
Verifiable MPC from blockchain
Solving the World’s Billionaires’ problem

Toon Segers, TU Eindhoven
(joint work with Berry Schoenmakers)

PENCIL Workshop: May 18, 2019

PRIViLEDGE 2

Source: Forbes.com,
Published March 5, 2019 (link)

“Capitalism is taking some lumps—

and not just in the headlines. For

only the second year in a decade,

both the number of billionaires

and their total wealth shrank…”

© 2019 Forbes Media LLC. All Rights Reserved.

https://www.forbes.com/billionaires/#7c43a0f8251c

Verifiable MPC from blockchain
Solving the World’s Billionaires’ problem

Outline:

• Benefits of Verifiable Multi-Party Computation

• Example using blockchain

• Next steps, opportunities, challenges

PRIViLEDGE 3

Secure Multiparty Computation

Aim: Correct computation on hidden data

Correctness and privacy depend on setting: malicious parties

• Honest majority: Fairness and information theoretic security (≥3 parties)

• Dishonest majority: Computational security

Applications:

• Voting, auctions, linear programming, linear regression, decision tree learning

PRIViLEDGE 4

Intrinsic limitations to MPC

Security model stops at protocol boundary, however…

False inputs

• E.g. in Yao’s Millionaires’ problem, millionaires can lie about their riches

All parties corrupt

• Active security up to all-but-one corrupt parties

All relevant when client outsources (i.e. does not participate)

PRIViLEDGE 5

!

!

Intrinsic limitations to MPC

Security model stops at protocol boundary, however…

False inputs

• E.g. in Yao’s Millionaires’ problem, millionaires can lie about their riches

All parties corrupt

• Active security up to all-but-one corrupt parties

All relevant when client outsources (i.e. does not participate)

PRIViLEDGE 6

!

!

Very relevant in blockchain context

Verifiable MPC by joining MPC, ZK and Blockchain

7PRIViLEDGE

MPC

Correct computation on hidden data

by multiple parties

Zero Knowledge (ZK)

Prover to convince honest verifier of

given statement

Without revealing any information

Bulletin Board

Authenticated broadcast channel

Verifiable MPC

Outsider (or general public) to verify

correctness of an MPC computation

A false result will not be accepted

Verifiable MPC by joining MPC, ZK and Blockchain

8PRIViLEDGE

MPC

Correct computation on hidden data

by multiple parties

Zero Knowledge (ZK)

Prover to convince honest verifier of

given statement

Without revealing any information

Bulletin Board

Authenticated broadcast channel

Verifiable MPC

Outsider (or general public) to verify

correctness of an MPC computation

A false result will not be accepted

Blockchain

Bulletin Board++

PRIViLEDGE 9

Source: CNBC.com, Fred Imbert, ‘Forbes says
Commerce Secretary Wilbur Ross lied about
being a billionaire’, Published Tue, Nov 7 2017 (link)

© 2019 CNBC LLC. All Rights Reserved. A Division of NBCUniversal

https://www.cnbc.com/2017/11/07/forbes-commerce-secretary-wilbur-ross-lied-about-being-a-billionaire.html

The World’s Billionaires Problem

Extend Yao’s Millionaires’ problem: Privacy of inputs, verifiable inputs and outputs

Verifiable input:

• Commitments of everybody's tax returns

• Signed by the tax authority

• Posted on a blockchain

Verifiable output:

• Top 400 billionaires world-wide

Privacy:

• Privacy for all outside top 400

PRIViLEDGE 10

Source: Forbes.com,
Published March 5, 2019 (link) © 2019 Forbes Media LLC. All Rights Reserved.

https://www.forbes.com/billionaires/#7c43a0f8251c

The World’s Billionaires Problem

Extend Yao’s Millionaires’ problem: Privacy of inputs, verifiable inputs and outputs

Verifiable input:

• Commitments of everybody's tax returns

• Signed by the tax authority

• Posted on a blockchain

Verifiable output:

• Top 400 billionaires world-wide

Privacy:

• Privacy for all outside top 400

PRIViLEDGE 11

Source: Forbes.com,
Published March 5, 2019 (link) © 2019 Forbes Media LLC. All Rights Reserved.

World’s Billionaires ≈ sealed bid auction
(replace tax returns by sealed bids)

https://www.forbes.com/billionaires/#7c43a0f8251c

Verifiable computation with zk-SNARKs

F represented by circuit and ‘quadratic program’

• Correct evaluation of circuit, gives wire values c

With c, prover can construct polynomial p and divisor h

• Cheating prover unsuccessful: Schwartz-Zippel Lemma

Zero knowledge proof uses elements in bilinear group

• Hides information on witness in exponent

Proof πy uses only 9 group (elliptic curve) elements

• πy includes polynomials v, w, y, such that p = v ∙ w – y,

evaluated in s, hidden in exponent

PRIViLEDGE 12

F: y = (x1+x2)*(x3*x4)

{ }

πy =

p = v ∙ w – y,
v = (∑i ci ∙ vi(x)), w, y similar

Exhibits

c1 c2 c3 c4

c5

c6

Source: Exhibits from Pinocchio paper [PHGM13]

Pinocchio steps

KeyGen(F; 1λ) → (EKF; VKF)

• Trusted party creates public evaluation and verification keys for F

• F is represented by circuit of size m

Compute(EKF; u) → (y; πy)

• Worker evaluates circuit for F(u) to obtain y ← F(u) and wire values {ck} kϵ{1..m}

• With circuit wires, worker computes proof πy (bilinear group elements)

Verify(VKF, u, y, πy) → {0, 1}

• Verifier uses bilinear map to efficiently verify proof

PRIViLEDGE 13

Pinocchio steps

KeyGen(F; 1λ) → (EKF; VKF)

• Trusted party creates public evaluation and verification keys for F

• F is represented by circuit of size m

Compute(EKF; u) → (y; πy)

• Worker evaluates circuit for F(u) to obtain y ← F(u) and wire values {ck} kϵ{1..m}

• With circuit wires, worker computes proof πy (bilinear group elements)

Verify(VKF, u, y, πy) → {0, 1}

• Verifier uses bilinear map to efficiently verify proof

PRIViLEDGE 14

Verification very efficient (ms);
Proof construction expensive: e.g. 37s for Zcash;

Recently reduced to 2.3s with 2016 result from Groth

Pinocchio with privacy: Trinocchio

Trinocchio: Privacy and input independence

• By Schoenmakers, Veeningen, De Vreede (2015)

Geppetri (2017): Trusted setup independent of F and reusable

• Enables efficient reuse of data committed by third-party

PRIViLEDGE 15

Workers

Input parties

Client(s)

Post commitments of inputs, for input independence

Compute block πi with Block Evaluation Key BEKi via MPC

Use Block Verification Key VEKi to verify πi

Idea: Trinocchio with blockchain

Example: Sealed-bid auction

PRIViLEDGE 16

Input parties

• Communicate shares of

bids to workers;

• Post commitments to

bids to auction contract

1

1 input parties workers

client: smart contract
blockchain

Idea: Trinocchio with blockchain

Example: Sealed-bid auction

PRIViLEDGE 17

Input parties

• Communicate shares of

bids to workers;

• Post commitments to

bids to auction contract

1

2

Workers

• Compute shares of

output and proof

• Post both to contract

2

input parties workers

client: smart contract
blockchain

Idea: Trinocchio with blockchain

Example: Sealed-bid auction

PRIViLEDGE 18

Input parties

• Communicate shares of

bids to workers;

• Post commitments to

bids to auction contract

1

3

Workers

• Compute shares of

output and proof

• Post both to contract

2
Contract (“client”)

• Stores output

• Verifies proof by

recombining shares

3

input parties workers

client: smart contract
blockchain

Next steps: Extend MPyC

Python package for MPC

• Successor of VIFF (see viff.dk)

• Based on Shamir-secret sharing and pseudo-random secret sharing

Focus on usability

• Expressive, small footprint, high-level, open and free

• Convenient abstraction with operator overloading and async evaluation of underlying

protocols

Our next steps:

• Expand MPyC with ‘Verifiable MPC’ and interaction with blockchain

• Develop Verifiable MPC with other ZK protocols, likely Bulletproofs

19PRIViLEDGE

lschoe/mpyc

Conclusion

PRIViLEDGE 20

• Valuable for use cases with sensitive input

• Efficient re-use of data particularly interesting (ideally 3rd party attested)

• Blockchain to instantiate bulletin board

• Efficiency: waiting time for client (round complexity matters)

• Cheater detection: identify and deter cheating workers

• Fairness: ensure that if a party receives the result, then all do

• Trapdoor: avoid or secure trusted setup

Value of

Verifiable MPC

Improvement

opportunities

• Further improvements to Verifiable MPC? (see above)

• Could functionalities of blockchain enable those?

Questions

Thank you,

Toon Segers, TU Eindhoven

APPENDIX

22PRIViLEDGE

Informal Pinocchio proof approach

• Represent F by circuit, circuit by QAP

• N in/outputs, d mult. gates

• Definition: QAP over prime field

• Poly’s {vk}, {wk}, {yk}, and target poly t (all public)

• c ϵ Fm exists s.t. t divides p = V ∙ W – Y; here V = (∑i ci ∙ vi(x)), W and Y similar

• Prove knowledge of c satisfying QAPF

• If worker knows witness c, can construct p(x) and h(x) = p(x)/t(x)

• Probability p(s)=h(s) ∙ t(s) for random s in large prime field F very small (Schwartz-Zippel)

• Protocol (informal):

• Protocol hides witness in exponent of bilinear group (two different elliptic curves)

• Setup: Public evaluation and verification keys for F, random s

• Keys contain {vk}, {wk}, {yk} evaluated in s hidden ‘in exponent’ (e.g. gv_k(s))

• Worker: Computes y ← F(u) and πy by evaluating circuit

• πy contains hidings of V(s), W(s), Y(s) and t(s) evaluated in s

• Client: Checks V(s) ∙ W(s)) – Y(s) = t(s) ∙ h(s) in exponent (a.o.)

PRIViLEDGE 23

Trinocchio steps

Setup

• Trusted party creates trusted commitment keys (“mixed commitments”)

• Trusted party creates public Evaluation and Verification Keys

• Trusted party throws away trapdoor information

Input

• Input parties post commitment to its input blocks first (needed for input independence)

• Input parties open commitments for client(s) to verify; then provide secret-shared inputs to workers

• MPC basis: Shamir secret sharing, multiplication protocol from Gennaro et al. (1998)

• Workers check if shares correspond to the broadcast blocks

Compute

• Workers compute function F, produce Pinocchio proof of correct computation

• Calculation of polynomial h mostly local with FFT

• Computation over bilinear group elements all performed locally

• Workers communicate shares of function output to the client(s)

• Workers then post the shares of the proof elements to the bulletin board (randomized for ZK)

Result

• Client(s) obtain their results and verify them w.r.t. information on the bulletin board

PRIViLEDGE 24

Back-up

Trinocchio: Additional background on changed

setup vs Pinocchio

• Multiple input parties, workers and clients

• Privacy of I/O by introducing proof blocks πi for all N I/O parties

• πi: Includes proof π terms restricted to a subset of wires (inputs of party i)

• Pinocchio’s KeyGen adapted to MultiKeyGen:

• EK becomes {BEKi} and VK becomes {BVKi}, with separate random for

each

• BEKi, BVKi: Only include EK and VK terms for relevant wires

• Setup expanded to include commitments of inputs - for input independence

PRIViLEDGE 25

Trinocchio with blockchain (detailed 1/2)

Scenario with multiple inputs, public output

PRIViLEDGE 26

Trusted party:

KeyGen(F; 1λ)→

(BEKi; BVKi) iϵ{1..N}

Input party i:

CreateShare(xi)→ [[xi]]

ShareToWorkers([[xi]])

Input phase

Workers:

Compute(BEKi; xi) →

([[y]]; [[πy]])

Compute phase Result phase

Off-chain

On-chain Input party i:

Post(Commitment([[xi]])

Workers:

Post([[πi]], [[y]])

Client (contract):

Recombine([[y]]) → y

Recombine([[πi]]) → πy

Verify(BVKi, y, πi)

Note: Input-dependent CRS generation is omitted for simplicity

Back-up

Trinocchio with blockchain (detailed 2/2)

Multiple private outputs

PRIViLEDGE 27

Trusted party:

KeyGen(F; 1λ)→

(BEKi; BVKi) iϵ{1..N}

Input party i:

CreateShare(xi)→ [[xi]]

ShareToWorkers([[xi]])

Input phase

Workers:

Compute(BEKi; xi) →

([[yi]]; [[πi]])

ShareToClients([[yi]])

Compute phase

Clients:

Recombine([[yi]]) → yi

Recombine([[πi]]) → πi

Verify(BVKi, yi, πi)

Result phase

Off-chain

On-chain Input party i:

Post(Commitment([[xi]])

Workers:

Post([[πi]])

No on-chain verification

in this case; verification

of πi requires private

output yi

Note: Input-dependent CRS generation is omitted for simplicity

Back-up

Prior work relevant to blockchain (examples)

● Make smart contract computation and validation private

● Zether [BAZB19] uses Σ-Bullets (based on Bulletproofs from [BBB+18]) to build a new

smart contract that keeps account balances encrypted

● Avoids commitments and uses ElGamal encryptions with messages in the exponent

based on [CGS97]

● Could implement sealed bid auctions on Ethereum (via a smart contract)

● E.g. ARPA [ZSXC18], Enigma [ZNP15], HAWK1 [KMS+16] using MPC (or TEEs2)

● Conduct multiple transaction rounds off-chain, aggregate on-chain

● E.g. Bolt [GM17] implements anonymous payment channels using NIZKs to proof

knowledge of a committed value and that a committed value is in a range

28PRIViLEDGE

● Electronic voting: Use blockchain as a ballot box, use smart contracts to verify
correctness of result

● [YLS+18] describe a platform-independent voting system based on a smart contract
blockchain, Paillier encryption, message membership ZKP and ring signatures

● Compress chain history to succinct proof

● Avoid validators having to download full transaction history by using (recursive)
SNARKs/STARKs; E.g. Tezos and CODA explore this

● Avoid trusted setup on increase security

● Avoid trusted setup: Zcoin to remove trusted setup by using Σ-protocol from [GK14]

● Apply MPC to trusted setup: Zcash ‘powers of tau’ ceremony based on [BMG17]

Private

outsourcing

Universal

Verifiability

1. HAWK’s “strictly generalizes ZeroCash since Zerocash implements only private money transfers [..] without programmability”. Zerocash: [BCG+14]
2. Trusted Execution Environments; Typically Intel SGX

References (I)

[BAZB19] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards Privacy in a Smart Contract World

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, Greg Maxwell. Bulletproofs: Short Proofs for Confidential

Transactions and More. 2018 IEEE Symposium on Security and Privacy (SP)

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, Michael Riabzev. Scalable, transparent, and post-quantum secure computational integrity

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized anonymous payments from

Bitcoin. In S&P, 2014.

[BGM17] Sean Bowe and Ariel Gabizon and Ian Miers. Scalable Multi-party Computation for zk-SNARK Parameters in the Random Beacon Model,

2017

[BKM17] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized poker. In Tsuyoshi Takagi and Thomas Peyrin, editors,

Advances in Cryptology - ASIACRYPT 2017

[CDN01] R. Cramer, I. Damgard, and J.B. Nielsen. Multiparty computation from threshold homomorphic encryption. In EUROCRYPT 2001, volume

2045 of LNCS, pages 280{300. Springer-Verlag, 2001.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally ecient multi-authority election scheme. In Walter Fumy,

editor, EUROCRYPT'97, volume 1233 of LNCS, pages 103{118. Springer, May 1997.

[dH12] Sebastiaan de Hoogh. Design of large scale applications of secure multiparty computation : secure linear programming. PhD thesis 2012.

[G10] Martin Geisler. Cryptographic Protocols: Theory and Implementation. PhD Dissertation

[GK14] Jens Groth and Markulf Kohlweiss. One-out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin

[GM17] Matthew Green, Ian Miers. Bolt: Anonymous Payment Channels for Decentralized Currencies

[GMW87] O. Goldreich, S. Micali, A. Wigderson. How to play ANY mental game, STOC '87 Proceedings of the nineteenth annual ACM symposium on

Theory of computing

29PRIViLEDGE

References (II)

[KAS18+] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Philipp Jovanovic, Linus Gasser, and Bryan Ford. Hidden

in plain sight: Storing and managing secrets on a public ledger. IACR Cryptology ePrint Archive, 2018:209, 2018.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts. In IEEE Symposium on Security and Privacy, SP 2016

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation using a global transaction ledger. In Fischlin

and Coron (2016), pages 705–734.

[L16] H. Lipmaa. Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs. In Proceedings AFRICACRYPT, 2016.

[MBB+18] Patrick McCorry and Surya Bakshi and Iddo Bentov and Andrew Miller and Sarah Meiklejohn. Pisa: Arbitration Outsourcing for State

Channels

[PHGM13] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Practical Verifiable Computation. In Proceedings of S&P, 2013.

[SSV19] Alessandra Scafuro and Luisa Siniscalchi and Ivan Visconti. Publicly Verifiable Proofs from Blockchains

[SVV15] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-Preserving Outsourcing by Distributed Verifiable

Computation. ACNS 2016: Applied Cryptography and Network Security pp 346-366

[V17] Meilof Veeningen. Pinocchio-Based Adaptive zk-SNARKs and Secure/Correct Adaptive Function Evaluation. 2017

[WW12] Tzer jen Wei and Lih-Chung Wang. A fast mental poker protocol. J. Mathematical Cryptology, 6(1):39–68, 2012

[YLS+18] Bin Yu and Joseph Liu and Amin Sakzad and Surya Nepal and Paul Rimba and Ron Steinfeld and Man Ho Au. Platform-independent Secure

Blockchain-Based Voting System. 21st Information Security Conference

[ZNP15] Guy Zyskind, Oz Nathan, Alex ‘Sandy’ Pentland. Enigma: Decentralized Computation Platform with Guaranteed Privacy. PhD thesis. arXiv

2015

[ZSXC18] Derek Zhang and Alex Su and Felix Xu and Jiang Chen, ‘ARPA Whitepaper’

30PRIViLEDGE

