

The story of GScan

Technology of the future, now

https://gscan.eu/ https://www.linkedin.com/company/gscan

Summer School of Physics Students July 2022

² The problem:

We are eager to know what is the inside of things!

The X-ray photo, Wilhelm Röntgen, Würzburg, Germany, 1895

Probably one of the most influential photo in history

We are eager to know what is **the inside of things!**

Principles of

muon tomography

- 1. Measuring incoming natural flux of atmospheric particles: muons, electrons, positrons
- 2. Scattering of the particles in the object
- 3. Measuring exiting particles after the scattering
- 4. Reconstruction of the object and its materials using the scattering data

Technical description of our prototype system: https://arxiv.org/abs/2102.12542

GSCAN

Cosmic rays – the origin

7 T	7 Timeline											GSCAN	
			bility study the Tartu rsity	,		prepa	n founded, rations for p prototype	-	H2020 project financed (€7.5 The first privat (€0.51M)	M)	MVP, Fist c Conti	uction, June 2022 Sept 2022 elients, Oct 2022 racts with CERN ESA (April-July)	
20	16	201	17	20	18	201	9	2020	202	21 2	022	2023	
	 GoSwift Automated Border Gate project				nt cation hitted			 Lab prote complete POC ach	ed,	EI (E	E Innovat AS)	nt from the ion Agency I investment	

Prototype µFLUX system

Commissioned: May 2020 Tests completed: August 2020

Main result: 99+% efficiency to classify materials (water, plastics, wood, light and heavy metals etc)

Technical description: https://arxiv.org/abs/2102.12542

Atmospheric ray tomography for low-Z materials

Andi Hektor, GScan & KBFI

In collaboration with G.Anbarjafari, A.Anier, E.Avots, A.Georgadze, E.Ersoy, M.Kiisk, M.Kutateladze, T.Lepp, M.Mikkor, M.Mägi, V.Pastsuk, H.Plinte, S.Suurpere https://arxiv.org/abs/2102.12542

25/11/2021 Muographers 2021, Ghent

COLLEGE OF MEDICINE AND HEALTH

Muon tomography for clinical imaging: preliminary modelling-based results

Jörg Tiit^{1,4}, Egils Avots¹, Märt Mägi⁴, Christina Hrytsiuk⁴, Andi Hektor^{1,4}, Madis Kiisk¹, Eduardo Cortina Gil², Andrea Giammanco², **Karen Knapp³**, Jack Spencer³

- 1. GScan OÜ, Estonia
- 2. Université Catholique de Louvain, Belgium
- 3. Medical Imaging, University of Exeter, Exeter UK
- 4. KBFI, Tallinn, Estonia

K.M.Knapp@exeter.ac.uk

CosmoMed project

To provide an understanding of a cosmic-ray based tomographic system's theoretical capability of detecting osteoporosis

An example of the UHAR system measuring the calcium concentration in the human bones exploiting cosmic radiation.

Rakendusuuringute

programm

Funded by the European Unio

Cosmic Ray Tomograph for Identification of Hazardous and Illegal Goods hidden in Trucks and Sea Containers

> O ALARME C EVACUATION

SEAS

Busy year of GScan May 2021- May 2022

1448

FLUX

nograph

Modules for µFLUX™ products (May-June 2022)

Key product: industrially produced detector module (hodoscope)

- **Dimensions:** 1m × 2m × 0.3m
- **Detector tech:** Plastic Scintillator Fibre (PSF), Silica Photo Multipliers (SiPM)
- **Production tech:** Robotic production line (some manual steps)
- Price (Bill of Materials): €50k/m²
 - R&D target (end of 2023): €25k/m²
 - Long term (2025): €10k/m²

14 Production line of the modules (April-May 2022)

¹⁵ muonFLUX Small[™], Oct 2022

Pilot customer: the **Estonian Customs**, parcel company **Omniva AS** (LOI signed, the lead of €0.5M sales contract in 2022)

- The interrogation volume: 1 × 1 × 1.2 m³
- **Markets:** customs, parcel delivery, airports, security gates
- **First clients beyond the pilot:** Finnish & Latvian Customs
- **Price:** €0.5M (Bill of Materials: €0.25M)
- Technical description: constructed by the four sensor modules (1 × 2 m²)

16 muFLUX Small™, Oct 2022

Interrogation chambre

4 standard unit detector modules (hodoscopes)

Covering, light materials

¹⁷ muonFLUX Medium[™], 2023

- The interrogation volume: $ca 3 \times 2.5 \times 6 m^3$
- **Markets:** Aviation containers, borders & customs, security gates
- **Timeline:** the second half of 2023
- **Technical description**: the 20 modules supported by light construction frames
- First clients: negotiations with Singapore Air Cargo & SATS

¹⁸ muonFLUX Large[™], 2024

The first pilot contract singed! Project SilentBorder by the European Union (€7.5M, 2021-25)

- Large scanner for trucks and sea containers
- Modular design
- Delivery: 2025
- Price: €10M
 - Further details: <u>https://silentborder.eu</u>

Partners: GScan, Tartu U, German Aerospace Centre (DLR), CAEN (Italy), Uni of Sheffield (UK), UCLouvain (Belgium), SGS (Switzerland); Estonian, Finnish and Turkish Customs

¹⁹ muonFLUX[™] Special, 2024

The first pilot projects are coming (€2.5M)

- Markets: Non-Destructive Inspection/Testing (NDI/NDT) for bridges, wind turbines, power plants etc
- **Timeline:** First system ready in Autumn 2022
- First clients: Energy & nuclear sector
- Price: modular system, the prices starting €0.5M

GScan R&D projects and future directions

- Two abandoned Soviet military reactors in Estonia
- Cylindrical steel "submarines" (9 & 7 m) half-filled with concrete and some radioactive objects
- Can muon tomography help? <u>Yes</u>

2 hours exposure (8x12 m2) --> some days with 2 m2 area hodoscopes

²¹ Our team (Oct 2021)

Business + sales + industry + detectors + AI

Thank you! Questions?

Andi Hektor andi@gscan.eu

GScan OÜ Mäealuse 2/1 12618 Tallinn, Estonia gscan.eu