
Publicly Verifiable Proofs
from Blockchains

Alessandra Scafuro1, Luisa Siniscalchi2(B), and Ivan Visconti2

1 NCSU, Raleigh, USA
ascafur@ncsu.edu

2 DIEM, University of Salerno, Fisciano, Italy
{lsiniscalchi,visconti}@unisa.it

Abstract. A proof system is publicly verifiable, if anyone, by looking
at the transcript of the proof, can be convinced that the corresponding
theorem is true. Public verifiability is important in many applications
since it allows to compute a proof only once while convincing an unlim-
ited number of verifiers.

Popular interactive proof systems (e.g., Σ-protocols) protect the wit-
ness through various properties (e.g., witness indistinguishability (WI)
and zero knowledge (ZK)) but typically they are not publicly verifiable
since such proofs are convincing only for those verifiers who contributed
to the transcripts of the proofs. The only known proof systems that are
publicly verifiable rely on a non-interactive (NI) prover, through trust
assumptions (e.g., NIZK in the CRS model), heuristic assumptions (e.g.,
NIZK in the random oracle model), specific number-theoretic assump-
tions on bilinear groups or relying on obfuscation assumptions (obtaining
NIWI with no setups).

In this work we construct publicly verifiable witness-indistinguishable
proof systems from any Σ-protocol, based only on the existence of a
very generic blockchain. The novelty of our approach is in enforcing a
non-interactive verification (thus guaranteeing public verifiability) while
allowing the prover to be interactive and talk to the blockchain (this
allows us to circumvent the need of strong assumptions and setups).
This opens interesting directions for the design of cryptographic proto-
cols leveraging on blockchain technology.

1 Introduction

Blockchains are a surprising reality. Bitcoin, Ethereum, Cardano, Ripple, Zcash
etc. [3,9,19,45,49] are all examples of permissionless1 blockchains used to imple-
ment a cryptocurrency. Above all, Bitcoin [45] was the first cryptocurrency and

A. Scafuro—Work supported by NSF grant # 1012798.
L. Siniscalchi and I. Visconti—Research supported in part by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 780477
(project PRIViLEDGE) and in part by “GNCS - INdAM”.

1 In the remaining of the paper we will omit the adjective “permissionless” since this
work focuses on the permissionless setting only.

c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11442, pp. 374–401, 2019.
https://doi.org/10.1007/978-3-030-17253-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17253-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-17253-4_13

Publicly Verifiable Proofs from Blockchains 375

the first decentralized blockchain, and recently has celebrated 10 years of life.
From a technical point of view, the robustness achieved by Bitcoin – which is
a completely decentralized system developed by the voluntary effort of a large
community – has motivated the cryptographic community to study the under-
lying consensus protocol in order to rigorously define what security properties
it actually achieves and under which assumptions on the adversary [1,2,24,46].
Specifically, the works by Garay et al. [24] and Pass et al. [46] identify three
properties achieved by the Bitcoin backbone protocol: consistency, which means
that any two honest parties should share the same view of the blockchain, up to
T blocks; chain growth, which means that the blockchain, as seen by the honest
parties, will grow with a steady rate; and chain quality, which states that for
any sequence of consecutive blocks, at least a fraction of them are contributed
by honest parties. Such security properties have been adopted in all subsequent
blockchain designs [2,34,47,48], enforcing the intuition that any blockchain pro-
tocol, taken as a black box, must guarantee them.

In this paper, we investigate how to leverage the sole assumption that a
blockchain exists to achieve cryptographic tasks that do not seem possible with-
out trust assumptions, heuristic security, strong computational assumptions or
specific number-theoretic assumptions.

Publicly Verifiable Witness-Indistinguishable Proofs2 (of Knowledge). We look at
the problem of achieving “privacy-preserving” but still publicly verifiable proof
systems. In a proof system a prover P wishes to convince a verifier V that a
statement x ∈ L is true, where L is an NP language. A proof system is privacy-
preserving if the transcript of the proof somehow protects the privacy of the
witness used in the proof, that is, it satisfies a witness hiding/indistinguishability
(WH, WI) property [21] or zero-knowledge property [28]. A proof system is
publicly verifiable, if any one, by looking at the transcript of the proof, can be
convinced that the theorem is true. The verification procedure is therefore non-
interactive. Public verifiability is useful in many settings where a prover would
like to reuse the same proof with many verifiers, or in general when we want the
proof to be transferable.

Public verifiability and witness hiding/indistinguishability are two important
properties that are easy to achieve separately. To achieve public verifiability,
ignoring any protection for the witness, one can simply publish the witness. If
instead only witness hiding/indistinguishability is desired, ignoring public ver-
ifiability, there is a rich body of literature that explores many constructions,
under several assumptions and for various languages. For example, WI proof
systems for all NP are known from minimal assumptions [21,23], and various
Σ-protocols [17] for specific languages, such as the language of DDH tuples
[16,50] are WH/WI3.

2 In the introduction, informally we will generically use the word “proof” to refer also
to computationally sound proofs [44].

3 Every perfect special honest-verifier zero-knowledge (SHVZK) is WI [16]. If a
Σ-protocol is computational SHVZK, then it could not enjoy the WI property [11],

376 A. Scafuro et al.

Instead, achieving public verifiability and witness indistinguishability at the
same time, is very non-trivial. In particular, any interactive witness indistin-
guishable proof, is intrinsically not publicly verifiable, since no one, besides the
verifier who chooses the messages in the protocol, can be guaranteed that the
prover did not know the messages in advance and thus believe in the validity of
the proof. If the WI proof system is public coin, one could use the Fiat-Shamir
transform [22] and replace the messages of the verifier with the output of the
random oracle. However, this is an heuristic assumption that we wish to avoid
towards providing publicly verifiable WI proof systems. We also would like to
avoid trusted setups that have been widely used to get NIZK [6,13,21,31,38–
41]. A relaxed trusted setup was used by [30] where there are multiple common
reference strings and a majority of them is required to be honest. While such
assumption is more realistic, we notice that the construction of [30] is based on a
setup that does not reflect what is available in the real world. Our goal is to end
up with publicly verifiable proofs that can be run exploiting a generic blockchain
as setup.

The above discussion seemingly suggests that for a WI proof to be publicly
verifiable, it must be either non-interactive. The only known non-interactive
witness-indistinguishable proof systems without trusted setups and heuristic
assumptions are due to:

– Groth, Ostrovsky and Sahai [31], and is based on specific number-theoretic
hardness assumptions in bilinear groups. Such a scheme is not a proof of
knowledge (for some languages, membership of an instance is trivially check-
able by inspection, as for the case of knowledge of one out of two discrete
logarithms, and what really matters is to make sure that a succeeding prover
always knows a witness proving the truthfulness of the theorem).

– Bitansky and Paneth [5], and is based on indistinguishable obfuscation [26]
and one-way permutations. In particular, their construction leverages the
existence of witness encryption schemes [27] and the existence of ZAPs [18].
As in [31], the proposed approach does not provide the proof of knowledge
property.

This is somewhat unsatisfactory. Given that we have a rich portfolio of inter-
active WI proof systems (and a large part of it consists of Σ-protocols), under
various (weaker) complexity assumptions, optimized for different languages and
that provide also proof-size optimizations, we would like to use these systems also
when public verifiability is required. In this paper we ask the following question:

Can we construct a publicly-verifiable WI proof system given any
Σ-protocol, by leveraging only the existence of a blockchain, and without
any additional assumption?

however [25] shows that the OR-composition of computational SHVZK Σ-protocols
is WI when all involved instances are true.

Publicly Verifiable Proofs from Blockchains 377

Goyal and Goyal in [29] proposed to use specific blockchains to construct a
non-interactive zero-knowledge proof of knowledge. They do so by assuming the
existence of a non-interactive WI proof system in the standard model (therefore
inheriting all the limitations discussed above) that they use in conjunction with
the assumption that the underlying blockchain is based on a proof-of-stake (PoS)
consensus protocol. Their construction crucially leverages the PoS setting, and in
addition also imposes other specific requirements on the cryptographic primitives
used in the underlying consensus protocol (i.e., they require that the blockchain
protocol uses a signature scheme which keys can be used also in a CPA-secure
encryption scheme).

Our Contribution. As main contribution of this work we show how to construct
a publicly verifiable WI proof systems from any Σ-protocol essentially assuming
only the chain quality property of any blockchain4.

We relax the connection between non-interactiveness and public verifiabil-
ity by proposing a novel approach which consists in having an execution of a
Σ-protocol where the prover is interactive, but the verifier’s message is some-
how played by the blockchain, making the verification process completely non-
interactive for anyone who has access to the blockchain. If the underlying Σ-
protocol additionally satisfies the delayed-input property (that is, a prover can
compute the first round without knowing the theorem that she will prove, then
our proof system allows preprocessing of the first message, and the actual proof
can be computed in one-shot, therefore is completely non-interactive (modulo
just one round of offline preprocessing done by the prover without knowing which
instance will be proven and when). We also discuss the case of on-chain and off-
chain verifiability depending on the blocksize supported by the blockchain and
the communication efficiency of the underlying Σ-protocol.

Additionally, we observe that our publicly verifiable WI could be used in
the construction of [29] to obtain a publicly verifiable ZK proof of knowledge
with improved complexity assumptions relying on PoS blockchains. While the
above observation might look an interesting improvement over the state-of-the
art, more interestingly as additional contribution in this work we discuss some
issues in the approach of [29] that can seemingly be addressed only by relying on
additional assumptions (possibly implicit in [29] but that we believe it is worthy
to make explicit).

1.1 Our Techniques

In order to construct publicly verifiable WI proofs we start with any
Σ-protocol [17]. A Σ-protocol is a 3-round public-coin proof system that satisfies
special soundness and special honest-verifier zero-knowledge (HVZK) properties,
where the first and third round are computed by the prover and the second round

4 The actual assumption is a bit different but is essentially captured by the chain qual-
ity property and some natural requirements that are seemingly satisfied by known
blockchains.

378 A. Scafuro et al.

is a random string sent by the verifier. A transcript (a, c, z) of a Σ-protocol is
not publicly verifiable, indeed, due to the special HVZK property, anyone could
come up with an accepting transcript by choosing c on its own. Our goal is
to compute c in a verifiable manner, without relying on the random oracle, but
simply leveraging the properties of any blockchain.

Challenge 1: Extracting Random Bits from Any Blockchain. Several works [4,7]
have investigate the possibility of implementing a publicly verifiable beacon from
the bitcoin blockchain. In particular, Bentov, Gabizon and Zuckerman in [4]
show that, under stronger assumptions on the adversary (i.e., assuming that the
adversary would not too often discard blocks that she computed), it is possible
to extract unbiased and publicly verifiable bits from the bitcoin blockchain and
thus realize a publicly verifiable beacon. Their result is somehow unsatisfactory
for our goals since (1) it is tailored to bitcoin, (2) it makes additional assumptions
on the adversary beyond the generic properties of a blockchain.

Our observation is that for our purposes we do not need the strong guarantees
required by a publicly verifiable beacon. In particular, we don’t need to precisely
identify which string is random, we only need to ensure that, within a long string
of bits, there exists a subsequence of λ bits that is sufficiently unpredictable to
the adversary. In other words, in our setting, we can relax the requirement that
the challenge c is a string of λ random bits, and instead consider c to be a much
longer string composed by τ substrings c1, . . . , cτ , and the guarantee is that some
of the substrings have sufficient min-entropy and are independently generated.

This relaxation allows us to extract enough random bits by essentially only
assuming that the blockchain satisfies a property that is very similar to the η-
chain quality property defined in [46]. Recall that η-chain quality states that for
any K consecutive blocks in any chain held by some honest party, the fraction of
blocks that were contributed by honest parties is at least η, with overwhelming
probability in K. Our assumption is similar in the sense that we additionally
observe that a block generated by an honest party must contain strings with high
min-entropy, at the very least for the cryptographic material required to generate
a block that must be unpredictable to an adversary (e.g., a wallet identifier used
by the miner to cash the reward). More specifically, for each block created by a
honest party, we identify a field that contains high min-entropy material (and
discard the data concerned the transactions since they could have 0 entropy). We
only need to assume that a constant number of blocks in a long enough sequence
of blocks are computed by distinct honest parties (or even the same party as
long as the special field is computed with independent randomness), then these
chunks of the blocks can legitimately be considered as independent sources of
randomness. Putting the above things together, we can think of K consecutive
blocks as K potential sources of randomness, out of which a constant η (notice
that we don’t need a constant fraction, but just a constant) are guaranteed to
be independent and have high min-entropy.

Our idea is therefore to leverage the above observations along with a multiple-
source randomness extractor. The 3-source randomness extractor of Lin [36],
given in input 3 high min-entropy independent sources, outputs a λ-bit truly

Publicly Verifiable Proofs from Blockchains 379

random string. By using the η-chain quality property and the observation we
made about honest blocks, our goal is to retrieve 3 honest blocks on which to
apply the extractor. Since we don’t know which blocks are honest, we will just
consider all possible

(
K
3

)
triples of distinct blocks over last K blocks of the

blockchain. The η-chain quality guarantees that at least 3 of them are honest.
We are guaranteed that there exists a triple of honest block chunks that are
independent high min-entropy sources (we stress again, that we will consider
only certain strings of the blocks that contain high min-entropy information, we
also note that such strings have to be sufficiently long and have sufficient min-
entropy for the output of the randomness extractor to be statistically close to
uniform). By running the 3-source extractor on input such triple we will obtain
a random string.

Are We Done by Just Using ZAPs? Since our approach consists in extracting
random bits from the blockchain, one potential shortcut to obtain a publicly
verifiable WI proof could consist of using the extracted bits as the first round
of a ZAP, therefore requiring that the prover just computes the second round.
This solution however comes with several shortcomings that we want to avoid.

First of all, the second round of the ZAP requires computational assumptions
that are not necessarily used by the blockchain. For instance, the ZAP of [18]
requires doubly-enhanced trapdoor permutations. In our case, we aim at relying
on collision-resistant hash functions only.

Second, a ZAP is not a proof of knowledge and therefore is not useful when
knowledge of the witness is what really matters. Indeed we will construct a proof
of knowledge.

Third, as we observed above, our guarantee is only that 1 out of
(
K
3

)
retrieved

strings is random, but we don’t know which one. The ZAP of [18] relies on an
extremely long random string sent by the verifier. Obtaining such a huge random
string (even assuming that we can extract many huge strings so that at least
one of them is random), through extraction of random bits from the blocks
of current blockchains is not realistic. Because of the above shortcomings, we
devised a more elaborated construction that is in spirit much close to available
blockchains, avoiding strong additional assumptions.

Challenge 2: Size of the Transcript and Off-Chain Public Verifiability. Given
that we are able to extract random5 bits from the blockchain, our proof system
starting from a Σ-protocol and ending with a publicly verifiable WI proof follows
naturally the Fiat-Shamir transform, and it works as follows.

The prover computes τ first rounds a1, . . . , aτ of the Σ-protocol and pub-
lishes them on the blockchain B, where τ =

(
K
3

)
. Then, P waits for K new

blocks (where K depends on the chain-consistency and chain-quality properties)
added to the blockchain after the first message was posted. Let us denote such
blocks as B1, . . . , BK . The prover obtains challenges c1, . . . , cτ by evaluating the

5 We stress that we obtain a random string that is an unknown position in a vector
of

(
K
3

)
strings.

380 A. Scafuro et al.

randomness extractor6 on τ triples of distinct blocks in the set {B1, . . . , BK}.
Finally, P publishes the third rounds z1, . . . , zτ .

The above approach works only when each message ai fits in the space allowed
for a transaction in a block of the blockchain. This might not be necessarily true
for any Σ-protocol. Some Σ-protocols might require a first round that is cubic
or more in the security parameter and in the length of the statement, and once
concretely instantiated, it might easily lead to a first round of few megabytes
(and perhaps gigabytes if the instance is really large, also considering potential
NP reductions), which can obviously be beyond what is allowed by a blockchain.

To overcome this problem, we propose to upload the hash of the first message,
i.e., H(sid|a1||..||aτ) for an arbitrarily specified handle sid, on the blockchain.
Then each ci is computed as above, and then the third round would consist
in revealing the ai’s and the answer zi’s to the verifier only. We call this the
extended transcript. This approach allows public verifiability off-chain. That is,
the entire proof cannot be downloaded from the blockchain, but must be obtained
from another source (either the prover itself or another repository), and this is the
standard way non-interactive proofs have always been propagated to be verified.
We stress that the verifier here would not contribute in the computation of the
transcript, she only needs to see the extended version of the transcript. Thus
the proof is still reusable many times and is verifiable non-interactively (i.e., it is
publicly verifiable). To choose a collision-resistant hash function H, we leverage
the blockchain again. We observe that in all existent blockchains, the blocks are
chained using a public collision-resistant hash function, that we can use in our
proof system.

If instead a transaction of the blockchain can accommodate an ai and a
zi of the underlying Σ-protocol, then we even get a better property (i.e., on-
chain public verifiability) since the NIWI proof will appear completely in the
blockchain and therefore there is no need to think about propagating a proof to
reach several verifiers.

Additional Properties. Our publicly verifiable WI proof system achieves also
additional properties such as:

– Pre-processing: if the underlying Σ-protocol is delayed input, that is, it allows
the prover to compute the first round without knowing the theorem to be
proven, then a prover can pre-process the first round, and then simply com-
pute z when necessary. To leverage this property the underlying Σ-protocol
must be an adaptive-input WI proof of knowledge. This additional require-
ment however does not significantly restrict the class of suitable Σ-protocols
since there are known transformations that add such properties [10,12].

– Proof of knowledge: if the underlying WI proof system is special sound, then
we show that our NIWI is also a proof of knowledge. The idea is that in
the reduction, our knowledge extraction can simulate the blockchain to the
malicious prover and change the relevant subsequence of the honest blocks

6 More specifically, only some specific parts of the blocks are given as input to the
randomness extractor.

Publicly Verifiable Proofs from Blockchains 381

(i.e., the cryptographic material bringing high min-entropy) in order to change
the output of the randomness extractor and obtain a new challenge.

– Statistical WI PoK: when instantiating our compiler with the LS Σ-
protocol [35] and its underlying commitments with a statistically hiding com-
mitment scheme from collision-resistant hash functions, we obtain a statisti-
cal WI PoK system. Statistical WI allows to protect the privacy of the secret
for ever, even w.r.t. future quantum/unbounded adversaries. The collision-
resistant hash function that we use is again the one inferred by the blockchain.

On Achieving Publicly Verifiable Zero Knowledge. A natural next step is to use
our publicly verifiable NIWI to construct a publicly verifiable zero-knowledge
proof. For example, we could plug our NIWI in the construction provided
in [29], that works on any NIWI. This would seemingly produce a NIZK without
the strong hardness assumptions (i.e., a NIWI in the standard model required
by [29]). We observe, however, that the approach taken in [29] to achieve the
zero-knowledge property is affected by some issues that can be apparently tack-
led only by making additional assumptions on the blockchain protocol that do
not seem to be applicable to real-world scenarios. We discuss such issues of
the construction of [29] in Sect. 4. In conclusion, achieving publicly verifiable
zero knowledge with mild assumptions w.r.t. the most currently used real-world
blockchains is an interesting open question.

2 Definitions

Preliminary. We denote the security parameter by λ and use “||” as concatena-
tion operator (i.e., if a and b are two strings then by a||b we denote the concate-
nation of a and b). For a finite set Q, x ← Q sampling of x from Q with uniform
distribution. We use the abbreviation ppt that stays for probabilistic polynomial
time. We use poly(·) to indicate a generic polynomial function. A polynomial-
time relation R (or polynomial relation, in short) is a subset of {0, 1}∗ × {0, 1}∗

such that membership of (x,w) in R can be decided in time polynomial in |x|.
For (x,w) ∈ R, we call x the instance and w a witness for x. For a polynomial-
time relation R, we define the NP-language LR as LR = {x|∃ w : (x,w) ∈ R}.
Analogously, unless otherwise specified, for an NP-language L we denote by R
the corresponding polynomial-time relation (that is, R is such that L = LR).
We will denote by Pst a stateful algorithm P with state st.

Definition 1 (Computational indistinguishability). Let X = {Xλ}λ∈N

and Y = {Yλ}λ∈N be ensembles, where Xλ’s and Yλ’s are probability distribution
over {0, 1}l, for same l = poly(λ). We say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N

are computationally indistinguishable, denoted X ≈ Y , if for every ppt dis-
tinguisher D there exists a negligible function ν such that for sufficiently large
λ ∈ N,

∣
∣
∣Pr

[
t ← Xλ : D(1λ, t) = 1

] − Pr
[

t ← Yλ : D(1λ, t) = 1
] ∣
∣
∣ < ν(λ).

382 A. Scafuro et al.

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from
a sample of Xλ, it is possible to omit the auxiliary input 1λ. In this paper we also
use the definition of Statistical Indistinguishability. This definition is the same
as Definition 1 with the only difference that the distinguisher D is unbounded.
In this case use X ≡s Y to denote that two ensembles are statistically indistin-
guishable.

The definitions of standard tools can be found in Appendix A.

2.1 Blockchain Protocols

The next two sections follow almost verbatim (with some changes) from [29,46].
A blockchain protocol Γ consists of 4 polynomial-time algorithms
(UpdateState,GetRecords,Broadcast, GetHash) with the following syntax.

– UpdateState(1λ, st): It takes as input the security parameter λ, local state st
and outputs the updated state st′.

– GetRecords(1λ, st): It takes as input the security parameter λ and state st. It
outputs the longest ordered sequence of valid blocks B (or simply blockchain)
contained in the state variable, where each block in the chain itself contains
an unordered sequence of records messages.

– Broadcast(1λ,m): It takes as input the security parameter λ and a message
m, and broadcasts the message over the network to all nodes executing the
blockchain protocol. It does not give any output.

– GetHash(1λ,B): It takes as input a security parameter 1λ and a blockchain B,
and outputs the description of a collision-resistant hash function h(·) publicly
available in B.

As in [24,46] the blockchain protocol is also parameterized by a validity
predicate V that captures semantics of any particular blockchain application.
We will indicate with ΓV a blockchain protocol Γ that has validate predicate V.

Remark on the Algorithm GetHash. We are assuming that a blockchain protocol
Γ makes use of a collision-resistant hash function h(·) to maintain the blockchain
structure (i.e., to chain the blocks). We explicitly add this algorithm since the
same collision-resistant hash function used to chain blocks will then be used
in cryptographic protocols that make use of the blockchain. Our assumption is
obviously satisfied by the existing blockchains.

Execution of Γ V. At a very high level, the execution of the protocol ΓV pro-
ceeds in rounds that model time steps. Each participant in the protocol runs
the UpdateState algorithm to keep track of the current (latest) blockchain state.
This corresponds to listening on the broadcast network for messages from other
nodes. The GetRecords algorithm is used to extract an ordered sequence of blocks
encoded in the blockchain state variable, which is considered as the common pub-
lic ledger among all the nodes. The Broadcast algorithm is used by a party when
she wants to post a new message m on the blockchain. Note that the message m
is accepted by the blockchain protocol only if it satisfies the validity predicate
V given the current state, (i.e., the current sequence of blocks).

Publicly Verifiable Proofs from Blockchains 383

Following prior works [24,33,46], we define the protocol execution following
the activation model of the Universal Composability framework of [8] (though
like [29] we will not prove UC-security of our results). For any blockchain pro-
tocol ΓV(UpdateState, GetRecords, Broadcast, GetHash), the protocol execution
is directed by the environment Z(1λ) where λ is the security parameter. The
environment Z activates the parties as either honest or corrupt, and is also
responsible for providing inputs/records to all parties in each round. All the cor-
rupt parties are controlled by the adversary A that can corrupt them adaptively
after that the execution of ΓV started. The adversary is also responsible for
delivery of all network messages. Honest parties start by executing UpdateState
on input 1λ with an empty local state st = ε.

– In round r, each honest party Pi potentially receives a message(s) m from
Z and potentially receives incoming network messages (delivered by A). It
may then perform any computation, broadcast a message (using Broadcast
algorithm) to all other parties (which will be delivered by the adversary; see
below) and update its local state sti. It could also attempt to “add” a new
block to its chain (e.g., by running the mining procedure).

– A is responsible for delivering all messages sent by parties (honest or cor-
rupted) to all other parties. A cannot modify the content of messages broad-
cast by honest parties, but it may delay or reorder the delivery of a message
as long as it eventually delivers all messages within a certain time limit. The
identity of the sender is not known to the recipient.

– At any point Z can communicate with adversary A.

Blockchain Notation. With the notation B ≤ B′ we will denote that the
blockchain B is a prefix of the blockchain B′. We denote by B�n the chain
resulting from “pruning” the last n blocks in B. In the paper we will consider a
block in the blockchain as a string s and a sub-string of s as a part of a block
(a sub-block).

Let P be a party playing in ΓV protocol, the view of P consists of the messages
received during the execution of ΓV, along with its randomness and its inputs.
Let ExecΓ V

(A,H,Z, 1λ) be the random variable denoting the joint view of all
parties in the execution of protocol ΓV with adversary A and set of honest parties
H in environment Z. This joint view view fully determines the execution. Let
ΓV
view(A,H,Z, 1λ) denote an execution of ΓV(A,H,Z, 1λ) producing view as joint

view.

Some Constraints on the Adversary. In order show that a blockchain enjoys some
useful properties like chain quality, prior works [24,46] restrict their analysis
to compliant executions of ΓV. Such blockchain implementation assume some
restrictions on the power of the adversary. For instance, they require that any
broadcasted message is delivered in a maximum number of time steps, as we
have specified earlier, or could require secure erasure for honest parties. Those
works showed that certain desirable security properties are respected except with
negligible probability in any compliant execution. Obviously when in our work

384 A. Scafuro et al.

we claim results assuming some properties of the blockchain, we are taking into
account compliant executions of the underlying blockchain protocol only. The
same is done by [29].

Properties of a ΓV Protocol. The following section is taken verbatim from [29],
and the following properties where defined in previous works [24,46].

Chain consistency predicate. Let Consistent be the predicate such that
Consistentη(view) = 1 iff for all rounds r ≤ r̃ and all parties Pi, Pj (potentially
the same) in view such that Pi is honest at round r with blockchain B and
Pj is honest at round r̃ with blockchain B̃, we have that B�η ≤ B̃.

Definition 2 (Chain Consistency). A blockchain protocol ΓV satisfies n0(·)-
consistency with adversary A, honest parties H, and environment Z, if there
exists a negligible function ν(·) such that for every λ ∈ N, η > n0(·) the follow-
ing holds:

Pr
[
Consistentη(view) = 1

∣
∣view ← ExecΓ V

(A,H,Z, 1λ)
]

≥ 1 − ν(λ).

Chain quality predicate. Let Quality be the predicate such that Qualityη
A

(view, μ) = 1 iff for all rounds r ≥ η and all parties Pi in view such that Pi is
honest at round r with blockchain B, we have that out of η last blocks in B
at least μ fraction of blocks are “honest”.

Note that a block is said to be honest iff it is mined by an honest party.

Definition 3 (Chain Quality). A blockchain protocol ΓV satisfies (μ(·), n0(·))-
chain quality with adversary A, honest parties H, and environment Z, if there
exists a negligible function ν(·) such that for every λ ∈ N, η > η0(λ) the following
holds:

Pr
[
Qualityη

A(view, μ(λ)) = 1
∣
∣view ← ExecΓ V

(A,H,Z, 1λ)
]

≥ 1 − ν(λ).

In the rest of the paper we will indicate with (μ(·), n0(·)) the chain quality
parameters of ΓV.

2.2 Definitions of Publicly Verifiable WI Arguments of Knowledge

Here we define publicly verifiable proofs over a blockchain. The main insight
of our definition is that the verification is non-interactive, and the verifier does
not need to be a party involved in the blockchain. The prover instead needs to
actively interact with the blockchain.

Publicly Verifiable Proofs from Blockchains 385

Definition 4. A pair of stateful ppt algorithms Π = (P,V) over a blockchain
protocol ΓV is a publicly verifiable argument system for the NP-language L with
witness relation R if it satisfies the following properties:

Completeness. ∀ x,w s.t. R(x,w) = 1, ∀ ppt adversary A and set of honest
parties H and environment Z, assuming that P ∈ H, there exist negligible
functions ν1(·), ν2(·) such that:

Pr

⎡

⎢
⎢
⎣

view ← ExecΓ V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π ← PstP (x,w)

B = GetRecords(1λ, stj)

⎤

⎥
⎥
⎦ ≥ 1 − ν1(|x|) − ν2(λ)

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ).

The running time of P is polynomial in the size of the blockchain
B = GetRecords(1λ, stj) where stj is the state of Pj ∈ H at the end of the
execution ΓV

view(A,H,Z, 1λ)7. Furthermore stj is the state of an honest party
Pj ∈ H at the end of the execution ΓV

view(A,H,Z, 1λ).
If all message of π are in the blockchain then the proof is on-chain, and is
off-chain otherwise.

Soundness. ∀ x /∈ L, ∀ stateful ppt adversary A and set of honest parties H
and environment Z, there exist negligible functions ν1(·), ν2(·) such that:

Pr

⎡

⎢
⎢
⎣

view ← ExecΓ V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π, x ← AstA

B = GetRecords(1λ, stj)

⎤

⎥
⎥
⎦ ≤ ν1(|x|) + ν2(λ)

where stA denotes the state of A during the execution ΓV
view(A,H,Z, 1λ).

Furthermore stj is the state of an honest party Pj ∈ H at the end of the
execution ΓV

view(A,H,Z, 1λ).

Definition 5. A public verifiable argument system Π = (P,V) over a blockchain
protocol ΓV for the NP-language L with witness relation R is an argument of
Knowledge (AoK) if it satisfies the following property.

Argument of Knowledge (AoK). There is a stateful ppt algorithm E such that
for all x, any stateful ppt adversary A and any set of honest parties H and
environment Z, there exist negligible functions ν1(·), ν2(·) such that:

{
(viewA) : view ← ExecΓV

(A, H, Z, 1λ)

}
≈

{
(viewA) : view ← ExecΓV

(A, E, Z, 1λ)

}

and

Pr

⎡
⎢⎢⎣

view ← ExecΓV
(A, E, Z, 1λ)

V(x, π,B) = 0 ∨ R(x, w) = 1 : B = GetRecords(1λ, stj)

w ← E(π, x), (π, x) ← AstA

⎤
⎥⎥⎦ ≥ 1 − ν1(|x|) − ν2(λ)

7 Note that after that P outputs π, the execution of Γ V
view(A, H, Z, 1λ) could still

continue even though stP will not change anymore.

386 A. Scafuro et al.

where stA denotes the state of A during the execution ΓV
view(A, E ,Z, 1λ) and

viewA is the view of A in view. Furthermore stj is the state of an honest party
Pj ∈ H at the end of the execution ΓV

view(A,H,Z, 1λ).

Definition 6. A publicly verifiable argument system Π = (P,V) over a
blockchain protocol ΓV for the NP-language L with witness relation R is witness
indistinguishable (WI) if it satisfies the following property:

∀ x,w0, w1 s.t. R(x,w0) = 1 and R(x,w1) = 1, ∀ stateful ppt adversary A and
set of honest parties H and environment Z, assuming that P ∈ H it holds
that:

{
(viewA, π) : view ← ExecΓ V

(A,H,Z, 1λ), π ← PstP (x,w0)
}

≈
{

(viewA, π) : view ← ExecΓ V

(A,H,Z, 1λ), π ← PstP (x,w1)
}

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ) and

viewA8 is the view of A in view.

Definition 7 (Min-Entropy). Let X be a random variable with finite support
X . The min-entropy H∞(X) of X is defined by

H∞(X) = min
x∈X

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X a (n, λ)-source, where λ is the min-entropy of X
(i.e., λ = H∞(X)).

Definition 8 (Honest Block Generation Algorithm). An honest block-
generation algorithm is a randomized ppt algorithm HB : {0, 1}∗ → {0, 1}n,
where n = poly(λ), such that there exists a deterministic function s such that
for all x ∈ {0, 1}∗, v = s(HB(x)), |v| = n it holds that

H∞(s(HB(x))) ≥ λ

and therefore s(HB(·)) is a (n, λ)-source.

Assumption 1. Let ΓV be a blockchain protocol. There exists t = poly(λ) such
that the probability that a sequence of t consecutive blocks in a blockchain B
generated via ΓV does not include at least 3 blocks computed by a HB is negligible
in λ.

8 Note that viewA can contain auxiliary inputs from the execution of Γ V(A, H, Z, 1λ)
that could continue after that π is computed.

Publicly Verifiable Proofs from Blockchains 387

3 Publicly Verifiable WI AoK

In order to construct an off-chain publicly verifiable non-interactive witness indis-
tinguishable argument of knowledge Πwi = (Pwi,Vwi) over a blockchain protocol
ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for the NP-language L9 we
make use of the following tools:

– A 3-round delayed-input public-coin adaptive-input WI adaptive-input spe-
cial sound proof system ΠΣ = (PΣ ,VΣ) for the NP-language L with instance
length �;

– An efficient procedure ExtProc that on input a 3-source randomness extractor
En,λ and a sequence of t = 3 · q10 blocks B1, . . . , Bt computes the following
steps:
1. Construct a set of sub-blocks (through the function s) adding a sub-block

for each block in the sequence {B1, . . . , Bt}.
2. Evaluate En,λ on all the possible subsets of 3 elements of the set of sub-

blocks.
3. Output all the

(
t
3

)
evaluations of En,λ.

Πwi = (Pwi,Vwi) works as follows.

Pwi on input parameters (�, s, t), an instance x and a witness w s.t. R(x,w) = 1
computes the following steps, where x and w are used in the 7th step.

1. Set stP = ε and run stP = UpdateState(1λ, stP).
2. Run B = GetRecords(1λ, stP), h(·) = GetHash(1λ,B).
3. Let τ =

(
t
3

)
. For i = 1, . . . , τ : compute Σ1

i ← PΣ(1λ, �).
4. Compute α ← h(Σ1

1 , || . . . ||Σ1
τ)11 and post α on the blockchain by running

Broadcast(1λ, α).
5. Run stP = UpdateState(1λ, stP), B = GetRecords(1λ, stP) and wait until α is

posted on the blockchain and further the chain is extended by t blocks.
6. Let B∗ be the block of the blockchain B where the message α is posted and

let B1, ..., Bt be the t consecutive blocks of the blockchain B after B∗. Run
{Σ2

i }τ
i=1 = ExtProc(En,λ, B1, ..., Bt).

7. For i = 1, . . . , τ compute Σ3
i ← PΣ(Σ2

i , x, w).
8. Run stP = UpdateState(1λ, stP) and B′ = GetRecords(1λ, stP).
9. Set π = (x, α, {Σ1

i , Σ2
i , Σ3

i }τ
i=1,B

′) and output π.

Vwi on input the statement x, π = (α, {Σ1
i , Σ2

i , Σ3
i }τ

i=1,B
′), and a blockchain B̃

works as follows. If the message α is not posted on the blockchain B′ then
Vwi outputs 0 otherwise she continues with the following steps.

9 We remark that our results require that Assumption 1 is not violated.
10 q is s.t. q ≥ n0(λ) where (μ(·), n0(·)) are the chain quality parameters of Γ V.
11 The hash value of the string Σ1

1 , || . . . ||Σ1
τ is computed through a Merkle Tree [43],

therefore α corresponds to the root of a Merkle Tree.

388 A. Scafuro et al.

Let B∗ be the block of the blockchain B′ where the message α is posted.
Let B1, . . . , Bt be t blocks of the blockchain B′ after B∗. Vwi computes h(·) =
GetHash(1λ,B′), {Σ2

i }τ
i=1 = ExtProc(En,λ, B1, . . . , Bt) and outputs 1 if the fol-

lowing conditions are satisfied:

1. B′ ≤ B̃;
2. α = h(Σ1

1 , || . . . ||Σ1
τ);

3. VΣ(x,Σ1
i , Σ2

i , Σ3
i) = 1 for i = 1, . . . , τ .

Theorem 1. Under Assumption 1 and assuming the existence of one-to-one
one-way functions12, Πwi = (Pwi,Vwi) is a publicly verifiable off-chain adaptive-
input witness-indistinguishable argument of knowledge over a blockchain protocol
ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for NP.

Completeness. Completeness follows by the chain consistency of ΓV, the com-
pleteness of ΠΣ and the definitions of h,En,λ. We note that a candidate to
instantiate ΠΣ = (PΣ ,VΣ) is the construction of [20] that is delayed-input, and
adaptive-input secure in the variant of [10].

A Note on the Delayed-Input Property of Πwi. Fixing any x,w, s.t. R(x,w) = 1,
we note that Pwi is using x,w just to compute the 7th step of Πwi. Therefore, Πwi

can compute the first 6 steps of Πwi as a preprocessing phase, without knowing
x or w (just the size is required). Then when (in any point in the future) x,w
will be available Pwi computes the last 3 steps of Πwi.

We also want to point out that Theorem 1 holds even when there is no
delayed-input property, therefore for any WI Σ-protocol, however in this case
x,w are needed by Pwi already when she computes the 1st step of Πwi.

Adaptive-Input Witness Indistinguishability. In order to show that Πwi enjoys
the witness indistinguishability property we will consider the following 2 hybrid
experiments.

Let H0(λ) be defined as the execution of Πwi, where Pwi uses the witness w0.
Let H1(λ) be defined as the execution of Πwi, where Pwi uses the witness w1. Let
A be the adversary as defined in Definition 6. The output of each experiment is
the pair (π, viewA), where π is the transcript of Πwi computed in the experiment
and viewA is the view of A in the experiment.

Claim 1. For every x,w0, w1 s.t. R(x,w0) = 1 and R(x,w1) = 1 chosen adap-
tively by A it holds that H0(λ) ≈ H1(λ).

Proof. Suppose by contradiction the above claim does not hold, then it is possible
to construct a malicious verifier V∗

Σ that breaks the adaptive-input WI property
of ΠΣ . Let CH be the challenger of adaptive WI game of ΠΣ . V∗

Σ will interact as
a proxy between CH and A for the messages {Σ1

i , Σ3
i }τ

i=1 and she will compute

12 The need of one-to-one one-way functions will be removed by Corollary 1. Theorem 1
also needs the existence of CRHFs, but as specified earlier we are assuming that a
blockchain protocol along with a genesis block already specifies a CRHF.

Publicly Verifiable Proofs from Blockchains 389

all other messages following Pwi of H0 (of H1). In the end of the interaction V∗
Σ

will output the output of A.
In more details, V∗

Σ receives {Σ̃1
i }τ

i=1 from CH and sets Σ1
i = Σ̃1

i for
i = {1, . . . , τ}, then to compute the other steps of Πwi, until Step 7, she acts
as Pwi of H0 (of H1). In particular in Step 6 V∗

Σ computes {Σ2
i }τ

i=1 as Pwi of H0

(of H1) does. V∗
Σ sends {Σ2

i }τ
i=1 to CH along with x,w0, w1 obtained from A. V∗

Σ

receives {Σ̃3
i }τ

i=1 from CH and sets Σ3
i = Σ̃3

i for i = {1, . . . , τ}, V∗
Σ completes

the computations of π precisely as Pwi does in both H0 and H1. At the end of the
execution V∗

Σ outputs what A outputs. The proof is concluded observing that if
CH uses the witness w0 to compute {Σ̃3

i }τ
i=1 then the reduction is distributed as

H0. Instead if CH uses the witness w1 to compute {Σ̃3
i }τ

i=1 then the reduction
is distributed as H1.

From Claim 1 we can conclude that H0(λ) ≈ H1(λ).

High-Level Overview of the Proof of Adaptive-Input Soundness. Assume by con-
tradiction that there exists P� that produces with probability non-negligible p
an accepting π of Πwi w.r.t. x /∈ L, where x is adaptively chosen by P�.

The proof will proceeds in 3 steps:

(1) We will describe an efficient procedure Proc that internally executes
ΓV(P�,H,Z, 1λ). Proc will use a specific rewinding strategy.

(2) We will prove that with non-negligible probability Proc outputs
(x,Σ1

y , Σ2
y , Σ3

y), (x̃, Σ̃1
y , Σ̃2

y , Σ̃3
y) s.t. Σ1

y = Σ̃1
y and Σ2

y �= Σ̃2
y .

(3) We will use the output of Proc to reach a contradiction. In more details,
we note that by the adaptive-input soundness of ΠΣ there exists an algo-
rithm that on input (x,Σ1

y , Σ2
y , Σ3

y) and (x̃, Σ1
y , Σ̃2

y , Σ̃3
y) in polynomial time

outputs w, w̃ s.t. R(x,w) = 1 and R(x̃, w̃) = 1. Therefore we reach a con-
tradiction since we were assuming that x /∈ L.

Adaptive-Input Soundness. We will now proceed more formally. Assume by con-
tradiction that there exists P� that produces with probability non-negligible p
an accepting π of Πwi w.r.t. x /∈ L, where x is adaptively chosen by P�.

Let us fix y ∈ {1, ..., τ} and consider the following experiment Proc(y).
Proc(y):

1. Sample at random a long enough string ω and execute ΓV(P�,H,Z, 1λ) emu-
lating all the honest parties H using different substrings of ω as randomnesses.

2. If P� sends x and an accepting π = (α, {Σ1
i , Σ2

i , Σ3
i }τ

i=1,B) w.r.t x compute
step 3 and abort otherwise.

3. Let B̃ be the blockchain that is defined by the state of some honest party
after that the message α is posted by P�, and let B∗ be the block in B̃ where
this message is posted.s that participate in the execution of Γ only after the
block B∗. Rewind the execution of ΓV(P�,H,Z, 1λ) just after the block B∗

is created.
4. Sample at random a long enough string ω′ and continue the execution of

ΓV(P�,H,Z, 1λ) emulating all the honest parties H using different substrings
of ω′ as randomnesses.

390 A. Scafuro et al.

5. If P� sends x̃ and an accepting π̃ = (α̃, {Σ̃1
i , Σ̃2

i , Σ̃3
i }τ

i=1,B) w.r.t. x̃ compute
the following steps and abort otherwise.

5.1. If (Σ̃1
y �= Σ1

y) stop and output (Σ̃1
1 , || . . . ||Σ̃1

y || . . . ||Σ̃1
τ , Σ1

1 , || . . . ||
Σ1

y || . . . ||Σ1
τ).

5.2. If (Σ̃2
y �= Σ2

y) stop and output (x,Σ1
y , Σ2

y , Σ3
y), (x̃, Σ1

y , Σ̃2
y , Σ̃3

y).
5.3. If (Σ̃2

y = Σ2
y) stop and output 0.

Claim 2. The probability that Proc obtains from P� two accepting transcripts
π, π̃ of Πwi respectively in Step 2 and in Step 5 is at least p2.

We note that the views defined by ExecΓ V

(P�,H,Z, 1λ) before and after a
rewind are statistically close because the procedure Proc acts in the same way
after and before a rewind, using just a different randomness for emulating the
honest parties. Therefore the view of P� before a rewind is statistically close
to the view of P� after a rewind. Since, before step 3 we are assuming (by
contradiction) that P� will compute an accepting π of Πwi w.r.t. x /∈ L with
non-negligible probability p, after a rewind P� will do the same with the same
probability. From the above arguments we can conclude that the claim holds.

Claim 3. For every y ∈ {1, ..., τ} if Proc(y) receives an accepting π̃ in Step 5,
then Proc(y) outputs 0 with negligible probability.

Let B1, ..., Bt be the blocks used by P� to run {Σ2
i }τ

i=1 = ExecProc
(En,λ, B1, ..., Bt). From Assumption 1 it follows that at least 3 independent sub-
blocks have enough13 min-entropy. Therefore at least one 2nd round of ΠΣ

obtained by ExecProc is distributed statistically close to the uniform distribu-
tion over {0, 1}λ. Let us call this 2nd round of ΠΣ the good challenge. It also
follows from Assumption 1 that this min-entropy comes from the randomnesses
used to run HB by honest parties. Let us call the independent sub-blocks with
enough min-entropy the good sub-blocks. Note that the procedure Proc after a
rewind changes the randomness used by the honest parties and thus from the
definition of En,λ the good challenge produced by ExecProc will change before
and after the rewind with overwhelming probability.

Claim 4. For every y ∈ {1, ..., τ} if Proc(y) receives an accepting π̃ in Step 5,
then Proc(y) outputs (Σ̃1

1 , || . . . ||Σ̃1
y || . . . ||Σ̃1

τ , Σ1
1 , || . . . ||Σ1

y || . . . ||Σ1
τ) s.t. (Σ̃1

y �=
Σ1

y) with negligible probability.

Suppose that the claim does not hold. We will show a ppt Ah that breaks the
collision resistance of h(·). Ah chooses y at random from {1, . . . , τ} and follows
the steps of Proc(y). Ah outputs what Proc(y) outputs.

From Claim 3 it follows that if Proc(y) receives an accepting π̃ in Step 5 it
outputs 0 with negligible probability, therefore P� produces two accepting proofs
π and π̃ that contain two accepting transcripts of ΠΣ , namely (x,Σ1

y , Σ2
y , Σ3

y)

13 From Assumption 1, it follows that there are at least λ bits of min-entropy in each
of the 3 sub-blocks.

Publicly Verifiable Proofs from Blockchains 391

and (x̃, Σ1
y , Σ̃2

y , Σ̃3
y). These two accepting transcripts of ΠΣ (by contradiction)

differ also in the first round, but Σ̃1
y , Σ1

y are s.t. h(Σ̃1
1 , || . . . ||Σ̃1

y || . . . ||Σ̃1
τ) =

h(Σ1
1 , || . . . ||Σ1

y || . . . ||Σ1
τ) since both π and π̃ are accepting. We can conclude

that Ah succeeds to find a collision for h(·) with non-negligible probability.
From Claims 2, 3, 4 it follows that Proc outputs (x,Σ1

y , Σ2
y , Σ3

y), (x̃, Σ1
y ,

Σ̃2
y , Σ̃3

y) with probability at least p2 therefore, due to the adaptive-input sound-
ness of ΠΣ , using (x,Σ1

y , Σ2
y , Σ3

y) and (x̃, Σ1
y , Σ̃2

y , Σ̃3
y) it is possible to compute

and extract w, w̃ s.t. R(x,w) = 1 and R(x̃, w̃) = 1. Therefore we reach a con-
tradiction since we were assuming that x /∈ L.

AoK. Let P� be an adversary that with non-negligible probability produces an
accepting π of Πwi w.r.t. x, where x is adaptively chosen by P�. Then, we show
an extractor E that with oracle access to P� in expected polynomial time outputs
w s.t. R(x,w) = 1.

E works as follows. E runs the firs 2 steps of Proc and if it obtains a first
accepting transcript of Πwi w.r.t. x, then it rewinds P� until it obtains a second
accepting transcript of Πwi, or a specific bound on the number of attempts is
reached. E applies the same rewinding procedure described in steps 3 and 4 of
Proc.

Let us denote as colliding transcripts, two transcripts (Σ1, Σ2, Σ3) and
(Σ̃1, Σ̃2, Σ̃3) of ΠΣ w.r.t. x and x̃, s.t. Σ1 = Σ̃1 and Σ2 �= Σ̃2. We make
the following observations:

Obs. (1) If in one of the rewinds P� gives a second accepting transcripts of
Πwi then from Claims 2, 3, 4 it follows that E obtains two colliding transcripts
of ΠΣ .

Obs. (2) If E is able to obtain from P� two colliding transcripts of ΠΣ for
statements x, x̃ then E runs the extractor of ΠΣ and obtains in polynomial time
w, w̃ s.t. R(x,w) = 1 and R(x̃, w̃) = 1.

Obs. (3) For the same arguments exposed in Claim 2 in each rewind the view
of P� before a rewind is statistically close to the view of P� after a rewind.

Therefore from standard arguments it follows that in expected polynomial
time E outputs w s.t. R(x,w) = 1 with overwhelming probability.

We note that a candidate to instantiate ΠΣ = (PΣ ,VΣ) is the construction
of LS [20] that is delayed-input, and adaptive-input in the variant of [10]. Fur-
thermore if the underling commitment scheme of LS is instantiate from CRHFs,
then LS enjoys the statistical WI property. Since we can obtain the description
of a CRHF from GetHash, it follows that it is possible to instantiate Πwi over a
blockchain protocol ΓV without requiring additional computational assumptions.

Corollary 1. If Assumption 1 holds, then Πwi = (Pwi,Vwi) is a publicly ver-
ifiable off-chain statistical adaptive-input witness indistinguishable AoK over
a blockchain protocol ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for
NP14.

14 Again, we are implicitly assuming that a CRHF comes for free from a blockchain.

392 A. Scafuro et al.

3.1 An On-Chain Publicly Verifiable WI AoK

In order to construct an on-chain publicly verifiable non-interactive witness indis-
tinguishable argument of knowledge Πwi = (Pwi,Vwi) over blockchain protocol
ΓV

n = (UpdateState,GetRecords,Broadcast,GetHash) for the NP-language L we
make use of the following tools:

– A 3-round communication-efficient15 delayed-input public-coin adaptive-
input WI adaptive-input special sound proof system ΠΣ = (PΣ ,VΣ) for L
with instance length �;

– An efficient procedure ExtProc that on input a 3-source randomness extractor
En,λ and a sequence of t = 3 · q16 blocks B1, . . . , Bt computes the following
steps:
1. Construct a set of sub-blocks (through the function s) adding a sub-block

for each block in the sequence {B1, . . . , Bt}.
2. Evaluate En,λ on all the possible subsets of 3 elements of set of sub-blocks.
3. Output all the

(
t
3

)
evaluations of En,λ.

Πwi = (Pwi,Vwi) works as follow.

Pwi on input the parameter �, an instance x and a witness w s.t. R(x,w) = 1
computes the following steps, where x,w are used in the 5th step.

1. Set stP = ε and run stP = UpdateState(1λ, stP).
2. Set τ =

(
t
3

)
. For i = 1, . . . , τ compute Σ1

i ← PΣ(1λ, �) and post Σ1
i on the

blockchain by executing Broadcast(1λ, Σ1
i).

3. Run stP = UpdateState(1λ, stP) and B = GetRecords(1λ, stP) wait until the
messages {Σ1

i }τ
i=1 are posted on the blockchain and further the chain is

extended by t blocks.
4. Let B∗ be the last block of the blockchain B where the messages {Σ1

i }τ
i=1

are posted and let B1, ..., Bt be t blocks of the blockchain B after B∗. Run
{Σ2

i }τ
i=1 = ExtProc(En,λ, B1, . . . , Bt).

5. For i = 1, . . . , τ compute Σ3
i ← PΣ(Σ2

i , x, w) and post Σ3
i on the blockchain

executing Broadcast(1λ, Σ3
i).

6. Run st′P = UpdateState(1λ, stP), B′ = GetRecords(1λ, st′P) and wait for mes-
sages {Σ3

i }τ
i=1 to be posted on the blockchain.

7. Set π = ({Σ1
i , Σ2

i , Σ3
i }τ

i=1,B
′).

Vwi on input the statement x, π = ({Σ1
i , Σ2

i , Σ3
i }τ

i=1,B
′), and a blockchain B̃.

If the messages {Σ1
i }τ

i=1 are not posted on the blockchain B′ Vwi outputs 0
otherwise she continues with the following steps.

Let B∗ be the last block of the blockchain B′ where the messages {Σ1
i }τ

i=1 are
posted. Let B1, . . . , Bt be t blocks of the blockchain B′ after B∗. Vwi computes
{Σ2

i }τ
i=1 = ExtProc(En,λ, B1, . . . , Bt) and outputs 1 if the following conditions

are satisfied:
15 For this construction we require that the messages of ΠΣ are small enough to be

posted in a block of the blockchain.
16 q is s.t. q ≥ n0(λ) where (μ(·), n0(·)) are the chain quality parameters of Γ V.

Publicly Verifiable Proofs from Blockchains 393

1. B′ ≤ B̃;
2. The blockchain B′ contains the messages {Σ1

i , Σ3
i }τ

i=1, and the messages
{Σ3

i }τ
i=1 are posted at least t blocks after B∗;

3. VΣ(x,Σ1
i , Σ2

i , Σ3
i) = 1 for i = 1, . . . , τ .

Theorem 2. If Assumption 1 holds, then Πwi = (Pwi,Vwi) is a publicly verifiable
on-chain adaptive-input witness indistinguishable argument of knowledge over a
blockchain protocol ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for NP-
language L.

The proof is almost identical to the one showed for Theorem 1 and therefore
we omit it.

A Note on the Delayed-Input Property of Πwi. Fixing any x,w, s.t. R(x,w) = 1,
as for the off-chain construction also in this construction Pwi is using x,w just
to compute the 5th step of Πwi. Therefore, Πwi can compute the first 4 steps of
Πwi as a preprocessing phase, without knowing x or w (just the size is required).
Then when (in any point in the future) x,w will be available Pwi computes the
last 2 steps of Πwi.

We also want to point out that Theorem 2 holds for any WI Σ-protocol, even
without the delayed-input property. However in this case x,w are needed by Pwi

already when she computes the 1st step of Πwi.

On the Instantiation of the Adaptive-Input Special-Sound ΠΣ . We note that the
work of [12] shows a compiler that works for a class of delayed-input perfect
Σ-protocol described in [14,15,42]. This compiler on input a perfect Σ-protocol
Π outputs a variant of Π that is adaptive-input special sound. The compiler
does not require any additional assumption.

4 On Publicly Verifiable Zero Knowledge via [29]

Our publicly verifiable WI argument of knowledge in the blockchain model
focuses on using a blockchain (as much as possible) as a black-box, therefore
using the generic properties that a blockchain offers (in a black-box sense),
such as chain consistency and chain quality, and some other natural assump-
tions that seemingly make sense with respect to known real-world blockchains.
A natural challenging open question consists of obtaining a publicly verifiable
zero-knowledge argument using a generic blockchain. The reason why we see
this very challenging is that there are several subtleties that seem to be very
non-trivial to address without making strong assumptions on the underlying
blockchain protocol, and therefore losing generality.

Consider the NIZK constructed in [29]. Their construction works for proof-of-
stake based blockchains only and the underlying assumption is that no adversary
can control the majority of stake, at any point in time, and thus she cannot com-
pute a fork. This assumption is leveraged in the zero-knowledge proof where one
assumes that the simulator, controlling the honest parties, controls a majority of
the stake (technically the secret keys associated to the public addresses owning a

394 A. Scafuro et al.

majority of the stake), and this information can be used to compute a fork at any
point in time. Given such special power for the simulator, the zero-knowledge
argument of [29] consists of a set of n encryptions e1, . . . , en and a NIWI proof
for the theorem: “(e1, . . . , en) are valid encryptions under public keys of n stake-
holders” AND “either they are encryptions of shares of a witness for x ∈ L or of
shares of a valid fork of the blockchain”. One of the most appealing properties
of this scheme is that the size of the NIZK is independent of the number of
total stakeholders, but depends only on parameters concerning the blockchain
chain-quality property.

First of all notice that construction of [29] focuses on proof-of-stake based
blockchains in order to have a proof that can be sound for ever. Indeed the same
approach would fail if a proof-of-work is used instead of a proof-of-stake since
clearly in the future an adversary would be able to compute a fork in the past,
and therefore an accepting proof of a false theorem.

We note, however, that the approach of [29] has a subtle issue that prevents
this construction to be usable in generic proof-of-stake blockchains. The issue
stems from the fact that the non-interactive proof consists of encryptions of
shares of the witness under the public keys of n stakeholders. The idea behind
this approach was that as long as the majority of such keys belongs to a honest
“stake” (and assume that the latter will never collude), one can assume that
the adversary will never collect enough keys to decrypt the witness. However,
this assumption seems to be unsubstantiated in general, if we don’t make any
assumption on the proof-of-stake blockchain protocol. To see why, assume that
honest stakeholders decide to refresh their keys often, in particular, assume that
upon each transaction they decide to move their stake from a public key pki

to a freshly computed public key pk′
i and, in order to publicly disable the old

pki, they will simply publish ski. This behavior could even be required in the
blockchain protocol, and therefore always executed by honest parties. Note that,
in this case, the assumption on the majority of stake is still preserved. Indeed,
the majority of stake is still controlled by the honest parties. However, the keys
have evolved and thus the keys used at time t in a zero-knowledge proof might
be completely exposed at time t + δ (for some δ > 0) thus invalidating the ZK
property. We note that this issue exists even in presence of static adversaries
(which is the assumption in [29]) since the honest parties remain honest parties
throughout, they simply change their keys and this is not prohibited by the
blockchain protocol (and in general it could be even enforced).

More in general, the scenario described above suggests that the above app-
roach to design a non-interactive zero-knowledge proof system cannot retain any
security in presence of an adversary who can somehow obtain the keys after hav-
ing observed the zero-knowledge proof. Even assuming that keys do not evolve
over time (and a party would never expose her old secret on the blockchain),
there are few realistic scenarios that would allow an adversary to obtain such
keys, in a blockchain setting. In such setting is indeed more natural to assume
that the adversary is adaptive, and the corrupted parties can be chosen over
time, for example, depending on the content of the blockchain, or the stake

Publicly Verifiable Proofs from Blockchains 395

gained or lost by a certain key. Since parties are rational, it might be convenient
to them to “sell” their secret keys with lower stake in exchange for a public
key with slightly higher stake. Thus, assuming that a zero-knowledge proof was
computed using keys (ki1 , . . . , kin

), an adversary could target such keys, and
at later stage, when the total stake of the system has increased, the adversary
can corrupt the stakeholders associated to those keys, in such a way that the
adversary still does not possess the majority of the stake – and thus the proof
of stake assumption is not invalidated– but she has enough information to break
the zero-knowledge property (for instance in the case of [29] the adversary has
enough informations to decrypt the witness).

Finally we also remark that current blockchains exist because of the rewards
that participants hope to obtain sharing their resources for the execution of
the blockchain protocol. It is therefore natural to think that an honest party
would be fine with giving up the secret key corresponding to a currently empty
wallet receiving back a revenue. It is completely unknown to an honest party
of a blockchain protocol the fact that there could be a cryptographic protocol
designed on top of the blockchain that relies on honest parties keeping private
some secret keys for ever, even in case they do not have any value.

A Standard Tools

Definition 9 (One-way function (OWF)). A function f : {0, 1}∗ → {0, 1}∗

is called one way if the following two conditions hold:

– there exists a deterministic polynomial-time algorithm that on input y in the
domain of f outputs f(y);

– for every ppt algorithm A there exists a negligible function ν, such that for
every auxiliary input z ∈ {0, 1}poly(λ):

Pr
[

y←{0, 1}∗ : A(f(y), z) ∈ f−1(f(y))
]

< ν(λ).

We say, also, that a OWF f is a one-way permutation (OWP) if f is a permu-
tation.

Definition 10 (Hash Function [32]). An hash function is a pair of ppt algo-
rithms Π = (Gen,H) fulfilling the following:

– Gen is a probabilistic algorithm which takes as input a security parameter λ
and outputs a key s.

– There exists l = poly(λ) such that H is (deterministic) polynomial time algo-
rithm that takes as input a key s and any string x ∈ {0, 1}∗ and outputs a
string H(s, x) ∈ {0, 1}l.

Definition 11 (Collision-Resistant Hash Functions (CRHFs) [32]). A
hash function Π = (Gen,H) is collision resistant if for all ppt adversaries A
there exists a negligible function ν such that:

Pr
[

H(s, x) = H(s, x′) ∧ x �= x′ : s ← Gen(1λ), (x, x′) ← A(s)
] ≤ ν(λ)

396 A. Scafuro et al.

In this paper we denote by h(·) a CRHFs where the description of the hash
function (i.e., the key s) is publicly available either in the blockchain protocol
or in the genesis block of the blockchain.

Definition 12 (Witness Indistinguishable (WI)). An argument/proof sys-
tem Π = (P,V), is Witness Indistinguishable (WI) for a relation R if, for every
malicious ppt verifier V∗, there exists a negligible function ν such that for all
x,w,w′ such that (x,w) ∈ R and (x,w′) ∈ R it holds that:

∣
∣
∣ Pr 〈P(w),V∗〉(x) = 1 − Pr 〈P(w′),V∗〉(x) = 1

∣
∣
∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural
adaptive-input variants, where the adversarial verifier can select the statement
and the witnesses adaptively, before the prover plays the last round. We note
that [23] prove that WI is preserved under self-concurrent composition, i.e. when
multiple instance of Π are played concurrently.

Definition 13 (Proof/argument system). A pair of ppt interactive algo-
rithms Π = (P,V) constitute a proof system (resp., an argument system) for
an NP-language L, if the following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RL, it holds that:

Pr [〈P(w),V〉(x) = 1] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P�,
there exists a negligible function ν such that for every x /∈ L and every z:

Pr [〈P�(z),V〉(x) = 1] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-
input completeness if P needs x and w only to compute the last round and V
needs x only to compute the output. Before that, P and V run having as input
only the size of x. The notion of delayed-input completeness was defined in [12].

An interactive protocol Π = (P,V) is public coin if, at every round, V simply
tosses a predetermined number of coins (i.e. a random challenge) and sends the
outcome to the prover. Moreover we say that the transcript τ of an execution
b = 〈P(z),V〉(x) is accepting if b = 1.

A 3-round protocol Π = (P,V) for a relation R is an interactive protocol
played between a prover P and a verifier V on common input x and private
input w of P s.t. (x,w) ∈ R. In a 3-round protocol the first message a and the
third message z are sent by P and the second messages c is played by V. At the
end of the protocol V decides to accept or reject based on the data that he has
seen, i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge
length the number of bit of c.

Publicly Verifiable Proofs from Blockchains 397

Definition 14 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for
a relation R is a Σ-Protocol if the following properties hold:

– Completeness: if (P,V) follow the protocol on input x and private input w to
P s.t. (x,w) ∈ R, V always accepts.

– Special soundness: if there exists a polynomial time algorithm such that, for
any pair of accepting transcripts on input x, (a, c1, z1) (a, c2, z2) where c1 �=
c2, outputs witnesses w such that (x,w) ∈ R.

– Special Honest Verifier Zero-knowledge (SHVZK): there exists a ppt simula-
tor algorithm S that for any x ∈ L, security parameter λ and any challenge
c works as follow: (a, z) ← S(1λ, x, c). Furthermore, the distribution of the
output of S is computationally indistinguishable from the distribution of a
transcript obtained when V sends S as challenges and P runs on common
input x and any w such that (x,w) ∈ R.

Definition 15. A perfect Σ-Protocol is Σ-Protocol that satisfies a strong
SHVZK requirement, that is:

Perfect Special Honest Verifier Zero-knowledge: there exists a ppt simulator
algorithm S that for any x ∈ L, security parameter λ and any challenge c works
as follow: (a, z) ← S(1λ, x, c). Furthermore, the distribution of the output of S
is perfect indistinguishable from the distribution of a transcript obtained when
V sends S as challenges and P runs on common input x and any w such that
(x,w) ∈ R.

Theorem 3 [16]. Every perfect Σ-protocol is perfect WI.

Theorem 4 [25]. The OR-composition of Σ-Protocols is WI.

Definition 16. A delayed-input 3-round system Π = (P,V) for relation R
enjoys adaptive-input special soundness if there exists a polynomial time algo-
rithm Ext such that, for any pair of accepting transcripts a, c1, z1 for input x1

and a, c2, z2 for input x2 with c1 �= c2, outputs witnesses w1 and w2 such that
(x1, w1) ∈ R and (x2, w2) ∈ R.

Definition 17 (Proof of Knowledge [37]). A protocol that is complete Π =
(P,V) is a proof of knowledge (PoK) for the relation RL if there exist a prob-
abilistic expected polynomial-time machine Ext, called the extractor, such that
for every algorithm P�, there exists a negligible function ν, every statement
x ∈ {0, 1}λ, every randomness r ∈ {0, 1}� and every auxiliary input z ∈ {0, 1}�,

Pr [〈P�
r (z),V〉(x) = 1] ≤ Pr

[
w ← ExtP�

r (z)(x) : (x,w) ∈ R
]

+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK)
if the above condition holds w.r.t. any ppt P�.

In this paper we also consider the adaptive-input PoK/AoK property for all
the protocols that enjoy delayed-input completeness. Adaptive-input PoK/AoK
ensures that the PoK/AoK property still holds when a malicious prover can
choose the statement adaptively at the last round.

398 A. Scafuro et al.

Definition 18. Let X,Y be two random variables that takes values in V (i.e.,
V is the union of supports of X and Y). The statistical distance between X and
Y is defined as follows:

1
2

∑

v∈V

|Pr [X = v] − Pr [Y = v] |.

Definition 19 [36] [s - Source Extractor]. A function En,λ : {{0, 1}n}s →
{0, 1}m is an extractor for independent (n, λ) sources that uses s sources and out-
puts m bits with error ε, if for any s independent (n, λ) sources X1,X2, . . . , Xs,
we have that

|En,λ(X1,X2, . . . , Xs) − Um| ≤ ε

where | · | denotes the statistical distance.

The author of [36] gave a construction of a 3-source extractor, with parame-
ters λ ≥ log12 n, m = 0.9λ and ε = 2−λω(1)

.

References

1. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

2. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

3. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
18–21 May 2014, pp. 459–474. IEEE Computer Society (2014)

4. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. CoRR abs/1605.04559
(2016). http://arxiv.org/abs/1605.04559

5. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, pp. 103–112. ACM, New York (1988)

7. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptology ePrint Archive 2015, 1015 (2015). http://eprint.iacr.org/2015/
1015

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145. IEEE
Computer Society (2001)

9. Cardano: https://www.cardano.org/en/home/

https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
http://arxiv.org/abs/1605.04559
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015
https://www.cardano.org/en/home/

Publicly Verifiable Proofs from Blockchains 399

10. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 711–742. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 24

11. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 5

12. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
OR composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 3

13. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
83–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 4

14. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, University of Amsterdam (1996)

15. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

16. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

17. Damg̊ard, I.: On Σ-protocol (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf
18. Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on

Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA,
12–14 November 2000, pp. 283–293 (2000)

19. Ethereum: https://www.ethereum.org/
20. Feige, U.: Alternative models for zero knowledge interactive proofs. Master’s thesis

(1990). Ph.D. thesis
21. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs

based on a single random string (extended abstract). In: 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, USA, 22–24 October
1990, vol. I, pp. 308–317. IEEE Computer Society (1990)

22. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 46

23. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, pp. 416–426. ACM, New York (1990)

24. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

25. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptology 19(2), 169–209 (2006)

https://doi.org/10.1007/978-3-319-70500-2_24
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
http://www.cs.au.dk/~ivan/Sigma.pdf
https://www.ethereum.org/
https://doi.org/10.1007/0-387-34805-0_46
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

400 A. Scafuro et al.

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berke-
ley, CA, USA, 26–29 October 2013, pp. 40–49 (2013)

27. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA,
USA, 1–4 June 2013, pp. 467–476 (2013)

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

29. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using
blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
529–561. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 18

30. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 18

31. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

32. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, Boca Raton (2007)

33. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
IACR Cryptology ePrint Archive 2015, 1019 (2015)

34. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

35. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

36. Li, X.: Three-source extractors for polylogarithmic min-entropy. In: IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17–20 October 2015, pp. 863–882 (2015)

37. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Sympo-
sium on Theory of Computing, STOC 2011, pp. 705–714. ACM, New York (2011)

38. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

39. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

40. Lipmaa, H.: Efficient NIZK arguments via parallel verification of benes networks.
In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 416–434.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 24

41. Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive
zero-knowledge shuffle argument. J. Comput. Secur. 21(5), 685–719 (2013)

42. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. Des.
Codes Crypt. 1–14 (2015). http://dx.doi.org/10.1007/s10623-015-0103-5

https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-319-10879-7_24
http://dx.doi.org/10.1007/s10623-015-0103-5

Publicly Verifiable Proofs from Blockchains 401

43. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

44. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). https://doi.org/10.1137/S0097539795284959

45. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008, unpublished)
46. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

47. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, 25–27 July 2017, pp. 315–324 (2017)

48. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

49. Ripple: https://ripple.com/
50. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,

G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://ripple.com/
https://doi.org/10.1007/0-387-34805-0_22

	Publicly Verifiable Proofs from Blockchains
	1 Introduction
	1.1 Our Techniques

	2 Definitions
	2.1 Blockchain Protocols
	2.2 Definitions of Publicly Verifiable WI Arguments of Knowledge

	3 Publicly Verifiable WI AoK
	3.1 An On-Chain Publicly Verifiable WI AoK

	4 On Publicly Verifiable Zero Knowledge via GG17
	A Standard Tools
	References

