

Manipulated Bessel Beams and their Applications

Shanti Bhattacharya

Department of Electrical Engineering
IIT Madras

IIT Madras: A forest in the middle of the city

Inside the forest

photonics IMDIAN INSTITUTE OF TECHNOLOGY MADDAS

 Centre for teaching, research and industrial consultancy

 A residential institute with nearly 700 faculty, 12000 students and 1250 administrative & supporting staff

 A self-contained campus located in a beautiful 2.5 km² forested

land

Beam Shaping

Research Questions

- What t(x,y) do we need to get a specific $E_{out}(x,y)$?
- How to design or calculate t(x,y)?
- Should the phase element be
 - Refractive
 - Diffractive
 - Meta
- What is the best way to fabricate the element?

Application: Generation of Sidelobe Suppressed Bessel Beams

Bessel Beams

Gaussian versus Bessel Beam

Bessel Beam Cross Section

Direction of propagation

$$\psi(r,z,t) = J_0(k_r r)e^{i(k_z z - \omega t)}$$

Bessel Beam: Diffraction-free

Self Healing Property

Self healing:

- Ability to reconstruct original shape
- Advantages:
 - Multiple particle trapping
 - Speeds up Light microscopy

Phase Elements

Refractive

Meta-surface

Modulo 2π Operation

Diffractive

What they don't tell you about Bessel Beams

(Problem 1)

Axial Intensity

General relationship between AI(z) and $I_{in}(r)$:

$$AI(z) = MI_{in}(r)z$$
M(n, $lpha$)

- Axicon illuminated with incident beam of desired cross section I(r)
- Fresnel integral used to compute the transverse intensity at different z distances
- DOE1 I(r)
- DOE2- Axicon

Linearly Increasing axial intensity

$$AI(z) = MI_{in}(r)z$$

$$AI(z) = az$$

Input beam: Tophat intensity

Linearly increasing – Experimental

 Goal: Design a sidelobe suppressed Bessel beam

Sidelobe suppressed Bessel beams: Application

Photobleaching

Fluorophores exposed to unwanted radiation — lose ability to fluoresce.

https://www.olympus-lifescience.com/en/microscope-resource/primer/photomicrography/fluorescenceerrors/

beams

- High sidelobe energy
 - first sidelobe peak intensity is 16%
- Superposition of two Bessel beams – sidelobes interfere destructively

Optimising Bessel Beam Parameters

• The superposed beam can be represented by,

$$SP(r,z) = A_1 J_o(k_{r1}) \exp(jk_{z1}z) + A_2 J_o(k_{r2}) \exp(jk_{z2}z)$$

• The intensity of the superposed Bessel beam where k_z vectors coincide is,

$$I(r) = |A_1 J_o(k_{r1}) + A_2 J_o(k_{r2})|^2$$

• Sidelobe intensity in the desired region $(r_0 - r_1)$ is reduced by minimising the following integral

$$I = \int_{r_0}^{r_1} |A_1 J_o(k_{r1}) + A_2 J_o(k_{r2})|^2 dr$$

Sidelobe Suppressed Bessel Light Sheet

G. Di Domenico, G. Ruocco, C. Colosi, et al., "Cancellation of bessel beam side lobes for high-contrast light sheet microscopy," Sci. Rep. **8**(1), 17178 (2018).

Increasing efficiency

Bessel beams generated by annular rings

- Amplitude elements
- Poor efficiency

To improve efficiency – phase elements

- 1. Phase hologram to create the combined Bessel beams
 - Tilted plane wave added to

$$E(r) = A_1 J_o(k_{r1}) + A_2 J_o(k_{r2})$$

2. Multiplexing

Efficient Multiplexing of Axicons

Jerin Geogy George, Kishan Dholakia, and Shanti Bhattacharya, "Generation of Bessel-like beams with reduced sidelobes for enhanced light-sheet microscopy," Opt. Continuum 2, 1649-1660 (2023)

Experimental Results

Cross-section

Bessel - experiment
SSBB - experiment
SSBB - experiment
O.4

0.2

-500
-300
-100
100
300
500
Position from axis (µm)

Jerin Geogy George, Kishan Dholakia, and Shanti Bhattacharya, "Generation of Bessel-like beams with reduced sidelobes for enhanced light-sheet microscopy," Opt. Continuum 2, 1649-1660 (2023)

BB and SSBB (experimental) Intensity profiles in fluorescein solution

Experimental light-sheet imaging of onion epidermal cells

Bessel beam

Sidelobe Suppressed Bessel beam

Sidelobe Suppressed Bessel Beams for LSM

Imaging GCaMP labelled cell nuclei of the zebrafish (4-5 dpf) eye

Magnified views

Summary: Shaping Light

- Introduction to Bessel beams
- Ways of improving them
- Applications (in imaging)

Summary: Shaping Light

Work presented today

Jerin George

Meta-optics for PSF Engineering

Raghu D

Design and
Fabrication of
Meta-optics for
Complex Light
Generation

Prof. Kishan Dholakia School of Physics and Astronomy Sir James Mackenzie Institute for Early Diagnosis Centre for Biophotonics, Univ. of St. Andrews, Scotland

Acknowledgements

- Funding agencies:
 - SPARC project, MHRD
 - MeitY
 - DST
- Centre for NEMS and Nanophotonics, IIT Madras

Support from conference organisers for this trip

Thank you

Table 1. Experimentally calculated DOFs of the BB and the SSBB light sheets compared to a theoretical Gaussian light-sheet of equal thickness. To attain the same DOF as the SSBB, the Gaussian light-sheet thickness would have to be increased to \sim 6.5 μm at the expense of axial resolution.

	ВВ	SSBB	Gaussian (Theoretical)	
			Matched thickness	Matched DOF
Thickness of light-sheet	$4.8\mu\mathrm{m}$	4.8 μm	$4.8~\mu\mathrm{m}$	6.5 μm
Depth of focus (DOF)	1.4 mm	$540\mu\mathrm{m}$	$296\mu\mathrm{m}$	$540\mu\mathrm{m}$

Fabrication – Metaoptics

Fabrication – Metaoptics

