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1 Overview 
This report first discusses how General Transit Feed Specification (GTFS) [1] feeds from multiple 

countries or regions can be modeled, integrated, validated, and queried uniformly in a data 

warehouse. This includes the design of a generic data warehouse for storing GTFS feeds. GTFS data 

is available for most if not all EU countries. 

 

The report then moves to describe how GNSS (or GPS) data from vehicles can be used to derive 

knowledge. The report focuses on two important Key Performance Indicators (KPIs) travel time and 

fuel consumption. These KPIs are the backbone of transport planning and evaluation in both public 

and private transportation organizations. 

 

2 GTFS (General Transit Feed Specification) 
 

This section describes the overall data warehouse design where GTFS data is stored. The data 

warehouse contains all information related to public transportation where the data is provided in 

the de facto standard GTFS format. This includes information on topics such as agency, stop, route, 

trips, stop times, fare attributes, fare rules, frequencies, and transfers. The data warehouse stores 

all the information that is provided by the various public transportation authorities. The data 

warehouse design supports multiple countries. 

 

Please note that there are no GDPR issues related to using GTFS data. The data is already in the 

public domain and contains no information related to individual persons. 

 

2.1 Platform 
The PostgreSQL [2] relational database platform is used as the underlying relational database 

management system. This platform is chosen because it is widely used both by public and private 

organizations. The PostgreSQL platform is considered highly mature and is used in production 

environments in many organizations. Further, the PostgreSQL platform supports the Open 

Geospatial Consortium (OGC) [3] standard for handling spatial data via the PostGIS [4] extension. 

Finally, routing queries can be supported using the pgRouting [5] extension. The PostgreSQL 

platform and the two extensions PostGIS and pgRouting are all open-source products that freely 

can be used. 

 

2.2 Data Sources 
During the project, several different GTFS sources have been used. This covers three countries in 

the Denmark, Estonia, and Sweden. 

 

2.3 GTFS Data Design 
This section provides the details of the tables that are used for storing the. The overall design is 

shown in Figure 1. The scripts for creating the database are available online. In the following, the 

database design is described in further detail. GFTS covers buses, trains, and trams. For simplicity, 

we use the word bus in the following. 

 

2.3.1 Table Description 
In this section, we shortly describe each of the tables shown in the diagram in Figure 1. 
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 The feed table is the main entrance table. It contains the ID and geography that defines the 
spatial area covered by the data. 

 The table translations contain language information. 

 The table shapes describes the geometry of the various parts of a station 
 The table levels contain information on various levels, e.g., if you need to go up and down. 

 The table agency contains information on the agency. 
 The table fare_rules describes the rules associated with a fare. 

 The table fare_attributes describes the details for the fair_rules table. 
 The table payment_methods is associated with fare_rules and describes how users can pay 

for the fare. 
 The table routes describe the main routes, e.g. local or regional routes, or more specific as 

ferry or aerial lift. 

 The table routes_types describes which types of routes are available. 
 The table trips contain information on the trips on a route. 

 The table direction describes the direction of a route. Typically there are two directions but 
there are also route variations. 

 The table frequencies describe when the bus departures and arrives at the various stops. 
 The table calendar adds specific date and time information to the bus. 

 The table calendar_types contains various additional information on calenders, e.g., special 
country-specific holidays. 

 The table stop_times is associated with when a specific bus stops are a specific stop at a 

specific route. 
 The table pickup_dropoff_type contains information on the stops, e.g., schedule, phone 

assigned, or driver assigned. 
 The table stops contain information on the individual stops. 

 The table location_type contains information on the stops, e.g., boarding area, stop, 
platform, or generic node. 

 The table wheelchair_boarding contains information on if a stop is accessible for wheelchairs 
users. 

 The table transfers describe how a user can transfer to other routes at a specific stop. 

 The table transfer_type contains details on how users can transfer at a stop.  
 The table attributes contain details on a stop. 

 The table pathways describe how to transfer when at a stop. 

To make it simpler to learn to use the database, the names used in the GTFS specification have a 

far as possible been retained in the table names. However, reserved words in the SQL language are 

not used as table names. Similarly, are all column names taken directly from the specification.  

 

Please note that the SQL scripts that create the data warehouse structures are a good source of 

information. These scripts are freely available for download. 

 

2.3.2  Database Constraints  
The database schema is implemented with as many database constraints as possible to avoid so-

called dirty data. The general rules for adding database constraints are explained the following. 

 

All tables have a primary key. This is listed in the GTFS specification and the implementation is 

aligned with the specification. Note that composite primary keys are used in several places.  

 

Unique keys are added where the specification lists that values should be unique and a table already 

has a primary key. 
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Not-null contains are added where listed in the specification. However, the not-null constraint has 

been lifted on several columns because the data was not available in all GTFS feeds. To support 

most feeds the database implementation is not as strict as listed in the specifications. 

 

Foreign keys are used in all places where they can be deduced from the specification. Foreign keys 

are very important to ensure that the data loaded is a coherent whole.  

 

Foreign keys are not specified directly in the GTFS specification and the foreign keys used have 

been tested by loading feeds from three different countries. To the best of our knowledge, the 

implementation contains all the foreign keys possible. If the implementation contains too many 

foreign keys, these can be disabled individually. It is a simple technical task to disable a foreign-

key constraint. 

 

 
Figure 1 Overview of the GTFS Database 
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2.4 A load of a GTFS Feed 
The database design described in Section 2.3 is loaded using a Python [6] script. The database 

design is non-trivial as it consists of a significant number of tables. The load-script is therefore also 

non-trivial. A particular problem is to ensure that the database constraints described in Section 

2.3.2 are fulfilled. 

 

2.4.1 Load Script Features 
The GTFS feeds typically change weekly, monthly, or quarterly. This means that the content of the 

database quickly becomes outdated if the content cannot be updated simply. A complication of the 

load script is that that GTFS feeds can be incorrect. This has been experienced in several cases that 

an GTFS does not completely follow the GTFS specification. 

 

The load-script accepts the following options/parameters. 

 Create, this option creates the entire database shown in Figure 1. No data is loaded. 
 Crop, this option drops the entire database, all data is naturally lost if the database is 

dropped. 
 url, this option is a path on a local computer or a URL on the web address, the script with 

then load the GTFS feed specified by the URL. 
 Reset, this option will first run the drop option and next create option.  

 Validate, this validates a GTFS feed. To ensure that the GTFS data can be loaded into the 

database. 

 Multi, this will load multiple GTFS feeds into the database. 

Note that multi-option is needed because several countries have more than one GTFS feed for the 

country. The multi-option can also be used to load GTFS feeds from several countries into the same 

database. 

 

2.4.2 Multi-Country Support 
The database supports multiple countries or regions in several ways. 

 The multi-option in the load script can be used. This will support multiple countries in the 

same database. 
 The database connection can be changed. This will support for example one country or region 

per database. 

In principle, the GTFS feeds for all EU countries can be loaded into the same data warehouse. 

However, to make it simpler to handle the data it is recommended to have a data warehouse for 

each country or each region for larger countries/cities. 

 

The multi-country support also allows a region to load multiple versions of a GTFS feed into the 

same data warehouse. This makes it possible, e..g,  to compare, a holiday season with summer or 

a winter season. 

2.4.3 Testing of GTFS Feeds 
The database design and the load scripts have been tested in the following way 

 There are Python unit-test scripts that check for the typical errors. 
 The database has been populated with data from three countries 

 The SQL script has been adopted to accommodate typical errors in the GTFS feeds.  
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3 GPS Data Warehouse 
GPS data is available from several sources. However, due to General Data Protection Regulation 

(GDPR) rules in the EU, there are restrictions related to acquiring, storing, and displaying GPS data. 

To comply fully with the GDPR rules we only use data in the RESPONSE project where we are certain 

that we are allowed to use it. However, the solutions provided in the project can be used in any 

country where there is a digital map from OpenStreetMap (OSM) [7] and where a transport 

organization has GPS data that they are allowed to use internally. In practice, OSM is available for 

the entire EU region.  

 

3.1 GPS Data Design 
The GPS data warehouse is based on an existing design shown in Figure 2. In the RESPONSE 

project, we built on top of this data warehouse design [8]. The contributions made during the 

RESPONSE project are the following and related to KPIs travel time and fuel estimation. 

 
Figure 2 Overview of GPS Database 

 Five different models for computing travel time. The models are machine-learning-based 

methods that enable travel time to be computed in areas with limited GPS data. The models 
are gradually more and more sophisticated. These models are fully described and 

documented in Appendix A 
 Two different approaches for computing fuel estimations from GPS data. 

 An implementation of a RESTful API on top of the extended data warehouse to query data 
programmatically, from basically any programming language. A complete set of examples 

are provided in the popular Python programming language. This API and examples are 
explained in detail in output O2.4 from the RESPONSE project. 
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 A web front-end for visualization of four important queries on the data warehouse (a) 
routing, (b) isochrones (3) travel-time cost matrix, and (4) traveling salesperson. The web-

front-end and the four queries are explained in detail output O3.1 from the RESPONSE 

project. 

3.2 GPS Data Used 
To ensure compliance with the GDPR rules only existing data from Denmark are stored in the data 

warehouse. However, the data warehouse is generic and can be used to store GPS data from any 

country where OSM provides a digital road map. This is most of the World including the entire EU 

region. 

The GPS trajectories are mapped to OSM road segments and the travel time is inferred from the 

mappings.  

 

3.3 Travel-Time Estimation  
Both estimation types of travel-time estimation models use travel times on OSM road segments. 

The baseline model requires the average speed-limit delta for each road category. For instance, if 

we assume the speed limit on motorways in Denmark is 130km/h, and the average speed on 

motorways is 125km/h, the motorway speed limit delta is -5km/h. The travel-time estimation for 

motorway segments can therefore be calculated as 
𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡+(−5)
. This model is simple, however, it 

generates good baseline results. 

 

For the other models we use a deep-learning approach to train the models, the models are 

configured with ten layers of 100 neurons each and trained for about 8 hours each. The simplest 

deep-learning model is trained with the same set of features as the baseline model, that is length, 

speed limit (km/h), and road category. In  (M1-M4) and the Baseline Model 

 

 

 

 

Table 2 the performances of each model are displayed in different metrics, in each case lower is 

better (See Appendix A). There is a significant improvement in every metric from the Baseline 

model to M1. Model M2 adds all road-segment metadata (tortuosity and one-way). Model M3 adds 

road annotation data (crossing, calming). Model M4 adds temporal features (month, weekday, hour 

of day).  A common trait of deep-learning models is that they require large amounts of training 

data. The results in  (M1-M4) and the Baseline Model 

 

 

 

 

Table 2 are for models trained with 45.5 million samples collected in Denmark from 2012-2014. An 

analysis of the accuracies are at different sample sizes is shown in Figure 1. Models with feature 

set D only outperform other models when trained on the full data set. From the line plots, we can 

expect only feature set D will improve with more data, but also that a 10-fold amount of data 

increase is required to gain a one percent improvement in MAPE. Since it is not trivial to collect 

these amounts of data, and the potential improvement is small, a better option could be to try 

models which are less dependent on large amounts of training data and add more features, such 

as grade of the road, weather, and details about adjacent road segments. 
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To use the models through the RESTful API and by extension the web front-end, the travel times 

of each segment in the road network are precomputed and stored in the database. From the 

database, the different routing functions can efficiently run using pgRouting. Model M4, however, 

requires a travel time for each combination of temporal features i.e. month, weekday, and hour. 

Therefore storing the model requires 2016 times more space. Using model D in the RESTful API is, 

therefore, slower than other models.  

 

The models were applied to the road networks of Denmark, the Faroe Islands, and Sweden.  

 

 

 

 

 

 

 

Table 1 Features used in Each Model (M1-M4) and the Baseline Model 

 

 

 

 

Table 2 Models Performance on the Test Set 

 

 
Figure 3 Metrics Over Sample Size 

3.4 Fuel Consumption Estimation 
During the RESPONSE project, the UN SDG goals have become increasingly more important being 

able to estimate the fuel consumption, e.g.,  on a route is a highly interesting way to use the data 

from PTA and enable political decision-making to consider different options and to identify market 

potential for private transport providers. 
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It is possible to collect fuel consumption data from the vehicles. However, this is expensive as 

additional equipment/hardware must be installed in each vehicle. Fortunately, a wide range of fuel-

estimation tools exists. These tools can take high-frequent GPS data and convert this data to a fuel 

estimate. As an example, Figure 4 shows a route in a rural area using the web tool that will be 

introduced in Output O3.1. For this route, the estimated fuel consumption is shown in Table 3. 

 
Figure 4 Finding the Fuel Estimate on Rural Route Shown usring RESPONSE Web Front End 

Table 3 Fuel Estimates for Rural Route 

Length (m) Trips Sidra Estimate (l) SP Estimate 

8,720  424 0.98  2988.21 

 

Table 3 shows that the route is 8,720 meters. That 424 trips have traveled this route on weekdays 

and that the estimated fuel consumption using the Sidra model [9] is 0.98 liters. Similarly, the fuel 

estimate using the SP model [10] is 2988.21 (no units on this type estimate). 

 

To estimate the fuel consumption the following GPS data is required 

 A vehicle ID 
 A position (latitude, longitude) 

 A timestamp to seconds granularity 
 An estimated weight of the vehicle 

 The slope of the road segments (optional) 

A major legal challenge using GPS data for estimating fuel is the GDPR rules. To avoid all issues 

related to GDPR we only demonstrated the fuel estimation approach for Denmark as high-frequent 

GPS data is here available for research purposes. All techniques used in the RESPONSE project can 

be used anywhere GPS data and an OSM digital map is available. The OSM map is available for the 

entire EU region. 
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3.5 Role-Based Access to GPS Data 
As mentioned in Section 3 access to GPS data must be restricted to comply with the GDPR rules. 

To comply with these rules the role-based access to the GPS data has been moved from the SQL 

level (the database level) to the RESTful API level (the application level). 

 

The effect of moving from the SQL to the API level is that it can be ensured in programming code 

that no users get access to detailed information on a single or small set of drivers. The RESTful 

implementation will not return a result if the result is based on data from 10 or fewer vehicles. 

 

There are currently two roles used at the API level 

- A public role that can access the four major types of functionality routing, isochrones cost-
matrix, and traveling salesperson. This role is given to the public meaning that all users that 

go to the website https://mapapi.cs.aau.dk/ can use this functionality without any login. 
The functionality is available both from a graphical user interface and via the RESTful API.  

- An API role that can access the full RESTful API. Here the user needs to be registered to log 

in and gain access to the full API. However, all users will only get access to data that is 

aggregated from 11 or more vehicles. 

By design, the public role can be used directly by public authorities and political decision-makers.  

The API role is targeted towards public and private mobility service providers with knowledge of 

querying map data. 

 

A clear benefit of user access at the RESTful API level is that no user can overload the data 

warehouse structures as the number of requests a single user can issue can be restricted. Currently, 

any user can only make four requests per second. This number has been found by examining the 

response time of the most expensive queries. 

  

https://mapapi.cs.aau.dk/
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4 Conclusion 
For the GTFS data the project supports all data provided by a GTFS feed, e.g., agency, stop, route, 

trips, stop times, fare attributes, fare rules, frequencies, and transfers. The GTFS database can be 

set up by individual regions or hosted by a cloud vendor. The GTFS database contains no person-

specific information and can be made freely available on the internet as there are no GDPR issues. 

The GTFS data contains the latitude and longitude of stops and routes and can thus easily be 

displayed on a map. 

 

The source code for the ETL programs and the GTFS database is available online for download such 

that these programs can be maintained by the regions after the RESPONSE project finishes. The 

ETL programs are written in the open-source Python3 programming language and documented at 

a function and class level. Further, how to get started with loading a GTFS feed is provided. 

 

For GPS data the GDPR rules apply and it has been a major issue to provide access to the two KPIs 

travel time and fuel-consumption estimates. For GPDR reasons the GPS data warehouse contains 

no information on drivers or vehicles. The travel-time estimation works for all of Denmark, all of 

Sweden, and all of the Faroe Islands. To avoid any GDPR issues the fuel estimation techniques are 

available for Denmark. However, both the travel time and fuel estimation approaches presented in 

the report can be used anywhere, e.g., the entire EU region. The technical details of using GPS data 

is provided in Appendix A in the scientific format typical for the research area. 

 

The GPS data can be queried using a web-based graphical user interface or a RESTful API. The 

RESTful API is introduced in detail in Output O2.4 from the RESPONSE project. The web-based 

graphical user interface is described in Output 3.1 from the RESPONSE project. 
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ABSTRACT
The travel time between a source and a destination in a road net-
work is a very important metric in many planning applications.
Several commercial solutions exist and the use of these solutions in
city areas with congestion problems is important for both private
and public transport companies. However, these companies are also
worried about the price of using commercial solutions in rural areas
or during non-rush hours, because travel time varies very little. In
this paper, we build four deep-learning models for predicting travel
time in rural areas. The models are trained using incrementally
larger feature sets. The simplest model uses length, road category,
and speed limit. The most advanced model uses multiple features
from the road network such as speed bumps and pedestrian cross-
ings. All models are trained using GPS data in a privacy (GDPR)
compliant format. Intensive experimentation with different GPS
dataset sizes is conducted to determine how this influences the
accuracy of the models. All four models are trained using the full
road network of Denmark. We show that travel time can be esti-
mated accurately in rural areas 25.3% MAPE and that even a few
road-network annotations increase the accuracy. The results show
that even small GPS data sizes contribute considerably to increased
accuracy and that a simple baseline can be accurate on rural routes.

KEYWORDS
travel time, map data, GPS

ACM Reference Format:
Magnus N. Hansen and Kristian Torp. 2021. Travel-Time Estimation in
Rural Areas. In Proceedings of . ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Travel time is a very important metric in many types of transport
applications such as route planning and parcel delivery. A wide
array of different sensor data is being collected, e.g., GPS, induction
loop, and LIDAR radar. Such data can significantly improve the
accuracy of travel-time estimations [2, 7, 9, 19]. Common to all the
sensors is that there is a non-trivial up-front investment in hardware
and software. An alternative is to use online commercial travel-
time services from providers such as Google, HERE, or TomTom.
However, using such services naturally comes at a monetary cost.

Public administration at the state, regions, and municipality level
that do transport planning are very aware of the cost-benefit of
using the commercial travel-time services. In particular, in rural
areas with limited congestion problems the benefit of using the

, ,
© 2021 Association for Computing Machinery.
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Figure 1: Travel Time in Rural and City Areas, 50 km/h

commercial solutions is being questioned. Furthermore, as you typ-
ically pay per request both public and private transport companies
are also looking for alternatives.

In rural areas, the speed on a road segment (and therefore the
travel time) is often very stable. Figure 1 shows the hourly speed
from road segments in city and rural areas of Denmark between
6:00 and 22:00. There are between 3 and 297 trips per hour on
each segment collected over 24 months. The speed limit is 50 km/h
the dashed lines are in cities and the solid lines are in rural areas.
During the day the speed is stable, there are minor fluctuations
during the evening. The results in Figure 1 indicate that the travel
time on segments can be predicted accurately in rural areas and
these segment-level predictions can be used in routing algorithms
to make accurate travel-time predictions.

A negative consequence of it being very easy to collect very large
GPS datasets is that the privacy of drivers can be violated. In the
EU-zone, the GDPR rights put strict limits on which information
about drivers can be collected and shared. To be GDPR compliant,
we use a data foundation that is as fine-grained as possible but
makes it very hard (impossible) to track individual drivers as it is
possible if GPS trajectories are used [12, 20]

The contributions of the paper are as follows.
• We show how to accurately estimate travel time in rural
areas based only on the road category, the speed limit, and
the segment length.

• We show how the travel time estimated can be improved
by adding information such as speed bumps and pedestrian
crossings.

• We show how larger and larger GPS datasets can improve
the accuracy of the travel-time estimation.

• We implement the four proposed models in three countries,
Denmark, Faroe Islands, and Sweden.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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The remaining parts of the paper are organized as follows. sec-
tion 2 looks at related work. The data foundation for the four models
is presented in section 3. The machine-learning models and how
they are trained is discussed in section 4. The results are presented
in section 5. section 6 concludes the paper and points to directions
for future research.

2 RELATEDWORK
In [13] they use trajectories and secondary attributes such as vehicle
type, day-of-week, time-of-day, and rainfall. Their trajectories are
split into sub-paths. They do not use road attributes. They use both
taxi and bus data. They use a neural model and their Attribute
Correlation Module finds the correlation between the attributes
and the travel time.

In [16, 21] they use tensor factorization to estimate travel times.
Each travel-time tensor has three dimensions: time slot, road seg-
ment, and driver. Each road segment has features such as the num-
ber of lanes, length, and points of interest such as schools, offices,
shopping near the segment. Each time slot has information about
the number of vehicles traversing an area of road segments.

In [17] they use the same taxi dataset and road features as in
[16] and [21], but use a deep neural network architecture instead
of tensor factorization. Their sparse denoising auto-encoder is de-
signed to estimate travel time without depending on a large labeled
training dataset. By intentionally adding noise in the training data,
they create a model that is robust to erroneous and missing fea-
tures. Their input training vectors contain features about the each
road segment but also the features of adjacent road segments. This
allows them to model the dependencies of adjacent and connected
road segments.

In [23] they use both historical and sparse real-time trajectory
data, which they map onto road segments or pathlets. A pathlet is
a sequence of concatenated road segments, which replace the road
segment edges, reducing the overall number of edges in the road
network graph. They use matrix factorization [5] to create a latent
representation of road segments and pathlets, which is used to train
a Gaussian Process [15] model that can estimate travel times.

Prediction of travel time assuming limited GPS data available is
also the topic in [12, 18]. A major difference to [12] is that the focus
is on urban travel time and there is special focus on congestion.
Further, road network annotation such as speed bumps are not
considered. Very large cities (New York and Shanghai) are also
the focus in [18] and the variation in travel time (called temporal
dynamics is a focus point.

Dynamic travel-time prediction using GPS data and machine
learning is the topic in [1]. A complete system that computes dy-
namic travel times is presented. The system is tested in three large
cities. In this paper we focus on rural areas and assume that the
travel time does not need to be updated while driving. Dynamic
travel time is also the topic in [22]. Major differences are that they
assume very large dataset and used histogram for weight on road
segments or sequences of road segments.

3 DATA FOUNDATION
The map data is a graph 𝐺(𝑉 ,𝐸) where 𝐺 is a graph consisting
of 𝑉 vertices and 𝐸 edges. We assume that for each 𝑒 ∈ 𝐸 𝑒 =

(𝑒𝑖𝑑, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑠𝑝𝑒𝑒𝑑-𝑙𝑖𝑚𝑖𝑡, 𝑔𝑒𝑜𝑚). Where 𝑒𝑖𝑑 is a unique edge ID,
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 is the OSM category, 𝑠𝑝𝑒𝑒𝑑-𝑙𝑖𝑚𝑖𝑡 is the speed limit, and
𝑔𝑒𝑜𝑚 is the geometry in the form of a linestring. If OSM does not
provide a 𝑠𝑝𝑒𝑒𝑑-𝑙𝑖𝑚𝑖𝑡 a speed limit is derived from the 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
column.

The map annotation data𝑚 ∈𝑀𝑚 = (𝑝𝑜𝑠, 𝑡𝑦𝑝𝑒, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒), where
𝑝𝑜𝑠 is a position, i.e., a (𝑙𝑎𝑡 , 𝑙𝑜𝑛) pair and 𝑡𝑦𝑝𝑒 is an annotation
type, e.g., speed bump or pedestrian crossing. This information
is extracted from OSM and mapped to the nearest edge 𝑒 in the
map using the position 𝑝𝑜𝑠 . This mapping results in the 𝑚′ =
(𝑒𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒) where the 𝑝𝑜𝑠 is replaced by an edge ID 𝑒𝑖𝑑 .

We examine speed bumps because they are designed to lower the
driving speed and therefore influence the travel time. We examine
pedestrian crossing because cars must yield to pedestrians, which
also influences travel time. Note that the speed bump and cross-
ing information is not complete on the OSM maps. An informal
study af speed bumps showed nearly complete coverage in one
Danish municipality and estimated less than 50% in another Danish
municipality. Table 1 shows the number of road segments with
speed-bump/crossing information and the number of rows with
GPS data on these segments, see Table 2. A city zone is defined as
a city with more than 250 inhabitants, otherwise, it is a land zone.

Annotation Zone Segments Rows

speed bump city 1348 183,139
rural 242 71,497

crossing city 430 55,269
rural 28 841

Table 1: Speed Bump/Crossing Road Segments and Rows

The GPS data 𝑑 ∈ 𝐷 𝑚 = (𝑒𝑖𝑑,𝑚𝑜𝑛𝑡ℎ-𝑡𝑖𝑚𝑒, 𝑡𝑟𝑎𝑣𝑒𝑙-𝑡𝑖𝑚𝑒), where
𝑒𝑖𝑑 is the edge ID,𝑚𝑜𝑛𝑡ℎ-𝑡𝑖𝑚𝑒 is a rounded timestamp consisting of
amonth, e.g., December, a weekday, e.g., Tuesday, and an hour of the
day, and 𝑡𝑟𝑎𝑣𝑒𝑙-𝑡𝑖𝑚𝑒 is the travel time on the edge in seconds. The
data is aggregated from GPS data sampled with 1-second sampling
period.

An example of the GPS data is shown in Table 2. The unique key
for the table is the combination of the first four columns. The table
shows 𝑡𝑟𝑎𝑣𝑒𝑙-𝑡𝑖𝑚𝑒 on Fridays in the month of April in the period
5:00 to 9:00 for the edge-id (𝑒𝑖𝑑) 444463. This edge is a 394.3-meter
long road segment of the road category 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 in a rural area
where the speed limit is 80 km/h. The road is broad and straight,
which leads to speeds are an average of ∼95 km/h. Please note
that we do not consider the travel direction because we focus on
rural areas and the travel time is assumed to be identical in both
directions for road segments where two-way traffic is allowed.

eid month weekday hour travel time (s)
444463 April Friday 05:00 15.00
444463 April Friday 06:00 16.00
444463 April Friday 07:00 17.48
444463 April Friday 08:00 17.09
444463 April Friday 09:00 17.67

Table 2: Example of GPS-Based Travel Time
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The temporal information in Table 2 is rounded to ensure the
privacy of the drivers. This means that we do not have trajectory
data available, e.g., to follow one specific trip over multiple road
segments (edges). The aggregation of the travel time at a road
segment level makes it simple to combine multiple GPS data sources
where the sampling period is different, e.g., 1, 2, 5, or 60 seconds.

We use GPS data from a field trial conducted during the years
2012-2014 a total of 471 vehicles participated. The distribution of
observations per segment category is shown in Figure 2. Table 3
shows the number of rows (#Rows), number of segments (#Seg),
the total length in kilometer (Len) the average number of rows per
category (Avg), and the percentage of road segments (%). In this
paper, we focus on the 12 main road categories in OSM, and shown
in Figure 2. Only very small roads are excluded, e.g., service roads
(cemeteries/parks) and dirt roads.

Secondary

27.50%

Tertiary

25.95%

Residential

15.52%

Primary

13.93%
Unclassified

9.27%
Motorway

6.07%
Other

1.76%

Figure 2: Distribution of GPS Data per Road Category

Category #Rows Len #Seg Avg %
secondary 12.3M 4703 21,050 586 72.7
tertiary 11.6M 4088 24,866 468 44.2
residential 6.9M 3195 30,989 225 10.8
primary 6.3M 2535 11,220 557 85.7
unclassified 4.2M 6692 24,448 170 18.6
motorway 2.7M 2270 2,117 1287 95.7
motorway_link 462K 395 1,039 445 60.2
trunk 293K 412 774 378 88.2
secondary_link 18K 7 89 197 52.3
trunk_link 11K 31 103 106 44.0
primary_link 7K 18 104 71 45.6
tertiary_link 2K 3 31 66 46.2

Table 3: GPS Data per Road Category

It is an assumption that we only have GPS data on a small fraction
of the road network, i.e., GPS data is a scarce resource.

To support the hypothesis that travel time is easier to estimate
in rural areas than in city areas Figure 3 shows the distribution of
coefficient-of-variation (CV) for different road categories in rural
areas (red) and in cities (blue). For road segments of the motorway
category, the CV is fairly similar. The same applies to the trunk
category (not shown). However, for the primary and secondary
categories shown in Figure 3, the CV is lower in rural areas. The
same applies to the tertiary and unclassified categories (not shown).

The residential category is only in city areas. For the various link
categories there are too few road segments to make a clear conclu-
sion.

4 MODELS
In this chapter, the data cleaning process is first presented. Next, it is
explained how the features are encoded, such that they can be used
for training neural network models. Finally, the training of the neu-
ral networks is discussed. This includes choices of hyperparameters
and optimizations method.

4.1 Data Cleaning
To bring relevant information about each edge, the three data sets
GPS, map, and map annotation are joined on the eid column to
form a single data set. Then the following set of filters are applied
in the order specified. The percentage of rows removed specified is
relative to the total samples left from the previous step.

(1) Categories: The minor road categories are removed: service,
unpaved, living street, track, ferry, and road. Removes 953,453
rows (1.62%).

(2) Min observations: Due to GDPR a minimum of seven ob-
servations per segment is required. Removes 214,911 rows
(0.37%).

(3) Gaussian Mixture: Inspired by [17] we fit three multi-
variable Gaussian to the logarithm of road length and travel
time, and remove the 1% least likelihood data, as shown in
Figure 4. Removes 577,325 rows (1%).

(4) Max speed: Max 60% above the speed limit. The length of
each edge is extracted from its geometry, and together with
the travel time, the average edge speed is calculated. Due to
GPS and map-matching noise the edge speed is unreasonably
high in some samples. Removes 1,054,793 rows (1.85%).

In total 2,800,482 rows of 58,900,953 rows are removed from the
data set, corresponding to 4.75%.

4.2 Features and Their Encoding
The neural-network models are standard fully-connected networks,
which require the input and output to have a fixed size [6]. The
output is a travel-time prediction, which always is a single scalar
value. The input consists of the features associated with an edge 𝑒 in
the graph𝐺 . The data originates from the three data sets described
in section 3

In the map data, each edge contains a category, speed-limit, a
one-way tag, and the linestring geom. The speed-limit is a scalar
and the one-way tag is converted to a Boolean.

The category can either be labeled encoded or one-hot encoded.
Label-encoding keeps the feature as a single scalar and can help
the model derive an ordering of the categories. One-hot encoding
transforms the categories to an input per category (in our case
we have 12 categories). One-hot encoding suggests no ordering
of the categories, and we did not find an obvious ordering of the
categories. From experiments the higher input dimensionality of
one-hot encoding is not an issue, therefore one-hot encoding is
chosen.
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(a) Motorway (b) Primary (c) Secondary

Figure 3: Distribution of Covariance per Road Category, Blue = City, Red = Rural

Figure 4: Anomaly detection with Gaussian Mixture Model
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Length Map Float Float 1.1 - 9930.0
Speed limit Map Integer Integer 10 - 130
Category Map String One-hot 12 categories
Tortuosity Map Geometry Float 1.0 - 44.06
One-way Map Boolean Boolean 0 or 1
Calming Ann. Relation Integer 0 - 2
Crossing Ann. Relation Integer 0 - 2
Month GPS Datetime Integer 1 - 12
Weekday GPS Datetime Integer 1 - 7
Hour GPS Datetime Integer 0 - 23

Table 4: Feature Encoding

The geom column is of different size because the linestrings
consists of a varying number of points. The varying size makes
the geom column difficult to use directly as an input to the model.
However, the length and tortuosity are fixed size scalars and are
extracted from the geom.

Other researchers [16, 17] use tortuosity for the same purpose of
travel-time prediction. The tortuosity is a measure of how twisted
a linestring is. It is defined as 𝑡𝑜𝑟 = 𝑙𝑒𝑛𝑔𝑡ℎ/𝑑 , where 𝑑 is the
straight-line distance between the start and end of the linestring and
𝑙𝑒𝑛𝑔𝑡ℎ is the actual length (using the ST_Length function). Figure 5

shows the most tortuous road segment in the map data set, with a
tortuosity ratio of 44. Figure 6 show the distribution of tortuosities.
Less than 0.1% of road segments have a tortuosity above two, hence
these segments are not represented on the graph.

Figure 5: The Most Tortuous Segment in our Map Data Set

Figure 6: Distribution of Tortuosity

Each row𝑚 in the map annotation data𝑀 is mapped with 𝑝𝑜𝑠

to the nearest edge 𝑒𝑖𝑑 in the map𝐺 . For each edge 𝑒 the number of
annotations and their type is counted. This results in two integers
for each edge; calming and crossing.

The GPS data 𝐷 contains the𝑚𝑜𝑛𝑡ℎ − 𝑡𝑖𝑚𝑒 which is encoded
as three integers: month, weekday, and hour. These three temporal
features are cyclical, therefore experiments are conducted with the
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features each transformed to a sine and cosine value on a unit circle.
With this transformation, the distance relationship between, the
values at the end and the start of a cycle are preserved. However, the
experiments show lower accuracy with this transformation, which
indicates the models can better learn the representation of cyclical
features, as a single input instead of two for each of the month,
weekday, and hour values. Finally, the travel time is extracted as a
float.

4.3 Models and Training
The focus while developing the travel time model is to find the best
model using existing and simple neural network architectures. Oth-
ers have developed matrix-decomposition [11] and auto-encoder
models with good results [16]. These papers use GPS data from the
urban road network of Beijing, and our data set primarily covers
rural Denmark. Due to the more complicated problem of predict
congestions in urban road networks than the problem with travel
time in rural areas as is the focus of this paper, good performance
is possible even with a simple neural-network model architecture
and well-tuned hyperparameters.

4.3.1 Baseline Model. A baseline is created to validate that the
neural-network models can outperform the simplest model possible.
We experiment with a baseline model that assumes vehicles always
drive at exactly the speed limit. This model only requires the length
and speed limit of each road segment. However, such a model is
only usable on road categories such as motorways and trunks where
constant speed near the limit is possible. Tomake the baselinemodel
more realistic the travel-time is adjusted, by the mean deviation
of the mean driven-speed and speed-limit for each road category
computed from the GPS data. This is defined as follows.

𝑒𝑖 .𝑠𝑝𝑒𝑒𝑑 =
𝑒𝑖 .𝑙𝑒𝑛𝑔𝑡ℎ

𝑒𝑖 .𝑡𝑟𝑎𝑣𝑒𝑙-𝑡𝑖𝑚𝑒

𝑐𝑎𝑡 𝑗 .𝑠𝑝𝑒𝑒𝑑-𝑑𝑒𝑙𝑡𝑎 =
1

|𝐶 𝑗 |
∑︁
𝑘∈𝐶 𝑗

𝑒𝑘 .𝑠𝑝𝑒𝑒𝑑 − 𝑒𝑘 .𝑠𝑝𝑒𝑒𝑑-𝑙𝑖𝑚𝑖𝑡

𝑒𝑖 .𝑡𝑡-𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑒𝑖 .𝑙𝑒𝑛𝑔𝑡ℎ

𝑒𝑖 .𝑠𝑝𝑒𝑒𝑑-𝑙𝑖𝑚𝑖𝑡 + 𝑐𝑎𝑡 𝑗 .𝑠𝑝𝑒𝑒𝑑-𝑑𝑒𝑙𝑡𝑎

Where 𝑒𝑖 .𝑡𝑟𝑎𝑣𝑒𝑙-𝑡𝑖𝑚𝑒 is the average travel-time on edge 𝑒𝑖 com-
puted from the GPS data as discussed in section 3 and shown in
Table 2. 𝑒𝑖 .𝑙𝑒𝑛𝑔𝑡ℎ is the length of edge 𝑒𝑖 and 𝑒𝑖 .𝑠𝑝𝑒𝑒𝑑 is the (com-
puted) average speed.

𝑐𝑎𝑡 𝑗 .𝑠𝑝𝑒𝑒𝑑-𝑑𝑒𝑙𝑡𝑎 is the average speed-limit difference of all edged
where the category is 𝑗 and the speed computed on edge 𝑒𝑖 of the
road category 𝑗 of road segment of that category. The estimated
travel time 𝑒𝑖 .𝑡𝑡-𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is calculated from the length and speed-
limit on edge 𝑒𝑖 adjusted by the categorymean speed-limit difference
𝑐𝑎𝑡 𝑗 .𝑠𝑝𝑒𝑒𝑑-𝑑𝑒𝑙𝑡𝑎.

4.3.2 Neural-Network Models. The other models are multi-layered
fully-connected neural networks. The input layer size ranges from
14 to 21, depending on the set of features, as shown in Table 5. The
output layer is a single scalar which is the predicted travel-time.

The data is randomly split into a training, validation, and test
set in the ratio 3:1:1 [17].

The features, including travel-time, are of varying domain sizes,
as shown in Table 4, therefore to stabilize model training all features
are min-max normalized individually [4] on the training set. All
inputs and outputs are therefore in the range 0-1.

For evaluating the impact of the number of features, four feature
set tiers are created, as shown in Table 5. Feature set A contains
length, speed limit, and category where the 12 categories are one-
hot encoded. This adds one extra input per category. Feature set B
has all available road-segment metadata (length, speed limit, tortu-
osity, one-way, category). Feature set C adds road annotation data
(crossing, calming). Finally, feature set D adds temporal features
(month, weekday, hour).

From experiments with the L1 and L2 loss functions, the L1 loss
has a slightly worseMSE about 7% compared to the L2 loss, however
L1 loss improve MAE by 11% and MAPE by 45% compared to the
L2 loss. Therefore, L1 loss is chosen.

ReLU [6] is used as the activation function. The optimizers SGD
(Stochastic Gradient Descent) [6], Adam [8], and AdamW [14] are
evaluated with experiments. AdamW is best at reducing the number
of epochs required for the loss to converge, and is therefore used for
training all models. The default 𝛽 , 𝜖 and weight decay values of the
AdamW implementation in PyTorch are used (𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 10−8,𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦 = 0.01).

None of the models use dropout, but simple experiments with
dropout applied to the hidden layers show, that models trained with
dropout perform worse.

The hyper-parameters learning rate, number of layers, number
of neurons per layers, and batch size are tuned with the Bayesian
Optimization with the goal of minimizing the validation loss. The
implementation of Weights and Biases [3] is used for this purpose.
Weights and Biases is used extensively during development to keep
track of the models. The best learning-rate is 0.001, but the other
three hyperparameters all tend to perform best with large values.
Low batch sizes result in the models converging quickly, but larger
batch sizes tend to give better results after a longer training time.

We find ten layers, 100 neurons per layer, and batch size 70,000
can fit into our GPU RAM (11GB), and outperform other config-
urations. Our models are therefore bottle-necked by the size of
GPU RAM. This drawback however allows experiments of mod-
els trained with other parameters, such as feature set and number
training samples where larger models require more time to do the
same experiments.

For each training run only the model state with the lowest vali-
dation loss is saved and used for evaluation.
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Baseline ✓ ✓ ✓
M1 ✓ ✓ ✓
M2 ✓ ✓ ✓ ✓ ✓
M3 ✓ ✓ ✓ ✓ ✓ ✓ ✓
M4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Models and Feature Sets
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5 RESULTS
In this section, we present the results using the baseline model and
the four neural-network models. We look at the accuracy of the
results at an overall level, at a road category level, and at a route
level, i.e., a number of road segment travel in sequence. The latter
is of the highest interest to end users such as transport companies.
Finally, we look at how the size of the GPS datasets available affects
the accuracy.

5.1 Hardware
All experiments are conducted on the same physical hardware. The
back-propagation neural network (BPNN) models in Table 6 each
take approximately 32 hours to train for 600 epochs on an Nvidia
RTX 2080ti GPU with 11GB RAM, Intel i9 9900k CPU, and 32GB
RAM. It is however possible to get near nearly as good perfor-
mance in less time and epochs. Figure 7 shows that the training and
validation loss does not decrease significantly after 150-250 epochs.

5.2 Overall Accuracy
We start by looking at the overall accuracy for the five different
models used. This is shown in Table 6.

Model MSE MAE MAPE
Baseline 499.537 4.422 35.051
M1 46.317 3.128 27.903
M2 40.982 2.897 25.585
M3 40.922 2.884 25.339
M4 40.047 2.864 25.289

Table 6: Models Performance on Test Set

From Table 6 it is clear that all BPNNmodel (M1-M4) outperform
the baseline model. The BPNN models incrementally get more
accurate, i.e., lower MSE, MAE, and MAPE, as a larger feature set
is used, see Table 5.

Themodel M1 only uses three features and is clearly outperforms
the baseline model on all three accuracy metrics. However, the
baseline model is not a naive dummy model as the next subsections
will show.
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Figure 7: Training and validation loss of M4

In M2, we do not know how much the tortuosity and one-way
features individually affect model accuracy. Figure 6 shows that
most road segments have a tortuosity near 1.0. Because 4.6% of road
segments and 24.9% of the GPS data rows are from one-way roads
this feature is likely to affect the model more than tortuosity.

The minor improvement from M2 to M3 can be attested to the
relatively small number of road segments that have the annotations
speed bumps or pedestrian crossings. 0.21% of road segments have
speed bumps and 0.45% of the rows are on these segments. Similarly,
0.06% of road segments have pedestrian crossings and 0,1% of the
rows are on these segments.

However, the model M3 is still capable of using this limited
additional data to make a model that consistently outperforms the
modelM2. These annotations, therefore, affect the travel time. Being
able to show this small effect is also an incitement to contribute
such annotation to for example OpenStreetMap to improve the
accuracy of travel-time predictions.

The model M4 uses the most features and is consistently the
model that performs the best. The improvement in accuracy over
the other BPNN model is small and is most likely due that the
additional features make the feature space too big relative to the
amount of training data, for the model to learn without more data.
More on this in subsection 5.5.

5.3 Road Category Accuracy
We raise the granularity and examine the accuracy at a road-category
level in this section.

Table 7 shows the MAPE per road category for the five models
presented in section 4. The MAPE is chosen to be able to compare
accuracy results across different categories.

For the motorway category, all models work well with a MAPE
as low as 10.386. The models M1-M4 also work well on the motor-
way_link category. Here the baseline model is significantly more
inaccurate. For motorway_link in general, the results are less accu-
rate than for themotorway category because the speed varies more,
i.e., drivers are speeding up to enter a motorway or slowing down
to leave the motorway.

For the motorway and motorway_link categories, there are no
speed bumps or pedestrian crossing. This is a likely reason why
M3 is less accurate than M2 on the motorway_link category. The
results for trunk and trunk_link categories are very similar to their
motorway equivalent.

The results in Table 7 show that for road categories where the
traffic flows in the same direction, e.g., motorway and trunk, the
travel time is predicted more accurately. This is a likely explanation
to that the estimates on the primary road category is lower than
for motorway and trunk.

The accuracy on the secondary and tertiary road categories are
lower than for the primary category. This is most likely due to
higher variance.

For all five link road categories, the MAPE is significantly higher
compared to their non-link counterparts. This is likely due to the
acceleration associated with link categories, i.e., the acceleration
to enter or leave a motorway. Figure 12 shows that the number of
road segments on the five link road categories are very low. The
lower accuracy on these categories is therefore considered a minor
issue.

5.4 Route Accuracy
To evaluate the accuracy experiences by the drivers, the travel times
of 18 routes are inferred with each of the different models. The
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Baseline 12.787 134.841 27.648 36.435 34.898 34.085 35.607 39.938 15.429 27.244 40.524 45.709
M1 10.574 17.108 23.326 22.999 34.676 28.824 26.419 29.209 14.174 17.048 30.591 66.612
M2 10.812 15.285 18.350 23.306 33.764 25.859 28.278 27.486 12.170 14.816 28.405 49.005
M3 10.641 15.326 18.142 20.782 32.957 25.453 34.168 27.346 13.106 14.987 29.026 56.964
M4 10.386 15.235 17.991 23.284 33.568 25.381 24.541 27.249 12.928 15.003 28.413 40.236

Table 7: MAPE per Road Category

routes are described in Table 8 and shown on the map in Figure 8.
The routes are both in city and rural areas to examine if the models
presented in this paper can be used in city areas.

No Segs Len Min. Type Categories
1 6 7.87 2000 Rural sec.
2 4 2.15 7000 Rural sec.
3 51 24.12 450 Rural pri. trunk
4 23 4.87 25 Rural sec.
5 14 8.08 400 Rural, Urban trunk
6 178 32.24 400 Rural, Urban sec. un. res.
7 65 16.84 60 Rural, Urban pri.
8 2 8.65 99 Rural mot.
9 20 4.13 800 Urban, Rural pri. ter.
10 6 1.14 45 Rural pri.
11 11 5.03 450 Rural, Urban sec.
12 6 16.09 825 Rural mot.
13 23 17.06 10 Rural pri. trunk
14 19 37.70 1400 Urban, Rural sec.
15 6 0.73 1300 Urban res. un.
16 7 2.13 1900 Rural, Urban sec.
17 21 9.17 800 Rural pri.
18 6 1.09 60 Urban pri.

Table 8: Benchmark Routes

The ground truth travel time of each route is the mean travel
times of a minimum of 10 cars that have traveled the same exact
routes using a strict path query [10]. Please note that this is a one-
to-one comparison as the ground-truth travel time is based on the
non-aggregated GPS data used in this paper.

To infer the travel time of a route, each road segment of the route
is extracted along with all features needed by the model. The route
travel time is then the sum of all segment travel times.

To make predictions using the M4 model extra steps are required
to get a travel time. M4 has the three temporal inputs month, week-
day, and hour. In the benchmarks these inputs are unspecified. To
get a general travel time that covers all months, weekdays, and
hours, a prediction is made for each combination of the three fea-
tures, which gives 2016 predictions per road segment. The road
segment travel time is then the mean of all 2016 predictions. These
extra steps only have a minor overhead due to the inputs and model
fitting into a few or a single GPU batch.

Figure 8: Benchmark Routes Placement

Table 9 shows the results for the benchmark routes where the
most accurate results are on a green background and the most in-
accurate on an orange background. The column GT is the ground
truth. The columns CS1 and CS2 are the travel time from two com-
mercial solutions.

Consistent with the overall and road-category results model M4
is the most accurate in 10 cases. More surprisingly, the baseline
model is the most accurate in 6 cases. Routes 1, 2, 4, and 12 are only
in rural areas and can explain why the baseline model is the most
accurate.

On the contrary, the baseline model is also the most inaccurate
in 10 cases. In all these cases the baseline model always estimates a
higher travel time than the models M1-M4 and the ground truth.
This is due to speeding. Model M4 is the most inaccurate in 4 cases.
In these cases, the estimates are considerably below the ground
truth.
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No GT BL M1 M2 M3 M4 CS1 CS2
1 489 488 340 334 338 332 360 360
2 143 133 98 96 97 96 120 120
3 1029 1224 1071 1077 1079 1038 1140 1080
4 387 302 252 244 248 245 420 300
5 319 365 328 323 321 321 360 300
6 1593 2033 1723 1700 1720 1686 2100 2040
7 823 1030 847 840 845 819 840 840
8 243 260 264 258 260 255 240 240
9 515 493 335 335 336 328 300 300
10 44 62 54 52 52 51 60 60
11 208 312 230 225 227 226 240 240
12 377 485 497 485 493 486 540 420
13 796 864 770 761 763 754 1020 840
14 249 234 199 207 209 195 300 240
15 109 70 66 78 77 78 120 120
16 110 132 101 102 102 104 120 120
17 431 494 415 413 410 404 420 360
18 55 84 66 65 64 63 120 120
Table 9: Travel-Times in Seconds on Benchmark Routes

Figure 9: Difference Commercial Solutions and Models

In general, the M4 model predicts the lowest travel time on
13 of 18 routes. Further, the models M1-M4 predict lower travel
times than the baseline model except for routes 8, 12, and 15. This
indicates that many drives above the speed limit on most of the
benchmark routes.

The percentage difference in travel time between the commercial
solutions and the five models on the benchmark routes is shown in
Figure 9. The commercial solutions report in minutes. This coarser
granularity makes the differences to the predicted values very large
for short routes such as routes 10, 15, 16, and 18. For 9 of the 18
routes the difference is below 10% and for 14 of 18 routes, the
difference is below 25% for M4.

The model M4 can take month and hour-of-day into considera-
tion as the only model presented in this paper. The variation in the
travel time over months is shown in Figure 10 for the 18 benchmark
routes. The routes are split into two based on travel time.
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Figure 10: Travel-Time Estimation of Months of the Year

The travel-time estimation varies only a little over the year.
However, it is slightly higher in the winter month. This is realistic
as traffic is slightly slower due to ice and snow.

The variation in the estimated travel time over the day for work-
days (Monday to Friday) is shown in Figure 11. Again the travel-
time estimates are fairly stable. However, the travel time is on some
routes a bit lower during the night, e.g., routes 3, 7, and 14.

Figure 10 and Figure 11 show that model M4 can use the variation
in training GPS in the travel-time predictions.

5.5 GPS Dataset Size Influence on Accuracy
The final study of accuracy look at the relationship between model
accuracy and the size of the GPS training dataset. We use training
sets sizes of 100K, 500K, 1M, 5M, 10M, and the full dataset with
45.5M rows. The rows are picked randomly, however, we always
add to the dataset such that 100K dataset is included in the 500K
dataset, the 500K dataset in the 1M dataset, and so on. Figure 12
shows the distribution of road categories is represented in each
subset.

The same feature sets are used as in models M1, M2, M3, and M4
in Table 5. We label the features sets A, B, C, and D respectively.
The subsets are split into the training and validation set in a 3:1
split, to keep the same relative size between these sets. To relate the
experiment to a real-world scenario, where more data is gathered
over time the models are only trained for 8 hours each. To further
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Figure 11: Travel-Time Estimation for Workdays
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Figure 12: Average Number of Rows per Subset

save time, training of a model stops if the validation loss does
not improve within 15,000 back propagations. By conditioning the
early stopping on the number of back propagations, instead of a
number of epochs with no improvement, the stopping condition is
not biased towards large datasets.

For each training run only the model state with the lowest vali-
dation loss is saved. Large datasets have more batches per epoch,
and therefore require more back propagations per epoch, due to

the batch size of 70,000. For example, the 100K samples subset only
has one backpropagation per epoch, while the full dataset requires
480 back propagations per epoch.

The results in Figure 13 show that 100,000 training samples is
enough to outperform the baseline model when comparing to the
overall accuracy shown in Table 6.

For the simplest model with feature set A 100K samples are
sufficient and this model does not improve as the number of samples
increases. Models with feature sets A and B uses five and seven
features respectively. These models benefit from more GPS data
samples but only up to 1M samples. Adding more GPS data samples
does not improve these models. The most complex model with
feature set D that contains all ten features benefits the most as
more and more GPS data is available. This model is most accurate
when trained using the full GPS dataset. The improvements are
the largest when going from 1M to 5M samples. The 10M and full
dataset are better, but the improvement is not as significant. Models
with feature set D and 100k to 5M samples have lower accuracy
than with feature sets B and C. This is likely because the feature
space becomes too large for the models to learn without more data.
Only the full data set has enough data to give a better model. The
graphs indicate that only feature set D might give an even better
model with more data and.

The runtime reveals which models stopped training because they
are overfitted. Where the runtime is eight hours the model are most
likely not overfitting, and where the runtime is lower the model
training stopped early because it is overfitted. For feature set D the
models overfit within the eight hours, but at an increasing number
of hours as the dataset size increase, except for when trained on
the full dataset.

6 CONCLUSION
The main hypothesis of this paper is that travel time can be esti-
mated accurately in rural areas because there is limited variation
in the travel time over the day and because there are no issues
with congestion or signalized intersections. We show that a simple
baseline model using the speed limit can be the most accurate on
a route. However, the baseline model is generally outperformed
by the neural-network models going from a MAPE of 35.051% to
25.289%.

We show that the accuracy of the travel-time predictions can be
improved by adding road network annotations for speed bumps
and pedestrian crossing. Even though these annotations are not
complete and only one a small fraction of road segments. This can
encourage municipalities to contribute to map solutions such as
OpenStreetMap.

The inclusion of travel-time information from GPS dataset in-
creases the accuracy of travel-time predictions. The simplest models
only require 100K samples whereas the most complicated mod-
els continue to improve with a maximum dataset of 45.5M sam-
ples. However, there are diminishing returns in adding larger GPS
datasets.

Overall, the solutions provided in this paper can be used as
an alternative in rural areas with limited congestion problems. If
municipalities contribute to road-network annotations, e.g., speed
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Figure 13: Metrics Over Sample Size

bumps and pedestrian crossings the solutions can increase the
accuracy of travel-time estimates.

Future work includes adding road slope as a feature and using
features from neighbor segments in the road network. Naturally
extending the work to cover city areas is a very interesting research
direction.
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