

Perspectives of phosphorites deposits as REE resources

TEC'

Sophie Graul

PhD Candidate |Geometallurgist

sophie.graul@taltech.ee

REE challenge in EU

15 Lanthanides, plus Y and Sc CRM for the energy transition, high supply risk for EU

Depletion of high-quality deposits | Resource scarcity and availability Raising interest in phosphorites ores as REE sources

Exploration and Exploi

of Critical Raw Materials

REE properties and abundances

Common elements, yet rarely in *minable concentrations*: do not 'fit' in silicates Average concentrations of $\sum REE 85-299 \text{ ppm}$ in the continental crust (*Cu 27 ppm*)

Large ionic raddi (1Å), 3+ oxygenation state, electronegativity similar to Ca, Na, Sr

REE properties and abundances

Common elements, yet rarely in *minable concentrations*: do not 'fit' in silicates Production driven by bastnaesite and monazite concentrates

Major REE bearing minerals

Most common phases in carbonatites & placers

REE properties and abundances

- LREE (La, Ce) dominate current REE market resource
- Growing need for **Pr**, **Nd**, **Dy**, **Eu** and **Y** for green technologies: **Need for alternative sources**

REE unconventional sources

Recycling of industrial waste, lack of cost-effective methods and low REE contents Polymetallic REE sources, as co or by-products

Phosphorites genesis and REE

Classical genesis process – First steps

Terrestrial input

Precipitation of phosphorites through upwelling current

Upwelling of cold PO₄³⁻ rich-water in shallow setting | Burial of OM and microbial degradation Precipitation of hydroxyapatite (Ca₅(PO₄)₃OH), initially with low REE contents Dissolution precursors carriers' phases (Mn-Fe-hydroxides, Ca-phophates): **REE release REE enrichement occures during the diagenesis**

Phosphorites genesis and REE

Classical genesis process – First steps

Terrestrial input

Uncommon REE mineralisations to assess and investigate

- Estonian phosphorites are one of the main opportunities for REE and P in the EU
- Average REE grade: 600 ±200ppm with 27% apatite. Up to 1300ppm and 60% apatite. ±3¹² t resources

9

Baltic phosphorites

Thickness of the phosphorite formation and targeted ores

- Estonian phosphorites are one of the main opportunities for REE and P in the EU
- Average REE grade: 600 ±200ppm with 27% apatite.
 Up to 1300ppm and 60% apatite. ±3¹² t resources

Baltic phosphorites

Placer-like ores, highly variable

- Diagenetic REE enrichement
- Mineralisation carried by CAFapatite, authigenic recrystallisation of brachiopod' shells.
- Important textural and elemental variations on shell and carbonates

Need for REE in-situ analyses

- REE distribution
- Apatite predictability
- ✓ Ore processing

<section-header>

Mag: 15 K X

REE with LA-ICP-MS imaging

New tool for low REE semi-quantification

 Method based on laser-ablation rasters combined into distribution maps. Allow automated mineralogy like process for low grade contents

- Identification and discrimination of mineral phases by integrating semiquantitative data.
- Pixels are divided into groups 'steps' applying an eCDF, and data are then sorted through values of a selected channel in ascending order.

REE investigation

REE trends following U content in apatites and carbonates

- General homogenous REE trends
- Variations of diagenetic overprint: early to advanced, redox conditions
- Influence on apatite recrystallisation and textures

REE investigation

REE trends following U content in apatites and carbonates

- Specific REE enrichment on edges of altered shell fragments
- REE content up to 121-folds in Aseri: late alteration uptake
- Euxinic settings, lithogenic input

Altered edges and fragments (fines)

Conclusion & Perspectives

- Phosphorites are highly variable deposits but tend to homogenise locally during diagenesis
- Estonian phosphorites are promising low-grade REE ore (1500-2000ppm), highly enriched fraction on shell edges (3000-8000ppm)
- Necessity of minimising fines loss for maximal REE recovery

To be further explored

- Reconciliation between whole-rock and LA-ICP-MS data
- LA-ICP-MS mapping application to concentrates & other apatite REE ores
- Beneficiation process

Conference on Exploration and Exploitation of Critical Raw Materials

THANK YOU FOR YOUR ATTENTION

Republic of Estonia **Geological Survey**

