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Fresnel incoherent correlation holography (FINCH)
Conventional imaging FINCH Results - FINCHSCOPE
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30 specimen three-dimensional holographic microscopy” Nature
Photon 2, 190-195 (2008)
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Fresnel incoherent correlation holography (FINCH)

Confocal

Mouse retinal astrocytes

Confocal Confocal FINCH

Mouse brain astrocytes

Comparison of single plane confocal and FINCH confocal images (CINCH) of the same plane of mouse retinal astrocytes labeled with Cy3. Slide courtesy of Dr. Gerard Lutty
and Dr. Adam Wenick, Johns Hopkins University Wilmer Eye Institute. Images generated using CellOptic’s CINCHSCOPE with 100X 1.4 NA objective.

http://celloptic.com/image-gallery
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Research Works

1) Enhanced design of multiplexed coded masks for Fresnel incoherent
correlation holography

Reconstruction

Optical configuration (FINCH)
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Transport of amplitude into phase based on Gerchberg - Iteration video of a pure
Saxton algorithm (TAP — GSA) phase mask by TAP-GSA
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Phase Masks
9=2n/3
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Super Resolution

Direct imaging  FINCH with TAP-GSA Problems solved by FINCH
with TAP-GSA

« Reconstruction noises reduced

« High light throughput

Holograms recorded at the same
exposure time

Polarization Random
multiplexing multiplexing TAP- GSA
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https://www.youtube.com/
watch?v=r99UGMCxwkk

4 gt ~ nature
. e : 5 Published on May 6, 2023 » SCIENTIFIC
| : 1 N REPLIRTS

Gopinath, et.al, “Enhanced design of multiplexed coded masks for Fresnel
incoherent correlation holography,” Sci. Rep. 13, 7390 (2023)
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2) Sculpting axial characteristics of incoherent imagers by hybridization
methods

Lateral and Axial Resolutions

Interdependent .
P Not possible to

Incoherent hybrid imaging systems (INCHIS)

INCHIS — H1 (Tuning Real-time) INCHIS — H2 (Tuning Post-recording)

Axial characteristics
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CIPHR "&,As S
INCHIS- Experimental Results
INCHIS — H1 (Tuning Real-time) INCHIS — H2 (Tuning Post-recording)
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Variation in Axial Resolution

Lens Hybrid State Axicon

Axial Intensity Distributions
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Research Works

Highlights
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IEEE Spectrum

Holographic hybridization technique allows
changes of depth of field in recorded
pictures and videos
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Holographic hybridization method: Two pictures of the same scene are recorded simultaneously with a |

Most of the imaging technologies available today, including smartphone cameras,
digital video cameras, microscopes and telescopes, are based on the concepts of
direct imaging, i.e., a camera directly recording a scene in a single step. This is

novaator NEWS MEDIA TYPE SPECIAL PROJECTS

Tartu opticians' new imaging method pleases both
doctors and photographers

Airika Harrik
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Impossible Photo Feat Now Possible Via Holography
>Now you can focus on anything while giving up nothing,
with simple, cheap optics

In these imsges, features get sharper or blurrier Gepending on how they sre shifted from & refractive lens, which has & low depth of
f1eld [left], to » refractie sxicon, which has & high depth of field [right] .

* INCHIS-H2:
First method
to tune image
resolutions
post-recording

https://phys.org/news/2023-
09-holographic-hybridization-
technique-depth-field.html

P 1.1l Charnciestz® of ncoherent iman=+s by Iybridization Methods | Shwva

https://novaator.err.ee/1609141678/ta
rtu-optikute-uus-pildistusmeetod-
roomustab-nii-arste-kui-ka-piltnikke

https://www.youtube.com/
watch?v=aDi6WrK34hs

https://spectrum.ieee.org/depth-of-
field
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OPTICS and LASERS
in ENGINEERING

Gopinath et.al, “Sculpting axial characteristics of incoherent imagers
by hybridization methods,” Opt. Lasers Eng. 172, 107837 (2024)
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3) Post-Ensemble Generation with Airy Beams for Spatial and Spectral
Switching in Incoherent Imaging (PEGASASS)

Work is under review

Optical configuration - PEGASASS Results — Same wavelength and different depths
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Same depth and different wavelengths Different depths and different wavelengths
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Conclusion >

d FINCH with TAP-GSA: Solves the drawbacks
In the existing FINCH method

L INCHIS: Allows to modulate axial resolution
both in real-time as well as post-recording

0 PEGASASS: Allows to modulate both axial and
spectral resolutions post-recording.

O Application areas: digital holography,
microscopy, computer vision, cinematography,
etc.
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() shivasubramanian.gopinath@ut.ee
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https://www.youtube.com/ @eraciphrlab2865
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