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Abstract

We investigate the security of smart contracts within a blockchain that can fork (as Bit-
coin and Ethereum). In particular, we focus on multi-party computation (MPC) protocols
run on-chain with the aid of smart contracts, and observe that honest players face the fol-
lowing dilemma: Should I rush sending protocol’s messages based on the current view of the
blockchain, or rather wait that a message is confirmed on the chain before sending the next
one?

To the best of our knowledge, the (implicit) default option used in previous work is the
second one, and thus known on-chain MPC protocols take long time to be executed on those
blockchains with a long confirmation time (e.g., 1 hour per transaction in Bitcoin). While
the first option would clearly be preferable for efficiency, we show that this is not necessarily
the case for security, as there are natural examples of on-chain MPC protocols that simply
become insecure in presence of rushing players.

Our contributions are twofold:

• For the concrete case of fairly tossing multiple coins with penalties, we show that the
lottery protocol of Andrychowicz et al. (S&P ’14) becomes insecure in the presence of
rushing players. In addition, we present a new protocol that instead retains security
even if the players are rushing.

• We design a compiler that takes any on-chain MPC protocol and transforms it into
another one (for the same task) that remains secure even in the presence of rushing
players. The only (unavoidable) requirement is that honest players start to be rush-
ing after the first round of the protocol (by all players) has been confirmed on the
blockchain.

Our techniques are inspired by ideas on resettably secure computation (Goyal and Sahai,
EUROCRYPT ’09). We also provide a prototype implementation of our coin tossing protocol
using Ethereum smart contracts, and instantiate our generic compiler in a concrete setting,
showing that both our constructions yield considerable improvements in terms of efficiency.
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1 Introduction

The rise of blockchains1 is progressively changing the way transactions are executed over the
Internet. Indeed, the traditional client-server paradigm turns out to be insufficient when many
parties want to perform a joint computation, especially in cases where features like public
verifiability and automatic punishment are desired. Instead, blockchains through the execution
of smart contracts naturally allow many players to perform a joint computation, even when they
are not simultaneously online; moreover they allow to publicly check the actions of all players2

and enforce a proper behavior through financial punishments.

1.1 Forks and the Double-Spending Problem

Typical blockchains experience some delays before a transaction can be considered confirmed.
Indeed, a large part of the most used blockchains consists of a list of blocks that can temporary
fork. In such cases, fork-resolution mechanisms decide which branch is eventually part of the
list of blocks and which one is discarded, at the price of cutting off some transactions that for
some time have appeared on the blockchain.

The existence of transactions that appear and then disappear from a blockchain is the
source of the famous double spending attack. In such attack, the adversary performs a payment
thorough a transaction on the blockchain in order to receive a service off-chain. If later on the
transaction related to the payment disappears from the blockchain, due to the presence of forks,
then the attacker gets the money back and can spend it for something else. Therefore, at the
end of the day, the service was received for free. The crucial point of the double spending attack
is that, while the payment transaction disappears, the obtained service is not canceled since it
is not linked to the payment transaction happening on chain.

The solution to the double spending problem is pretty harsh: the receiver of a payment will
have to wait long time—essentially until the transaction is confirmed and somehow becomes
irreversible—before taking future actions. Obviously, this can be problematic when an entire
process consists of many sequential transactions and the confirmation time is long.

Interestingly, the double spending problem seems to disappear when instead the service
consists of another on-chain transaction that is connected to the payment transaction. Indeed,
in this case, if as consequence of a fork the payment transaction disappears, then the service
transaction disappears too. This chaining of transactions related to the same process can be
easily implemented through smart contracts. Indeed, a smart contract can have an initial
state s1 that is updated transaction by transaction obtaining s2, s3, and so on. Let ti be the
transaction that changes the state from si to si+1. If because of a fork the state goes back to
si from a state sj , only ti is again applicable to si, while instead all transactions ti+1, . . . , tj−1
are not applicable to state si. Therefore, by invalidating ti (similarly to the double spending
problem where money is used in a new transaction making ti invalid), then ti+1, . . . , tj−1 will
be invalidated too.

This motivates the possibility of running smart contracts efficiently, without waiting that
every single transaction is confirmed before broadcasting the next one. We have therefore the
following rush dilemma: to rush or not to rush?

1.2 Subtle Attacks to Smart Contracts: Efficiency vs Security

Since transactions take long time to be confirmed in a forking blockchain, the full execution
of a smart contract with multiple sequential transactions might take too long. It would thus

1Throughout the paper, we use the terms “blockchain” and “distributed ledger” interchangeably.
2We will often use the two terms “party” and “player” as synonyms.
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be natural to speed up the execution of smart contracts by rushing and playing messages
immediately. Indeed, as mentioned above, by appropriately chaining the transactions of a
smart contract, attacks consisting in exploiting the cancellation of a transaction like the double-
spending attack are not effective, and therefore rushing could be a valid option.

However, we notice that forks can help an adversary to mount more subtle attacks. For
example, a player could answer to some transaction A by sending another transaction B as soon
as A appears on the blockchain. Obviously, in case of forks, the transaction A could appear on
the blockchain in different branches, and then multiple copies of B would follow A. While at first
sight this seems to be fine, an adversary computing A can exploit his view of B in a branch of a
fork to play adaptively a message different than A in another branch, invalidating some security
property of the smart contract. Indeed, different transactions A1 and A2 could be played in the
two branches of a fork, and (potentially different) transactions B1 and B2 might be required
and played as answers. Notice that the honest player could become aware of the fork only after
the fact, i.e., after A1 and B1 have been played already. Indeed, because of a fork, transactions
A1 and B1 would just disappear, and transaction A2 might appear instead. The honest player
therefore will have to compute B2 to continue the execution of the smart contract. The fact that
the adversary can play A2 adaptively after having seen B1 can produce a deviation from the
expected behavior of the smart contract, therefore compromising the appealing transparency
and robustness guarantees of this technology.

In addition, when the transactions represent an on-chain execution of an MPC protocol, the
above scenario can be a serious threat for confidential data of honest players.

1.3 Our Contributions

Motivated by the dilemma of rushing risking security or waiting paying on efficiency, we investi-
gate the security of smart contracts that leverage a forking blockchain. Our main contributions
are outlined below.

Insecurity of smart contracts with rushing players. Consider a simple smart contract
executed by two players, Alice and Bob, willing to establish jointly a random string:

1. Alice starts the protocol by sending to the smart contract a commitment to a random
string r1;

2. Bob sends a random string r2 to the smart contract;
3. Alice then opens the commitment, and if the opening is valid the common string is defined

to be r = r1 ⊕ r2.

For concreteness, say that Alice is honest and Bob is corrupted, and assume that a fork happens
after Alice already sent the commitment. If Bob runs the protocol honestly on the first branch,
he gets to see Alice’s opening, and thus he can completely bias the output on the other branch
by just sending r′2 = r′⊕r1 to the smart contract, for any value r′ of his choice. This motivating
example clearly shows that, unless one has proven some kind of resilience to forks, it is certainly
preferable to always wait that transactions are confirmed, at the price of having very slow
executions of the smart contract. Such slowness could be unacceptable in some applications.

As our first result, we analyze a variant of the above attack to the well-known smart con-
tract3 of Andrychowicz et al. [ADMM16], for securely realizing multi-party lotteries. The main
difference with the toy example from above is that each player commits to a random value ri
between 1 and n (where n is the total number of participants to the lottery), and then, after
all the commitments have been opened, the winner of the lottery is defined to be the player

3The protocol of [ADMM16] is actually based on Bitcoin, but this makes no difference for our attack.
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w = r1 + . . .+rn (mod n)+1. An appealing feature of this protocol is that it achieves so-called
fairness with penalties: If a malicious player aborts the protocol (e.g., it does not open the
commitment before a certain time bound), then a previously deposited amount of coins is auto-
matically transferred to the honest players (i.e., to those that correctly opened the commitment
on time). Such a feature is particularly important in light of the negative result by Cleve [Cle86]
on achieving fairness without honest majority.

We note that in the protocol of Andrychowicz et al. it is vital that players are non-rushing,
and therefore post new transactions only after the previous transactions in the protocol are
already confirmed on the blockchain. Indeed, in the presence of rushing players, a simple
variant of the attack described above would allow a malicious party to commit to a value ri
such that

∑
i ri (mod n) + 1 = i, assuming that all players already opened the commitments

on a minor branch of a fork.

On-chain parallel coin tossing. As our second contribution, we go beyond the limits of the
protocol of [ADMM16], and present a smart contract that implements such functionality and
remains secure even if the players are rushing. In fact, the smart contract we design is more
general in that it allows the players to establish a common, uniformly random, string (which
in turn allows to run a lottery). Similar to [ADMM16], our protocol also achieves fairness with
penalties.

The main idea in our construction consists of using verifiable unpredictable functions (VUF)
[MRV99] in order to implement a commitment scheme that simultaneously: (i) has an unpre-
dictable opening for the receiver even in case of multiple openings of the commitment through
multiple evaluations of the VUF with the same key but with different inputs, and (ii) achieves
binding for the sender through the uniqueness of the VUF. We put together all the openings
into a long string that remains unpredictable as long as there is a single honest player. This
long string is then given in input to a random oracle to complete the generation of a random
string that can be used in various applications (e.g., to run a multi-party lottery).

Notice that this result makes no use of finality of transactions on a blockchain (i.e., we do
not need to know after how many blocks a transaction can be considered permanent). We stress
that we consider the adversary as a player that tries to exploit the existence of forks in order to
bias the output of the smart contract. We are not modelling the adversary of the smart contract
as a player that has control over forks, deciding which branch will eventually be discarded and
which one will become permanently part of the blockchain. Obviously, a powerful adversary
that has control over the forks can always play the protocol on each fork to then select the one
that produced the output that she likes the most. This is unavoidable when there is no use
of finality of transactions, and we tackle this in our next result that instead takes finality of
transactions into account.

On-chain MPC with rushing players. As final contribution, we show a general transform
to design smart contracts that retain security in the presence of forks (and thus, when properly
instantiated, can be more efficient since players are allowed to rush). Our transform is inspired
by previous works that show how to make MPC protocols secure against reset attacks [GS09,
GM11]. The main idea consists of asking each player to first commit to its input and randomness,
and then to run the underlying MPC protocol by additionally proving in zero knowledge4 that
each message has been computed correctly w.r.t. the initial commitment.

4Technically, the zero-knowledge proof must also be secure w.r.t. reset attacks. Moreover, the fact that such
proofs come from different players requires to protect them w.r.t. man-in-the-middle attacks. To fulfill both
requirements we use proofs that are non-interactive and non-malleable. Moreover, for simplicity, we will use the
term “proof” rather than “argument” even when computational soundness is sufficient.
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In addition to connecting the problems of security w.r.t. fork attacks with previous work
on resettable security, we actually consider a slightly different setting that remained so far
unexplored in the literature. Indeed, in order to model forks we notice that: (i) honest rushing
players would use the same input on both branches of a fork, but the randomness would be fresh
(since it would be sampled multiple times and the random tape does not move back); (ii) while
reset attacks are generically allowed to any previous point of the computation, we can leverage
on the properties of a blockchain in order to make sure that there is a bound beyond which one
can consider a transaction finalized (e.g., 6 is the commonly recommended number of blocks
after which a transaction is considered irreversible in then Bitcoin blockchain), and therefore a
transaction can be considered confirmed at some point. Our transform takes advantage of the
above two simplifications by requiring honest players to wait for the confirmation of the first
transaction of each other player, and by avoiding the use of a pseudo-random function that is
traditionally used to change randomness after a reset [GS09].

Note that here we make a minimal use of the finality guarantee of a blockchain, since
we ask to wait for the confirmation of only the first message of each player. Waiting for a
single confirmation is optimal in light of known impossibility results for several interesting
functionalities5 in the presence of arbitrary reset attacks (for us, honest players that because of
forks end up playing multiple times the same step of a smart contract or of an MPC protocol).

We also discuss a concrete instantiation of our transform on a natural smart contract that
would be insecure in the presence of rushing players. Besides achieving security in case of forks,
the final protocol features an improved efficiency w.r.t. time to completion, at the price of a
small overhead in the communication complexity.

1.4 Related Work

Following [ADMM16], several other works focus on achieving fairness with penalties for different
applications of interest, including lotteries [BK14, BZ17], decentralized poker [KMB15, BKM17],
and general-purpose computation [BK14, KMS+16, KB16, KVV16]. In particular, the line of
works by Kumaresan et al. relies on an elegant paradigm working in two phases: During the
first phase, the players run an MPC protocol to obtain the output in hidden form (e.g., a
secret sharing of the output); since the output is hidden, such a protocol can be executed off
chain, as malicious aborts do not violate fairness. During the second phase, the output is then
reconstructed in a fair manner on chain.

Unfortunately, the security of this paradigm in the presence of rushing players is difficult
to assess, as it relies on intermediate ideal functionalities (such as the “claim-or-refund” and
“multi-lock” functionality [BK14, KB14]) that, while they can be implemented using Bitcoin or
Ethereum, offer a-priori no security guarantee in the presence of reset attacks due to blockchain
forks. Moreover, known results about designing protocols in a hybrid model that allows to make
calls to a functionality are applicable only to the classical setting where resets are not possible.
Also note that performing a large part of the computation off chain hinders one of the main
advantages of blockchain-aided MPC (i.e., public verifiability of the entire process). Our results,
in contrast, consider MPC protocols run completely on-chain through smart contracts.

A different line of works, shows how to perform MPC in the presence of an abstract transac-
tion ledger [KZZ16, GG17, BMTZ17, BGM+18, SSV19, CGJ19], of which Bitcoin and Ethereum
are possible implementations. However, such an idealized ledger does not account for the pos-
sibility of forks, thus (implicitly) meaning that the players using it are modeled as non-rushing.

5E.g., in oblivious transfer a malicious receiver by playing again his very first message would be allowed to
obtain both inputs of the sender.
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2 Preliminaries

2.1 Notation

Given an integer n, we let [n] = {1, . . . , n}. If x is a string, we denote its length by |x|; if X is
a set, |X | is the number of elements in X . When x is chosen randomly in X , we write x←$ X .
When A is an algorithm, we write y←$ A(x) to denote a run of A on input x and output y; if
A is randomized, then y is a random variable and A(x;ω) denotes a run of A on input x and
random coins ω ∈ {0, 1}∗.

Throughout the paper, we denote the security parameter by λ ∈ N. A function ν(λ) is
negligible in λ (or just negligible) if it decreases faster than the inverse of every polynomial in
λ, i.e. ν(λ) ∈ O(1/p(λ)) for every positive polynomial p(·). A machine is said to be probabilistic
polynomial time (PPT) if it is randomized, and its number of steps is polynomial in the security
parameter.

For a random variable X, we write P [X = x] for the probability that X takes a particular
value x in its domain. A distribution ensemble X = {X(λ)}λ∈N is an infinite sequence of random
variables indexed security parameter λ ∈ N. Two distribution ensembles X = {X(λ)}λ∈N and
Y = {Y(λ)}λ∈N are said to be computationally indistinguishable, denoted X ≈c Y if for every
non-uniform PPT algorithm D there exists a negligible function ν(·) such that:

|P [D(X(λ)) = 1]− P [D(Y(λ)) = 1]| ≤ ν(λ).

When the above equation holds for all (even unbounded) distinguishers D, we say that X and
Y are statistically close, denoted X ≈s Y.

2.2 Standard Primitives

Verifiable unpredictable functions. A verifiable unpredictable function (VUF) [MRV99]
is a tuple of polynomial-time algorithms (Gen,Eval,Prove,Ver) specified as follows. (i) The
randomized algorithm Gen takes as input the security parameter and outputs a secret key sk
together with a public verification key vk ; (ii) The deterministic algorithm Eval takes as input
the secret key sk and an input x within domain D, and outputs a value y belonging to some
range R; (iii) The deterministic algorithm Prove takes as input the secret key sk and an input
x ∈ D, and outputs a proof φ ∈ {0, 1}∗; (iv) The randomized algorithm Ver takes as an input
the verification key vk , an input/output pair (x, y), and a proof φ, and outputs a decision bit.
Correctness says that for sufficiently large λ ∈ N, with overwhelming probability over the choice
of (sk , vk)←$ Gen(1λ), for all x ∈ {0, 1}` it holds that Ver(vk , x,Eval(sk , x),Prove(sk , x)) = 1.

As for security, we require two properties known as unique provability and unpredictability.

Definition 1 (Unique provability). We say that (Gen,Eval,Prove,Ver) satisfies unique prov-
ability if no values (vk , x, y0, y1, φ0, φ1) with y0 6= y1, even maliciously generated, can satisfy
Ver(vk , x, y0, φ0) = Ver(vk , x, y1, φ1). In words, for every string vk and every x ∈ D, there exists
at most one value y ∈ R for which there is an accepting proof.

Definition 2 (Unpredictability). We say that (Gen,Eval,Prove,Ver) satisfies computational
unpredictability if for all non-uniform valid PPT attackers A the following quantity is negligible:

P
[
Eval(sk , x) = y :

(vk , sk)←$ Gen(1λ)

(x, y)←$ AO(sk ,·)(vk)

]
,

where O(sk , ·) ≡ {Eval(sk , ·),Prove(sk , ·)}, and attacker A is called valid if it never queries x to
its oracles.

5



Verifiable unpredictable functions (a.k.a. unique signatures) exist based on a variety of as-
sumptions [BR96, MRV99, Lys02, Dod03, DY05, Jag15, HJ16, Bit17].

Commitment schemes. A non-interactive commitment Commit is a PPT algorithm taking
as input a message m ∈ {0, 1}`, and outputting a commitment γ = Commit(m; δ), where
δ ∈ {0, 1}∗ is the randomness used to generate the commitment. The pair (m, δ) is called the
opening.

Intuitively, a secure commitment satisfies two properties called binding and hiding. The first
property says that it is hard to open a commitment in two different ways. The second property
says that a commitment hides the underlying message.

Definition 3 (Binding). We say that a non-interactive commitment Commit is perfectly binding
if pairs (m0, δ0), (m1, δ1) such that m0 6= m1 and Commit(m0; δ0) = Commit(m1; δ1) do not exist.

Definition 4 (Hiding). We say that a non-interactive commitment Commit is computationally
hiding if for all non-uniform PPT adversaries A the following quantity is negligible∣∣∣P [ALR(0,·,·)(1λ) = 1

]
− P

[
ALR(1,·,·)(1λ) = 1

]∣∣∣ ,
where the oracle LR(b, ·, ·) with hard-wired b ∈ {0, 1} takes as input pairs of messages m0,m1 ∈
{0, 1}`, and outputs Commit(mb).

Non-interactive commitments satisfying the above properties can be obtained under the
assumption of injective one-way functions [GMW91].

Non-interactive zero knowledge. Let R be a relation, corresponding to an NP language
L. A non-interactive proof system for R is a tuple of efficient algorithms (Setup,Prove,Ver)
specified as follows. (i) The randomized algorithm Setup takes as input the security parameter
and outputs a common reference string σ; (ii) The randomized algorithm Prove(σ, (x,w)), given
a pair (x,w) s.t. R(x,w) = 1 outputs a proof φ; (iii) The deterministic algorithm Ver(σ, (x, φ)),
given an instance x and a proof φ outputs either 0 (for “reject”) or 1 (for “accept”). We say
that a NIZK for relation R is correct if for every λ ∈ N, all σ as output by Setup(1λ), and any
(x,w) s.t. R(x,w) = 1, we have that Ver(σ, (x,Prove(σ, (x,w)))) = 1.

We define two properties of a non-interactive proof system. The first property says that
honest proofs do not reveal anything beyond the fact that x ∈ L.

Definition 5 (Adaptive multi-theorem zero-knowledge [Gro06]). A non-interactive proof sys-
tem (Setup,Prove,Ver) for a relation R satisfies adaptive multi-theorem zero-knowledge if there
exists a PPT simulator ZKSim := (ZKSim0,ZKSim1) such that for all PPT non-uniform adver-
saries A the following quantity is negligible:∣∣∣P [AProve′(σ,·,·)(σ) = 1 : σ←$ Setup(1λ)

]
− P

[
AZKSim′1(ζ,·,·)(σ) = 1 : (σ, ζ)←$ ZKSim0(1

λ)
] ∣∣∣,

where ZKSim′1(ζ, x, w) = ZKSim1(ζ, x) if R(x,w) = 1, and both oracles ZKSim′1 and Prove′

output ⊥ if R(x,w) = 0. Sometimes we call a non-interactive proof system satisfying adaptive
multi-theorem zero knowledge a NIZK proof system.

The second property states that knowledge soundness holds even if the adversary can see
simulated proofs for possibly false statements of its choice.
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Definition 6 (Simulation extractability [Gro06]). A NIZK proof system (Setup,Prove,Ver) with
zero-knowledge simulator (ZKSim0,ZKSim1) for a relation R satisfies simulation extractability if
there exists a PPT algorithm KExt = (KExt0,KExt1) such that the output of KExt0 is identical to
that of ZKSim0 when restricted to the first two components, and moreover for every non-uniform
PPT adversary A the following quantity is negligible:

P

 Ver(σ, x∗, φ∗) = 1 ∧
(x∗, φ∗) 6∈ Q ∧
R(x∗, w∗) = 0

:

(σ, ζ, ξ)←$ KExt0(1
λ)

(x∗, φ∗)←$ AZKSim1(ζ,·,·)(σ)
w∗←$ KExt1(ξ, x

∗, φ∗)

 ,
where Q is the list of all queries to oracle ZKSim1(ζ, ·, ·).

3 Parallel Coin Tossing

In this section we focus on blockchain-aided MPC for parallel coin tossing. Roughly, such
protocols allows a set of players to agree on a uniformly random string, and have many important
applications. (For instance, they trivially imply a fair lottery.) After recalling the lottery
protocol by Andrychowicz et al. [ADMM16], we show that this construction is not secure in
the presence of rushing players. We then propose a new protocol which achieves security in the
presence of rushing players, leveraging the power of smart contracts.

3.1 The Protocol of Andrychowicz et al.

Background on Bitcoin. In the Bitcoin ledger, each account is associated to a pair of keys
(pk , sk), where pk is the verification key of a signature scheme—representing the address of an
account—while sk is the corresponding secret key used to sign (the body of) the transactions.
Each block on the ledger contains a list of transactions, and new blocks are issued by an entity
called miner. The blockchain is maintained via a consensus mechanism based on the proof of
work (PoW) [DN92]; users willing to add a transaction to the ledger forward it to all the miners,
which will try to include it in the next minted block.

Due to the PoW consensus mechanism, each miner could have a different view of the ledger.
The common-prefix property [GKL15] roughly states that all the miners have the same view
of the blockchain up to a certain number k of blocks (before the last block); this guarantees
long-term consistency of the transactions in the ledger. Each view of the blockchain is called a
fork ; after k blocks, with high probability, one of these forks will be part of the common prefix.

We say that a transaction is valid if it is computed correctly (i.e., the signature is valid,
the coins have not been spent already, and so on) and that it is confirmed if it appears in
the common-prefix of all the miners (i.e., at least k blocks have passed). Each transaction Tx
contains the following information:

• A set of input transactions Tx1,Tx2, · · · from which the coins needed for the actual trans-
action Tx are taken;

• A set of input scripts containing the input for the output scripts of Tx1,Tx2, · · · ;
• An output script defining in which condition Tx can be claimed;
• The number of coins taken from the redeemed transactions;
• A time lock t specifying when Tx becomes valid (i.e., a time-locked transaction won’t be

accepted by the miners before time t has passed).

A transaction is called standard if its output script contains only the signature of the account’s
owner (i.e., it can be redeemed by the owner by simply signing it).
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The protocol. The construction by [ADMM16] relies on a primitive called time-locked com-
mitment. Let n denote the number of parties. Each party Pj creates n− 1 Commitji 6=j transac-
tions containing a commitment to its lottery value. In particular, the output script of such a
transaction ensures that it can be claimed either by Pj via an Openji transaction exhibiting a
valid opening for the commitment, or by another transaction that is signed by both Pj and Pi.

Before posting these transactions on the ledger, Pj creates a time-locked transaction PayDepositji
redeeming Commitji , sends it off-chain to each Pi 6=j , and finally posts all the Commitji transac-
tions on the ledger. In case Pj does not open the commitment before time t, then each recipient

of a PayDepositji transaction can sign it and post it on the ledger; since time t has passed, the

miners will now accept the transaction as a valid transaction redeeming Commitji .
More in details, the protocol works as follows.

Deposit phase: Each player Pj computes a commitment yj = Hash(xj ||δj), where δj is some

randomness, sends off-chain the PayDepositji transactions (with time-lock t) to each Pi 6=j ,

and posts the Commitji transactions on the ledger.
Betting phase: Pj bets one coin in the form of a standard transaction PutMoneyj (redeeming a

previous transaction held by Pj , and with Pj ’s signature as output script). All the players
agree and sign off-chain a Compute transaction taking as input all the (PutMoneyj)j∈[n]
transactions, and then the last player that receives the Compute transaction posts it on the
ledger. In order to claim this transaction, a player Pw′ must exhibit the openings of the
commitments of all participants: The script checks that the openings are valid, computes
the index of the winner w (as a function of the values x1, . . . , xn), and checks that w′ = w
(i.e., the only participant that can claim the Compute transaction is the winner of the
lottery).

Compensation phase: After time t, in case some player Pj did not send all of its {Openji}i∈[n],i 6=j
transactions, all the other players Pi 6=j can post the PayDepositji transaction on the ledger,
thus obtaining at least a certain number of coins as compensation.

3.2 A Simple Attack

The main idea behind our attack is that, in the presence of rushing players, the protocol’s
messages can end-up on unconfirmed blocks. By looking at different forks, an attacker can try
to change an old unconfirmed transaction by re-posting it, with the hope that it will end-up on
a different fork and become part of the common prefix. This essentially corresponds to a reset
attack on the protocol.

The construction described in the previous section relies on the (implicit) assumption that
the players are non-rushing. In particular, each player Pj should wait to post its PutMoneyji
transaction only after all the Commitji transactions are confirmed on the ledger, in such a way

that all players are aligned on the same fork (and so the miners have the {Commitji}i∈[n],j 6=i
transactions in their common prefix).

In the case of rushing players, when a fork occurs, an attacker can take advantage of openings
of the other parties played in a faster branch in order to bias the result of the lottery on a slower
branch. If eventually the slower branch remains permanently in the blockchain, then clearly the
attack is successful.

For concreteness, let us focus on Blum’s coin tossing, in which the winner is defined to be
w = x1 + . . .+ xn mod n+ 1. Consider the following scenario:

• The (rushing) players P1, . . . ,Pn run a full instance of the lottery protocol; note that this
requires at least 3 blocks.

8



• The attacker Pn hopes to see a fork containing all the {Commitij} transactions of the other
n− 1 players.

• Since the attacker Pn now knows the opening x1, . . . , xn−1 of the other participants, it can
post a new set of {Commit′

i
n}i∈[n],i 6=n transactions containing a commitment to a value x′n

such that x1 + . . .+ xn−1 + x′n mod n+ 1 = n.
• In case the new set of transactions ends up on a different fork which is finally included in

the common prefix, Pn wins the lottery.

In the above scenario, the attacker can freely bias the result of the lottery. In the next section,
we propose a new protocol (running on Ethereum) that does not suffer from this problem.

3.3 Our New Lottery Protocol: An Ethereum Smart Contract

We now present a smart contract for Ethereum that allows to run a parallel coin-tossing protocol
with rushing players. The main challenge is that the protocol must prevent that an adversary
chooses adaptively in a branch of a fork her contribution to the coin tossing after having seen
the contributions of others in other branches. We tackle this problem by requiring that honest
players compute their contributions evaluating a verifiable unpredictable function (VUF) on
input the public keys of all players. Notice that if the adversary sees some evaluations of the
VUF in a branch, and changes her public key in another branch, then the VUF evaluations
of the honest players on this other branch are unpredictable, and thus the adversary will not
manage to control the final output. Moreover, changing the public key is the only possibility
for the adversary because the VUF has a uniqueness property, and thus, once the public key
is selected, the adversary can play a single message that is accepted as correct by the honest
players.

Informally, the protocol works as follows:

• A contract is published on the blockchain with the unique identifier sid .
• Every player that wants to play in the protocol generates the public and private keys

for the VUF as (pk , sk)←$ Gen(1λ), and shares pk with all the protocol participants
publishing it in on the contract.

• For all i ∈ [n], using the VUF, Pi evaluates yi = Eval(sk i,Hash(pk1||...||pkn||sid)) and its
proof φi, and publishes (yi, φi) on the smart contract.

• The smart contract checks for all i ∈ [n] that yi is obtained using a VUF with input
Hash(pk1||...||pkn||sid), where pk i is the address of the i-th player. Then the smart con-
tract defines the output as Hash(y1||...||yn).

Intuitively, the adversary can not bias the output of the protocol because, as long as the
input of Hash is unpredictable, the final output will be random, since we model Hash as a random
oracle. Moreover, unpredictability of the input to Hash comes from the unpredictability of the
output of a VUF of at least one honest player for any sequence of public keys, and from the
uniqueness of the output of the adversary once her public keys are established.

Background on Ethereum. Ethereum transactions includes two types of accounts: externally-
owned accounts (EOAs), controlled by the private keys of the users, and contract accounts (CAs),
controlled directly by their code [Woo19]. Both types of accounts have a balance in ETH (also
denoted Ξ). The blockchain tracks the state of every account in its blocks. The transactions
posted by an EOA consist of a destination address, a signature s, the amount of wei (subunits
of Ξ), and an optional data field representing the inputs of a contract (which we consider as
messages to a contract).6

6For our purposes, we omit additional fields such as the gasLimit, gasPrice, and nonce values.
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Each time an EOA creates a transaction, it is replicated to all the miners of the blockchain.
If such a transaction contains inputs to some contract, it triggers the specified contract via
a function call: each miner, when receiving a new transaction during the replication process,
checks for the triggered contract on the blockchain, and starts to run it using its current state α,
and the inputs specified in the transaction. Contracts can send messages (i.e., transactions) to
the EOAs or other contracts, which means that when a miner runs the code of a contract with
some prescribed input, the output contains messages (i.e., transactions) directed to some other
entity. We can model both EOAs transactions and messages from/to a contract as different
types of transactions. In particular, a block might contain the following elements.

Message transactions: Represented as a tuple Txmsg = (T , s, pk , ~x, data), where T is the set
of transactions from which Txmsg is redeeming,7 s is the signature of the owner, pk is the
public key of the receiver (either a contract or an EOA), ~x is the vector of inputs to the
contracts (in case the receiver is a contract), and data represents some extra data.

Contract transactions: Represented as a tuple: Txcnt = (T , s, β,Ψ), where β is the initial
balance of the contract, Ψ is the code of the contract, and T , s are the same as in message
transactions. Each time a new transaction triggers some contract, the miners check that
it is valid (e.g., that the inputs are correctly formed, and that the balance is enough). The
program Ψ takes as input the current state of the contract α and a vector ~x, and outputs
a sequence of transactions (Tx1,Tx2, . . .) to possibly different recipients and a new state
α′; when a miner includes a message transaction Txi in a new block, it also updates the
current state of the contract.

Each contract has associated a sequence of states (α1, α2, · · · ), where αi is the i-th state of the
contract.8 Typically, the state includes the global variables of the contract plus all messages sen-
t/received from/by the contract itself. Note that, in case of forks, different miners can see diverg-
ing states for the same contract, i.e., α = (α1, . . . , αi, αi+1, · · · ) and α′ = (α1, . . . , αi, α

′
i+1, · · · ).

When interacting with a smart contract, a player sends message transactions without waiting
the minimum number of blocks that guarantee all the miners have a consistent view of the
contract’s state. This, in particular, means that if we describe the lottery protocol of [ADMM16]
using a single contract, our attack from §3.2 still works, since the protocol’s messages sent by
the committer to the contract would appear in different blocks of the blockchain, which makes
the protocol insecure in the presence of rushing players.

Protocol description. We are now ready to describe our protocol for parallel coin tossing.
Roughly, our construction follows the steps described below.

Setup phase: At the beginning, one of the players creates the smart contract described in
Fig. 3 on page 27 specifying a minimum deposit amount q̄ and timeouts t1, t2 (denoted as
hard-wired constants minDep, time1, time2 in the contract). Note that when the contract
is posted on the blockchain, the function beginCoinTossing is triggered yielding a unique
session identifier sid .

Deposit phase: An arbitrary number of players can decide to participate to the coin tossing
protocol by sending (via the function deposit) a safety deposit. The smart contract
automatically keeps track of the address pk of each player, its deposit, and the order in

7The miners, in order to validate the transaction, must check that the signer is also the owner of the redeemed
transactions, and that those have a high enough balance.

8In Ethereum, the state of all active contracts is stored efficiently using Patricia trees [Woo19]. For our
purpose, it suffices to assume that a miner can determine the current state of an active contract by looking at
past blocks included in the blockchain.
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which the deposits are received. After time t1, the deposit phase ends and the redeem
phase starts.9

Redeem phase: During this phase, each player can claim its deposit back by sending (via the
function claim) to the smart contract a value y (denoted rand in the contract) along with a
proof φ (denoted proof in the contract) showing that y was obtained by evaluating a VUF
upon Hash(pk1|| . . . ||pkn||sid), where pk i is the address of the i-th player who deposited,
and Hash is a cryptographic hash function.
After time t2, the checkClaimed function checks whether some player did not claim its
deposit back or provided an invalid proof, in which case its deposit is used in order to
compensate all the honest players (i.e., those that followed the protocol correctly) via
the function penalize. Note that in case all players behave honestly, each of them can
compute Hash(y1|| · · · ||yn) which is defined to be the output of the coin tossing protocol.

A more formal description of the protocol follows below.

Parallel Coin Tossing protocol π

Running with hard-wired parameters q̄, t1, t2. Let (Gen,Eval,Prove,Ver) be a VUF with
range R ≡ {0, 1}`, and Hash : {0, 1}∗ → {0, 1}λ be a hash function. After the smart
contract of Fig. 3 has been created by one of the players, the protocol continues as follows:

• Any willing player deposits d ≥ q̄ coins and specifies a public key pk by triggering the
deposit function, where (pk , sk)←$ Gen(1λ).

• After time t1, let n be the number of participants and denote by Pi the player that
made the i-th deposit (specifying public key pk i). Each player Pi, in an arbitrary
order, executes the steps below:

– Compute yi = Eval(sk i, x), φi = Prove(sk i, x, yi), where x = Hash(pk1|| . . . ||
pkn||sid) and the values (pk j)j 6=i and sid are retrieved from the state of the
contract.

– If the flag redeemPhase contained in the state of the contract is set to true, trigger
the claim function with inputs (yi, φi).

• After time t2, upon receiving a compensation from the contract (meaning that some
party aborted) stop the execution. Else, retrieve y1, . . . , yn from the contract and
output Hash(y1|| · · · ||yn).

Security. We establish the following result.10

Theorem 1. Assuming that (Gen,Eval,Prove,Ver) is a VUF satisfying perfect uniqueness and
computational unpredictability, and that Hash is a non-programmable random oracle, the fol-
lowing holds for the protocol π defined above:

• When no abort happens, the honest players output a string computationally close to uni-
form, even if the players are rushing and only one player is honest.

9Technically, in Ethereum, an automatic service would trigger the checkDeposit function after time time1;
similarly, the function checkClaimed would automatically be invoked after time time2.

10We state the theorem informally. A more formal statement would require modeling MPC with a forkable
blockchain supporting smart contracts, and in the presence of rushing players. This is beyond the scope of this
work.
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• The protocol satisfies fairness with penalties, meaning that honest players do not lose
money and receive a compensation in case of aborts.

Proof. The second part of the statement follows directly by observing that honest players can
always claim their deposit back by correctly evaluating the VUF. Moreover, whenever an abort
happens during the redeem phase, either because a player does not send its VUF output or
in case it sends an incorrect one, the function penalize automatically compensates all other
players with at least d/n coins.

It remains to prove security in the presence of a single honest player, and when the parties
are rushing. Consider the following sequence of games.

Game G0(λ): This is identical to an execution of protocol π in the presence of rushing players.
Let us denote with m the total number of protocol’s instances, where we uniquely identify

an instance by the tuple (pk
(r)
1 , . . . , pk

(r)
n , sid) for some r ∈ [m]. Note that, since the

players are rushing, there are indeed many instances, and each instance can possibly be
run multiple times. Given an instance r ∈ [m], it is important to observe that the index i
of the honest player and the number of parties n actually depend on r, i.e., i := i(r) and
n := n(r); however, to simplify notation, we ignore this dependency. Our goal is to show
that the output of honest players in each instance is computationally close to uniform.

Game G1(λ): Identical to the previous game, except that now the experiment artificially stops
if ∃r∗ ∈ [m] such that during the redeem phase of two protocol runs with the same

instance (pk
(r∗)
1 , . . . , pk

(r∗)
n , sid), a corrupted player Pj 6=i outputs values (y

(r∗)
0,j , φ

(r∗)
0,j ) and

(y
(r∗)
1,j , φ

(r∗)
1,j ) for which y

(r∗)
0,j 6= y

(r∗)
1,j and Ver(pk

(r∗)
j , x(r

∗), y
(r∗)
0,j , φ

(r∗)
0,j ) = Ver(pk

(r∗)
j , x(r

∗),

y
(r∗)
1,j , φ

(r∗)
1,j ) = 1, where x(r

∗) = pk
(r∗)
1 || · · · ||pk

(r∗)
n ||sid .

We claim that {G0(λ)}λ∈N ≡ {G1(λ)}λ∈N. This is because the only difference between the two
games is when an artificial abort happens. However, any attacker A triggering such an abort
can be turned into a non-uniform A′ breaking perfect uniqueness. The reduction A′ simply runs

A until the artificial abort is provoked, and then outputs (pk
(r∗)
j , y

(r∗)
0,j , φ

(r∗)
0,j , y

(r∗)
1,j , φ

(r∗)
1,j ). Since

the reduction is straightforward, we omit further details.
Consider the following event BAD, defined over the probability space of G1(λ): The event

becomes true if ∃r∗ ∈ [m] such that the attacker A is able to predict the input y
(r∗)
1 || · · · ||y(r

∗)
n

to the random oracle Hash before11 the honest party Pi reveals the VUF output y
(r∗)
i during

the redeem phase of instance (pk
(r∗)
1 , . . . , pk

(r∗)
n , sid). In order to finish the proof, it suffices to

show that for all PPT A playing in G1(λ), it holds that P [BAD] ∈ negl(λ); in fact, assuming
BAD does not happen, the final output of the protocol is determined by running the random
oracle Hash on a fresh input, which yields a truly random output.

By contradiction, let us assume that there exists a PPT adversary A provoking event BAD
with non-negligible probability. We construct a non-uniform PPT attacker A′ breaking compu-
tational unpredictability of the VUF.

• At the beginning, A′ receives a target public key pk from the challenger and samples12

r∗←$ [m].
• Hence, A′ runs A and simulates the deposit phase as follows:

– For each instance r < r∗ associated to a fork during an execution of the protocol,

A′ samples (pk
(r)
i , sk

(r)
i )←$ Gen(1λ) and uses pk

(r)
i as the public key of the honest

player during the deposit phase.

11Of course, after the value y
(r∗)
i is revealed, the attacker can compute the input to the random oracle.

12More precisely, A′ samples r∗←$ [m′] where m′ < m is the total number of instances with a distinct public
key for the honest player.
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– For the instance r = r∗, A′ uses the target pk as the public key of the honest player.

– For each instance r > r∗, A′ samples (pk
(r)
i , sk

(r)
i )←$ Gen(1λ) and uses pk

(r)
i as the

public key of the honest player during the deposit phase, unless the instance r starts

with prefix (pk
(r∗)
1 , . . . , pk

(r∗)
i , ∗), in which case the target pk is used.

• During the redeem phase, A′ proceeds as follows:

– For each instance (pk
(r)
1 , . . . , pk

(r)
n , sid) that does not include the target public key

pk , run the protocol honestly. (This is possible since A′ knows sk
(r)
i .)

– For each instance (pk
(r)
1 , . . . , pk

(r)
n , sid) such that pk

(r)
i = pk , query the target Eval

and Prove oracles upon input x(r) = pk
(r)
1 || · · · ||pk

(r)
n ||sid , and use the output from

the oracles to simulate the values (y
(r)
i , φ

(r)
i ) used by the honest player during the

redeem phase.
– The first time that A outputs a guess y∗ for the input to the random oracle, check

that this happens w.r.t. to the instance r∗. If not, abort the simulation. Else,

parse y∗ = y
(r∗)
1 || · · · ||y(r

∗)
n and forward (x(r

∗), y
(r∗)
i ) to the challenger, where x(r

∗) =

pk
(r∗)
1 || · · · ||pk

(r∗)
n ||sid .

By inspection, assuming that A′ does not abort, the view of A is perfectly simulated. It follows
that with non-negligible probability A will guess y∗ correctly, which in particular means that

y
(r∗)
i = Eval(sk , x(r

∗)) and thus, since the value x(r
∗) is fresh, A′ breaks computational unpre-

dictability of the VUF. This, together with the fact that the probability that A′ does not abort
is an inverse polynomial (as m is bounded by a polynomial in the security parameter), concludes
the proof of the theorem.

4 A Generic Compiler Exploiting Finality

In this section, we present a generic solution to the problem of rushing in the presence of forks
for blockchain-aided MPC protocols. Our solution assumes that at some point a transaction
can be considered permanently part of the blockchain. Of course, there is no issue related
to forks if one always delays protocol messages waiting until the previous message becomes
permanent. What we do here is to make a very mild use of this assumption in order to amortize
the delay introduced by the wait for a confirmation. More specifically, we will require that
players wait enough time to make sure that only the first message of the protocol is confirmed
on the blockchain, but in all subsequent rounds players are allowed to rush without worrying
about forks.

4.1 ABC Resettability

Consider n parties (indexed by [n]) running an interactive protocol π for computing some joint
function f : ({0, 1}∗)n → ({0, 1}∗)n of their private inputs. We denote by xi and ωi the input
and randomness of the i-th player Pi. As usual in the setting of MPC, we define security by
comparing the real world in which protocol π is executed, with an ideal world where a trusted
party collects the inputs from all the players, computes f , and distributes the outputs to the
parties.

The real model. We assume a synchronous setting where protocol π proceeds in rounds. The
protocol’s execution is facilitated by the existence of a blockchain on which the players write
protocol’s messages. We will not need to specify the properties of the underlying blockchain
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formally, the only things that we need to assume are that: (i) the blockchain is forkable, in
the sense that at a given round a player sees (or rather, obtains from the miners according to
some rule) a version of the blockchain which might differ from the “main chain” in the last
blocks; (ii) if a player waits long enough, it can be sure that a given message is confirmed on
the “main chain”, in the sense that such a message will be included in all future forks. We call
a player rushing if it automatically writes protocol’s messages based on its current view of the
blockchain; note that by assumption (i) this has the effect that a given round could be repeated
multiple times with slightly different versions of the blockchain. In contrast, a non-rushing
player always waits that each message is confirmed on the “main chain” before sending the next
message. A player is c-rushing if it is non-rushing up to round r ≤ c, and it becomes rushing
afterwards.

Consider now the execution of π with c-rushing players, and in the presence of an adversary
A coordinated by a non-uniform distinguisher D. At the outset, D chooses the inputs (1λ, xi) for
each player Pi, and gives I, {xi}i∈I and z to A, where I ⊆ [n] represents the set of corrupted
players and z is some auxiliary input.13 The parties then start running the protocol, with
the honest players Pi behaving as prescribed in π (using input xi), and with malicious parties
behaving arbitrarily (directed by A). As usual, the attacker can delay sending the round-r
messages of the corrupted parties until after the honest players send their round-r messages.

We abstract away the presence of the blockchain with c-rushing players, by simply allowing
the players to access an authenticated broadcast channel14 until round c, after which the attacker
A is allowed to reset15 an honest party to any round r > c; importantly, after a reset, the player
continues to execute the protocol starting from round r but using fresh randomness. We call
such an adversary all-but-c (ABC) resetting. At some point, A gives to D an arbitrary function
of its view, and D additionally receives the outputs of the honest parties and must output a bit.
We denote by REALcπ,A,D(λ) the random variable corresponding to D’s guess.

The ideal model. In the ideal world, a trusted third party evaluates the function f on behalf
of the players. As in the real setting, D chooses the inputs (1λ, xi) for each player Pi, and gives
I, {xi}i∈I and z to the ideal adversary S. Hence, honest parties send their input x′i = xi to
the trusted party, whereas the parties controlled by S might send an arbitrary input x′i. The
trusted party computes (y1, . . . , yn) = f(x′1, . . . , x

′
n), and sends yi to Pi. Finally, S gives to D

an arbitrary function of its view, and D additionally receives the outputs of the honest parties
and must output a bit. We denote by IDEALf,S,D(λ) the random variable corresponding to
D’s guess.

The above specification of the ideal model automatically implies fairness (i.e., corrupted
parties get the output if and only if honest parties do as well). Unfortunately, as shown by
Cleve [Cle86], such a strong guarantee is impossible to achieve for some functionalities without
assuming honest majority. For this reason, we also consider a weaker flavor of the ideal model
yielding a middle-ground notion known as security with aborts, which is possible to achieve
even in the presence of honest minority. The only difference with the above specification is that
the trusted party at first forwards only the outputs {yi}i∈I to the ideal adversary S. Hence, S
might send either a special message continue or abort to the trusted party; in the former case
all the honest parties are given their output yi, whereas in the latter case they receive an abort

13For simplicity, we only consider static corruptions (i.e., the distinguisher decides who is corrupt at the
beginning of the protocol).

14By writing protocol’s messages on the blockchain, indeed, non-rushing players realize a special broadcast
channel that allows sleepy players (i.e. parties that are currently offline) to participating consistently to the
protocol after being back online.

15This makes our model only stronger, as in practice the attacker might not be able to reset a player to a state
too back in the past.
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symbol ⊥. We denote by IDEALf⊥,S,D(λ) the modified random variable corresponding to D’s
final guess.

The definition. We are now ready to define ABC resettable security.

Definition 7 (ABC resettability). We say that π (t, c)-securely computes f in the presence
of malicious adversaries if for any all-but-c resetting PPT adversary A there exists a PPT
simulator S such that for every non-uniform PPT distinguisher D corrupting at most t parties
the following holds: {

REALcπ,A,D(λ)
}
λ∈N ≈c {IDEALf,S,D(λ)}λ∈N .

When replacing IDEALf,S,D(λ) with IDEALf⊥,S,D(λ) we say that π (t, c)-securely computes
f in the presence of malicious adversaries with aborts.

Remark 1 (On the parameter c). When c =∞ (i.e., the attacker is not allowed to reset), we
recover the standard notion of simulation-based security for multiparty protocols. On the other
hand, when c = 0 (i.e., the attacker can always reset the protocol from the start)—as long as the
distinguisher is allowed to choose different inputs after each reset—the real model specification
becomes similar to that of resettably secure computation [GS09, GM11], the only difference being
that in ABC resettability honest players use fresh randomness after each reset.

In case of full resets, we must also give the simulator the possibility to reset the execution
in the ideal world, which makes this notion meaningful only for certain functionalities. Notice
that when c = 0 it is unavoidable that each branch might correspond to a different execution
with different inputs of the same protocol. If the adversary has also some control over which
branch becomes the one permanently stored in the blockchain, then of course she can select the
execution of the protocol that has a better output (according to her taste).

4.2 Compiler Description

Let π be any blockchain-aided MPC protocol for securely computing some function f : ({0, 1}∗)n
→ ({0, 1}∗)n. It will be useful to describe π in terms of the next-message functions ψπ =
(ψπ1 , . . . , ψ

π
n):

∀i ∈ [n], r ≥ 0 : ψπi (xi, ωi, τ
(r)
i ) = m

(r+1)
i ,

where xi (resp. ωi) is the input (resp. random tape) of Pi, m
(r+1)
i is the message that Pi

writes on the blockchain at round r + 1, and τ
(r)
i is the collection of all protocol’s messages

received by Pi up to round r (with τ
(0)
i = ε being the empty string). Sometimes, we will

think of ψπ as a single function further taking as input the index i ∈ [n] of the player, i.e.,

ψπ(i, xi, ωi, τ
(r)
i ) = ψπi (xi, ωi, τ

(r)
i ).

The basic idea of our compiler is to add an initial round in which all the players commit to
their input xi and random tape ωi. Hence, each move of the original protocol π is augmented
with a non-interactive zero-knowledge proof showing that the last message has been computed
correctly using the same input and random tape included in the commitment. We provide a
formal specification in Fig. 1.

4.3 Security Analysis

The theorem below states that the final protocol is secure in the presence of 1-rushing players,
i.e., as long as the parties wait for the end of the first round before starting to forward protocol’s
messages on different forks of the blockchain.
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Compiled protocol π∗

Let Commit be a non-interactive commitment (cf. §2.2), and π be an n-party protocol with associated next-
message functions ψπ = (ψπ1 , . . . , ψ

π
n). Further, let (Setup,Prove,Ver) be a non-interactive proof system (cf.

§2.2) for the NP-relation Rπ associated to the language:

Lπ =
{

((γi,m
(r+1)
i , τ

(r)
i ), (xi, ωi, δi)) : γi = Commit(xi||ωi; δi) ∧m(r+1)

i = ψπ(i, xi, ωi, τ
(r)
i )

}
. (1)

The compiled protocol π∗ proceed as follows.

Initialization: A trusted party samples σ←$ Setup(1λ) and distributes σ to each player.
Round r = 0: Party Pi samples the random tape ωi required for a full run of π and broadcasts γi =

Commit(xi||ωi; δi), where δi←$ {0, 1}∗. Whenever Pi receives from Pj 6=i a commitment γj = γi, it
outputs ⊥ and stops the execution.

Round r ≥ 1: During round r, each party Pi broadcasts a pair (m
(r)
i , φ

(r)
i ), where m

(r)
i is its next message

m
(r)
i = ψπi (xi, ωi, τ

(r−1)
i ), with τ

(r−1)
i being the transcript containing all π’s messages received by Pi

up to round r − 1, and φ
(r)
i ←$ Prove(σ, (γi,m

(r)
i , τ

(r−1)
i ), (xi, ωi, δi)). Hence, each Pj 6=i checks that

Ver(σ, (γi,m
(r)
i , τ

(r−1)
i ), φ

(r)
i ) = 1; if not, it outputs ⊥ and stops, and otherwise it proceeds to the

next round.

Figure 1: Transformed protocol for blockchain-aided MPC in the presence of 1-rushing players.

Theorem 2. Assume that Commit is perfectly binding and computationally hiding, that π
(t,∞)-securely computes f in the presence of malicious adversaries (with aborts), and that
(Setup,Prove,Ver) is a simulation-extractable NIZK proof system for the relation Rπ associated
to the NP-language of Eq. (1). Then, π∗ (t, 1)-securely computes f in the presence of malicious
adversaries (with aborts).

Remark 2 (Concrete instantiations). We can instantiate our compiler using the simulation-
extractable NIZK proof system for NP from [SCO+01], or simulation-extractable SNARKs [GM17]
(under non-falsifiable assumptions).

Proof of Thm. 2. For simplicity, we give the proof for the case of full security (without aborts).
The proof for the case of security with aborts follows similarly. Let S be the PPT simulator
guaranteed by (t,∞)-security of π, and (ZKSim0,ZKSim1), (KExt0,KExt1) be the NIZK simu-
lator and the knowledge extractor for (Setup,Prove,Ver). Consider the following derived PPT
simulator S∗:

• At the beginning, wait to receive the set I and the inputs (xi)i∈I for the corrupted players
in the ideal execution.

• Sample (σ, ζ, ξ)←$ KExt0(1
λ), and forward σ to each player controlled by A∗.

• For each j ∈ [n] such that j 6∈ I, compute γj ←$ Commit(0`)—where ` is the bit-length
of the plaintext space for the commitment scheme—and forward (γj)j 6∈I to A∗ on behalf
of each honest player. Wait to receive (γi)i∈I from A∗; if ∃i, j ∈ [n] such that γi = γj ,
simulate A∗ aborting and terminate.

• Emulate the rest of the protocol by running S on a uniformly random tape. In particular:

– Whenever S outputs a simulated message m
(r)
j on behalf of an honest player, forward

(m
(r)
j , φ

(r)
j ) to A∗, where φ

(r)
j ←$ ZKSim1(ζ, (γj ,m

(r)
j , τ

(r−1)
j )) and τ

(r−1)
j is the simu-

lated transcript consisting of all messages received by Pj 6∈I during the simulation up
to round r − 1.
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– Upon receiving (m
(r)
i , φ

(r)
i ) from A∗ on behalf of a corrupted party Pi, run Ver(σ, (γi,

m
(r)
i , τ

(r−1),φ(r)i
i ), φ

(r)
i ) and if the output is 0 simulate A∗ aborting and terminate.

– Whenever A∗ wants to reset the protocol execution at round r ≥ 2, rewind the
simulation to round r and continue from there using the same random tape for the
simulator S.

– Finally, whenever S outputs (x′i)i∈I , forward these values to the trusted party.

Towards proving the theorem, we consider a sequence of hybrid experiments and argue that each
pair of hybrids is computationally close thanks to the properties of the underlying cryptographic
primitives.

Hybrid H0(λ): This is identical to REAL1
π∗,A∗,D∗(λ).

Hybrid H1(λ): Identical to the previous experiment, except that we now generate the CRS

by running (σ, ζ)←$ ZKSim0(1
λ); additionally, for each round r > 0 we now replace φ

(r)
i

with a simulated16 proof φ
(r)
i ←$ ZKSim1(ζ, (γi,m

(r)
i , τ

(r−1)
i )).

Hybrid H2(λ): Identical to the previous experiment, except that we replace the commitments
(γj)j 6∈I with (Commit(0`))j 6∈I .

Hybrid H3(λ): Identical to the previous experiment, except that we now generate the CRS by

running (σ, ζ, ξ)←$ KExt0(1
λ); additionally, every time the attacker sends a pair (m

(r)
i , φ

(r)
i )

such that the proof φ
(r)
i is accepting, we run (xi, ωi, δi)←$ KExt1(ξ, (γi,m

(r)
i , τ

(r−1)
i ), φ

(r)
i )

and artificially abort in case Rπ((γi,m
(r)
i , τ

(r−1)
i ), (xi, ωi, δi)) = 0.

Hybrid H4(λ): This is identical to IDEALf,S∗,D∗(λ).

Lemma 1. {H0(λ)}λ∈N ≈c {H1(λ)}λ∈N.

Proof. The proof is by a standard reduction to adaptive multi-theorem zero-knowledge of
(Setup,Prove,Ver). By contradiction, assume that there exists a PPT adversary A∗ and a
non-uniform PPT distinguisher D∗ that can distinguish the two hybrids with non-negligible
probability. Consider the following non-uniform PPT attacker A, playing the game of Def. 5.

• Receive the CRS σ from the challenger.
• Run D∗(σ) to obtain I, (xi)i∈[n], and z ∈ {0, 1}∗, and forward I, (xi)i∈I , and z to A∗.
• Execute the protocol π∗ of Fig. 1 with A∗, playing the role of the honest parties Pj(σ, xj)

for each j 6∈ I, with the only difference that the proofs φ
(r)
j are obtained by forwarding

(γj ,m
(r)
j , τ

(r−1)
j ), (xj , ωj , δj) to the target oracle (i.e., either Prove′(σ, ·, ·) or ZKSim′1(ζ, ·, ·)).

• Output whatever D∗ outputs.

By inspection, the simulation performed by A is perfect in the sense that when the challenger
generates the CRS using Setup and computes the proofs using Prove, the view of (D∗,A∗) is
identical to that in H0(λ). Similarly, when the challenger generates the CRS using ZKSim0 and
computes the proofs using ZKSim1, the view of (D∗,A∗) is identical to that in H1(λ). Hence, A
breaks adaptive multi-theorem zero knowledge with non-negligible probability, concluding the
proof.

Lemma 2. {H1(λ)}λ∈N ≈c {H2(λ)}λ∈N.

Proof. The proof is by a standard reduction to the computational hiding property of Commit.
By contradiction, assume that there exists a PPT adversary A∗ and a non-uniform PPT distin-
guisher D∗ that can distinguish the two hybrids with non-negligible probability. Consider the
following non-uniform PPT attacker A, playing the game of Def. 4.

16Note that the simulator is proving a false statement.
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• Generate (σ, ζ)←$ ZKSim0(1
λ), run D∗(σ) to obtain I, (xi)i∈[n], and z ∈ {0, 1}∗, and

forward I, (xi)i∈I , and z to A∗.
• Execute the protocol π∗ with A∗ exactly as described in H1(λ), playing the role of the

honest parties Pj(σ, xj) for each j 6∈ I, with the only difference that the commitments γj
are obtained by forwarding (xj ||ωj , 0`) to the LR(·, ·) oracle.

• Output whatever D∗ outputs.

By inspection, the simulation performed by A is perfect in the sense that when the challenger
generates the commitments using xj ||ωj , the view of (D∗,A∗) is identical to that in H1(λ).
Similarly, when the challenger generates the commitments using 0`, the view of (D∗,A∗) is
identical to that in H2(λ). Hence, A breaks the computational hiding property with non-
negligible probability, concluding the proof.

Lemma 3. {H2(λ)}λ∈N ≈c {H3(λ)}λ∈N.

Proof. The proof is down to simulation extractability of (Setup,Prove,Ver). Denote by BAD
the event that an artificial abort happens in H3(λ), namely there exists at least one round r

in which the attacker forwards a valid proof φ
(r)
i for which the extractor fails to extract a valid

witness w.r.t. the relation of Eq. (1). Since the two experiments are identical conditioned on
BAD not happening, all we need to prove is that P [BAD] ∈ negl(λ). By contradiction, assume
that there exists a PPT adversary A∗ and a non-uniform PPT distinguisher D∗ provoking event
BAD. Consider the following attacker A, playing the game of Def. 6.

• Receive the CRS σ from the challenger.
• Run D∗(σ) to obtain I, (xi)i∈[n], and z ∈ {0, 1}∗, and forward I, (xi)i∈I , and z to A∗.
• Execute the protocol π∗ with A∗ exactly as described in H2(λ), playing the role of the

honest parties Pj(σ, xj) for each j 6∈ I, with the only difference that the proofs φ
(r)
j are

obtained by forwarding (γj ,m
(r)
j , τ

(r−1)
j ) to the ZKSim1(ζ, ·) oracle.

• At the end of the protocol execution, pick random i∗←$ I and r∗←$ [rmax], where rmax

denotes the total number of rounds. Hence, return ((γi∗ ,m
(r∗)
i∗ , τ

(r∗−1)
i∗ ), φ

(r∗)
i∗ ) to the chal-

lenger.

By inspection, A perfectly emulates the view in an execution of H2(λ). In fact, the challenger
samples (σ, ζ, ξ)←$ KExt0(1

λ), where the distribution of (σ, ζ) is identical to that produced
using ZKSim0(1

λ). Moreover, honest proofs are simulated using ZKSim1(ζ, ·) exactly as done
in H2(λ). It follows, that there exists a polynomial p(λ) ∈ poly(λ) such that A∗ as run by A
provokes event BAD with probability at least 1/p(λ).

Finally, since the statement/proof pair for which event BAD is provoked does not belong
to the list Q of simulated proofs—as the commitments output by A must be different from the
ones computed by the honest players—A succeeds in breaking simulation extractability with
probability at least 1/(t · rmax) · 1/p(λ) which is still non-negligible. This finishes the proof.

Lemma 4. {H3(λ)}λ∈N ≈c {H4(λ)}λ∈N.

Proof. The proof is down to the security of the underlying protocol π. By contradiction, as-
sume that there exists a PPT adversary A∗ and a non-uniform PPT distinguisher D∗ that can
distinguish the two experiments with non-negligible probability. We build a PPT adversary
A and a non-uniform PPT distinguisher D that can distinguish between REALπ,A,D(λ) and
IDEALf,S,D(λ).

• At the beginning, D samples (σ, ζ, ξ)←$ KExt0(1
λ), runs D∗(σ) obtaining I, (xi)i∈[n], and

z ∈ {0, 1}∗, and outputs I, (xi)i∈I , and z.
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• Attacker A runs A∗(I, (xi)i∈I , z) and interacts with it as follows:

– At round r = 0, forward (Commit(0`))j 6∈I to A∗ and wait to receive (γi)i∈I from A∗.
In case ∃i, j ∈ [n] such that γi = γj , simulate A∗ aborting and terminate.

– At round r ≥ 1, upon receiving a message m
(r)
j from an honest player, forward

(m
(r)
j , φ

(r)
j ) to A∗, where φ

(r)
j ←$ ZKSim1(ζ, (γj ,m

(r)
j , τ

(r−1)
j )). Whenever A∗ forwards

a pair (m
(r)
i , φ

(r)
i ), check that Ver(σ, (γi,m

(r)
i , τ

(r−1)
i ), φ

(r)
i ) = 1 and if the verification

succeeds run (xi, ωi, δi)←$ KExt1(ξ, (γi,m
(r)
i , τ

(r−1)
i ), φ

(r)
i ) and check that Rπ((γi,

m
(r)
i , τ

(r−1)
i ), (xi, ωi, δi)) = 1. In case any of the above two checks fails, simulate

A∗ aborting and terminate, and otherwise output m
(r)
i .

– Whenever A∗ resets the protocol at round r ≥ 1, repeat the simulation as described

above starting from round r, i.e., running A∗ on the same messages m
(r)
j , but using

fresh randomness for computing the proofs φ
(r)
j .

– At the end of the last round, pass to D the same output that A∗ would return given
the above simulated view.

• Finally, D∗ outputs the same guess as that of D.

By inspection, the view of D∗ when interacting with A∗ as emulated by A during a run of
REALπ,A,D(λ) is identical to that in H3(λ). This is because, by the perfect binding property

of the non-interactive commitment (cf. Def. 3), whenever A∗ produces a proof φ
(r)
i that is

accepting for (γi,m
(r)
i , τ

(r−1)
i ), the extracted input xi and random tape ωi must be identical to

those contained in the initial commitments γi that A∗ outputs at round r = 0, which also fixes

the message m
(r)
i to be the next message ψπi (xi, ωi, τ

(r−1)
i ) that Pi would output in an honest

execution of protocol π, and the latter continues to hold after each reset takes place.
Analogously, the view of D∗ when interacting with A∗ as emulated by A during a run of

IDEALf,S,D(λ) is identical to that of H4(λ) ≡ IDEALf,S∗,D∗(λ). This concludes the proof of
the lemma.

The theorem now follows directly by combining the above lemmas.

Remark 3 (On simulation extractability). While our definition of simulation extractability (cf.
Def. 6) requires straight-line extraction, the proof of Thm. 2 would go through even assuming
that the extractor has black-box access to the adversary. This is because, when c = 1, the input
of the adversary can not change as a consequence of a rewind, and thus a single extraction
procedure is sufficient.17 In such a case, we can instantiate the simulation-extractable NIZK in
the random oracle model via the Fiat-Shamir transform [FS86, FKMV12].

5 Efficiency Considerations

In this section, we analyze the efficiency of our protocols for what concerns both the time to
completion and the communication complexity. In particular, we provide a prototype imple-
mentation of our coin tossing protocol from §3.3 using Ethereum smart contracts, and compare
it to the classical construction by Andrychowicz et al. [ADMM16]. Additionally, we describe
a concrete instantiation of our generic compiler from §4.2 in a specific setting, and analyze its
performances.

17The situation is much more complicated when considering fully-fledged resettability, or even concurrent
security, see, e.g., known negative results about concurrent zero knowledge [KPR98].
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Figure 2: Performances of our protocols in terms of time to completion. Protocol πwealth is a
toy smart contract for establishing the wealthier player, whereas π∗wealth is the compiled version
of the same protocol after applying our transform from §4.2.

5.1 Setting the Stage

Coin tossing. To allow for a fair comparison between our coin tossing protocol and the
protocol from [ADMM16], we implemented both of them in Solidity using Ethereum smart
contracts. See Fig. 3 on page 27 and Fig. 4 on page 28 in the appendix for the corresponding
code. The VUF is instantiated using RSA-FDH [BR96].

Very roughly, the implementation of [ADMM16] works as follows. In the committing phase,
the players trigger the commit function upon input the commitment to some value, and a deposit
of minDep = n(n−1). Hence, each player can open the commitment within the next 36 blocks.18

At the end of this timeout, if a player did not send its opening, the other players can trigger
the function payDeposit to receive the compensation back. After the commitment phase, the
players trigger the function putMoney upon input a value-one coin to participate in the lottery;
the pot can be claimed by the winner after all the participants opened their commitment, by
triggering the claimWinner function of the smart contract.

Generic compiler. In order to analyze the efficiency of the compiler we describe a toy ex-
ample along with its instantiation for the following simple n-party MPC protocol πwealth to
establish who is the wealthier:

1. Sequentially,19 each player Pi publishes a commitment γi to its wealth xi using randomness
ωi.

2. After all commitments are published, the players open their commitments in reverse order
(i.e., Pi opens before Pj iff i > j).

3. Each player checks that all openings are correct, and if this is the case then outputs
maxi xi.

The reason behind the ordering of the messages is to tackle malleability attacks. Indeed, if
a player Pi commits after Pj , then the commitment of Pi could be related to the commitment
of Pj . However, the fact that Pi has to open first, guarantees the independence of the two
committed values, as otherwise Pi could break the hiding property of the commitment.

18Since the players cannot rush, in each phase of the protocol they need to wait 12 blocks before running the
next phase, for a total of 36 blocks.

19Wlog. we can assume the order is identified by the index of each player.
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By applying our generic compiler to the above construction, we obtain a protocol π∗wealth
that we describe in full in §A of the appendix. In particular, we instantiate the commitment
with the scheme by Micciancio and Petrank [MP03] (based on the DDH assumption), and
the simulation-extractable NIZK proof by applying the Fiat-Shamir transform (cf. Rmk. 3) to
concrete Σ-protocols for the language of Eq. (1).

5.2 Time to Completion

Coin tossing. Fig. 2a shows that the average time to completion of our smart contract for
coin tossing, as a function of the number of players, is less than 2 minutes. In contrast, the smart
contract corresponding to the protocol in [ADMM16] takes about 15 minutes, on average, before
completion. This discrepancy is due to the fact that in our protocol players can be rushing,
while this is not possible in the protocol from [ADMM16] where the players need to wait 12
blocks before transitioning to the next stage of the protocol.

We run the experiment using the Ropsten testnet [tes]. Each point in the plot is averaged
over 20 runs in order to smooth out the delays due to the network. In both implementations, we
assume that the players start immediately running the protocol as soon as the corresponding
smart contract is made available on the blockchain.

Generic compiler. Fig. 2b shows the minimum number of expected blocks that the players
need to wait before protocols πwealth and π∗wealth terminate, as a function of the number n of
players and for different values of the number k of blocks that are needed in order to be sure that
a given transaction is confirmed on the ledger. Given that the players must be non-rushing, the
original protocol πwealth requires at least 2n ·k blocks before its completion. On the other hand,
the compiled protocol π∗wealth takes at least 1 + k + 2n blocks (i.e., one block for publishing in
parallel all the initial commitments, k blocks for waiting that these values are confirmed on the
chain, and finally 2n blocks for running the original protocol in the presence of rushing players).

5.3 Communication Complexity

Coin tossing. In the protocol from [ADMM16], we can instantiate the commitment heuris-
tically via SHA-3-256 (i.e. the commit function outputs 256 bits and takes as input an arbitrary
number of bits). In contrast, in our protocol the output size of the VUF is 4096 bit when using
RSA-FDH at 80 bits of security. This can be improved by replacing RSA-FDH with the unique
signature of Boneh, Lynn, and Shacham [BLS01], which yields signatures of size 160 bits at 80
bits of security.

Generic compiler. Regarding the communication complexity, we note that the compiler
adds a constant overhead of 18 = O(1) group elements to the original protocol (i.e., 4 group
elements for publishing the initial commitments, and 14 group elements for the NIZK proofs).

6 Conclusions

We have discussed attacks to smart contracts and on-chain MPC protocols on forking blockchains
when honest players are rushing (i.e., they post the next message/transaction without waiting
that the previous one is confirmed). In particular, our work uncovers that there are issues way
different than the double-spending attack, and such issues might affect both security and pri-
vacy of the smart contract/MPC protocol in question. Indeed, on the negative side, we showed
that a well-known MPC protocol based on smart contracts becomes insecure in presence of forks
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and rushing players because the adversary can play adaptively on a branch of a fork depending
on the information observed on the other branch. Instead, on the positive side, we have shown
smart contracts within on-chain MPC protocols (for both concrete and generic tasks) that re-
main secure even when there are forks and players rush. This, somehow, allows us to get the
best of both worlds, i.e., having smart contracts that are both safe and fast.

Interesting avenues for future research include designing new ad-hoc protocols that remain
secure in the presence of rushing players for other concrete settings of interest (as, e.g., decentral-
ized poker [KMB15, BKM17]), and investigating a composable treatment of forking blockchains
and their applications to fair MPC with penalties [KZZ16, BMTZ17]. Indeed, all those very
useful prior works rely on players waiting for confirmations, and as such bring a significant price
to pay in terms of efficiency.
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A Instantiating the Compiler

We describe a concrete instantiation for the protocol generated by our generic compiler on input
the protocol πwealth for establishing the wealthiest party (cf. §5.1).

A.1 Description

Let (G, ·) be a cyclic group with prime order q, and let g, h be two random generators of G. In
what follows, we assume that (G, g, h, q) are publicly known.20 For simplicity we will omit the
modulus from the computations described below.

In order to commit to x ∈ Zq, the sender picks randomness ω ∈ Zq and outputs γ =
(gω, hx+ω). The receiver, given γ = (γ0, γ1), and upon receiving (x, ω), checks that γ0 = gω,
γ1 = hx+ω. This scheme satisfies perfect binding and computational hiding (under the DDH
assumption) [MP03].

Let us now describe the output of the generic compiler from Fig. 1 on input πwealth. At the
beginning, each party Pi commits to its input xi ∈ Zq and random tape ωi ∈ Zq by publishing

20In the scheme from [MP03] all the above parameters are generated as part of the commitment; however, we
can include these values in a common reference string if available. We can also get these parameters from a call
to a random oracle, since they can all be extracted from a random string.
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γ′i, γ
′′
i , where γ′i = (γ′0,i, γ

′
1,i) = (gω

′
i , hxi+ω

′
i) and γ′′i = (γ′′0,i, γ

′′
1,i) = (gω

′′
i , hωi+ω

′′
i ). Then, when

Pi computes the commitment of πwealth he publishes γi = (γ0,i, γ1,i) = (gωi , hxi+ωi) and then,
as required by the compiler, it must additionally provide a simulatable-extractable NIZK proof
that the message and randomness of this last commitment correspond to the input xi and
randomness ωi to which he committed at the beginning of the protocol. In the interactive
setting, the latter can be done efficiently using the well-known Σ-protocol for proving equality
of discrete logs. Indeed, recall that the compiler requires to prove here that the committed
message of πwealth corresponds to the message committed initially. In order to do so, the prover
divides γ′1,i by γ1,i, obtaining hω

′
i−ωi and γ′0,i by γ0,i, obtaining gω

′
i−ωi . The proof that the two

discrete logarithms to bases g and h are equal implies that to construct γ′1,i and γ1,i the prover
used the same xi. A similar trick can be done to prove consistency of the randomness and we
omit this description.

Moreover, we also add Schnorr’s Σ-protocol [Sch91] to prove knowledge of the discrete
logarithms of γi. This is required to make sure that extraction will provide the committed
message, as in the relation specified by the compiler. Obviously, the above composition of Σ-
protocols is then transformed into a simulatable-extractable NIZK proof via the Fiat-Shamir
transform.

Similarly, when each player Pi opens her commitment by revealing (xi, ωi) there will be a
simulatable-extractable NIZK proof proving that these values are consistent with the commit-
ments played in the first round of πwealth. Obviously, the opening of a commitment has already a
verification procedure, but we keep such NIZK proof as the instructions of the compiler prescribe
it.21

A.2 Security Analysis

We give now a sketch of the security proof of the above instantiated protocol. Indeed, since
πwealth is not a secure protocol under the simulation paradigm, we can not directly rely on
the security guaranteed by the generic compiler. Let us start by recalling the ideal world
functionality. In the ideal world, a trusted party receives the inputs of all players, and then
sends all of them to everybody. Consider the following PPT (ideal-world adversary) simulator
S∗:

1. Run an internal simulation of the real-world protocol by first sending two commitments
to the all-zeroes string on behalf of all honest players, and receive all commitments of the
parties controlled by the adversary.

2. Send the first round of πwealth by committing again to the all-zeroes string on behalf of
all honest players, and moreover send a simulated NIZK proof for each honest player and
wait for all commitments and NIZK proofs of the corrupted players.

3. Extract the inputs of the corrupted players by using the extractor of the NIZK (notice that
the entire extraction process is efficient since it requires to run one extraction procedure
per corrupted player, and future rewinds do not affect the already extracted input).

4. Play in the ideal world the inputs of the adversary extracted during the previous step.
5. Get the output of the trusted functionality and identify the inputs of the honest players

in the ideal world.
6. Rewind the simulation in order to play again the commitments of πwealth, but this time

commit to the same inputs used by the honest players in the ideal world; moreover,
compute the corresponding NIZK proofs using the NIZK simulator.

21Since the compiler is black-box, when applying all the steps of the protocol some optimizations are of course
possible.
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7. Send the opening of the commitments to the inputs of the honest ideal-world players along
with the corresponding NIZK proofs computed using the NIZK simulator.

8. Output whatever the adversary outputs.

The indistinguishability of the ideal-world experiment from the real-world experiment can be
proven through standard hybrid arguments. In particular, consider the experiments described
below.

Hybrid H0(λ): Identical to the real-world experiment.
Hybrid H1(λ) : We replace the second NIZK computed by honest players with a simulated

one. Clearly, the indistinguishability comes from the zero-knowledge property guaranteed
by the simulator of the NIZK proof.

Hybrid H2(λ) : We replace also the first NIZK computed by honest players with a simulated
one. Indistinguishability from the previous hybrid follows again by zero knowledge.

Hybrid H3(λ): We run the extractor in order to obtain the inputs of the corrupted players (as
in step 3 of the simulator). Indistinguishability from the previous hybrid follows by the
proof of knowledge property of the NIZK proof obtained via the Fiat-Shamir transform.

Hybrid H4(λ): After extracting the inputs of the corrupted players, the commitment phase of
πwealth for all honest players is repeated until the adversary completes again the commit-
ments and NIZK proofs of the corrupted players. Indistinguishability from the previous
hybrid comes from the fact that the adversary completes an experiment with non-negligible
probability and thus after sufficiently many repetitions she will play commitments and
NIZK proofs again.

Hybrid H5(λ): When the commitments of the honest players are played for the first time in
πwealth, we replace them with commitments to the all-zeroes string. Indistinguishability
from the previous hybrid follows from the hiding property of the commitment scheme.

Hybrid H6(λ): We replace the first commitments of the protocol (i.e., the ones introduced
by the compiler) computed by honest players with commitments to the all-zeroes string.
Indistinguishability from the previous hybrid comes again from the hiding property of the
commitment scheme.

Hybrid H7(λ): This experiment starts with honest players having as input the all-zeroes string,
but before repeating the commitment phase of πwealth the extracted inputs of the corrupted
players are played in the ideal world obtaining the inputs of the honest ideal-world players.
These values are then used when the commitments of πwealth are computed during repeti-
tions. Indistinguishability from the previous hybrid comes from the fact that in both the
ideal and the real world experiments the honest players run with the same inputs.

The proof now follows by observing that H7(λ) corresponds to the ideal-world experiment.
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1 pragma sol id ity ˆ 0 . 4 . 0 ;

2
3 contract ParallelCoinTossing {
4 struct Player {
5 bool i sP l ay ing ;

6 string pk ;

7 uint d ;

8 uint c ;

9 }
10 address [ ] playersAddr ;

11 mapping( address => Player ) p l aye r s ;

12 uint s i d ;

13
14 // f l a g s

15 bool claimPhase = fa l se ; // t r u e if the c l a i m P h a s e s t a r t s

16
17 // c o m m o n i n p u t of the VRF

18 uint VRFmessage ;

19
20 function beginCoinTossing ( ) {
21 s i d = . . . ; // g e n e r a t e a s e s s i o n id

22 }
23 function deposit ( string pubKey) public payable {
24 require (msg . sender . balance >= minDep && msg . value >= minDep && playe r s [msg . sender ] . d == 0 && now

< time1 ) ;

25 playersAddr .push(msg . sender ) ; // add the p u b l i c key of the c u r r e n t s e n d e r

26 Player p = p laye r s [msg . sender ] ;

27 p . i sP l ay ing = true ;

28 p . pk = pubKey ;

29 p . d = msg . value ; // msg . v a l u e is the d e p o s i t v a l u e of the p l a y e r

30 }
31 function claim (uint rand , uint proo f ) public {
32 require ( claimPhase && now < time2 && playe r s [msg . sender ] . i sP l ay ing && playe r s [msg . sender ] . claim

== 0 && VRFCheck(VRFmessage , rand , proof , p l aye r s [msg . sender ] . pk ) ) ;

33 Player p = p laye r s [msg . sender ] ;

34 p . c = rand ;

35 msg . sender . transfer (p . d) ;

36 }
37
38 // a u t o m a t i c c h e c k f u n c t i o n s run a f t e r a c e r t a i n t i m e

39 function checkDeposit ( ) public {
40 require ( ! claimPhase && now >= time1 ) ;

41 uint n = playersAddr . length ;

42 VRFMessage = sha3 ( playersAddr [ 0 ] | | . . . | | playersAddr [ n−1 ] | | s i d ) ;

43 claimPhase = true ;

44 }
45 function checkClaimed ( ) public { // if the s e c o n d t i m e s t a m p has p a s s e d and s o m e p l a y e r d i d n ’ t redeem ,

p e n a l i z e the p l a y e r s

46 require ( claimPhase && now >= time2 ) ;

47 for (uint i = 0 ; i < playersAddr . length ; i++) {
48 address pAddr = playersAddr [ i ] ;

49 i f ( p l aye r s [ pAddr ] . c == 0)

50 penalize (pAddr ) ;

51 }
52 }
53
54 // l o c a l f u n c t i o n s

55 function penalize ( address pena l i z ed ) private { // p e n a l i z e d i s h o n e s t p l a y e r s by s e n d i n g the

c o m p e n s a t i o n

56 for (uint j = 0 ; j < playersAddr . length ; i++) {
57 address pAddr = playersAddr [ i ] ;

58 uint n = playersAddr . length ;

59 i f (pAddr != pena l i z ed ) pAddr . transfer (minDep/n) ;

60 }
61 }
62 }

Figure 3: Pseudocode implementation of our smart contract for realizing parallel coin tossing.
For simplicity, we omit an explicit definition of the VRFCheck function and of the concatenation
function in the computation of VRFMessage.
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1 pragma sol id ity >=0.4.21 <0.6 .0 ;

2
3 contract FairLottery {
4 struct Player {
5 address addr ;

6 bool hasCommitted , hasOpened , i sP lay ing , i sBe t t i n g ;

7 uint balance , index ;

8 bytes32 com ;

9 int opn ;

10 }
11 uint public n , i n i t , a l lBa l ance ;

12 address [ ] addre s s e s ;

13 mapping ( address => Player ) p l aye r s ;

14
15 constructor ( address [ ] memory add r e s s e s ) public { // c r e a t e s a new i n s t a n c e of the l o t t e r y for a set of

p r e s c r i b e d p l a y e r s

16 addre s s e s = addr e s s e s ;

17 for (uint i = 0 ; i < addre s s e s . length ; i++) {
18 Player p = addre s s e s [ i ] ;

19 p ] . i sP l ay ing = true ;

20 p . hasCommitted = fa l se ;

21 p . index = i ;

22 }
23 n = addre s s e s . length ;

24 }
25 function commit(bytes32 com ) public payable { // s h a 3 v a l u e c o m m i t

26 require (msg . value >= ( addre s s e s . length ) ∗( addre s s e s . length−1) ) && p laye r s [msg . sender ] . i sP l ay ing
&& ! p l aye r s [msg . sender ] . hasCommitted ) ;

27 Player p = p laye r s [msg . sender ] ;

28 p . com = com ;

29 p . hasCommitted = true ;

30 p . balance = msg . value ;

31 a l lBa l ance += msg . value ;

32 i n i t = block .number ;

33 }
34 function openCom( int openVar ) public { // o p e n i n g of the c o m m i t m e n t

35 require ( p l aye r s [msg . sender ] . hasCommitted && a l lBa l ance >= n∗(n−1) && block .number < ( i n i t +28) && !
p l aye r s [msg . sender ] . hasOpened && keccak256 ( abi . encodePacked ( openVar ) ) == p laye r s [msg . sender ] .
com) ;

36 Player p = p laye r s [msg . sender ] ;

37 p . hasOpened = true ;

38 msg . sender . transfer (n∗(n−1) ) ; // p a y s the s e n d e r b a c k

39 }
40 function payDeposit ( ) public { // c o m p e n s a t i o n f u n c t i o n

41 require ( p l aye r s [msg . sender ] . i sP l ay ing && block .number >= ( i n i t +36) ) ;

42 uint index = p laye r s [msg . sender ] . index ;

43 for (uint i = 0 ; i < n ; i++)

44 i f ( i != index && ! p l aye r s [ addre s s e s [ i ] ] . hasOpened ) msg . sender . transfer ( p l aye r s [msg . sender ] .
balance/n) ; // the p l a y e r msg . s e n d e r get is c o m p e n s a t i o n of n c o i n s

45 }
46 function putMoney( ) public payable { // f u n c t i o n for b e t t i n g

47 require (msg . value >= 1 && playe r s [msg . sender ] . hasCommitted ) ;

48 p laye r s [msg . sender ] . i sBe t t i n g = true ;

49 a l lBa l ance += msg . value ;

50 }
51 function claimWinner (uint [ ] memory s e c r e t s ) public { // f u n c t i o n t r i g g e r e d by the w i n n e r

52 require ( s e c r e t s . length == n && checkWinner( s e c r e t s ,msg . sender ) ) ;

53 msg . sender . transfer (n) ; // r e d e e m the won c o i n s

54 }
55 // L o c a l f u n c t i o n s

56 function checkWinner(uint [ ] memory s e c r e t s , address s ender ) private returns (bool ) {
57 int sum = 0 ;

58 for (uint i = 0 ; i < s e c r e t s . length ; i++) {
59 i f (keccak256 ( abi . encodePacked ( s e c r e t s [ i ] ) ) != p laye r s [ addre s s e s [ i ] ] . com) return fa l se ;

60 sum += s e c r e t s [ i ] ;

61 }
62 i f ( ( sum%( int ) (n) != ( int ) ( p l aye r s [ s ender ] . index ) ) )

63 return fa l se ;

64 return true ;

65 }
66 }

Figure 4: Pseudocode implementation of the lottery protocol by Andrychowicz et al. [ADMM16],
when using smart contracts.
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