
Channels: Horizontal Scaling and Confidentiality on
Permissioned Blockchains

Elli Androulaki1, Christian Cachin1, Angelo De Caro1, and Eleftherios
Kokoris-Kogias2⋆

1 IBM Research - Zurich, Switzerland
(lli|cca|adc)@zurich.ibm.com

2 EPFL, Switzerland
eleftherios.kokoriskogias@epfl.ch

Abstract. Sharding, or partitioning the system’s state so that different subsets
of participants handle it, is a proven approach to building distributed systems
whose total capacity scales horizontally with the number of participants. Many
distributed ledgers have adopted this approach to increase their performance,
however, they focus on the permissionless setting that assumes the existence of a
strong adversary. In this paper, we deploy channels for permissioned blockchains.
Our first contribution is to adapt sharding on asset-management applications for
the permissioned setting, while preserving liveness and safety even on transactions
spanning across-channels. Our second contribution is to leverage channels as a
confidentiality boundary, enabling different organizations and consortia to preserve
their privacy within their channels and still be part of a bigger collaborative
ecosystem. To make our system concrete we map it on top of Hyperledger Fabric.

1 Introduction
Blockchain technology is making headlines due to its promise of a transparent, verifiable,
and tamper-resistant history of transactions that is resilient to faults or influences of any
single party [3]. Many organizations [2,4,15,22] either explore the potential of distributed-
ledger technology or already embrace it. This, however, is a young technology facing
multiple challenges [3,6]. In this paper we look into the challenges of enabling horizontal
scaling and providing privacy in the permissioned setting.

First, the scalability of distributed ledgers hinders their mainstream adoption. One
class of solutions proposed is sharding [6]. Sharding [20] has been used in order to build
scale-out systems whose capacity scales horizontally with the number of participants by
using the key idea of partitioning the state. Each such state partition can handle trans-
actions parallel to other shards. Recently, several blockchain systems [7, 12] proposed
sharding mostly in the context of permissionless blockchains, where some fraction of
participating parties might be Byzantine.

A second challenge for distributed ledgers is privacy. A distributed ledger is (by
design) a transparent log visible to all the participants. This, however, is a disadvantage
when it comes to deploying distributed ledgers among private companies, as they want
to keep their data confidential and only selectively disclose them to vetted collaborators.
One solution to privacy is to hide the state from all participants by using zero-knowledge

⋆ Work done at IBM Research - Zurich.

2 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

proofs [10, 13, 16]. However, this can pose a problem in a permissioned setting both in
terms of performance (especially if the system supports smart contracts) and in terms of
business logic (e.g., banks need to see the transactions to balance their books).

In this paper, we look into enabling sharding in the permissioned setting, where
the adversarial power can be relaxed. First we deploy channels for horizontal scaling
drawing inspiration from the state of the art [7, 12], but at the same time navigating the
functionality and trust spectrum to create simplified protocols with less complexity and
need for coordination. Then, we introduce the idea that, in a permissioned setting, we
can leverage the state partition that a channels introduces as a confidentiality boundary.
In the second part of the paper, we show how we enable confidential channels while
preserving the ability for cross-shard transactions.

Our main contributions are (a) the support for horizontal scaling on permissioned
blockchains whith cross-channel transaction semantics, (b) the use of channels as a
confidentiality boundary and (c) the formalization of an asset management application
on top of blockchain systems.

2 Preliminaries

Blockchain Definitions. In the context of this work, a blockchain is an append-only
tamper-evident log maintained by a distributed group of collectively trusted nodes. When
these nodes are part of a defined set [1], we call the blockchain permissioned. Inside
every block there are transactions that may modify the state of the blockchain (they
might be invalid [1]). A distributed ledger [23] is a generalization of a blockchain as it
can include multiple blockchains that interact with each other, given that sufficient trust
between blockchains exists.

We define the following roles for nodes in a blockchain:
1. Peers execute and validate transactions. Peers store the blockchain and need to agree

on the state.
2. Orderers collectively form the ordering service. The ordering service establishes

the total order of transactions. Orderers are unaware of the application state, and
do not participate in the execution or validation of transactions. Orderers reach
consensus [1,5,11,17] on the blocks in order to provide a deterministic input for the
blockchain peers to validate transactions.

3. Oracles are special nodes that provide information about a specific blockchain to
nodes not being peers of that blockchain. Oracles come with a validation policy of
the blockchain defining when the announcement of an oracle is trustworthy3.

4. (Light) Clients submit transactions that either read or write the state of a distributed
ledger. Clients do not directly subscribe to state updates, but trust some oracles to
provide the necessary proofs that a request is valid.

Nodes can implement multiple roles or collapse roles (e.g., miners in Bitcoin [17]
are concurrently peers and orderers). In a distributed ledger that supports multiple
blockchains that interoperate the peers of one blockchain necessarily implement a client
for every other blockchain and trust the oracles to provide proofs of validity for cross-
channel transaction. A specific oracle instantiation can be for example that a quorum
(e.g., 2

3) of the peers need to sign any announcement for it to be valid.
3 e.g., in Bitcoin the oracles will give proofs that have 6 Proofs-of-Work build on top of them

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 3

Channels: In this paper we extend channels (first introduced in Hyperledger Fabric [1]),
an abstraction similar to shards. In prior work [1], a channel is defined as an autonomous
blockchain agnostic to the rest of the state of the system. In this work, we redefine a
channel as a state partition of the full system that (a) is autonomously managed by a
(logically) separate set of peers (but is still aware of the bigger system it belongs) and
(b) optionally hides the internal state from the rest of the system.

A channel might communicate with multiple other channels; and there needs to be
some level of trust for two channels to transact. Hence, we permit each channel to decide
on what comprises an authoritative proof of its own state. This is what we call validation
policy: clients need to verify this policy in order to believe that something happened in a
channel they are transacting with. When channel 𝐴 wants to transact with channel 𝐵,
then the peers of 𝐴 effectively implement a client of channel 𝐵 (as they do not know
the state of 𝐵 directly). Thus, the peers of 𝐴 verify that the validation policy of 𝐵 is
satisfied when receiving authoritative statements from channel 𝐵.

For channels to interact, they need to be aware of each other and to be able to
communicate. Oracles are responsible for this functionality, as they can gossip authori-
tative statements (statements supported by the validation policy) to the oracles of the
other channels. This functionality needs a bootstrap step where channels and validation
policies are discovered, which we do not address in this paper. A global consortium of
organizations could publicly announce such information; or consortia represented by
channels could communicate off-band. Once a channel is established further evolution
can be done without a centralized intermediary, by using skipchains [18].

Threat Model: The peers that have the right to access one channel’s state are trusted
for confidentiality, meaning that they will not leak the state of the channel on purpose.
We relax this assumption later providing forward and backward secrecy in case of
compromise. We assume that the ordering service is secure, produces a unique blockchain
without forks and the blocks produced are available to the peers of the channels. We
further assume that the adversary is computationally bounded and that cryptographic
primitives (e.g., hash functions and digital signatures) are secure.

System Goals: We have the following primary goals.
1. Secure transactions. Transactions are committed atomically or eventually aborted,

both within and across channels.
2. Scale-out. The system supports state partitions that can work in parallel, if no

dependencies exist.
3. Confidentiality. The state of a channel remains internal to the channel peers. The

only (if any) state revealed for cross-channel transactions should be necessary to
verify that a transaction is valid (e.g. does not create new assets).

3 Asset Management in a Single Channel

3.1 Unspent Transaction-Output Model
In this section, we describe a simple asset-management system on top of the Unspent
Transaction-Output model (henceforth referred to as UTXO) that utilizes a single, non-
confidential channel. In particular, we focus on the UTXO-based data model [17], as it is
the most adopted data model in cryptocurrencies, for its simplicity and parallelizability.

4 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

Assets in Transactions In a UTXO system, transactions are the means through which
one or more virtual assets are managed. More specifically, mint transactions signify the
introduction of new assets in the system and spend transactions signify the change of
ownership of an asset that already exists in the system. If an asset is divisible, i.e., can be
split into two or more assets of measurable value, then a spend transaction can signify
such a split, indicating the owners of each resulting component of the original asset.

Assets are represented in the transactions by transaction inputs and outputs. More
specifically, in the typical UTXO model, an input represents the asset that is to be spent
and an output represents the new asset that is created in response of the input assets’
consumption. We can think of inputs and outputs representing different phases of the
state of the same asset, where state includes its ownership (shares). Clearly, an input can
be used only once, as after being spent, the original asset is substituted by the output
assets, and stops being considered in the system. To ensure the single-spending of any
given input, transactions are equipped with information authenticating the transaction
creators as the owners of the (parts of the) assets that are referenced by the transaction
inputs.

In more technical terms in the standard UTXO model, input fields implicitly or
explicitly reference output fields of other transactions that have not yet been spent. At
validation time, verifiers would need to ensure that the outputs referenced by the inputs
of the transaction have not been spent; and upon transaction-commitment deem them as
spent. To efficiently look up the status of each output at validation time UTXO model is
equipped with a pool of unspent transaction outputs (UTXO pool).

UTXO Pool The UTXO pool is the list of transaction outputs that have not yet been
spent. We say that an output is spent if a transaction that references it in its inputs is
included in the list of ledger’s valid transactions.

To validate a transaction, peers check if (1) the transaction inputs refer to outputs
that appear in the UTXO pool as well as (2) that the transaction’s creators own these
outputs. Other checks take place during the transaction validation, i.e., input-output
consistency checks. After these checks are successfully completed, the peers mark the
outputs matching the transaction’s inputs as spent and add to the pool the freshly created
outputs. Hence, the pool consistently includes “unspent” outputs.

Asset or Output Definition An asset is a logical entity that sits behind transaction
outputs, implicitly referenced by transaction outputs. As such the terms output and asset
can be used interchangeably. An output (the corresponding asset) is described by the
following fields:

– namespace, the namespace the output belongs to (e.g., a channel);
– owner, the owner of the output
– value, the value of the asset the output represents (if divisible);
– type, the type of the asset the output represents (if multiple types exist).

Depending on the privacy requirements and properties of the ledger they reside, outputs
provide this information in the clear (e.g., Bitcoin [17] outputs) or in a concealed form
(e.g., ZeroCoin [16], ZeroCash [21]). Privacy-preserving outputs are required to be
cryptographically bound to the value of each of the fields describing them, whereas its
plaintext information should be available to the owner of the output.

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 5

UTXO operations We elaborate on the UTXO system functions where we adopt the
following notation. For a sequence of values 𝑥1, . . . , 𝑥𝑖, we use the notation [𝑥𝑖] =
(𝑥1, . . . , 𝑥𝑖). By slight abuse of notation, we write 𝑥1 = [𝑥1]. We denote algorithms
by sans-serif fonts. Executing an algorithm algo on input 𝑦 is denoted as 𝑦 ← algo(𝑥),
where 𝑦 can take on the special value ⊥ to indicate an error.
A UTXO system exposes the following functions:

– ⟨𝒰 , pool⟩ ← Setup(𝜅) that enables each user to issue one or more identities by
using security parameter 𝜅. Henceforth, we denote by secuser the secret information
associated to a user with identity user . Setup also generates privileged identities,
i.e., identities allowed to mint assets to the system, denoted as adm. Finally Setup
initialises the pool pool to ∅ and returns the set of users in the system 𝒰 and pool .

– ⟨out, secout⟩ ← ComputeOutput(nspace, owner , value, type), to obtain an output
representing the asset state as reflected in the function’s parameters. That is, the
algorithm would produce an output that is bound to namespace nspace, owned by
owner , and represents an asset of type type, and value value. As mentioned before,
depending on the nature of the system the result of the function could output two
output components, one that is to be posted on the ledger as part of a transaction
(out) and a private part to be maintained at its owner side (secout).

– ain ← ComputeInput(out, secout , pool), where, on input an asset pool pool , an
output out, and its respective secrets, the algorithm returns a representation of the
asset that can be used as transaction input ain. In Bitcoin, an input of an output is a
direct reference to the latter, i.e., it is constructed to be the hash of the transaction
where the output appeared in the ledger, together with the index of the output.
In ZeroCash, an input is constructed as a combination of a serial number and a
zero-knowledge proof that the serial corresponds to an unspent output of the ledger.

– tx ← CreateTx([secowneri], [ain𝑖], [out𝑗]), that creates a transaction tx to request
the consummation of inputs {ain𝑘}𝑖

𝑘=1 into outputs {out𝑘}𝑗
𝑘=1. The function takes

also as input the secrets of the owners of the outputs referenced by the inputs and
returns tx . Notice that the same function can be used to construct mint transactions,
where the input gives its place to the freshly introduced assets description.

– pool ′ ← ValidateTx(nspace, tx, pool), that validates transaction inputs w.r.t. pool
pool , and their consistency with transaction outputs and namespace nspace. It
subsequently updates the pool with the new outputs and spent inputs and returns its
new version pool ′. Input owner of mint transactions is the admin adm.

Properties: Regardless of its implementation, an asset management system should
satisfy the properties defined below:

– Validity: Let tx be a transaction generated from a valid input ain according to some
pool pool , i.e., generated via a successful call to tx ← CreateTx(secowner , ain, out′),
where ain ← ComputeInput(out, secout , pool), owner is the owner of out′, and
out′ /∈ pool . Validity requires that a call to pool ′ ← ValidateTx(tx, pool) succeeds,
i.e. pool ′ ̸= ⊥, and that pool ′ = (pool ∖ {out}) ∪ {out′}.

– Termination: Any call to the functions exposed by the system eventually return the
expected return value or ⊥.

– Unforgeability. Let an output out ∈ pool with corresponding secret secout and
owner secret secowner that is part of the UTXO pool pool; unforgeability requires

6 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

that it is computationally hard for an attacker without secout and secowner to create
a transaction tx such that ValidateTx(nspace, tx, pool) will not return ⊥, and that
would mark out as spent.

– Namespace consistency. Let an output corresponding to a namespace nspace of a
user owner . Namespace consistency requires that the adversary cannot compute any
transaction tx referencing this output, and succeed in ValidateTx(nspace′, tx, pool),
where nspace′ ̸= nspace.

– Balance. Let a user owner owning a set of unspent outputs [out𝑖] ∈ pool . Let the
collected value of these outputs for each asset type 𝜏 be value𝜏 . Balance property
requires that owner cannot spend outputs of value more than value𝜏 for any asset
type 𝜏 , assuming that it is not the recipient of outputs in the meantime, or colludes
with other users owning more outputs. Essentially, it cannot construct a set of trans-
actions [tx𝑖] that are all accepted when sequentially4 invoking ValidateTx(tx, pool)
with the most recent versions of the pool pool , such that owner does not appear as
the recipient of assets after the acquisition of [out𝑖], and the overall spent value of
its after that point exceeds for some asset type 𝜏 value𝜏 .

3.2 Protocol

We defined an asset output as, out = ⟨𝑛𝑚, 𝑜, 𝑡, 𝑣⟩, where 𝑛𝑚 is a namespace of the
asset, 𝑜 is the identity of its owner, 𝑡 the type of the asset, and 𝑣 its value. In its simplest
implementation the UTXO pool would be implemented as the list of available outputs,
and inputs would directly reference the outputs in the pool, e.g., using its hash.5 Clearly
a valid transaction for out’s spending would require a signature with sec𝑜.
Asset Management in a single channel We assume two users Alice and Bob, with
respective identities⟨𝐴, sec𝐴⟩ and ⟨𝐵, sec𝐵⟩. There is only one channel 𝑐ℎ in the system
with a namespace 𝑛𝑠𝑐ℎ associated with 𝑐ℎ, where both users have permission to access.
We also assume that there are system administrators with secrets sec𝑎𝑑𝑚 allowed to mint
assets in the system, and that these administrators are known to everyone.
Asset Management Initialization. This requires the setup of the identities of the system
administrators6. For simplicity, we assume there is one asset management administrator,
⟨adm, sec𝑎𝑑𝑚⟩. The pool is initialized to include no assets, i.e., 𝑝𝑜𝑜𝑙𝑐ℎ ← ∅.
Asset Import. The administrator creates a transaction 𝑡𝑥𝑖𝑚𝑝, as:

𝑡𝑥𝑖𝑚𝑝 ← ⟨∅, [out𝑛], 𝜎⟩,

where out𝑘 ← ComputeOutput(𝑛𝑠𝑐ℎ, uk , 𝑡𝑘, 𝑣𝑘), (𝑡𝑖, 𝑣𝑖) the type and value of the
output asset out𝑘, uk its owner and 𝜎 a signature on transaction data using 𝑠𝑘𝑎𝑑𝑚. Vali-
dation of 𝑡𝑥𝑖𝑚𝑝 would result into 𝑝𝑜𝑜𝑙𝑐ℎ ← {𝑝𝑜𝑜𝑙𝑐ℎ ∪ {[out𝑛]}}.

Transfer of Asset Ownership. Let out𝐴 ∈ 𝑝𝑜𝑜𝑙𝑐ℎ be an output owned by Alice, cor-
responding a description ⟨𝑛𝑠𝑐ℎ, 𝐴, 𝑡, 𝑣⟩). For Alice to move ownership of this asset to

4 This is a reasonable assumption, given we are referring to transactions appearing on a ledger.
5 Different approaches would need to be adopted in cases where unlinkabiltiy between outputs

and respective inputs is required.
6 Can be a list of identities, or policies, or mapping between either of the two and types of assets.

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 7

Bob, it would create a transaction

tx𝑚𝑜𝑣𝑒 ← CreateTx(sec𝐴; ain𝐴, out𝐵),

where ain𝐴 is a reference of out𝐴 in 𝑝𝑜𝑜𝑙𝑐ℎ, and out𝐵 ← ComputeOutput(𝑛𝑠𝑐ℎ, 𝐵, 𝑡, 𝑣),
the updated version of the asset, owned by Bob. tx𝑚𝑜𝑣𝑒 has the form of ⟨ain𝐴, out𝐵 , 𝜎𝐴⟩
is a signature matching 𝐴. At validation of 𝑡𝑥𝑚𝑜𝑣𝑒, 𝑝𝑜𝑜𝑙𝑐ℎ is updated to no longer con-
sider out𝐴 as unspent, and include the freshly created output out𝐵 :

𝑝𝑜𝑜𝑙𝑐ℎ ← (𝑝𝑜𝑜𝑙𝑐ℎ ∖ {out𝐴}) ∪ {out𝐵} .

Discussion: The protocol introduced above does provide a ”secure” (under the security
properties described above) asset management application within a single channel. More
specifically, the Validity property follows directly from correctness of the application
where a transaction generated by using a valid input representation will be successfully
validated by the peers after it is included in an ordered block. The Unforgeability is
guaranteed from the requirement of a valid signature corresponding to the owner of the
consumed input when calling the ValidateTx function, and Namespace consistency is
guaranteed as there is only one namespace in this setting. Termination follows from the
liveness guarantees of the validating peers and the consensus run by orderers. Finally,
Balance also follows from the serial execution of transactions that will spend the out the
first time and return ⊥ for all subsequent calls (there is no out in the pool).

The protocol can be extended to naively scale-out. We can create more than one
channel (each with its own namespace), where each one has a separate set of peers and
each channel is unaware of the existence of other channels. Although each channel can
have its own ordering service, it has been shown in l [1], that the ordering service does
not constitute a bottleneck. Hence, we assume that channels share the ordering service.

The naive approach has two shortcomings. First, assets cannot be transferred between
channels, meaning that value is "locked" within a channel and is not free to flow wherever
its owner wants. Second, the state of each channel is public as all transactions are
communicated in plaintext to the orderers who act as a global passive adversary.

We deal with these problems by introducing (i) a step-wise approach on enabling
cross-channel transactions depending on the functionality required and the underlying
trust model (See, Section 4), and (ii) the notion of confidential channels (see Section 5).
Further, for confidential channels to work we adapt our algorithms to provide confiden-
tiality while multiple confidential channels transact atomically.

4 Atomic Cross-Channel Transactions
In this section, we describe how we implement cross-channel transactions in permis-
sioned blockchains (that enable the scale-out property as shown in prior work [12]). We
introduce multiple protocols based on the functionality required and on the trust assump-
tions (that can be relaxed in a permissioned setting). First, in Section 4.1, we introduce a
narrow functionality of 1-input-1-output transactions where Alice simply transfers an
asset to Bob. Second, in Section 4.2, we extend this functionality to arbitrary transactions
but assume the existence of a trusted channel among the participants. Finally, in Section
4.3, we lift this assumption and describe a protocol inspired by two-phase commit [24].
These protocols do not make timing assumptions but assume the correctness of the
channels to guarantee fairness, unlike work in atomic cross-chain swaps [8].

8 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

Preliminaries. We assume two users Alice (𝑢𝑎), and Bob (𝑢𝑏). We further assume that
each channel has a validation policy and a set of oracles (as defined in Section 2). We
assume that each channel is aware of the policies and the oracles that are authoritative
over the asset-management systems in each of the rest of the channels.

Communication of pools content across channels. On a regular basis, each channel
advertises its pool content to the rest of the channels. More specifically, the oracles of
the asset management system in each channel are responsible to regularly advertise
a commitment of the content of the channel’s pool to the rest of the channels. Such
commitments can be the full list of assets in the pool or, for efficiency reasons, the
Merkle root of deterministically ordered list of asset outputs created on that channel.

For the purpose of this simplistic example, we assume that for each channel 𝑐ℎ𝑖,
a commitment (e.g., Merkle root) of its pool content is advertised to all the other
channels. That is, each channel 𝑐ℎ𝑖 maintains a table with the following type of entries:
⟨𝑐ℎ𝑗 , 𝑐𝑚𝑡𝑗⟩, 𝑗 ̸= 𝑖, where 𝑐𝑚𝑡𝑗 the commitment corresponding to the pool of channel
with identifier 𝑐ℎ𝑗 . We will refer to this pool by 𝑝𝑜𝑜𝑙𝑗 .

4.1 Asset Transfer across Channels

Let out𝐴 be an output included in the unspent output pool of 𝑐ℎ1, 𝑝𝑜𝑜𝑙1, corresponding
to

out𝐴 ← ComputeOutput(𝑐ℎ1, 𝑢𝑎, 𝑡, 𝑣)

i.e., an asset owned by Alice, active on 𝑐ℎ1. For Alice to move ownership of this asset to
Bob and in channel with identifier 𝑐ℎ2, she would first create a new asset for Bob in 𝑐ℎ2
as

out𝐵 ← ComputeOutput(𝑐ℎ2, 𝑢𝑏, 𝑡, 𝑣)

she would then create a transaction

𝑡𝑥𝑚𝑜𝑣𝑒 ← CreateTx(sec𝐴; ain𝐴, out𝐵),

where 𝑎𝑖𝑛𝐴 is a reference of out𝐴 in 𝑝𝑜𝑜𝑙1. Finally, sec𝐴 is a signature matching 𝑝𝑘𝐴,
and ownership transfer data.

At validation of 𝑡𝑥𝑚𝑜𝑣𝑒, it is first ensured that out𝐴 ∈ 𝑝𝑜𝑜𝑙1, and that out𝐴.𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒 =
𝑐ℎ1. out𝐴 is then removed from 𝑝𝑜𝑜𝑙1 and out𝐵 is added to it, i.e.,

𝑝𝑜𝑜𝑙1 ← (𝑝𝑜𝑜𝑙1 ∖ {out𝐴}) ∪ {out𝐵} .

Bob waits till the commitment of the current content of 𝑝𝑜𝑜𝑙1 is announced. Let
us call the latter 𝑣𝑖𝑒𝑤1. Then Bob can generate a transaction "virtually” spending the
asset from 𝑝𝑜𝑜𝑙1 and generating an asset in 𝑝𝑜𝑜𝑙2. The full transaction will happen
in 𝑐ℎ2 as the spend asset’s namespace is 𝑐ℎ2. More specifically, Bob creates an input
representation

{𝑎𝑖𝑛𝐵} ← ComputeInput(out𝐵 ; sec𝐵 , 𝜋𝐵)

of the asset out𝐵 that Alice generated for him. Notice that instead of the pool, Bob needs
to provide 𝜋𝐵 , we explain below why this is needed to guarantee the balance property.
Finally, Bob generates a transaction using 𝑎𝑖𝑛𝐵 .

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 9

To be ensured that the out𝐵 is a valid asset, Bob needs to be provided with a proof,
say 𝜋𝐵 , that an output matching its public key and 𝑐ℎ2 has entered 𝑝𝑜𝑜𝑙1, matching
𝑣𝑖𝑒𝑤1. For example, if 𝑣𝑖𝑒𝑤1 is the root of the Merkle tree of outputs in 𝑝𝑜𝑜𝑙1, 𝜋𝐵 could
be the sibling path of 𝑜𝑢𝑡𝐵 in that tree with 𝑜𝑢𝑡𝐵 . This proof can be communicated from
the oracles of 𝑐ℎ1 to the oracles of 𝑐ℎ2 or be directly pulled by Bob and introduced to
𝑐ℎ2. Finally, in order to prevent Bob from using the same proof twice (i.e., perform a
replay attack) 𝑝𝑜𝑜𝑙2 need to be enhanced with a set of spent cross-transaction outputs
(ScTXOs) that keep track of all the output representations out𝑋 that have been already
redeemed in another 𝑡𝑥𝑐𝑟𝑜𝑠𝑠. The out𝐵 is extracted from 𝜋𝐵 .

Validity property holds by extending the asset-management protocol of every channel
to only accept transactions that spend assets that are part of channel’s name-space.
Unforgeability holds as before, due to the requirement for Alice and Bob to sign their
respective transactions. Namespace Consistency holds as before, as validators of each
channel only validate consistent transactions; and Termination holds because of the
liveness guarantees of 𝑐ℎ1 and 𝑐ℎ2 and the assumption that the gossiped commitments
will eventually arrive at all the channels. Finally, the Balance property holds as Alice
can only spent her asset once in 𝑐ℎ1, which will generate a new asset not controlled by
Alice anymore. Similarly, Bob can only use his proof once as out𝐵 will be added in the
ScTXO list of 𝑝𝑜𝑜𝑙2 afterwards.

4.2 Cross-Channel Trade with a Trusted Channel

The approach described above works for cases where Alice is altruistic and wants to
transfer an asset to Bob. However, more complicated protocols (e.g fair exchange) are
not supported, as they need atomicity and abort procedures in place. For example, if
Alice and Bob want to exchange an asset, Alice should be able to abort the protocol
if Bob decides to not cooperate. With the current protocol this is not possible as Alice
assumes that Bob wants the protocol to finish and has nothing to win by misbehaving.

A simple approach to circumvent this problem is to assume a commonly trusted
channel 𝑐ℎ𝑡 from all actors. This channel can either be an agreed upon "fair" channel
or any of the channels of the participants, as long as all participants are able to access
the channel and create/spend assets on/from it. The protocol uses the functionality of
the asset transfer protocol described above (Section 4.1) to implement the Deposit and
Withdraw subprotocols. In total, it exposes three functions and enables a cross-channel
transaction with multiple inputs and outputs:
1. Deposit: All parties that contribute inputs transfer the assets to 𝑐ℎ𝑡 but maintain

control over them by assigning the new asset in 𝑐ℎ𝑡 on their respective public keys.
2. Transact: When all input assets are created in 𝑐ℎ𝑡, a 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 is generated and signed

by all 𝑎𝑖𝑛 owners. This 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 has the full logic of the trade. For example, in the
fair exchange it will have two inputs and two outputs. This 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 is validated as an
atomic state update in 𝑐ℎ𝑡.

3. Withdraw: Once the transaction is validated, each party that manages an output
transfers their newly minted assets from 𝑐ℎ𝑡 to their respective channels 𝑐ℎ𝑜𝑖

Any input party can decide to abort the protocol by transferring back the input asset to
their channel, as they always remain in control of the asset.

The protocol builds on top of the asset-transfer protocol and inherits its security
properties to the extent of the Deposit and Withdraw sub-protocols. Furthermore, the

10 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

Fig. 1: Cross-channel transaction architecture overview with (4.2) and without (4.3) a trusted channel

trusted channel is only trusted to provide the necessary liveness for assets to be moved
across channels, but it cannot double-spent any asset as they still remain under the
control of their rightful owners (bound to the owner’s public key). As a result, the
asset-trade protocol satisfies the asset-management security requirements because it can
be implemented by combining the protocol of Section 4.1 for the "Transact” function
inside 𝑐ℎ𝑡 and the asset-transfer protocol of Section 4.2 for "Withdraw” and "Deposit”.

4.3 Cross-Channel Trade without a Trusted Channel

A mutually trusted channel (as assumed above), where every party is permitted to
generate and spend assets, might not always exist; in this section, we describe a protocol
that lifts this assumption. The protocol is inspired by the Atomix protocol [12], but
addresses implementation details that are ignored in Atomix, such as how to represent
and communicate proofs, and it is more specialized to our asset management model.
1. Initialize. The transacting parties create a 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 whose inputs spend assets of some

input channels (ICs) and whose outputs create new assets in some output channels
(OCs). More concretely.
If Alice wants to exchange 𝑜𝑢𝑡𝐴 from 𝑐ℎ1 with Bob’s 𝑜𝑢𝑡𝐵 from 𝑐ℎ2. Alice and
Bob work together to generate the 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 as

𝑡𝑥𝑐𝑟𝑜𝑠𝑠 ← CreateTx([sec𝐴, sec𝐵]; [𝑎𝑖𝑛𝐴, 𝑎𝑖𝑛𝐵]; [out𝐴, out𝐵])

where 𝑎𝑖𝑛𝐴, 𝑎𝑖𝑛𝐵 are the input representations that show the assets to exist in the
respective pools.

2. Lock. All input channels internally spend the assets they manage and generate a new
asset bound to the transaction (we call it the ”locked" asset"), by using a collision
resistant Hash function to derive the name-space of the new asset, as 𝐻(𝑡𝑥𝑐𝑟𝑜𝑠𝑠)7.
The locked asset’s value is either equal to the sum of the assets previously spent for
that channel or 0, depending on whether the 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 is valid according to the current
state. In both cases there is a new asset added in 𝑝𝑜𝑜𝑙𝑖. Or in our example:
Alice submits 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 to 𝑐ℎ2, which generates the "locked” asset for 𝑡𝑥𝑐𝑟𝑜𝑠𝑠. Alice
then receives 𝜋𝐵 , which shows that out𝐵 is locked for 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 and is represented
by 𝑜𝑢𝑡𝐵′ , which is the locked asset that is generated specifically for 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 and is
locked for Alice but not spendable by Alice. Specifically,

𝑎𝑠𝑠𝑒𝑡2′ = ⟨𝐻(𝑡𝑥𝑐𝑟𝑜𝑠𝑠), 𝑡, 𝑣⟩,
7 The transaction’s hash is an identifier for a virtual channel created only for this transaction

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 11

where 𝑣 is either equal to the value of 𝑎𝑠𝑠𝑒𝑡2 or 0, depending on whether 𝑎𝑠𝑠𝑒𝑡2
was already spent. Same process happens for Bob. Notice that the namespace of
the asset change to 𝐻(𝑡𝑥𝑐𝑟𝑜𝑠𝑠) indicates that this asset can only be used as proof of
existence and not spent again in 𝑐ℎ2.

3. Unlock. Depending on the outcome of the lock phase, the clients are able to either
commit or abort their transaction.
(a) Unlock to Commit. If all ICs accepted the transaction (generated locked assets

with non-zero values), then the respective transaction can be committed.
Each holder of an output creates an unlock-to-commit transaction for his chan-
nel; it consists of the lock transaction and an oracle-generated proof for each
input asset (e.g. against the gossiped MTR). Or in our example:
Alice (and Bob respectively) collects 𝜋𝐴′ and 𝜋𝐵′ which correspond to the
proofs of existence of out𝐴′ , out𝐵′ and submits in 𝑐ℎ1 an unlock-to-commit
transaction:

𝑡𝑥𝑢𝑐 ← CreateTx([𝜋𝐴′ , 𝜋𝐵′]; [𝑎𝑖𝑛1′ , 𝑎𝑖𝑛2′]; [out𝐴′′];)

The transaction is validated in 𝑐ℎ1 creating a new asset (𝑜𝑢𝑡𝐴′′), similar to the
one Bob spent at 𝑐ℎ2, as indicated by 𝑡𝑥𝑐𝑟𝑜𝑠𝑠.

(b) Unlock to Abort. If, however, at least one IC rejects the transaction (due to a
double-spent), then the transaction cannot be committed and has to abort. In
order to reclaim the funds locked in the previous phase, the client must request
the involved ICs that already spent their inputs, to re-issue these inputs. Alice
can initiate this procedure by providing the proof that the transaction has failed
in 𝑐ℎ2. Or in our case if Bob’s asset validation failed, then there is an asset
out𝐵′ with zero value and Alice received from 𝑐ℎ2 the respective proof 𝜋′

𝐵′ .
Alice will then generate an unlock-to-abort transaction:

𝑡𝑥𝑢𝑎 ← CreateTx([𝜋𝐵′], [𝑎𝑖𝑛2′]; [out𝐴′′])

which will generate a new asset out𝐴′′ that is identical to out𝐴 and remains
under the control of Alice

Security Arguments: Under our assumptions, channels are collectively honest and do
not fail hence propagate correct commitments of their pool (commitments valid against
the validation policy).

Validity and Namespace Consistency hold because every channel manages its own
namespace and faithfully executes transactions. Unforgeability holds as before, due to
the requirement for Alice and Bob to sign their respective transactions and the 𝑡𝑥𝑐𝑟𝑜𝑠𝑠.

Termination holds if every 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 eventually commits or aborts, meaning that either
a transaction will be fully committed or the locked funds can be reclaimed. Based on
the fact that all channels always process all transactions, each IC eventually generates
either a commit-asset or an abort-asset. Consequently, if a client has the required number
of proofs (one per input), then the client either holds all commit-assets (allowing the
transaction to be committed) or at least one abort-asset (forcing the transaction to abort),
but as channels do not fail, the client will eventually hold enough proof. Termination
is bound to the assumption that some client will be willing to initiate the unlock step,

12 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

otherwise his assets will remain unspendable. We argue that failure to do such only
results in harm of the asset-holder and does not interfere with the correctness of the
asset-management application.

Finally, Balance holds as cross-channel transactions are atomic and are assigned to
specific channels who are solely responsible for the assets they control (as described
by validity) and generate exactly one asset. Specifically, if all input channels issue an
asset with value, then every output channel unlocks to commit; if even one input channel
issues an asset with zero value, then all input channels unlock to abort; and if even one
input shard issues an asset with zero value, then no output channel unlocks to commit.
As a result, the assigned channels do not process a transaction twice and no channel
attempts to unlock without a valid proof.

5 Using Channels for Confidentiality

So far we have focused on enabling transactions between channels that guarantee
fairness among participants. This means that no honest participant will be worse off by
participating in one of the protocols. Here, we focus on providing confidentiality among
the peers of a channel, assuming that the orderers upon which the channel relies for
maintaining the blockchain are not fully trusted hence might leak data.

Strawman Solution. We start with a simple solution that can be implemented with
vanilla channels [1]. We define a random key 𝑘 and a symmetric encryption algorithm that
is sent in a private message to every participating peer. All transactions and endorsements
are encrypted under 𝑘 then sent for ordering, hence the confidentiality of the channel is
protected by the unpredictability of the symmetric encryption algorithm.

This strawman protocol provides the confidentiality we expect from a channel, but
its security is static. Even though peers are trusted for confidentiality, all it takes for an
adversary to compromise the full past and future confidential transactions of the system
is to compromise a single peer and recover 𝑘. Afterwards the adversary can collude with
a Byzantine order to use the channels blockchain as a log of the past and decrypt every
transactions, as well as keep receiving future transactions from the colluding orderer.

5.1 Deploying Group Key Agreement

To work around the attack, we first need to minimize the attack surface. To achieve this
we need to think of the peers of a channel, as participants of a confidential communica-
tion channel and provide similar guarantees. Specifically, we guarantee the following
properties.
1. Forward Secrecy: A passive adversary that knows one or more old encryption keys

𝑘𝑖, cannot discover any future encryption key 𝑘𝑗 where 𝑖 < 𝑗
2. Backward Secrecy: A passive adversary that knows one or more encryption keys

𝑘𝑖, cannot discover any previous encryption key 𝑘𝑗 where 𝑗 < 𝑖
3. Group Key Secrecy: It is computationally infeasible for an adversary to guess any

group key 𝑘𝑖

4. Key Agreement: For an epoch 𝑖 all group members agree on the epoch key 𝑘𝑖

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 13

Fig. 2: Privacy Preserving Cross-Channel Transaction structure

There are two types of group key agreement we look into:
Centralized group-key distribution: In these systems, there is a dedicated server that
sends the symmetric key to all the participants. The centralized nature of the key creation
is scalable, but might not be acceptable even in a permissioned setting where different
organizations participating in a channel are mutually suspicious.
Contributory group-key management: In these systems, each group member con-
tributes a share to the common group key, which is then computed by each member
autonomously. These protocols are a natural fit to decentralized systems such as dis-
tributed ledgers, but they scale poorly.

We use the existence of the validation policy as an indication of the trusted entities
of the channel (i.e., the oracles) and create a more suitable protocol to the permissioned
setting. Another approach could be to introduce a key-management policy that defines
the key-generation and update rules but, for simplicity, we merge it with the validation
policy that the peers trust anyway. We start with a scalable contributory group-key
agreement protocol [9], namely the Tree-Based Group Diffie-Hellman system. However,
instead of deploying it among the peers as contributors (which would require running
view-synchronization protocols among them), we deploy it among the smaller set of
oracles of the channel. The oracles generate symmetric keys in a decentralized way, and
the peers simply contact their favorite oracle to receive the latest key. If an oracle replies
to a peer with an invalid key, the peer can detect it because he can no longer decrypt the
data, hence he can (a) provably blame the oracle and (b) request the key from another
oracle.

More specifically we only deploy the group-join and group-leave protocols of [9],
because we do not want to allow for splitting of the network, which might cause forks on
the blockchain. We also deploy a group-key refresh protocol that is similar to group-leave,
but no oracle is actually leaving.

5.2 Enabling Cross-Shard Transactions among Confidential Channels

In the protocols we mentioned in Section 4, every party has full visibility on the inputs
and outputs and is able to link the transfer of coins. However, this might not be desirable.
In this section, we describe a way to preserve privacy during cross-channel transactions
within each asset’s channel.

For example, we can assume the existence of two banks, each with its own channel.
It would be desirable to not expose intra-channel transactions or account information
when two banks perform an interbank asset-transfer. More concretely, we assume that
Alice and Bob want to perform a fair exchange. They have already exchanged the type

14 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

of assets and the values they expect to receive. The protocol can be extended to store
any kind of ZK-Proofs the underlying system supports, as long as the transaction can be
publicly verified based on the proofs.

To provide the obfuscation functionality, we use Merkle trees. More specifically, we
represent a cross-shard transaction as a Merkle tree (see Figure 2), where the left branch
has all the inputs lexicographically ordered and the right branch has all the outputs. Each
input/output is represented as a tree node with two leaves: a private leaf with all the
information available for the channel and a public leaf with the necessary information
for third party verification of the transaction’s validity.

The protocol for Alice works as follows:
Transaction Generation:
1. Input Merkle-Node Generation: Alice generates an input as before and a separate

Merkle leaf that only has the type of the asset and the value. These two leaves are
then hashed together to generate their input Merkle node.

2. Output Merkle-Node Generation: Similarly, Alice generates an Output Merkle node,
that consists of the actual output (including the output address) on the private leaf
and only the type and value of the asset expected to be credited on the public.

3. Transaction Generation: Alice and Bob exchange their public Input and Output
Merkle-tree nodes and autonomously generate the full Merkle tree of the transaction.

Transaction Validation:
1. Signature Creation: Alice signs the MTR of the 𝑡𝑥𝑐𝑟𝑜𝑠𝑠, together with a bitmap of

which leaves she has seen and accepts. Then she receives a similar signature from
Bob and verifies it. Then Alice hashes both signatures and attaches them to the
full transaction. This is the 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 that she submits in her channel for validation.
Furthermore, she provides her full signature, which is logged in the channel’s
confidential chain but does not appear in the pool; in the pool the generated asset is
𝐻(𝑡𝑥𝑐𝑟𝑜𝑠𝑠).

2. Validation: Each channel validates the signed transaction (from all inputs inside the
channel’s state) making sure that the transaction is semantically correct (e.g., does
not create new assets). They also check that the publicly exposed leaf of every input
is well generated (e.g. value and type much). Then they generate the new asset
(𝐻(𝑡𝑥𝑐𝑟𝑜𝑠𝑠) as before) that is used to provide proof-of-commitment/abortion. The
rest of the protocol (e.g. Unlock phase) is the same as Section 4.3.

Security & Privacy Arguments. The atomicity of the protocol is already detailed
above. Privacy is achieved, because the source and destination addresses (accounts) are
never exposed outside the shard and the signatures that authenticate the inputs inside the
channel are only exposed within the channel. We also describe the security of the system
outside the atomic commit protocol. More specifically,
1. Every 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 is publicly verifiable to make sure that the net-flow is zero, either by

exposing the input and output values or by correctly generating ZK-proofs.
2. The correspondence of the public and private leaf of a transaction is fully validated

by the input and/or output channel, making sure that its state remains correct.
3. The hash of the 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 is added in the pool to represent the asset. Given the collision

resistance of a hash function, this signals to all other channels that the private leaves
correspond to the transaction have been seen, validated and accepted.

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 15

The scheme can be further enhanced to hide the values using Pedersen commitments
[19] and range-proofs similar to confidential transactions [14]. In such an implementation
the Pedersen commitments should also be opened on the private leaf for the consistency
checks to be correctly done.

6 Case Study: Cross-Shard Transactions on Hyperledger Fabric

In order to implement the cross-channel support on Fabric v1.1, we start with the current
implementation of FabCoin [1] that implements an asset-management protocol similar
to the one introduced in Section 3.2.

Channel-Based Implementation. As described by Androulaki et al. [1], a Fabric
network can support multiple blockchains connected to the same ordering service. Each
such blockchain is called a channel. Each channel has its own configuration that includes
all the functioning metadata, such as defining the membership service providers that
authenticate the peers, how to reach the ordering service, and the rules to update the
configuration itself. The genesis block of a channel contains the initial configuration.
The configuration can be updated by submitting a reconfiguration transaction. If this
transaction is valid with the respect to the rules described by the current configuration,
then it gets committed in a block containing only the reconfiguration transaction, and
the chances are applied.

In this work, we extend the channel configuration to include the metadata to support
cross-channel transactions. Specifically, the configuration lists the channels with which
interaction is allowed; we call them friend channels. Each entry also has a state-update
validation policy, to validate the channel’s state-updates, the identities of the oracles of
that channel, that will advertise state-update transactions, and the current commitment to
the state of that channel. The configuration block is also used as a lock-step that signals
the view-synchrony needed for the oracles to produce the symmetric-key of the channel.
If an oracle misbehaves, then a new configuration block will be issued to ban it.

Finally, we introduce a new entity called timestamper (inspired by recent work in
software updates [18]) to defend against freeze attacks where the adversary presents
a stale configuration block that has an obsolete validation policy, making the network
accepting an incorrect state update. The last valid configuration is signed by the times-
tampers every ’interval, defined in the configuration, and (assuming loosely synchronised
clocks) guarantees the freshness of state updates8.

Extending FabCoin to Scale-out. In FabCoin [1] each asset is represented by its
current output state that is a tuple of the form (𝑡𝑥𝑖𝑑.𝑗, (𝑣𝑎𝑙𝑢𝑒, 𝑜𝑤𝑛𝑒𝑟, 𝑡𝑦𝑝𝑒)). This
representation denotes the the asset created as the j-th output of a transaction with
identifier 𝑡𝑥𝑖𝑑 that has 𝑣𝑎𝑙𝑢𝑒 units of asset 𝑡𝑦𝑝𝑒. The output is owned by the public key
denoted as 𝑜𝑤𝑛𝑒𝑟.

To support cross-channel transactions, we extend FabCoin transactions by adding
one more field, called 𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒, that defines the channel that manages the asset (i.e.,
(𝑡𝑥𝑖𝑑.𝑗, (𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒, 𝑣𝑎𝑙𝑢𝑒, 𝑜𝑤𝑛𝑒𝑟, 𝑡𝑦𝑝𝑒)).

8 unless both the timestamp role and the validation policy are compromised

16 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

Table 1: Atomic Commit Protocol on Fabric Channels
Protocol Atomicity Trust Assumption Generality of Transactions Privacy

Asset Transfer (Section 4.1) Yes Nothing Extra 1-Input-1-Ouptut No
Trusted Channel (Section 4.2) Yes Trusted Intermediary Channel N-Input-M-output No
Atomic Commit (Section 4.3) Yes Nothing Extra N-Input-M-output No

Obfuscated Transaction AC (Section 5.2) Yes Nothing Extra N-Input-M-output Yes

Periodically, every channel generates a state commitment to its state, this can be done
by one or more channel’s oracles. This state commitment consists of two components:
(i) the root of the Merkle tree built on top of the UTXO pool, (ii) the hash of the current
configuration block with the latest timestamp, which is necessary to avoid freeze attacks.

Then, the oracles of that channel announce the new state commitment to the friend
channels by submitting specific transactions targeting each of these friend channels. The
transaction is committed if (i) the hashed configuration block is equal to the last seen
configuration block, (ii) the timestamp is not "too” stale (for some time value that is
defined per channel) and (iii) the transaction verifies against the state-updates validation
policy. If those conditions hold, then the channel’s configuration is updated with the new
state commitment. If the first condition does not hold, then the channel is stale regarding
the external channel it transacts with and needs to update its view.

Using the above state update mechanism, Alice and Bob can now produce verifiable
proofs that certain outputs belong to the UTXO pool of a certain channel; these proofs
are communicated to the interested parties differently, depending on the protocol. On the
simple asset-transfer case (Section 4.1), we assume that Alice is altruistic (as she donates
an asset to Bob) and request the proofs from her channel that is then communicated
off-band to Bob. On the asset trade with trusted channels (Section 4.2) Alice and Bob
can independently produce the proofs from their channels or the trusted channel as they
have visibility and access rights. Finally on the asset trade of Section 4.3, Alice and Bob
use the signed cross-channel transaction as proof-of-access right to the channels of the
input assets in order to obtain the proofs. This is permitted because the 𝑡𝑥𝑐𝑟𝑜𝑠𝑠 is signed
by some party that has access rights to the channel and the channels peers can directly
retrieve the proofs as the asset’s ID is derived from 𝐻(𝑡𝑥𝑐𝑟𝑜𝑠𝑠).

7 Conclusion
In this paper, we have redefined channels, provided an implementation guideline on
Fabric [1] and formalized an asset management system. A channel is the same as a
shard that has been already defined in previous work [7, 12]. Our first contribution is
to explore the design space of sharding on permissioned blockchains where different
trust assumptions can be made. We have introduced three different protocols that achieve
different properties as described in Table 1. Afterwards we have introduced the idea
that a channel in a permissioned distributed ledger can be used as a confidentiality
boundary and describe how to achieve this. Finally, we have merged the contributions to
achieve a confidentiality preserving, scale-out asset management system, by introducing
obfuscated transaction trees.

Acknowledgments
We thank Marko Vukolić and Björn Tackmann for their valuable suggestions and dis-
cussions on earlier versions of this work. This work has been supported in part by
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 780477 PRIViLEDGE.

Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains 17

References

1. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. In
Proceedings of the Thirteenth European conference on Computer systems, EuroSys ’18, New
York, NY, USA, 2018. ACM.

2. Greg Bishop. Illinois begins pilot project to put birth certificates on digital ledger technology,
September 2017.

3. Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll, and
Edward W Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.
In Security and Privacy (SP), 2015 IEEE Symposium on, pages 104–121. IEEE, 2015.

4. Ryan Browne. IBM partners with Nestle, Unilever and other food giants to trace food
contamination with blockchain, September 2017.

5. Christian Cachin and Marko Vukolic. Blockchain Consensus Protocols in the Wild. CoRR,
abs/1707.01873, 2017.

6. Kyle Croman, Christian Decke, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,
Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gun Sirer, Dawn Song an, and Roger
Wattenhofer. On Scaling Decentralized Blockchains (A Position Paper). In 3rd Workshop on
Bitcoin and Blockchain Research, 2016.

7. George Danezis and Sarah Meiklejohn. Centrally Banked Cryptocurrencies. 23rd Annual
Network & Distributed System Security Symposium (NDSS), February 2016.

8. Maurice Herlihy. Atomic Cross-Chain Swaps. arXiv preprint arXiv:1801.09515, 2018.
9. Yongdae Kim, Adrian Perrig, and Gene Tsudik. Tree-based group key agreement. ACM

Transactions on Information and System Security (TISSEC), 7(1):60–96, 2004.
10. Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gaillya, Philipp

Jovanovic, Linus Gasser, and Bryan Ford. Hidden in Plain Sight: Storing and Managing
Secrets on a Public Ledger. Cryptology ePrint Archive, Report 2018/209, 2018.

11. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing. In Proceedings of the 25th USENIX Conference on Security Symposium,
2016.

12. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In Security
and Privacy (SP), 2018 IEEE Symposium on, pages 19–34. Ieee, 2018.

13. Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. Technical
report, Cryptology ePrint Archive, Report 2015/675, 2015. http://eprint. iacr. org, 2015.

14. Greg Maxwell. Confidential transactions. people.xiph.org/g̃reg/confidential_values.txt, 2015.
15. Steven Melendez. Fast, Secure Blockchain Tech From An Unexpected Source: Microsoft ,

September 2017.
16. Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous

distributed e-cash from Bitcoin. In 34th IEEE Symposium on Security and Privacy (S&P),
May 2013.

17. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
18. Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser,

Ismail Khoffi, Justin Cappos, and Bryan Ford. Chainiac: Proactive software-update trans-
parency via collectively signed skipchains and verified builds. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1271–1287, 2017.

https://arxiv.org/abs/1801.10228
https://www.ilnews.org/news/statewide/illinois-begins-pilot-project-to-put-birth-certificates-on-digital/article_1005eca0-98c7-11e7-b466-170ecac25737.html
http://ieeexplore.ieee.org/abstract/document/7163021/
https://www.cnbc.com/2017/08/22/ibm-nestle-unilever-walmart-blockchain-food-contamination.html
https://www.cnbc.com/2017/08/22/ibm-nestle-unilever-walmart-blockchain-food-contamination.html
https://arxiv.org/abs/1707.01873
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
https://eprint.iacr.org/2015/502.pdf
https://arxiv.org/abs/1801.09515
https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
people.xiph.org/~greg/confidential_values.txt
https://www.fastcompany.com/40461634/fast-secure-blockchain-tech-from-an-unexpected-source-microsoft
https://bitcoin.org/bitcoin.pdf

18 Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias

19. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Annual International Cryptology Conference, pages 129–140. Springer, 1991.

20. Rahul Roy. Shard âĂŞ A Database Design , July 2008.
21. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran

Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
Security and Privacy (SP), 2014 IEEE Symposium on, pages 459–474. IEEE, 2014.

22. Scott Simonsen. 5 Reasons the UN Is Jumping on the Blockchain Bandwagon , September
2017.

23. Tim Swanson. Consensus-as-a-service: a brief report on the emergence of permissioned,
distributed ledger systems. Report, available online, Apr, 2015.

24. Wikipedia. Atomic commit, February 2018.

http://technoroy.blogspot.ch/2008/07/shard-database-design.html
https://singularityhub.com/2017/09/03/the-united-nations-and-the-ethereum-blockchain/
https://en.wikipedia.org/wiki/Atomic_commit

	Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains -0.5cm

