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Lagrange Invariant condition also called as
Smith-Helmholtz formula states that the
magnification between two points is same as
magnification of the point.
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M,=M, Lagrange Invariant  condition
satisfied.

Mx;tMy Lagrange Invariant condition not
satisfied.

M <M Lagrange Invariant condition not
satisfied and super resolution.

Opt. Express 22, 29048-29066 (2014).
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Optical configuration
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* A new reconstruction algorithm - Lucy-Richardson-Rosen algorithm is developed
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* CIPHR group and Prof. Rosen looking into Al based reconstruction possibilities
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as the time-resolution of FINCH. The authors have demonstrated FINCH using a single passive multifunctional diffractive
optical element consisting of randomly multiplexed diffractive lenses with different focal lengths for the first time. The
multifunctional diffractive optical element has been fabricated using nanolithography and the technique has been

successfully demonstrated in a highly compact optical configuration on resolution targets and biological samples.

[ Dr. VijayakumarAnand]from the research group of Prof. Saulius Juodkazis at Swinburne University of Technology has

redefined a well-known incoherent imaging technique called as Fresnel incoherent correlation holography (FINCH) using

the fundamental principles of linear systems. FINCH systems have a resolving power 1.5 times higher than that of

equivalent lens based incoherent direct imagers and twice that of a coherent direct imager. For this reason, FINCH has
been widely used to build super resolution fluorescence microscopes and also used as a resolution enhancer by coupling it
with other super resolution techniques such as structured illumination. The super resolution in FINCH also demands many
stringent requirements such as special optical configuration, active and passive optical elements such as spatial light
modulator, polarizers and lenses and has lower axial and temporal resolutions. This cumbersome requirements and lower
axial and temporal resolutions often prevent the wide applicability of FINCH. In this study, the researchers have redefined
FINCH in a new light and have succeeded in transferring the enormous optical load consisting of active and passive opfical
components to nanofabrication and computational optics. Consequently, they were able to realize FINCH with a single
diffractive optical element fabricated using nanofabrication. This approach has converted the bulky, expensive and heavy

FINCH into a compact, low-cost and light weight version. Furthermore, the new approach has also improved the axial and
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Expanding infrared microspectroscopy with
Lucy-Richardson-Rosen computational
reconstruction method
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Figure 1: Three-dimensional point spread function of Cassegrain objective lens. Credit: Compuscript Ltd

Opto-Electronic Science has published a study expanding infrared

p opy with the Lucy-Rict Rosen cc ional recor
method.
X Computational imaging technologies have
MiniJewel & MicroJewel substantially reduced the costs of imaging
Lasers systems and at the same time significantly
Soneacs, Pulked. NETAS. improved their performances such as three-
Rk th o % ional imaging ility, multi

imaging with a monochrome sensor, etc.,
However, computational imaging methods
are not free of challenges. Most if not all
computational imaging methods require
special optical modulators such as scatter-
plates, Fresnel zone apertures, and coded apertures that map every object point into
a special intensity distribution. A computational method reconstructs the recorded
intensity distribution into multi I, 1sional images. Since an
intermediate reconstruction step is involved, computational imaging methods are
termed indirect imagers while conventional lens-based imaging systems are direct
imagers. The need for special optical modulators in computational imaging is due to
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Vijayakumar Anand et al, Single-shot mid-infrared incoherent holography using
Lucy-Richardson-Rosen algorithm, Opto-Electronic Science (2022). DOI:
10.29026/0es.2022.210006
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