps (SOM):
• This method involves creating a low-dimensional representation of the data that preserves the 

topology of the original data space. 
• In mineral prospectivity mapping, SOM can be used to identify areas with similar geological, 

geochemical, and geophysical features and visualize the relationships between them.



Tools developed for public use by GTK

• ArcSDM: https://github.com/gtkfi/ArcSDM

• Spatial Data Modeller

• Weights of Evidence, Logistic regression

• Boosting, Random Forest, Support Vector Machine
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• Receiver Operating Characteristics (ROC) validation

• Originally developed by USGS and GSC and developed by
University of Campinas, Sao Paolo, Brazil, 
http://www.ige.unicamp.br/sdm/

• This toolbox is currently under update and development in a Business 
Finland funded project called Artificial Intelligence in Mineral
Exploration - AIMEX



Tools developed for public use by GTK
• MPM on-line can be used to build simple Fuzzy logic overlay models using public geodata from Northern 

Finland on a web browser-based platform: https://gtkdata.gtk.fi/mpm/

• This tool will be updated in on-going AIMEX project
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Tools developed for public use by GTK

• GisSOM

• Developed originally in an EU funded project entitled NEXT

• Can be used to cluster and visualize data

• Currently being further developed in an on-going EIT RawMaterials-funded project entitled DroneSOM
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• https://github.com/gtkfi/GisSOM 



Tools developed for public use
• Exploration Inforamation System – EIS

• Funding from European Commission, Horizon Europe, Research 
and Innovation Action (RIA)

• Pan-European consortium, which consists of 17 partners from 
research institutes, academia, service providers and industry.

• Partners from 6 EU countries, 2 partners outside EU: Finland (4), 
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• Partners from 6 EU countries, 2 partners outside EU: Finland (4), 
Sweden (3), Spain (2), France (2), Germany (2), Czech Republic (2), 
South Africa (1), Brazil (1) (associate partner)

• EIS will develop new geomodels and novel, fast and cost-effective 
spatial data analysis tools for mineral exploration.

• EIS website: https://eis-he.eu/



Tools developed for public use

• Methodology – EIS combines mineral systems models and MPM

• Mineral system models aim at understanding all controlling factors that lead to the formation of ore deposits 
(Knox-Robinson et al. 1997). EIS consists of components for different steps of mineral prospectivity analysis 
(Bonham-Carter 1994).
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Case studies 1: ANN method, orogenic gold, Central Lapland
• Nykänen, V. 2008. Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold 

deposits within the Central Lapland Greenstone Belt, northern Fennoscandian Shield. Natural Resources 
Research 17 (1), 29-48.
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The net architectures of (a) radial basis functional
neural network (RBFNN) and (b) radial basis functional link
net (RBFLN). Architectures based on Looney (2002).
The radial basis function (RBF) resembles a
Gaussian density function.

Schematic illustration of 
an artificial neuron 
according to Tsoukalas
and Uhrig (1997).



Case studies 2: VMS prospectivity, Iberian Pyrite Belt
• VMS prospectivity map created with 130 training deposits (black dots) using (a) BronwBoost, (b) LR, (c) SVM and (d) RF. 

• Performance results relatively similar, especially to Boosting methods, which slightly outperformed LR and 

SVM

• Brandmeier, M.; Cabrera Zamora, I.G.; Nykänen, V.; Middleton, M. 2020. Boosting for Mineral Prospectivity Modeling: A 
New GIS Toolbox. Natural Resources Research, 29 (1), pp. 71-88. DOI: 10.1007/s11053-019-09483-8
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Case studies 3: Rajapalot Au-Co project area
• Chudasama, B., Torppa, J., Nykänen, V., Kinnunen, J., Lerssi, J., Salmirinne, H., 2022. Target-scale prospectivity 

modeling for gold mineralization within the Rajapalot Au-Co project area in northern Fennoscandian Shield, 
Finland. Part 1: Application of knowledge-driven- and machine learning-based-hybrid- expert systems for 
exploration targeting and addressing model-based uncertainties. Ore Geology Reviews. Volume 147, 104937, 
ISSN 0169-1368, https://doi.org/10.1016/j.oregeorev.2022.104937.
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Evidential layers:Evidential layers:
1. Residual magnetism
2. Distance from magnetic tilt derivative’s 0-contour polygon
3. Density of magnetic TD’s 0 and +- TD’s ‘0’ and ‘± Π/4’ contours
4. AEM: In-phase to Quadrature ratio
5. NW-SE trending anomalies
6. NE-SW trending anomalies
7. Density of gravity worms
8. Residual gravity
9. Density of (interpreted) lithological contacts weighted by their 

relative competence- OR reactivity- contrasts
10. Densities (interpreted) structures weighted by their sinuosity 

OR density of structural intersection zones
11. Distance to (interpreted) antiforms-synforms
12. Distance to (interpreted) shear zones
13. Distance to (interpreted) late faults



Case studies 3: Rajapalot Au-Co project area, prospectivity 
modeling results.

(a) Prospectivity map from the Fuzzy Inference System (FIS) optimized using Monte Carlo Simulation (MCS). 

(b) FIS-based prospectivity map at 10% confidence level. 

(c) FIS-based prospectivity map at 90% confidence level. 

(d) Prospectivity map from ANFIS. 
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• The known prospects are labelled as 

• P: Palokas, SP: South Palokas, Ru: 
Rumajärvi and Ra: Raja in (a), (b), (c) and 
(d). 

• Exploration targets T1, T2 and T3 are 
identified in all the prospectivity maps. 

• Their prospectivity values increases from 
the 10% confidence level result in (b) to 
90%- confidence level results in (c). 

• Hence these exploration targets have high 
prospectivity values at high confidence 
levels and therefore are likely to host 



Case studies 4: Rajapalot Au-Co project area
• Chudasama, B., Torppa, J., Nykänen, V., Kinnunen, J. 2022. Target-scale prospectivity modeling for gold 

mineralization within the Rajapalot Au-Co project area in northern Fennoscandian Shield, Finland. Part 2: 
Application of self-organizing maps and artificial neural networks for exploration targeting, Ore Geology 
Reviews, Volume 147, 104936, ISSN 0169-1368, https://doi.org/10.1016/j.oregeorev.2022.104936.
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Evidential layers: 
(a) Total magnetic intensity corrected for remanent magnetization (nT), (a) Total magnetic intensity corrected for remanent magnetization (nT), 
(b) Residual magnetism grid (nT),
(c) Distance from magnetic tilt derivative’s 0-contour polygon (m),
(d) Density of (interpreted) lithological contacts weighted by the relative competence contrasts,
(e) Density of (interpreted) lithological contacts weighted by the relative reactivity contrasts,
(f) Ratio of in-phase and quadrature components of airborne electromagetic data,
(g) NW-SE trending magnetic anomalies, 
(h) NE-SW trending magnetic anomalies, 
(i) Density of magnetic tilt derivative contours, 
(j) Density of intersection zones of (interpreted) structures, 
(k) Densities of (interpreted) structures weighted by their sinuosity. Distances (in metres) to 

the following (interpreted) structures-
(l) Antiforms,
(m)Synforms, 
(n) Late faults and 
(o) Shear zones.
The color scheme represents rescaled values from Low (0) to High (1), grading from blue to red 
for layers (a) – (k); and Proximal to Distant grading from red to blue for rescaled-distances values 
in layers (l) – (o).



Case studies 4: Rajapalot Au-Co project area
• Here we demonstrate the application of ML methods such as unsupervised self-organizing maps (SOM) and K-

means clustering and supervised artificial neural networks (ANNs). 

• The results from SOM allowed the mapping of deposit-related geological patterns in the evidential layers. 

• K-means clustering of the SOM results identified data clusters favorable for gold enrichment. 

• Quantitative prospectivity values were computed using an ANN model trained on the SOM codebook vectors. 

• This improved the resolution of the prospective-exploration areas mapped within the geospatial domains of the 
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• This improved the resolution of the prospective-exploration areas mapped within the geospatial domains of the 

clusters, and, reduced the exploration search areas. 



Case studies 5: VMS mineral system (on-going project)
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Regional scale
Camp scale Deposit scale

VMS model dataset/original
data VMS model dataset/grid

Mineral system
component

Mappable
Ingredient

Type of data Vector Value Vector Value Vector Value

Oceanic crust
remnants

Lithology Metabasalts high Metabasalts high Metabasalts high

Volcanic_Rock_and_Serpenti
nite_

proterozoic_yonger_than_210
0.shp

Dst2_volcrock_marine.tif

Oceanic crust
remnants

Geophysics
Magnetic or
gravimetric
anomalies

high
Magnetic or
gravimetric
anomalies

high
Magnetic or

gravimetric anomalies
high mag_100_dgrf_anomaly.tif mag_100_dgrf_anomaly.tif

Gravity worms
dst2_gravwrms_over10k_1

Gravity worms
dst2_gravwrms_over10k_1

00.tif
Clastic-

sedimentary 
input to the 

basin

Lithology Quartzite
mediu

m
Quartzite

mediu
m

Quartzite high lito_quartz_para_gneis.shp dst2_qtz_paragn.tif

Black shales Lithology Black shale high Black_shale_200k.shp dst2_blackshale_100.tif
Intermediate

and felsic
dikes

Lithology
Not related to 

VMS 
processes

high
Not related to VMS 

processes
high

Not related to VMS 
processes

high

Active pathway
Synvolcanic

faulting
Regional scale

faulting

Shear zones, 
faults and 
fractures

high
Shear zones, faults 

and fractures
mediu

m
Permeable zone medium Major_Structures.shp dst2_major_stru_100.tif

Depositional
processes

Geochemical
anomalies

Soil
geochemistry

Ore elements (Cu, 
Co, Sb, Pb, Zn, 

Ag, As, Sn)
high

Ore elements (Cu, 
Co, Sb, Pb, Zn, Ag, 

As, Sn)
high

Co_till_idw.tif, 
Cu_till_idw.tif, 
Zn_till_idw.tif

Co_till_idw.tif, 
Cu_till_idw.tif, 
Zn_till_idw.tif

Geochemical
anomalies

Stream
geochemistry

Positive anomaly 
of ore elements

low
Positive anomaly of 

ore elements
medium

Hydrothermal
alteration

Carbonate
halo (siderite)

elevated high elevated high

Hydrothermal Positive Eu 
elevated high elevated high



Case studies 5: VMS mineral system
• Case study: Paleoproterozoic VMS prospectivity in Finland

• Methods used: Fuzzy logic, Logistic Regression, Random Forest

• Data used based on critical mineral system parameters
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• Fuzzy Logic Logistic Regression Random Forest 

ROC AUC = 0.62 ROC AUC = 0.73 ROC AUC = 0.93ROC AUC = 0.62 ROC AUC = 0.73 ROC AUC = 0.93



Future directions and challenges

• Summary and the key takeaways

• Many methods available but no silver bullet

• Data pre-processing i.e. feature engineering is crucial -> garbage in, garbage out

• Machine learning has potential to discover new mineral deposits and areas that were previously 
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overlooked (survival bias) when we use un-supervised methods that can learn from the data and can 
become aware of also the weak signals

• Machine learning methods have improved the accuracy and efficiency of the MPM in some cases and can 
therefore reduce the exploration costs and environmental impacts

• Data quality, interpretability and various biases can cause challenges for usage of machine learning in 
MPM



Conclusions

• Recommendations for future research and development

• Feature engineering needs to be developed

• From mineral systems models into mineral prospectivity models

• How to translate the critical parameters of the mineral systems into mappable proxies of the mineral 
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systems

• Model validation techniques are also important

• What is a meaningful model?

• How to measure performance?
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