20 - 21 September 2025 | Tartu, Estonia

Generation of helical intensity beams and pulses for micromachining

Gabrielius Kontenis

Tartu, Estonia 2025-09-21

All topics related to femtosecond micromachining

Metal processing:

- Surface treatment,
- Deep cutting
- Polishing

Deep engraving in stainless steel

Optical fiber processing:

- Selective ablation:
- Microdrilling,
- Core modification

Drilling in optical fibers

Thin coating processing

- Selective ablation
- Laser lift-off of GaN

Processing chromium masks for lithography

Laser-assisted chemical etching of dielectrics

- Ultra precision cutting of fused silica
- All-glass MEMS
- Saphire processing

Glass MEMS devices

Saphire cutting

For more details feel free to contact femtosecond micromachining lab: dr. Domas Paipulas, domas.paipulas@ff.vu.lt

Spatial beam shaping and their applications

- 1. Quality
- 2. Throughput
- 3. Novelty

Typical initial beam – Gaussian beam

^[1] O. Homburg, et al., Proc. of SPIE 8236(9), (2012)

^[2] S.D. Gittard, et al., Biomed. Opt. Express 2(11), (2011)

^[3] M. Duocastella, et al., Laser Photonics Rev. 6(5), (2012)

^[4] R.D. Simmonds, et al., Opt. Express 19(24), (2011)

^[5] V. Garbin, et al., Japanese J. Appl. Physics 44(7B), (2005)

Expanding the tool set

Laser Research Center

- Particle manipulation and translational motion with LG beams,
- Stabilization of cold atoms.

Fig. Working principles of optical tweezers [1].

Arthur Ashkin

Nobel Prize in Physics
2018

Mechanical

Formation of higher order beams

Fig. Working principles of an axicon [1].

Fig. Working principles of a spiral phase plate for creating an optical vortex [2].

Bessel overlap

High aspect ratio chiral beams 1

High aspect ratio chiral beams 2

Fig. Schematic overlay of Bessel zones

Fig. Propagation differences of the resultant pattern due to different axicon angle ratios: 1.1, 1.4, 1.8, 2.3.

Fig. (a) Phase-helical Bessel beam with single helicity $l_1 = 1$, wavefront. (b) with double helicity $l_2 = 2$ wavefront. (c) Optical drill bit, emerging from the interference of beams a and b, showing a helical intensity distribution. (d) Axial XZ and transverse XY cross-sections of the simulated intensity distribution. (e) Examples with the same geometric structure to the proposed light intensity patterns.

Spatial light modulator - SLM

PLUTO-2.1 Spatial Light Modulator – Microdisplay Features	
Display Type:	Reflective LCOS (Phase Only)
Resolution:	1920 x 1080
Pixel Pitch:	8.0 μm
Fill Factor:	93 %
Active Area	15.36 x 8.64 mm (0.7" Diagonal)
Addressing	8 Bit (256 Grey Levels)
Signal Formats	HDMI – HDTV Resolution
Input Frame Rate	60 Hz

Spatial light modulator working principle

$$\Gamma = \frac{2\pi}{\lambda} \frac{OPL}{\cos \theta_{LC}} \left[\frac{1 + (OPD/OPL)}{1 + (OPD/OPL)\cos^2 \phi} - 1 \right]$$

$$\phi(\theta_{inc}, V) = \frac{\pi}{2} + \alpha(V) \mp \theta_{LC}(\theta_{inc})$$

$$\phi = e^{i\frac{2\pi}{period}}$$

Fig. Axicon hologram

SLM beam modification methods

Fig. Examples of beam shaping variations to generate various intensity patterns.

Fig. Complex plane of two nearby electric fields.

High aspect ratio chiral beams 3

Fig. Optical scheme used for beam shaping. (a) Grayscale phase image of a computer-generated hologram displayed on the SLM (b) Optical chain (c) CCD captured intensity distribution

Phys. Rev. Applied 17, 034059 (2022)

High aspect ratio chiral beams 4

Fig. Intensity distribution with constant

Fig. Intensity distribution with Δl – constant

Fig. Structured beam diameter change with an increase in base topological charges

3D reconstruction

Fig. Numerical 3D isosurface of the interefering higher-order Bessel beams

Fig. Experimental 3D isosurface of the interefering higher-order Bessel beams

Time dynamics

Liuminescence of the beam

Laser Research Center

- Rhodamine B dye as fluorescent material,
- 4F system with 150 mm lens and 0.2 NA objective for focusing the beam,
- Microscope of 0.65 NA and 100 mm lens for visualization.

Pulse beating

Helical beam formation from chirped pulses

$$E_{\rm p} = {\rm e}^{-\frac{(t+T_{\rm shift})^2}{\tau_{chirp}^2}(1+i\gamma)}$$
$$\gamma = \sqrt{\left(\tau_{\rm chirp}/\tau_0\right)^2 - 1}$$

$$T_{period} = rac{\pi au_{chirp}^2}{T_{shift} \sqrt{rac{ au_{chirp}^2}{ au_0^2} - 1}}$$

Differences between harmonics

Fig. Luminescence of the beams on a "Thorlabs" beam visualizer.

Vid. Delay line translation at a speed of 10 μ m/s.

Fig. XY cross-section comparison of numerically simulated and experimentally measured intensity patterns of 2H generation between a Gaussian pulse and two interfering chirped beams.

Fig. 3D reconstruction of (f) experimental and (g) numerical intensity distribution. Parameters: $T_{delay} = 6.67 \ ps$, $\tau_0 = 200 \ fs$, $\tau_{pulse} = 70 \ ps$

Fig. (a) chirped pulse duration (b) (c) are rotation frequency and period dependence on delay between pulses. $\tau_{pulse} = 70 \ ps$

Alignment

Energy

Fig. Simulated XY intensity distributions of a $\Delta I = 1$ helical structure with a pulse delay between interfering beams of 25, 50, 75, 100 ps respectively.

Angle

Fig. Simulated XY intensity distributions of a $\Delta I = 1$ helical structure with propagation angles between interfering beams of 0, 0.05, 0.1, 0.25 deg respectively. The pulse shift was 2 ps.

Limitations of helical intensity beam formation

- Both beams are propagating in the same direction at the same speed
- The structure is formed within it
- Due to the same phase relationship between the pulses the twisted structure is static

Overlap increases

Rotation speed increases

Surface machining

Fast rotating temperature gradient

Relation of THz rate burst pulses and the optical drill

Figure 1: Operating diagram of tunable GHz and MHz burst with Burst-in-Burst capability

Resultant ablated regions

Fig. Ablation zone height map

Fig. Ablation zone brightfield image

Ablation zone evaluation

Fig. Ablated volume calculation scheme. Rough region around the base line is ignored for the calculation.

Light-matter interaction 1

Fig. Ablation depth and ablation area of silicon wafer from the number of pulses with different spatial beam shapes.

Light-matter interaction 2

Fig. Ablated volume from the number of pulses with different spatial beam shapes.

Light-matter interaction 3

Fig. Ablation results based on delay between interfering pulses

Reduction in measured depth and volume

Fig. 8. Issues with high aspect ratio holes, (a) recasts and (b) bending. [1]

Fig. 12. Transient melt pool dynamics during the 8th pulse. Temperature field (color surface contour, unit: K), Velocity field (colored arrow plots, unit: mm/s). [2]

ACIU

International Conference on Applied Physics & Imaging

20 - 21 September 2025 | Tartu, Estonia

Generation of helical intensity beams and pulses for micromachining

Gabrielius Kontenis

Tartu, Estonia 2025-09-21

Our group

