
DS-06-2017: Cybersecurity PPP: Cryptography

PRIViLEDGE
Privacy-Enhancing Cryptography in Distributed Ledgers

D3.3 – Revision of Extended Core Protocols

Due date of deliverable: 30 June 2021
Actual submission date: 29 June 2021

Grant agreement number: 780477 Lead contractor: Guardtime AS
Start date of project: 1 January 2018 Duration: 36 months
Revision 1.0

Project funded by the European Commission within the EU Framework Pro-

gramme for Research and Innovation HORIZON 2020

Dissemination Level

PU = Public, fully open X

CO = Confidential, restricted under conditions set out in the Grant Agreement

CI = Classified, information as referred to in Commission Decision 2001/844/EC

D3.3

Revision of Extended Core Protocols

Editors
Michele Ciampi (UEDIN)

Aikaterini-Panagiota Stouka (UEDIN)
Thomas Zacharias (UEDIN)

Contributors
Daniele Friolo (UNISA)

Vincenzo Iovino (UNISA)
Ivan Visconti (UNISA)

Aggelos Kiayias (UEDIN)
Volkhov Misha (UEDIN)

Markulf Kohlweiss (UEDIN)
Toon Segers (TUE)

Marko Vukolic (IBM)
Ahto Truu (GT)

Reviewers
Risto Laanoja (GT)
Toon Segers (TUE)

29 June 2021
Revision 1.0

The work described in this document has been conducted within the project PRIViLEDGE, started in
January 2018. This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 780477.
The opinions expressed and arguments employed herein do not necessarily reflect the official views of the

European Commission.
©Copyright by the PRIViLEDGE Consortium

Contents

1 Executive Summary 1

2 Updatable Blockchains 3
2.1 Introduction . 3

2.1.1 Our Contributions . 4
2.1.2 Our Techniques . 4

2.2 The Model . 5
2.2.1 Ledger Consensus: Model . 7
2.2.2 Genesis Block Functionality . 8

2.3 Secure Updatable Ledgers . 9
2.3.1 Defining Secure Updatable Ledgers . 9

2.4 Our Constructions . 10
2.4.1 First Approach . 11
2.4.2 Second Approach . 13

3 Mining for Privacy 18
3.1 Introduction . 18

3.1.1 Our Contributions . 19
3.1.2 Related Work . 20

3.2 Updateable Structured Reference Strings . 20
3.2.1 Standard Requirements . 20
3.2.2 Simulation Requirements . 21

3.3 Building uSRS from Chain Quality . 22
3.3.1 High-Level Overview . 22
3.3.2 Our Ledger Abstraction . 23
3.3.3 The Ideal World . 24
3.3.4 The Hybrid World . 24
3.3.5 Alternative Usage of Gclock . 25
3.3.6 UC Emulation . 25

3.4 Implementation and Parameter Selection . 25
3.4.1 Execution Time of uSRS Operations . 26
3.4.2 Simulating the Optimal Attack Strategy . 27
3.4.3 Storage and Network Usage . 28
3.4.4 Conclusion . 29

3.5 Low-Entropy Update Mitigation . 30
3.5.1 Proposed Construction . 30
3.5.2 Security Intuition . 31

3.6 Discussion . 31
3.6.1 Upgrading Reference Strings . 32

i

D3.3 –

3.6.2 The Root of Trust . 33
3.6.3 Applications to Non-Updateable SNARKs . 33

3.7 The Sonic uSRS . 34
3.7.1 Specification of Sonic Updates . 34
3.7.2 Satisfaction of Security Properties . 35
3.7.3 Instantiating FNIZK . 36

3.8 The Nakamoto Ledger . 36
3.8.1 Functionality Definition . 36
3.8.2 Relation to Existing Protocols . 38

3.9 The Adaptor Protocol . 38
3.10 The Simulator . 39
3.11 Minor UC Functionalities . 41

3.11.1 The Global Clock . 41
3.11.2 Non-Interactive Zero-Knowledge . 41
3.11.3 Random Oracle . 42
3.11.4 Delay Wrapper . 42

3.12 Security Analysis . 42

4 Mir-BFT: High-Throughput Robust BFT for Decentralized Networks 47
4.1 Introduction . 47
4.2 System Model . 50
4.3 PBFT and its Bottlenecks . 51
4.4 Mir Overview . 52
4.5 Mir Implementation Details . 54

4.5.1 The Client . 54
4.5.2 Sequence Numbers and Buckets . 54
4.5.3 Common Case Operation . 55
4.5.4 Epoch Change . 56
4.5.5 Checkpointing (Garbage Collection) . 57
4.5.6 Signature Verification Sharding (SVS) . 57
4.5.7 State Transfer . 58
4.5.8 Membership Reconfiguration . 58
4.5.9 Durability (Persisting State) . 58
4.5.10 Implementation Architecture . 59

4.6 Pseudocode . 59
4.7 Mir Correctness . 67

4.7.1 Validity (P1) . 67
4.7.2 Agreement (Total Order) (P2) . 67
4.7.3 No Duplication (P3) . 68
4.7.4 Totality (P4) . 68
4.7.5 Liveness (P5) . 69

4.8 LTO: Optimization for large requests . 72
4.9 Evaluation . 72

4.9.1 Scalability on a WAN . 74
4.9.2 Scalability in a Cluster/Datacenter . 76
4.9.3 Impact of optimizations and bucket rotation. 77
4.9.4 Benefits of Duplication Prevention . 77
4.9.5 Performance Under Faults . 78

4.10 Related Work . 80
4.11 Conclusions . 82

ii

D3.3 –

5 Removing Data from Bitcoin Transactions 83
5.1 The Limitations of Previous Solutions and Our Scenario 84
5.2 Our Contributions . 85

5.2.1 Can data be removed from Bitcoin in general? 86
5.3 Related Work and Comparison . 87
5.4 Preliminaries . 88

5.4.1 Bitcoin in a nutshell . 88
5.4.2 SNARKs/STARKs . 89
5.4.3 Isekai . 90

5.5 Our Bitcoin Sanitizer . 90
5.6 Our Implementation . 93

6 Contact Tracing and Blockchains as Shared Memory 96
6.1 Introduction . 97

6.1.1 Our Contribution . 99
6.1.2 High-Level Overview of Pronto-C2 . 100
6.1.3 Blockchain as Shared Memory . 101
6.1.4 Tracing . 102

6.2 Related Work . 104
6.3 Threat Model . 105
6.4 Privacy Attacks for Mass Surveillance . 107

6.4.1 Paparazzi Attack: Tracing Infected Users with Trusted Server 108
6.4.2 Orwell Attack: Tracing Infected Users with Colluding Server 108
6.4.3 Matrix Attack: Shameless Tracing of Infected Users with Colluding Server 108
6.4.4 Brutus Attack: Creation of Mappings Between Real Identities and Pseudonyms . 109

6.5 Other Attacks . 109
6.5.1 Bombolo Attack: Leakage of Contacts of Infected Users 109
6.5.2 Gossip Attack: Proving Contact With an Infected User 110
6.5.3 Matteotti Attack: Putting Opponents in Quarantine 110
6.5.4 Replay Attack . 111

6.6 Brief Description of DP-3T . 111
6.6.1 Security Analysis of the DP-3T Systems . 112

6.7 Pronto-C2: Design and Analysis . 116
6.7.1 Pronto-C2 . 116
6.7.2 Analysis of Pronto-C2 . 120

6.8 Suggestions for a Practical Realization of Pronto-C2 . 123
6.8.1 Pronto-C2 Practical Implementation . 125
6.8.2 Performance Analysis . 126
6.8.3 Performance Analysis of Pronto-C2 . 126

7 Smart Contracts Realizing the Terrorist Attack to GAEN 129
7.1 Introduction . 129

7.1.1 Our Contribution . 131
7.1.2 Related Work . 133

7.2 Trading TEKs in GAEN Systems . 134
7.2.1 Take-TEK Smart Contract: Buying/Selling TEK Uploads 134
7.2.2 On the Practicality of Take-TEK Attack . 136
7.2.3 Subtleties in the Wild . 137

7.3 Connecting Smart Contracts to TLS Sessions . 142
7.3.1 Decentralized Oracles . 142

iii

D3.3 –

7.3.2 A Smart Contract Oracle . 143
7.4 Conclusion . 146

8 Practical Verifiable MPC using Bulletproofs/AC20 147
8.1 Introduction . 147

8.1.1 Active Security versus Public Verifiability . 147
8.1.2 Properties of the Practical Construction . 148
8.1.3 LIBOR as a Motivating Example . 148
8.1.4 Our contribution . 149

8.2 Building Blocks . 149
8.2.1 MPC Setting . 149
8.2.2 Bulletin Board . 150
8.2.3 Secure Groups . 150
8.2.4 Threshold Cryptosystem . 150
8.2.5 Circuit Satisfiability Proof System . 151

8.3 Practical Construction . 151
8.3.1 Verifiable MPC using the AC20 Proof System . 151
8.3.2 ElGamal Ciphertexts as Inputs . 153
8.3.3 One-Time Pads as Outputs . 154

8.4 Software . 154
8.4.1 Abstraction for Secure Group Operations . 154
8.4.2 Circuit Compiler . 155
8.4.3 Gadgets . 155

8.5 Conclusion . 155

9 Verifiable Multi-Party Business Processes 156
9.1 Related work . 157
9.2 Our approach . 157
9.3 Performance . 159
9.4 Conclusions and Outlook . 160

10 Conclusions 161

iv

Chapter 1

Executive Summary

This deliverable presents the revisions made to the core protocols presented in D3.2 based on the
feedback and experience with the WP1 use cases. This deliverable also contains new results that do not
directly extend results presented in D3.2 and results of independent interest not strictly related with
to Use Cases and the Toolkits.

The contributions presented in the following chapters include both peer-reviewed and ongoing re-
search work. We give a brief overview of the deliverable’s content, specifying what contribution is based
on the feedback and experience with the WP1. Where it is relevant, we also summarize the impact
external to the project (in terms of scientific publications) of each contribution.

Updatable Blockchains. Chapter 2 proposes the first formal treatment of decentralized software
updates for blockchain systems. In particular, we provide a definition of secure update for blockchain
systems, and propose two generic compilers that take a blockchain system, and turn it into a new
blockchain system that tolerates updates. The chapter only deals with the aspect related to how the
update should be performed in a secure way, assuming that the nodes that are participating in the
system have already agreed on the code of the new blockchain system (i.e., the code to which the
blockchain should be updated to). For a comprehensive discussion on how the nodes of the system can
reach an agreement on the updated code we refer the reader to Chapter 3 of the Deliverable D4.2. Part
of the results have been collected in a paper presented to Esorics 2020 [CKKZ20] and have been used
for the development of the Use Case 4.

Mining for Privacy. Chapter 3 studies the setup assumptions of succinct non-interactive zero-
knowledge arguments (zk-SNARKS), and investigate whether the process of generating the setup can
be decentralized using a blockchain. In particular, in this chapter we investigate whether the nodes of
a blockchain system can be incentivized in generating the setup required for a zk-SNARKS, without
adding additional assumptions on the honesty of the nodes that are participating in the system. Part of
the results presented in this chapter have been presented to Financial Cryptography and Data Security
2021 [KKK21].

Mir-BFT: High-Throughput Robust BFT for Decentralized Networks In Chapter 4, we
describe Mir-BFT, a basis for the flexible consensus toolkit in Hyperledger Fabric. Mir-BFT is a robust
Byzantine fault-tolerant (BFT) total order broadcast protocol aimed at maximizing throughput on
wide-area networks (WANs), targeting deployments in decentralized networks, such as permissioned and
Proof-of-Stake permissionless blockchain systems. Mir-BFT is developed open-source and is planned to
be integrated in a major permissioned blockchain project. We also evaluate Mir-BFT under different
crash and Byzantine faults, demonstrating its performance robustness.

1

D3.3 – Revision of Extended Core Protocols

Removing Data from Bitcoin. In Chapter 5 we study the problem of removing illegal content that
might appear on Bitcoin blockchain. We first provide a theoretical solution to sanitize Bitcoin blockchain
from illicit content showing how to tackle the two main ways that Bitcoin provides to upload data on
a blockchain (i.e., coinbase transaction and OP_RETURN). We then show an experimental validation
of our approach describing the use of a tool that we have implemented and that can be effectively used
to sanitize the Bitcoin blockchain.

Contact Tracing. In Chapter 6 we investigate how blockchain technology enables better systems
for contact tracing. In particular, we present a contact tracing system that is more resilient to mass
surveillance attacks compared to many existing solutions. The system is based on using a bulletin
board, implementable through a blockchain, to allow anonymous notifications of at-risk contacts. In
particular, we use a blockchain as shared memory so that smartphone only exchanges short pointers
via Bluetooth-Low-Energy to large pieces of memory. Our contact tracing system relying on the use of
a blockchain offers complete transparency and resilience through full decentralization, therefore being
more appealing for citizens.

Chapter 7 faces a different problem still related to contact tracing systems. We show that an
adversary can attack the integrity of contact tracing systems based on Google-Apple Exposure Noti-
fications (GAEN) by leveraging blockchain technology. We show that through smart contracts there
can be an on-line market where infected individuals interested in monetizing their status can upload
to the servers of the GAEN-based systems some keys (i.e., Temporary Exposure Keys) chosen by a
non-infected adversary. This contribution is part of a paper accepted to ACNS ’21 [AFV21].

Practical Verifiable MPC using Bulletproofs In Chapter 8 we consider the setting where multiple
parties have a secret input (a party that has an input is called input party) and want to evaluate a
function over these inputs while: 1) keeping the inputs private and 2) delegating the computation to a
different set of entities.

We present a practical scheme in which the task of the input party is reduced to a minimum: The
input party posts a single encrypted message to a bulletin board. The compute parties then apply
a threshold cryptosystem to transform the encryption to secret shares, to be used as input for the
secure computation. The compute parties also produce a zero-knowledge proof of correctness of the
computation that allows anyone, particularly someone external to the secure computation, to check
the correctness of the output, while preserving the privacy properties of the MPC protocol. This work
extends and supersedes PRIViLEDGE deliverable D3.2, Chapter 9, and D4.3, Chapter 5, by providing
more details on the practical construction. Part of these results have been used for Use Case 2.

Verifiable Multi-Party Business Processes Business process automation (BPA) is the use of
technology to execute recurring tasks or processes with the goal of replacing manual effort. Most
BPA deployments aim to automate a firm’s internal operations. However, many business processes are
composed of a series of steps taken by different firms.

In Chapter 9 we propose an approach that is more scalable and can be used as the basis for many of
the multiparty process enforcement use cases that others address through DLT (which create problems
in terms of performances and privacy). Our solution is based on committing process states into an
authenticated data structure operated by a server whose actions can be independently verified. This
content of this chapter was presented at the Third Workshop on Security and Privacy-Enhanced Busi-
ness Process Management of the International Conference on Business Process Management [SST20].

2

Chapter 2

Updatable Blockchains

Software updates for blockchain systems become a real challenge when they impact the underlying
consensus mechanism. The activation of such changes might jeopardize the integrity of the blockchain
by resulting in chain splits. Moreover, the software update process should be handed over to the
community and this means that the blockchain should support updates without relying on a trusted
party. In this chapter, we introduce the notion of updatable blockchains and show how to construct
blockchains that satisfy this definition. Informally, an updatable blockchain is a secure blockchain and
in addition it allows to update its protocol preserving the history of the chain. In this work, we focus
only on the processes that allow securely switching from one blockchain protocol to another assuming
that the blockchain protocols are correct. That is, we do not aim at providing a mechanism that allows
reaching consensus on what is the code of the new blockchain protocol. We just assume that such a
mechanism exists (like the one proposed in NDSS 2019 by Zhang et. al), and show how to securely go
from the old protocol to the new one. The contribution of this chapter can be summarized as follows.
We provide the first formal definition of updatable ledgers and propose the description of two compilers.
These compilers take a blockchain and turn it into an updatable blockchain. The first compiler requires
the structure of the current and the updated blockchain to be very similar (only the structure of the
blocks can be different) but it allows for an update process that is more simple and efficient. The second
compiler that we propose is very generic (i.e., makes few assumptions on the similarities between the
structure of the current blockchain and the updated blockchain). The drawback of this compiler is that
it requires the new blockchain to be resilient against a specific adversarial behaviour and requires all
the honest parties to be online during the update process. However, we show how to get rid of the
latest requirement (the honest parties being online during the update) in the case of proof-of-work and
proof-of-stake ledgers.

2.1 Introduction
Most of the existing software requires to be updated (or replaced) at some point. Indeed, the most
vital aspect for the sustainability of any software system is its ability to effectively and swiftly adapt
to changes; one basic form of which are software updates. Therefore, the adoption of software updates
is at the heart of the lifecycle of any system, and blockchain systems are no exception. Software
updates might be triggered by a plethora of different reasons: change requests, bug-fixes, security holes,
new-feature requests, various optimizations, code refactoring etc. More specifically, for blockchain
systems, a typical source of change is the enhancements at the consensus protocol level. There might be
changes to the values of specific parameters (e.g., the maximum block size, or the maximum transaction
size etc.), changes to the validation rules at any level (transaction, block, or blockchain), or even
changes at the consensus protocol itself. Usually, the reason for such changes is the reinforcement
of the protocol against a broader scope of adversary attacks, or the optimization of some aspect of

3

D3.3 – Revision of Extended Core Protocols

the system like the transaction throughput, or the storage cost etc. A software update’s lifecycle
comprises of three important decision points: a) what update proposal should be implemented, b)
is a specific implementation appropriate to be deployed and c) when and how the changes should
be activated on the blockchain. A fully decentralized approach should decentralize all of these three
decisions. Indeed, there are already proposals on how to update specific blockchain protocols in a
decentralized way [DD18, Dec19, Goo14]. Moreover, Bingsheng et al. [ZOB19], proposes a complete
treasury system in order to solve the funding problem for software updates. The decentralization
of such decisions is usually called in short decentralized governance. This chapter does not focus on
how to achieve decentralized governance for software updates. Indeed, we assume that appropriate
decentralized governance processes (e.g., voting, delegation of voting, upgrade-readiness signaling etc.)
are in place and the community has already reached a consensus on what specific update should be
activated and this information is written on the blockchain. Moreover, we assume that a sufficient
percent of honest parties have expressed (e.g. through a signaling mechanism) their readiness to upgrade
to the new ledger. This is exactly the point from where our focus begins. In particular, we deal with
the secure activation of software update changes on the blockchain in a fully decentralized setting and
essentially provide a way to safely transition from the old ledger to the upgraded ledger without the
need of a trusted third party (TTP). Moreover, we define what is a secure activation of changes by
introducing the notion of updatable blockchains. To the best of our knowledge, our approach is the
first that treats the problem of decentralized activation of updates for blockchains in such a formal way
providing a security definition for updatable blockchain and generic constructions (more details will be
provided in the next section).

2.1.1 Our Contributions

In our work, we try to define what is a ledger1 that supports updates and refer to it as an updatable
ledger.

Then we propose a generic compiler that takes a ledger L1 and turns it into an updatable ledger
that tolerates updates only with respect to ledgers that follow the same consensus rule as L1 but have
different block structure. We then propose another (more generic) compiler that, always starting from
L1, turns L1 it into a ledger LUPD that can be updated to the code of a ledger L2. This compiler
works assuming only few similarities between L1 and L2, but it is more complicated and decreases the
throughput of the ledger during the update. All our constructions do not rely on any trusted third
party (TTP).

2.1.2 Our Techniques

Our definition of updatable ledgers is quite intuitive. We require an updatable ledger LUPD to be secure
under the standard definition of security (i.e., it has to enjoy consistency and liveness) but on top of
this, it has to support the property of updatability. This property guarantees that, in the case there are
enough parties that are willing to upgrade the code of LUPD to the code of a new ledger L2, the honest
parties can securely run L2 and preserve the state of LUPD.

Clearly, (almost) any ledger L1 can be turned into an updatable ledger LUPD if we can rely on a
TTP. Indeed, in this case the TTP can issue a genesis block for L2 which incorporates the state of L1
(or just the hash of it), and then the parties that where running L1 can abandon it and start running
L2 using the genesis block issued by the TTP.

We show how to construct an updatable ledger without relying on a TTP. The starting point for
our construction is a standard ledger L1 that we enhance with the following mechanism. At time T0
(when enough parties are assumed to be willing to update to L2) a block of L1 is chosen and translated
into a genesis block for L2. All the parties that wanted to update can now simply run L2 on the chosen

1With slight abuse of terminology we use the words ledger and blockchain interchangeably.

4

D3.3 – Revision of Extended Core Protocols

genesis block. This approach clearly requires that there is an efficient way to translate a block of L1
into a block for L2, and this might limit the class of ledgers to which LUPD can be updated.

Even though the above approach seems to work, there are unfortunately many subtleties that we
need to deal with. The first is that the adversary might be able to see the genesis block for L2 before
any other honest parties do, and therefore he can take advantage on the generation of the blocks of L2
thus compromising the security of the system. The second issue is that the adversary might influence
the choice of the genesis block. Indeed, we do not know how the consensus algorithm of L1 works and
what is the power of the adversary in biasing the content of L1’s blocks. We note that this scenario
(where there are many candidates blocks and the adversary can decide which block is added to the
final chain) is well studied (see [GKL15b]) and many blockchain protocols allow this kind of adversarial
behaviour (i.e., an adversary can create forks and influence the decision on what fork will become part
of the stable chain). To tackle these issues, we further shrink the class of ledgers to which LUPD can
be updated, and require L2 to retain its security even in the case the genesis block can be seen by the
adversary before that the honest parties can see it, and even if the adversary can pick the genesis block
from a set of candidate genesis blocks. Despite being quite general, this compiler has the drawback
that the honest parties need to be online during the update. Indeed, if an honest party is offline before
T0 and comes online after the update then no security can be guaranteed for this party. However, we
show how to relax the requirement on the honest parties being online during the update by relying on
a 2-for-1 mining approach (more details are provided in the end of Sec. 2.4.2).

The second scheme that we propose requires LUPD and L2 to be the same (i.e., they use the same
consensus rules) but might have a different block structure. In this case, the update process is even
simpler, the parties, starting from a pre-agreed block index j, start extending the state of LUPD using
the rules of L2 even if the block in position j is not stable. That is, it might happen that different
honest parties start running L2 using a different starting block given that the block j does not belong
to the common prefix. We prove that this does not cause issues even in the case when not all the honest
parties participate in the update (i.e., some honest parties are offline or decided to not participate to
the update). The advantage of this approach over the first that we have proposed is that we do not
require all the honest parties to be online during the update, and the throughput is not affected by the
update process.

2.2 The Model
Protocol participants are represented as parties—formally Interactive Turing Machine instances (ITIs)—
in a multi-party computation. We assume a central adversary who corrupts parties and uses them to
attack the protocol. The adversary is adaptive, i.e., can corrupt (additional) parties at any point
and depending on his current view of the protocol execution. Our protocols are synchronous (G)UC
protocols [BMTZ17,KMTZ13]: parties have access to a (global) clock setup, denoted by Gclock, and
can communicate over a network of authenticated multicast channels. We note that the assumption on
the existence of a global clock has been used to prove the security of Bitcoin [BMTZ17] and we are not
aware of any other formal proof that relies on weaker notion of “time”. For this reason we believe that
the use of the functionality Gclock in this work is without loss of generality.

We assume instant and fetch-based delivery channels [KMTZ13,CGHZ16]. Such channels, whenever
they receive a message from their sender, they record it and deliver it to the receiver upon his request
with a “fetch” command. In fact, all functionalities we design in this work will have such fetch-based
delivery of their outputs. We remark that the instant-delivery assumption is without loss of generality
as the channels are only used for communicating the timestamped object to the verifier which can
anyway happen at any point after its creation. However, our treatment trivially applies also to the
setting where parties communicate over bounded-delay channels as in [BMTZ17].

5

D3.3 – Revision of Extended Core Protocols

Functionalities with Dynamic Party Sets UC provides support for functionalities in which the
set of parties that might interact with the functionality is dynamic. We make this explicit by means
of the following mechanism (that we describe almost verbatim from [BMTZ17, Sec. 3.1]): All the
functionalities considered here include the following instructions that allow honest parties to join or
leave the set P of players that the functionality interacts with, and inform the adversary about the
current set of registered parties:

– Upon receiving (REGISTER, sid) from some party pi (or from A on behalf of a corrupted pi), set
P := P ∪ {pi}. Return (REGISTER, sid, pi) to the caller.

– Upon receiving (DE_REGISTER, sid) from some party pi ∈ P, the functionality updates P :=
P \ {pi} and returns (DE_REGISTER, sid, pi) to pi.

– Upon receiving (IS_REGISTERED, sid) from some party pi, return (REGISTER, sid, b) to the caller,
where the bit b is 1 if and only if pi ∈ P.

– Upon receiving (GET_REGISTERED, sid) fromA, the functionality returns the response (GET_REGISTERED,
sid,P) to A.

In addition to the above registration instructions, global setups, i.e., shared functionalities that
are available both in the real and in the ideal world and allow parties connected to them to share
state [CDPW07], allow also UC functionalities to register with them. Concretely, global setups include,
in addition to the above party registration instructions, two registration/de-registration instructions for
functionalities:

– Upon receiving (REGISTER, sidG) from a functionality F (with session-id sid), update F := F ∪
{(F, sid)}.

– Upon receiving (DE_REGISTER, sidG) from a functionality F (with session-id sid), update F :=
F{(F, sid)}.

– Upon receiving (GET_REGISTEREDF , sidG) from A, return (GET_REGISTEREDF , sidG, F) to A.

We use the expression sidG to refer to the encoding of the session identifier of global setups. By default
(and if not otherwise stated), the above four (or seven in case of global setups) instructions will be part
of the code of all ideal functionalities considered in this work. However, to keep the description simpler
we will omit these instructions from the formal descriptions unless deviations are defined.

The Clock Functionality Gclock (cf. Fig. 2.2). The clock functionality was initially proposed
in [KMTZ13] to enable synchronous execution of UC protocols. Here we adopt its global-setup version,
denoted by Gclock, which was proposed by [BMTZ17] and was used in the (G)UC proofs of the ledger’s
security.2 Gclock allows parties (and functionalities) to ensure that the protocol they are running
proceeds in synchronized rounds; it keeps track of round variable whose value can be retrieved by parties
(or by functionalities) via sending to it the pair: CLOCK-READ. This value is increased when every honest
party has sent to the clock a command CLOCK-UPDATE. The parties use the clock as follows. Each party
starts every operation by reading the current round from Gclock via the command CLOCK-READ. Once
any party has executed all its instructions for that round it instructs the clock to advance by sending
a CLOCK-UPDATE command, and gets in an idle mode where it simply reads the clock time in every
activation until the round advances. To keep more compact the description of our functionalities that
rely on Gclock, we implicitly assume that whenever an input is received the command CLOCK-READ is
sent to Gclock to retrieve the current round. Moreover, before giving the output, the functionalities
request to advance the clock by sending CLOCK-UPDATE to Gclock.

2As a global setup, Gclock also exists in the ideal world and the ledger connects to it to keep track of rounds.

6

D3.3 – Revision of Extended Core Protocols

2.2.1 Ledger Consensus: Model

In this section, we define our notion of protocol execution following [GKL15b,Can01]. The execution
of a protocol Π is driven by an environment program Z that may spawn multiple instances running
the protocol Π. The programs in question can be thought of as interactive Turing machines (ITM)
that have communication, input and output tapes. An instance of an ITM running a certain program
will be referred to as an interactive Turing machine instance or ITI. The spawning of new ITI’s by an
existing ITI as well as the interaction between them is at the discretion of a control program which is
also an ITM and is denoted by C. The pair (Z, C) is called a system of ITM’s, cf. [Can01]. Specifically,
the execution driven by Z is defined with respect to a protocol Π, an adversary A (also an ITM) and
a set of parties P1, . . . , Pn; these are hardcoded in the control program C. Initially, the environment
Z is restricted by C to spawn the adversary A. Each time the adversary is activated, it may send
one or more messages of the form (corrupt, Pi) to C. The control program C will register party Pi as
corrupted, only provided that the environment has previously given an input of the form (corrupt, Pi)
to A and that the number of corrupted parties is less or equal tc, a bound that is also hardcoded in C.

We divide time into discrete units called time slots or round. Players are equipped with (roughly)
synchronized clocks Gclock that indicate the current slot: we assume that any clock drift is subsumed
in the slot length.

Ledger Consensus. Ledger consensus (a.k.a. “Nakamoto consensus”) is the problem where a set of
nodes (or parties) operate continuously accepting inputs that are called transactions and incorporate
them in a public data structure called the ledger. A ledger (denoted in calligraphic-face, e.g. L) is
a mechanism for maintaining a sequence of transactions, often stored in the form of a blockchain. In
this work, we denote with L the algorithms used to maintain the sequence, and with L all the views
of the participants of the state of these algorithms when being executed. For example, the (existing)
ledger Bitcoin consists of the set of all transactions that ever took place in the Bitcoin network, the
current UTXO set, as well as the local views of all the participants. In contrast, we call a ledger state a
concrete sequence of transactions Tx1,Tx2, . . . stored in the stable part of a ledger state L, typically as
viewed by a particular party. Hence, in every blockchain-based ledger L, every fixed chain C defines a
concrete ledger state by applying the interpretation rules given as a part of the description of L. In this
work, we assume that the ledger state is obtained from the blockchain by dropping the last k blocks
and serializing the transactions in the remaining blocks. We refer to k as the common-prefix parameter.
We denote by LP [t] the ledger state of a ledger L as viewed by a party P at the beginning of a time
slot t and by ĽP [t] the complete state of the ledger (at time t) including all pending transactions that
are not stable yet. LP [t] can be obtained from ĽP [t] by dropping the last k block.

For two ledger states (or, more generally, any sequences), we denote by � the prefix relation. Recall
the definition of secure ledger protocol given in [GK20].

Definition 1. A ledger protocol L is secure if it enjoys the following properties.

Consistency. For any two honest parties P1, P2 and two time slots t1 ≤ t2, it holds LP1 [t1] �
ĽP2 [t2].

Liveness. If all honest parties in the system attempt to include a transaction Tx then, at any
slot t after s slots (called the liveness parameter), any honest party P , if queried, will report
Tx ∈ LP [t].

In this work we also explicitly rely on the properties of Common Prefix (CP), Chain Growth (CG)
and Chain Quality (CQ).

Common Prefix (CP); with parameters k ∈ N states that for any pair of honest players
P1, P2 at rounds r1 ≤ r2 respectively, it holds that LP1 [r1] � ĽP2 [r2].

7

D3.3 – Revision of Extended Core Protocols

Chain Growth (CG); with parameters τ ∈ (0, 1] and s ∈ N. Consider the chain C adopted
by an honest party at the onset of a slot and any portion of C spanning s prior slots; then the
number of blocks appearing in this portion of the chain is at least τs.

Chain Quality (CQ) with parameters µ ∈ R and ` ∈ N. For any honest party P with chain
C it holds that for any ` consecutive blocks of C the ratio of honest blocks is at least µ.

We consider a setting where a set of parties run a protocol maintaining a ledger L1. Follow-
ing [GKZ19], we denote by A1 the assumption for L1. That is, if the assumption A1 holds, then ledger
L1 is secure under the Definition 1. Formally, Ai for a ledger Li is a sequence of events Ai[t] for each
time slot t that can assume value 1, if the assumption is satisfied, and 0 otherwise. For example, Ai may
denote that there has never been a majority of hashing power (or stake in a particular asset, on this
ledger or elsewhere) under the control of the adversary; that a particular entity (in case of a centralized
ledger) was not corrupted; and so on. Without loss of generality, we say that the assumption A1 for
the ledger L1 holds if and only if the fraction of corrupted parties (the parties that received the input
(corrupt, ·)) is below the threshold tc1 (where tc1 is part of the control function as described in the
beginning of this section).

Chain selection rule and block validation. We sometimes assume that a ledger protocol describes
a chain selection rule that we denote with ChainSel. That is, we assume that each party in each round
of the execution of the protocol collects all chains that come from the network and runs the algorithm
ChainSel to decide whether to keep his current local chain Cloc, or adopt one of the newly received
chains. Following [BMTZ17] we also assume that before applying the chain-selection rule, any given
chain is tested using the procedure IsValidChain. IsValidChain checks filters the valid chains among all
the chains received from the network and only the valid chain are used as input for ChainSel. ChainSel
in turns rely on the algorithm IsValidBlock. IsValidBlock take as input a block B of Cloc and outputs 1
if B is a valid block (i.e., the structure of the block is correct) and 0 otherwise.

We note that by assuming that a ledger protocol is always equipped with the algorithms ChainSel,
IsValidChain and IsValidBlock make some of our results less general. However, we will show that it is
possible to obtain a better updatable ledger in the case when the two ledgers (the current ledger) and
the new ledger have the same chain selection rule (among other similarities).

2.2.2 Genesis Block Functionality

The ledger protocols that we consider in this work are equipped with the description of an algorithm
gen_genesis that, on input a random value of appropriate length, outputs a valid genesis block (i.e., the
first block of the chain). The security of most of the known ledger protocols holds under the additional
assumption that the genesis block is correct. That is, the genesis block has been generated accordingly
to gen_genesis using appropriate randomness. Multiple ways have been presented to generate a correct
genesis block in the literature (i.e., by relying on a trusted authority, use unpredictable information (like
in bitcoin), run a multi-party computation (MPC) protocol [zca], rely on PoW [GKLP18] assumptions
and so on and so forth). In this work we abstract the generation of the genesis block by means of an ideal
functionality. The ideal functionality that one might expect, upon being activated from the adversary
or from an honest party, should sample a random string and use it to run the algorithm gen_genesis.
Unfortunately this simple functionality does not cover real world scenarios where an adversarial party
might see the genesis block before the honest parties do. This, for example, can happen in the case
when gen_genesis is realized via an MPC protocol and a rushing adversary3 could hold the genesis

3A rushing adversary waits to receive the messages from all the honest parties and then computes its reply. Note that
this means that, in general, the adversary is always able to see the output of the computation before the honest parties
do.

8

D3.3 – Revision of Extended Core Protocols

Genesis Functionality for L
Parameters. The functionality is parametrized by τmax, the maximum number of candidate genesis
block m, the genesis block Bgen initialized with a default value ⊥ and the procedure gen_genesis().
We assume the functionality to be registered to Gclock and that it maintains a set of registered parties
P. On any input I the functionality queries Gclock, and we denote with R be the response obtained
by Gclock.

- If I = GEN_GENESIS is received from the adversary A then set τ := R, generate m genesis blocks
(each block is generated by running the procedure gen_genesis()) GB := {Bgen

1 , . . . , Bgen
m } for

L, and send GB to the adversary.

- If I = GET_GENESIS is received from an honest party pi ∈ P do the following

• If Bgen 6= ⊥ then return Bgen to pi.
• If Bgen = ⊥ and R−τ > τmax then generate a genesis block ˜Bgen by running gen_genesis(),

set Bgen ← ˜Bgen and send Bgen to pi.

- If I = (SET_GENESIS, Bgen′) is received from the adversary do the following

• If (R− τ) ≤ τmax and Bgen′ ∈ GB then set Bgen := Bgen′.
• Else, return ⊥ to the adversary.

Figure 2.1: The genesis functionality Fgen.

block (the output of the computation) for some bounded amount of time τmax before the honest parties
can see it. We note that an adversary can use this strategy to take an advantage on the generation
of the blocks that extend the genesis block. Therefore, the first modification that we consider for our
ideal functionality is to allow the adversary to see the genesis block up to τmax rounds earlier than the
honest parties. The second relaxation allows the adversary to see up to m honestly generated genesis
blocks and consequently decide which of these blocks will become the genesis block. We propose the
formal description of our genesis functionality Fgen in Fig. 2.1. We note that the case where τmax = 0
and m = 1 corresponds to the case where there is only one candidate genesis block and all the parties
can see it at the same round.

2.3 Secure Updatable Ledgers

2.3.1 Defining Secure Updatable Ledgers

In this section, we provide the definition of updatable ledgers. Our definition is generic in the sense
that can be applied to a large class of ledgers (e.g., PoS, PoW and so on). Let LUPD and L2 be the two
ledgers with the respective assumptions A1 and A2. Assuming that A1 holds, then among the parties
that are running LUPD we could have up to a fraction of tc1 corrupted parties (i.e., parties that have
received the command corrupt). Analogously, the assumption A2 for the ledger L2 holds if the number
of corrupted parties divided by the number of honest parties is below the threshold tc2.

The interface of an updatable ledger extends the interface of a standard ledger by adding the
command (activate,L2). That is, each party that runs an updatable ledger LUPD can receive the
command (activate,L2) from the environment to enable the update procedure. Let tPi denote the time
in which a party Pi receives the activation command and let Pu be the set of parties that received this
command. Informally, an updatable ledger guarantees that if the set of honest parties that are willing

9

D3.3 – Revision of Extended Core Protocols

The functionality is available to all participants. The functionality is parametrized with
variable τ , a set of parties P = p1, . . . , pn, and a set F of functionalities. For each party
pi ∈ P it manages variable di. For each F ∈ F it manages variable dF
Initially, τ = 0,P = ∅ and F = ∅.

- Upon receiving (CLOCK-UPDATE, sid) from some party pi ∈ P set di = 1 execute
Round-Update and forward (CLOCK-UPDATE, sid, pi) to A.

- Upon receiving (CLOCK-UPDATE, sid) from some functionality { ∈ F set dF = 1, exe-
cute Round-Update and return (CLOCK-UPDATE, sid, F) to F .

- Upon receiving (CLOCK-READ, sid) from any participant (including the environment,
the adversary, or any ideal-shared or local-functionality) return (CLOCK-READ, sid, τ)
to the requester.

Procedure Round-Update: If dF = 1 for all F ∈ F and di = 1 for all honest pi ∈ P, then
set τ = τ + 1 and reset dF = 0 and di = 0 for all parties in P.

Figure 2.2: The functionality Gclock

to run L2 (i.e., the number of parties that received (activate,L2)) is such that A2[τ] = 1 for all τ ≥ T0
for some T0 ∈ N, then the state of L2 at time T0 + ∆ corresponds to the state of LUPD at some time
T ∈ [T0, T0 +∆]. The parameter ∆ represents the time required for the update process to be completed.
The above implies that L2 extends L1 and that L2 is secure (i.e., it enjoys consistency and liveness). In
a nutshell, a secure update process guarantees that the state of the old ledger is moved into the new
ledger, and that the new ledger is secure. We now give a more formal definition.

Definition 2 (Updatable Ledger). We say that a ledger LUPD is updatable with activation parameter
∆ (where ∆ ∈ N) if it is a secure ledger according to Def. 1 and it enjoys the following property.

Updatability. Let L2 be a secure ledger (always according to Def. 1). Let Pu be the set of parties
that received the input (activate,L2). If Pu is such that A2[τ] = 1 for all τ ≥ T0 for some T0 ∈ N and
A1[τ ′] = 1 for all τ ′ ≤ T1 = T0 + ∆, then

1. LPi
1 [T ′] � L2 for some Pi ∈ Pu with T0 ≤ T ′ ≤ T1.

2. for all τ ′′ ≥ T1 L2 enjoys consistency and liveness

We note that this definition says nothing on the security of LUPD after the time T1 = T0+∆. Indeed,
the Definition 2 implies that if after this time slot T0 +∆ LUPD becomes insecure (e.g., because A1 does
not hold) then the security of L2 is not compromised.

We relax the above definition by introducing the notion of updatable ledger in the semi-online
setting. An updatable ledger in the semi-online setting guarantees the properties of updatability only
for the honest parties that where active during the activation period [T0, T1]. That is, if an honest
party P is offline before time T0, and comes online after at time T1 then no security is guaranteed with
respect to P .

2.4 Our Constructions
In this section we propose two main approaches to turn a ledger L1 into an updatable ledger LUPD.
That is, we show how to make L1 able to self-update to the code of a new ledger L2. The first approach

10

D3.3 – Revision of Extended Core Protocols

proposed requires L1 and L2 to be the same (i.e., they use the same consensus rules) but might have a
different block structure. The advantage in this approach is that we get a very simple updatable ledger,
that does not decrease the throughput of LUPD during the update and does not require all the honest
parties to be online during the update4. The second approach requires fewer similarities between the
two ledgers, but it is proven secure only in the semi-online setting. We also show that we can relax
the requirement on the honest parties being online during the update by relying on a 2-for-1 mining
approach (more details are provided in the end of Sec. 2.4.2).

We now provide a detailed description of our approaches and formally prove their security.

2.4.1 First Approach

In this subsection we consider a simplified scenario where the two ledgers, L1 and L2, are the same
except for the block format (i.e., L1 and L2 might have a different block size). Moreover, we assume
that a block valid for L1 is valid for L2 as well (but the vice versa does not necessarily hold). Formally,
this means that if the block validation algorithm IsValidBlock1 of L1 outputs 1 on some input B, then
also the block validation algorithm IsValidBlock2 of L2 outputs 1 (see Sec. 2.2.1 for more details). We
now prove the following theorem

Theorem 1. If L1 and L2 are secure ledgers with block validation rules respectively IsValidBlock1 and
IsValidBlock2 such that:

1. L1 and L2 are the same except with respect to the block validation rules;

2. for every block B such that if IsValidBlock1(B) = 1 then IsValidBlock2(B) = 1,

3. L1 (resp. L2) has common-prefix parameter k, chain-growth parameter (τ, s) and assumption A1
(resp. A2) with A1 = A2,

then there exists an updatable ledger LUPD with update parameter ∆ := (k + 1)τ−1 + s.

Proof. We assume that enough parties have received the command (activate,L2) such that A2 holds
and denote the time when this happen with T0. Our updatable ledger LUPD works as follows.

Each party Pi ∈ Pu does the following steps.

1. Use IsValidBlock2 as a block validation algorithm.

2. Create and post a transaction that contains an activation flag.

3. Let if be the index of the block that will contain the first transaction with an activation flag.

4. Let j := if + k + 1, run L1 and when the j-th block Bi
j becomes part of ĽPi

1 [τi] for some τi ≥ T0
start extending Bi

j using the rules of L2 instead of the rules of L1 (we recall that a valid block for
L1 is also a valid block for L2)

We provide a pictorial description of what happens to the ledger state during the update in Fig. 2.3.
We note that two honest parties P1 and P2 might have different ĽP1

1 [τ] and ĽP2
1 [τ] at any time τ . The

Fig. 2.3 describe the scenario where P1 might start to run L2 starting from an unstable block (i.e. a
block of ĽP1

1 [τ] with τ ≥ T0 + s) which is different from the block that P2 is using. However, after
sufficiently many rounds (at some round τ ′ ≤ T0 + s+ (k1 + 1)τ−1

1 to be precise) P1 and P2 will agree
on what is the last block of L1 and what is the first bock of L2.

4We also show that we can relax the requirement on the honest parties being online during the update for the case of
PoW ledgers.

11

D3.3 – Revision of Extended Core Protocols

Figure 2.3: Transition from L1 to L2. Note that different honest parties might have different views
(i.e., forks) of the unstable part of the chain which have also different lengths.

To complete the proof we need to show that L2 enjoys consistency and liveness and that the state
L1 at some time τ ∈ [T0, T1] is a prefix of L2’s state.

Before doing that, we introduce the notion of canonical execution for the ledger L2. A canonical
execution represents a standalone execution of L2. More precisely, we assume the existence of a genesis
block for L2 (that the adversary and the honest party see at the round 0) and that A2[τ]=1 for all
τ ≥ 0. Let P be the set of parties that is running L2. Also, let t be the smallest time slot in which Bif
appears in LPi

2 [t] for all Pi ∈ P and let t̃i,j be the smallest time slot in which Bi
j appears in ĽPi

2 [ti,j] for
each Pi ∈ P with j := if + k + 1.

We now go back to our updatable ledger protocol. In the protocol that we have described, by
assumption, we have that A2[T0] = 1 for all τ ≥ T0. From the moment when A2 becomes true the
activation process takes ∆ ≤ (k + 1)τ−1 + s time slots to be completed.

This is because the parties need to wait for the block if to be part of all the honest parties stable
view and wait for the j-th block (with j := if + k + 1) of to be part of ĽPi

1 [ti,j] for all Pi with ti,j ∈ N.
Note that in the moment that the block Bi

j becomes available to an honest party Pi ∈ Pu (i.e., Bi
j is

part of ĽPi
1) then the party starts running L2 to extend Bi

j as described earlier (we recall that at this
time slot the assumption A2 holds). Let t′i,j be the smallest time slot in which Bi

j appears in ĽPi
2 [t′i,j]

for each Pi ∈ P with t′i,j ∈ N. If we consider the execution of the protocol from time T0 and T0 + ∆
this can be seen as a canonical execution of L2 given that L1 and L2 follow the same rules and the
same assumption, and given that ĽPi

1 (and ĽPi
2) contains at most k blocks more than LPi

1 (and LPi
2) for

all Pi ∈ Pu. Hence, any advantage that the adversary has on our updatable ledger can be translated
into an advantage for an adversary that is attacking L2, which is assumed to be secure. Note that it
is crucial that the assumption that underlines the two ledger is the same. Indeed, we note that the
number of honest parties that received (activate,L2) might be lower than the overall number of honest
parties. Hence, the honest parties that are running the update procedure are less than the parties that
are running L1 (this might happen as we do not require all the honest parties to update). However,
given that A1 = A2, we can see the honest parties that did not receive the command (activate,L2) as
parties controlled by the adversary as they are not following the update procedure. Luckily, this does
not cause problems as even if we consider these parties as adversarial, A1 would still hold (given that

12

D3.3 – Revision of Extended Core Protocols

A1 = A2). Hence, we can claim that in the worst case everything that can be done by the adversary
during the update can be done also in the canonical execution given that the number of honest parties
in the canonical execution is the same as the number of honest parties that are performing the update.

We remark that the only difference between this and the canonical execution described above is
that the blocks Bif , . . . , Bj−2, Bj−1 are generated using L1, but this does not represent an issue since
we are assuming that any block of L1 is valid for L2.

We finally note that this protocol does not put any restriction on whether an honest party needs to
be online or not during an update given that L1 and L2 have the same chain selection rule (only the
block selection rule is different). One practical advantage of our approach is that if L1 (and L2) allows
bootstrapping from the genesis block (like in [BGK+18]) so does our updatable ledger.

2.4.2 Second Approach

Before providing our construction we introduce the notion of genesis-compatible ledgers. We say that
two ledgers L1 and L2 are genesis-compatible if a block of L1 can be turned into a valid candidate
genesis block for L2. We now propose a formal definition.

Definition 3. Let L1 and L2 be two secure ledgers where Fgen is the genesis functionality of L2
parameterized by the algorithm gen_genesis() (see Fig. 2.1).

We say that L1 is genesis-compatible with L2 if there exists a deterministic polynomial time algorithm
Π1→2 that, on input a valid block B of L1 outputs a valid genesis block B̃ for L2. Moreover, the output
of Π1→2 is identically distributed to the output of the procedure gen_genesis().

We note that Π1→2 could be a very simple protocol. For example, if we consider two PoW ledgers
that use the same puzzles, then L1 is genesis-compatible with L2 since the Π1→2 can simply take a block
of L1 and use it as a candidate genesis block for L2. We note that the definition of genesis-compatibility
only tells that it is possible to generate a genesis block for L2 with a valid structure. That is, it does
not imply that L2 can be securely run using any genesis block generated using Π1→2 as, for example,
using an old block of L1 could give an advantage to the adversary over the honest parties. More details
follow.

We now propose our first compiler that turns a ledger L1 that is genesis-compatible with L2, into an
updatable ledger. At a very high level our approach is the following. We use L1 to realize the genesis
functionality of L2, and then we use the output of the genesis functionality to execute L2. We note
that it is easy to create a candidate genesis block from L1 because it is genesis-compatible with L2.
To complete the description of our compiler, we need to specify what block of L1 will be chosen, and
argue that this process is indeed sufficient to realize the genesis functionality for L2. In our approach
the parties that are running L1 agree on the index j of a block that will be used as a genesis block
(this block can be decided using the consensus algorithm of L1, more details will be provided). When
the block of position j, that we denote with Bj , becomes stable for all the honest parties that decided
to update, then these parties use Π1→2 to turn Bj into a genesis block for L2 thus obtaining Bgen. At
this point Bgen is used to run L2 and L1 can be abandoned. Even though the above approach seems
to work, there are many subtleties. The first is that the adversary might be able to see the block Bj
before any other honest parties do, and therefore he can take an advantage on the generation of the
blocks of L2. The second issue is that the adversary might influence the choice of the block that will
appear in position j. Indeed, we do not know how the consensus algorithm of L1 works and what is
the power of the adversary in biasing the content of Bj . We denote with τmax ′ the upper bound on the
number of rounds that pass between the time at which the adversary can see a candidate block for L1
for a position j, and the time at which all the honest parties see Bj as part of the stable chain. We
refer to this parameter τmax ′ as the prediction parameter. We also denote with m′ the upper bound on

13

D3.3 – Revision of Extended Core Protocols

the number of valid chains that are broadcasted on the network that contain a block in position j and
refer to this parameter as maximum forks parameter.

Coming back to our protocol, we note that if the genesis functionality of L2 is parameterized with
τmax = τmax ′ and m = m′ then we can prove that the solution we proposed works.

We are now ready to state formally our theorem and prove it.

Theorem 2. If L1 and L2 are secure ledgers and:

1. L1 has common-prefix parameter k1, chain-growth parameter (τ1, s1) and assumption A1;

2. L2 has common-prefix parameter k2, chain-growth parameter (τ2, s2) and assumption A2;

3. the prediction parameter of L1 is τmax ′ and the maximum forks parameter is m′;

4. the genesis functionality Fgen of L2 is parametrized by τmax = τmax ′ and m = m′;

5. L1 is genesis-compatible with L2.

then there exists an updatable ledger LUPD with update parameter ∆ := 2k1τ
−1
1 +s1 in the semi-online

setting.

Proof. We start the proof by describing how formally our protocol works. Let T0 be such that A2 holds.
At time T0 each party in Pi ∈ Pu does the following steps.

1. Create and post a transaction that contains an activation flag, let if be the index of the block that
will contain the first transaction with an activation flag (note that there might be more than one
of such a transactions).

2. Keep running L1 until the block with index j = if +k1 becomes stable (i.e., becomes part of LP1 [τ]
for all P ∈ Pu for some τ ≥ T0) and stop issuing transaction for L1 (if any).

3. When the j-th block Bj becomes stable then stop running L1 and start running L2 using Bgen ←
Π1→2(Bj) as the genesis block.

We provide a pictorial description of what happens to the ledger state during the update in Fig. 2.4.
The activation flag is used by the honest parties to reach an agreement on what it will be the index of
the block used as a genesis block. We note that the blocks of L1 that extend Bj might be unstable,
moreover after the update has been completed the parties in Pu will ignore the blocks of L1 that extend
Bj (since after the update all the parties in Pu will be using the rules L2, hence its chain selection
rule). The reason why the parties in Pu will stop issuing transactions for L1 is that these transactions
might be included in blocks that extend Bj , which will be ignored after T0 + ∆ rounds. This clearly
affects the throughput of the ledger in the interval [T0 + k1τ

−1
1 + s1, T0 + 2k1τ

−1
1 + s1] (Fig. 2.4). We

now continue with the proof. Let T0 be the time at which we know that Pu is such that A2 holds. In
the worst case, the time required for an honest party to post a transaction that contains the activation
flag takes time s1 rounds (s1 comes from the liveness of L1). The number of rounds required for j to
be stable in the view of all the honest parties is 2k1τ

−1
1 rounds. This is because to generate the block

Bj are required at least k1τ
−1
1 rounds, and Bj has to be extended with at least k1 blocks to be part

of all the honest parties view (and this takes additional k1τ
−1
1 rounds). Hence, the time required to

complete the update is ∆ = 2k1τ
−1
1 + s1. Once the block Bj becomes stable, the parties in Pu can

start running L2, and we are guaranteed that L2 enjoys liveness and consistency because the genesis
block for L2 is created accordingly to Fgen and by assumption A2 holds. Therefore, everything that
appears before Bgen is preserved due to the consistency of L2. We refer to the state of L1 before Bgen

as L̃1, and to the state of the ledger after the update as L̃1||L2. We finally note that we guarantee no
security for the honest parties that were not online during the update. The reason is that after T1 the

14

D3.3 – Revision of Extended Core Protocols

Figure 2.4: Transition from L1 to L2. Note that the empty blocks of L1 might be non-stable.

honest parties abandon L1 and the adversary could compromise it. For example, an adversary could
potentially keep extending L1 after the block j, and create a very long chain, even longer that L̃1||L2.
Hence, if the chain selection rule of L1 prescribes to take the longest chain, then a party that comes
online at time T1 might take the chain L1 (which is compromised).

We remark that our construction requires the parties to generate empty blocks for L1 from block
index j + 1 and until block Bj becomes stable. This is required as the honest parties, after the update
completes, will ignore any block generated using the rules of L1 that comes after Bj .

Practical implications. The updatable ledger that we have described can be updated to any ledger
L2 under the condition that the genesis functionality of L2 tolerates an adversary that can see the genesis
block τmax rounds before the honest parties and decide the genesis block among a set of m candidate
genesis blocks. This requirement might look strong, but we note that the problem of constructing
a ledger that is secure in such a scenario is simpler than the problem of constructing a ledger that
supports temporary dishonest majority [AKWW19]. A ledger with security assumption A that tolerates
temporary dishonest majority is such that its security properties (liveness and consistency) become valid
again when A[τ1] = 1, even if A[τ ′] = 0 for all τ ′ ∈ [τ0, τ1−δ] for some τ0, τ1, δ ∈ N such that τ1−δ ≥ τ0.
That is, the ledger become secure again when there is honest majority (i.e., A holds) even if there was
an interval of time when there was no honest majority (i.e., A did not hold). Therefore, if we consider
the extreme case where τ0 = 0, we can assume without loss of generality that the ledger admits a genesis
functionality parametrized by τmax = δ, and by m that depends on the upper bound on the number of
forks that the adversary can create. Hence, there are already ledgers that might fit our requirements
for L2, and all the advancement in the research that concerns the security of ledgers in the case of
temporary dishonest majority can be used to construct good candidates of updated ledgers (L2) for

15

D3.3 – Revision of Extended Core Protocols

existing ledgers (L1) that can be used in our compiler.

Security for Offline Parties. Our security notion above is ensured for parties that are online
during the upgrade process. Clearly it is necessary that the majority of the population’s consensus-
maintaining parties are honest and online, as the honest majority assumption mandates. Nevertheless,
practical blockchain systems often have a large number of consumer parties by count who have a very
small contribution to the total computational power of network, if at all, and are not significantly
contributing to the maintenance of the consensus. These nodes can be wallets and other clients who
mainly consume, rather than maintain, the blockchain, and are often offline for longer periods of time.
Regardless, these nodes constitute the economic majority of the nodes and we must ensure they can also
upgrade safely. The critical situation arises when such a party goes offline prior to an upgrade, remains
offline during every phase of the upgrade, and comes online long after the rest of the population has
successfully upgraded. Before describing how to construct a protocol that can protect these parties,
let us briefly observe why an attack is easily possible by a minority adversary in a construction with
no relevant protective mechanism. Consider a situation where a hard-fork-style change takes place and
that blocks mined by upgraded parties after the upgrade are incompatible with blocks mined prior to
the upgrade, i.e., after the upgrade, an unupgraded party will not consider an upgraded block as valid
and an upgraded party will not consider an unupgraded block as valid. After the upgrade has been
completed, the majority of the population will shift their mining power to mining new-style blocks.
The adversary can take advantage of this situation to ex post facto attack the old system, which now
remains unprotected as no significant mining power remains to secure it. As such, she can break the
common prefix property, rewrite history, and subvert the upgrade signaling mechanism itself. More
concretely, an adversary in this situation forks the old chain from the parent of the block in which
upgrade information appeared for the first time and continues mining a chain parallel to the one that
yielded the upgrade. As soon as that alternative history overtakes the old chain in terms of work, the
adversary is successful. Any offline party who wakes up afterwards will use the old-style consensus
rules to choose the blockchain and hence the upgrade will not appear in its view. The adversary has
succeeded in isolating the offline party from the rest of the network. To rectify the above issue, a
practical implementation of the protocol must leverage the mining power of the upgraded population to
maintain both the new chain while at the same time securing the old chain. We propose a solution for the
case where L1 and L2 are two proof-of-work or two proof-of-stake type of ledgers. Our solution leverages
on a variation of 2-for-1 mining [GKL15b]. An upgraded miner works as follows. They maintain the
longest chain C in view of the new protocol rules, but also the longest chain C ′ in the view of an
unupgraded party. In case of hard fork, these two chains will differ. When they are about to mine a
new block on top of the upgraded chain, they construct a new-style candidate block b extending C as
usual. In addition, they also construct an empty (transactionless) old-style block b′ on top of the best
unupgraded chain C ′. In a commentary section of the old-style candidate block b′, such as the coinbase
transaction, the miner places the hash H(b) of the new-style candidate block. The miner then attempts
to find proof-of-work for the old-style block, i.e., some nonce ctr that satisfies the proof-of-work equation
H(b′ ‖ ctr) ≤ T for the mining target T . If such proof-of-work is found, then the block b′ is broadcast
to the network and adopted as the tip of the longest unupgraded chain by the rest of the (upgraded
or unupgraded) miners. Note that this block is designed to be backwards-compatible in the sense that
it will be accepted by unupgraded miners even though they remain unaware of the upgrade. On the
other hand, if the reverse proof-of-work equation H(b′ ‖ ctr)R ≤ T is satisfied (where H(·)R denotes the
reversed bitstring of H(·)), then b′ and the respective proof-of-work and blocks b′, b are broadcast to
the network. This time unupgraded miners will not consider this a valid block. However, upgraded
miners examine the validity of the block b contained within the commentary section of b′ and check
that the reverse proof-of-work equation is satisfied. If so, they adopt the block b as the next block in
their upgraded blockchain. The above mechanism is the only mechanism by which new-style blocks

16

D3.3 – Revision of Extended Core Protocols

are accepted by upgraded honest miners. The protocol just described has two advantages. Firstly, the
upgraded honest miners make use of their mining power to contribute to the security of both the old and
the new-style chain simultaneously. Therefore, an adversary cannot attack the old chain ex post facto.
Secondly, instead of dividing their mining power between the two chains, the honest parties only use
their mining power once to mine on both networks, because the hash function is only evaluated once. As
such, the honest mining power is not diminished by the use of this mechanism. We observe that, in the
Random Oracle model, the last bits of the hash output remain uniformly distributed conditioned on the
fact that the proof-of-work equation has a solution. Therefore, finding a solution of the proof-of-work
equation and finding a solution of the reverse proof-of-work equation are two independent events (they
will occur simultaneously so rarely that the honest parties can ignore this possibility). Lastly, note that
this scheme can be used repeatedly when multiple upgrades have occurred on top of one another, simply
by treating a portion of the bits of the hash as the significant bits to test against the proof-of-work
equation (e.g., for a second upgrade, the hash output can be split in three equal parts to be tested against
the proof-of-work equation). This scheme therefore theoretically resolves the question of securing offline
parties. In practice, because the scheme adds significant implementation complexity, implementors may
elect to maintain this backwards-compatibility mechanism for a limited amount of time. In that case,
parties who have remained offline longer than the backwards-compatibility mechanism is maintained,
will have no guarantees for security, similarly to a classical system whose long-term support window
has expired. The scheme requires the added complexity of mining two blocks simultaneously only in
the case of proof-of-work. This is due to the nature of proof-of-work and specifically the fact that each
query counted towards the proof-of-work quota can only be devoted to a specific message. In proof-of-
stake blockchains, the solution for maintaining the security of offline unupgraded parties is the obvious
one and allows for a much simpler implementation: We require upgraded parties to mint, alongside
their new-style blocks extending the longest upgraded chain and containing transactions, also empty
old-style blocks extending the longest unupgraded chain, to ensure the security of their unupgraded
counterparts.

17

Chapter 3

Mining for Privacy

Non-interactive zero-knowledge proofs, and more specifically succinct non-interactive zero-knowledge
arguments (zk-SNARKS), have been proven to be the “Swiss army knife” of the blockchain and dis-
tributed ledger space, with a variety of applications in privacy, interoperability and scalability. Many
commonly used SNARK systems rely on a structured reference string (SRS), the secure generation of
which turns out to be their Achilles heel: If the randomness used for the generation is known, the sound-
ness of the proof system can be broken with devastating consequences for the underlying blockchain
system that utilises them. In this work we describe and analyse, for the first time, a blockchain mech-
anism that produces a secure SRS with the characteristic that security is shown under comparable
conditions to the blockchain protocol itself. Our mechanism makes use of the recent discovery of up-
dateable structured reference strings to perform this secure generation in a fully distributed manner. In
this way, the SRS emanates from the normal operation of the blockchain protocol itself without the need
of additional security assumptions or off-chain computation and/or verification. We provide concrete
guidelines for the parameterisation of this setup which allows for the completion of a secure setup in
a reasonable period of time. We also provide an incentive scheme that, when paired with the update
mechanism, properly incentivises participants into contributing to secure reference string generation.

3.1 Introduction
In the domain of distributed ledgers, non-interactive zero-knowledge (NIZK) proofs have many inter-
esting applications. In particular, they have been successfully used to introduce privacy into these
inherently public peer-to-peer systems. Most notably, Zerocash [BCG+14] demonstrates their use-
fulness in the creation of private currencies. Beyond this, there are numerous suggestions [KMS+16,
JKS16,SBG+19] to apply the same technology to smart contracts for increased privacy. Beyond privacy,
other applications of zero knowledge include blockchain interoperability, e.g., [GKZ19], and scalability,
e.g., [But].

For the practical efficiency of these designs, two things are paramount: The succinctness of proofs,
and the speed of verifying these proofs. The distributed nature of the ledgers mandates that a large
number of users store and verify each proof made, rendering many zero-knowledge proof systems not
fit for purpose.

Research into so-called zk-SNARKs [PHGR13,Gro16,GM17,GKM+18,MBKM19] aims at optimising
exactly these features, with proof sizes typically under a kilobyte, and verification times in the millisec-
onds. It is a well-known fact that non-interactive zero-knowledge requires some shared randomness, or
a common reference string. For many succinct systems [PHGR13,Gro16,GM17,GKM+18,MBKM19],
a stronger property is necessary: Not only is a shared random value needed, but it must adhere to a
specific structure. Such structured reference strings (or SRS) typically consist of related group elements:
gx

i for all i ∈ Zn, for instance.

18

D3.3 – Revision of Extended Core Protocols

The obvious way of sampling such a reference string from public randomness reveals the exponents
used – and knowledge of these values breaks the soundness of the proof system itself. To make matters
worse, the security of these systems typically relies (among others) on knowledge of exponent assump-
tions, which state that to create group elements related in such a way requires knowing the underlying
exponents and hence any SRS sampler will have to “know” the exponents used and be trusted to erase
them, becoming effectively a single point of failure for the underlying system. While secure multi-party
computation can be, and has been, used to reduce the trust placed on such a setup process [Zca18],
the selection of the participants for the secure computation and the verification of the generation of
the SRS by the MPC protocol retain an element of centralisation. Using an MPC setup remains a
controversial element in the setup of a decentralised system that requires SNARKs.

Recent work has found succinct zero-knowledge proof systems with updateable reference strings [GKM+18,
MBKM19]. In these systems, given a reference string, it is possible to produce an updated reference
string, such that knowing the trapdoor of the new string requires both knowing the trapdoor of the
old string, and knowing the randomness used in the update. [GKM+18] conjectured that a blockchain
protocol may be used to securely generate such a reference string. Nevertheless, the exact blockchain
mechanism that produces the SRS and the description of the security guarantees it can offer has, so
far, remained elusive.

3.1.1 Our Contributions

In this work we describe and analyse, for the first time, a blockchain mechanism that produces a secure
SRS with the characteristic that security is shown for similar conditions under which the blockchain
protocol is proven to be secure. Notably different, we make implicit use of secure erasure, and require
honest majority only during a specific initialisation period. The SRS then emanates from the normal
operation of the blockchain protocol itself without the need of additional security assumptions or off-
chain computation and/or verification.

We rely primarily on the chain quality property of “Nakamoto-style” ledgers [GKL15b] – distributed
ledgers in which a randomised process selects which user may append a block to an already established
chain. Such ledgers rely on an honest majority of hashing power (or some other resource) – and can be
shown to guarantee a chain quality property which suggests that any sufficiently long chain segment
will have some blocks created by an honest user, cf. [GKL15b,PSs17,GKL17].

Our construction, described in section 3.3 integrates reference string updates into the block creation
process, but we face additional difficulties due to update calculation being a computationally heavy
operation (albeit, contrary to brute-force hashing, useful). The issues arising from this are twofold.
Firstly, an adversarial party can take shortcuts by supplying a low amount of entropy in their updates,
and try to utilise this additional mining power to subvert the reference string which potentially has a
large benefit for the adversary. Secondly, even non-colluding rational block creators may be incentivised
to use bad randomness which would reduce or remove any security benefits of the updates. Our work
addresses both of these issues.

We prove formally that our mechanism produces a secure reference string in section 3.12 by pro-
viding an analysis in the universal composition framework [Can01]. Furthermore, in section 3.4, we
demonstrate via experimental analysis how to concretely parameterise a proof-of-work ledger to ensure
that an adversary which takes shortcuts (while honest users do not) will still fail in subverting the
reference string. The concrete results provided in our experimental section can be used to inform the
selection of parameters in order to run our reference string generation mechanism in live blockchain
systems.

We further introduce an incentive scheme in section 3.5, which ensures that rational participants
in the protocol, who intend to maximise their profits, will avoid low-entropy attacks. In short, the
incentive mechanism mandates that a random fraction of update contributors in the final chain will
be asked to reveal their trapdoor, which will be verified to be the output of a random oracle by the

19

D3.3 – Revision of Extended Core Protocols

underlying ledger rules. Only if a user can demonstrate that their update is indeed random do they
receive a suitably determined reward for their effort. Careful choice of the reward assignment enables
us to demonstrate that rational participants will utilise high entropy exponents, thus contributing to
the SRS computation.

3.1.2 Related Work

Beyond the obvious relation to the works introducing updateable reference strings in [GKM+18,MBKM19]
(most notably Sonic [MBKM19], which we follow closely in our instantiation in section 3.7), there have
been attempts of practically answering the question of how to securely generate reference strings. These
have been in a setting where the string is not updateable.

Notably [BGG19] describes the mechanism used by Sprout, the first version of Zcash, during the
initial setup of the cryptocurrency’s SRS. It uses multi-party computation to generate a reference string,
with a root of trust on the initial group of people participating. Due to performance constraints on the
MPC protocol, the set of parties participating is relatively small, although only the honesty of a single
participating party is required.

For the Sapling version of Zcash, a different approach was used when their reference string was
replaced (due to an upgrade of the zero-knowledge statement, and proof system used). Their second
CRS generation mechanism, described in [BGM17] uses a multiple-phase round-robin mechanism to
generate a reference string for Groth’s zk-SNARK [Gro16]. They utilise a random beacon to ensure the
uniform distribution of the result, and a coordinator to perform deterministic auxiliary computations.

A great deal of work has also gone into the design of non-interactive zero-knowledge which does
not require structure in its references, such as DARK [BFS20], STARKs [BBHR18], and Bullet-
proofs [BBB+18a]. While these pose a promising alternative which does not require the techniques
used in this work, leveraging updatability of reference strings may permit greater efficiency without
additional security assumptions, and may be useful in instantiating generic constructions, such as the
polynomial commitments-based Halo Infinite [BDFG20].

3.2 Updateable Structured Reference Strings
While updateable structured reference strings (uSRSs) are modelled in the works we are building
on [MBKM19, Section 3.2], we model their security in the setting of universal composability (UC) [Can01].
Here, a uSRS is a reference string with an underlying trapdoor τ , which has had a structure function
S imposed on it. S(τ) is the reference string itself, while τ is not revealed to the adversary. In
section 3.7, we prove that Sonic [MBKM19] (with small modifications for extraction, as described in
subsection 3.2.2), satisfies all the properties we require in this section. Our main proof is independent
of the Sonic protocol however, and applies to any updateable reference string scheme satisfying the
properties laid out in the rest of this section.

3.2.1 Standard Requirements

A uSRS scheme S consists of a trapdoor domain T , an initial trapdoor τ0, a set P of permissible
(and invertible) permutations over T (i.e. bijective functions whose domain and codomain is T), and
a structure function S with the domain T . We require P to include the identity function id, and to
be closed under function composition: ∀p1, p2 ∈ P : p1 ◦ p2 ∈ P . An efficient permutation lifting †
should exist, such that for any permutation p ∈ P and τ ∈ T , p†(S(τ)) = S(p(τ)). Finally, there must
exist algorithms ρ← ProveUpd(S(τ), p) and b← VerifyUpd(S(τ), ρ, S(p(τ))) for creating and verifying
update proofs respectively. The format of these update proofs is not specified, however the following
constraints must be met:

20

D3.3 – Revision of Extended Core Protocols

1. Correctness. Applying an honestly generated update proof will verify: ∀p ∈ P, τ ∈ T :
VerifyUpd(S(τ),ProveUpd(S(τ), p), S(p(τ))).

2. Structure preservation. Applying any valid update is equivalent to applying some permutation
p ∈ P on the trapdoor: ∀ρ, τ, srs′ : VerifyUpd(S(τ), ρ, srs′) =⇒ ∃p ∈ P : srs′ = S(p(τ)).

3. Update uniformity. Applying a random permutation is equivalent to selecting a new random
trapdoor: Let D be the uniform distribution over T , and for all τ ∈ T , let Dτ be the uniform
distribution over the multiset { p(τ) | p ∈ P }. Then ∀τ ∈ T : D = Dτ .

We define a corresponding UC functionality FuSRS, which provides a reference string S(p(τH)),
which the adversary can influence by providing the permutation p ∈ P , given only S(τH) as input, for
a randomly sampled τH ∈ T .

Functionality FuSRS

The updateable structured reference string functionality FuSRS allows the adversary to update a reference
string by applying a permutation from a set of permissible permutations P .

The functionality is parameterised by a trapdoor domain T , a structure function S, and a set of permis-
sible permutations P over T .

State variables and initialisation values:
Variable Description
τH := ⊥ The honest part of the trapdoor
τ := ⊥ The trapdoor

When receiving a message honest-srs from A:
if τH = ⊥ then let τH

R←− T
return S(τH)

When receiving a message srs from a party φ:

query A with (permute, φ) and receive the reply p
if τ = ⊥ then

assert p ∈ P ∧ τH 6= ⊥
let τ ← p(τH)

return S(τ)

We believe this functionality to be of independent interest, and it is not explicitly tied to our
implementation. Notably, while we use a distributed ledger as a weak form of a broadcast channel,
other broadcasts can be considered without modification to this functionality. While, as presented,
the functionality does not dictate any specific usage, we conjecture that when parameterised with an
appropriate structure function and permutation set it can be used to securely instantiate updateable
SRS-based SNARKs, such as Sonic [MBKM19], Marlin [CHM+20], or Plonk [GWC19]. Due to the
UC setting, this would require additional lifting to enable UC knowledge extraction, such as that of
C∅C∅ [KZM+15].

3.2.2 Simulation Requirements

In addition to the basic properties of correctness, structure preservation, and update uniformity, any
simulator wishing to help realise FuSRS via updates will need to have access to two additional properties:

1. Update proof simulation. From an initial SRS S(τ) for which the simulator knows the trap-
door, it can produce a valid update to any (correctly structured) SRS. Formally: ∃Sρ∀τ1, τ2 ∈ T :
VerifyUpd(S(τ1),Sρ(τ1, S(τ2)), S(τ2)), where Sρ is a PPT algorithm.

21

D3.3 – Revision of Extended Core Protocols

2. Permutation extraction. The simulator must be capable of extracting the permutation p
underlying any valid adversarial update proof.

The most natural method to achieve permutation extraction would be using white-box extractors,
as the updates themselves typically rely on some form of knowledge assumption, such as knowledge-of-
exponent. However, white-box extractors cannot be used in UC proofs. Instead, we will assume that
the update proof is proven to correspond to a specific trapdoor through a lower-level NIZK. Crucially,
this lower-level NIZK should not require a structured reference string, and rely only on a common
random string, or a random oracle. Fortunately, it is not subject to stringent efficiency requirements
as section 3.4 demonstrates.

Specifically, we assume that the basic update proof ρ is a statement in a NIZK relation R where
the witness is an encoding of the corresponding permutation p. We require each update proof to have
one and only one corresponding permutation, formally expressed by requiring R to be a bijection. This
results in a straightforward modification to the ProveUpd and VerifyUpd algorithms that permits the
extraction of the underlying permutations even in the UC setting: ProveUpd also creates a NIZK proof
π of (ρ, p), and returns (ρ, π), While VerifyUpd returns true only if this newly embedded NIZK proof
also verifies.

The addition of this NIZK trivially preserves all security properties including correctness, due to
the definition of R:

Definition 4. A uSRS scheme is permutation extractable if the relation

R := {(ProveUpd(S(τ), p), p) | τ ∈ T, p ∈ P}

is a bijection, and in NP.

We show in section 3.7 that the relation required for the case of Sonic [MBKM19] can be efficiently
constructed, and leave the question of how to achieve extraction without the reliance on a further NIZK
to future work.

3.3 Building uSRS from Chain Quality
This section shows how to securely initialise a uSRS using a distributed ledger by requiring block
creators to perform updates on an evolving uSRS during an initial setup period. After waiting for
agreement on the final uSRS, it can be safely used. To formally model this approach, we discuss the
ideal and real worlds used in our simulation proof. Both worlds have access to a ledger, however, the
ideal world’s ledger is independent of the reference string (which is instead provided by the independent
FuSRS functionality), while the real world’s ledger is programmed to generate it using updates.

3.3.1 High-Level Overview

This basic premise of this chapter relies on Nakamoto-style ledgers’ basic means of operation: Different
users can extend a chain of blocks if they can satisfy some condition, with this condition being associated
with a type of hardness which ensures attackers are limited in the number of extensions they can perform.
Given such a structure, we associate a uSRS update with each block prior to a time δ1. This time is
selected such that the security properties of the ledger ensure at least one of the blocks is honest in
each competitive chain at this point.

In our modelling, we construct this from a ledger functionality with an additional leadership state,
which is derived from information miners embed in their blocks. Specifically for our case, these encode
uSRS updates. We leave this sufficiently general to allow other uses as well. The basic idea is to show
that a ledger which performs uSRS updates in its leadership state is equivalent to one which doesn’t,

22

D3.3 – Revision of Extended Core Protocols

but is accompanied by the FuSRS functionality. They make up our real and ideal worlds respectively.
After time δ1, users wait a further time period δ2 until common prefix ensures that all parties agree on
the reference string.

While ledger functionalities are often treated as global, our approach effectively constructs one
ledger from another – the ledger is not a dependency of our protocol, but a component. In this context,
globality is irrelevant, as the environment already has direct access to the functionality. We expect
protocols building on the ledger to use it in a global fashion, however. The same is not true for the
uSRS – most usages will likely rely on the simulator being able to extract its trapdoor.

3.3.2 Our Ledger Abstraction

Our construction of the updateable structured reference string functionality relies heavily on the prop-
erties of common prefix, chain quality, and chain growth defined in the “Bitcoin backbone” analysis by
Garay et al. [GKL15b], for Nakamoto-style consensus algorithms. Despite our use in the section title,
we make use of all three properties, not just that of chain quality. We emphasise chain quality, as it is
the property central to ensuring an honest update has occurred. We briefly and informally restate the
three properties:

• Common prefix. Given the current chains Π1 and Π2 of two parties, and removing k blocks
from the first, it is a prefix of the second: Πdk1 ≺ Π2.

• Chain quality. For any party’s current chain Π, any consecutive l blocks in this chain will
include µ blocks created by an honest party.

• Chain growth. If a party’s chain is of length c, then s time slots later, it will be at least of
length c+ γ.

These parameters determine the length of the two phases of our protocol. In the first phase, we construct
the reference string itself from the liveness parameter (assuming µ ≥ 1), and in the second phase, we
wait until this reference string has propagated to all users. The length of the first phase is at least
δ1 ≥ dlγ−1es, and that of the second at least δ2 ≥ dkγ−1es. Combined, they make up the total uSRS
generation delay δ ≥ (dlγ−1e+ dkγ−1e)s.

We assume a ledger which guarantees the backbone properties, formally described in subsection 3.8.1.
While we do not prove any specific existing proof-of-work ledger (or those based on a different leader-
selection mechanism) formally UC-realise this specific formalisation, we argue all ledgers with “Nakamoto-
style” (as opposed to BFT-style) consensus do so. in subsection 3.8.2 Our functionality further depends
on a global clock Gclock, defined in subsection 3.11.1. For the purposes of this chapter, it is sufficient
that this is a beacon providing monotonically increasing values representing the current time to any
party requesting them.

In addition to this, we assume each block created can contain additional information, provided by
its creator (the “miner”), which can be aggregated to construct a “leader state”. Each created block
is associated with an update a, and the ledger is parameterised by two procedures, Gen, and Apply,
which describe the honest selection of updates, and the semantics of updates respectively. Looking
forward, these utilise ProveUpd and VerifyUpd internally, although the formalism is sufficiently general
to allow usage of the leader state for other, parallel purposes. The exact parameters differ in our ideal
and real world, with the ideal world “hiding” the uSRS updates. Additionally, the real world adds
time-sensitivity: It does nothing to the SRS after the setup period. Gen is randomised, takes a leader
state σ and the current time t as inputs, and produces an update a. Apply takes a leader state σ, an
update a, and an update time t, and returns a successor state σ′: σ′ = Apply(σ, (a, t)). For a chain,
the leader state may be computed by sequentially applying all updates in the chain, starting from an
initial state ∅.

23

D3.3 – Revision of Extended Core Protocols

The adversary controls when and which party creates a new block, as well as the transactions each
new block contains (provided it does not violate the backbone properties). For transactions created
by a corrupted party, the adversary can further control the block’s timestamp (within the reasonable
limits of not being in the future, and being after the previous block), and the desired update a itself.
For honest parties updates, Gen is used instead.
The UC interfaces our ledger provides are:

• submit. Submitting new transactions for the ledger.

• read. Reading the confirmed sequence of transactions.

• projection. Reading the current chain’s sequence of (potentially unconfirmed) transactions.

• leader-state. Reading the confirmed leader state.

• advance. The adversary switches a party to a longer chain.

• extend. The adversary instructs a party to create a block.

While this ledger abstraction is not the focus of this chapter, we believe it to be of independent interest
in cases where finer control over miner’s actions, or better access to the competing chains is desired.

3.3.3 The Ideal World

Our ideal world consists of two functionalities, composed in parallel (by which we mean: the environment
may address either, and they do not interact). The first is a variant of FuSRS, with the modification that
it cannot be addressed by honest parties before δ time slots have passed. Formally, this modification is
made with a wrapper functionality Wdelay(F, δ), described in subsection 3.11.4.

The second is the Nakamoto-style ledger functionality, parameterised with arbitrary leader-state
generation and application procedures which are also partially used in the hybrid world: Gen = GenIdeal
and Apply = ApplyIdeal, and the following ledger parameters:

1. A common prefix parameter k.

2. Chain quality parameters µ and l.

3. Chain growth parameters γ and s.

Formally then, our ideal world consists of the pair (Wdelay(δ,FuSRS),F ideal
nakLedger), as well as the global

functionality Gclock.

3.3.4 The Hybrid World

In our hybrid world, we use a uSRS scheme S, with algorithms ProveUpd, VerifyUpd, the structure
function S, permissible permutations P , permutation lifting †, initial trapdoor τ0. The hybrid world
consists of a separate Nakamoto-style ledger F real

nakLedger, a NIZK functionality FRNIZK, and the global
clock Gclock. The ledger is then parameterised by the same chain parameters as those in the ideal world,
and the following leader-state procedures:
procedure Apply((srs, σideal), ((srs′, ρ, π, aideal), t))

if srs = ∅ then let srs← S(τ0)
if t ≤ δ1 ∧ VerifyUpd(srs, ρ, srs′) then

send (verify, ρ, π) to FRNIZK and receive the reply b
if b then

let srs← srs′
return (srs,ApplyIdeal(σideal, aideal, t))

24

D3.3 – Revision of Extended Core Protocols

procedure Gen((srs, σideal), t)
if t > δ1 then

return (ε, ε, ε,GenIdeal(σideal, t))
else

let p R←− P ; ρ← ProveUpd(srs, p)
send (prove, ρ, p) to FRNIZK and receive the reply π
return (p†(srs), ρ, π,GenIdeal(σideal, t))

Note that these parameterising algorithms use FRNIZK, and are therefore the reason the ledger depends
on this hybrid functionality.

Key here is that once a block is received after the initial chain quality period, any reference string
update it may declare is no longer carried out – at this point the uSRS is not necessarily stable, as the
chain may still be reorganised, but should not change for this particular chain. Further, these procedures
always mimic the ideal-world behaviour, extending it rather than replacing it. This demonstrates the
composability of allowing block leaders to produce updates: One system using updates for security does
not impact other parallel uses of the leadership state.

There is little additional work to be done to UC-emulate the ideal-world behaviour, besides ensuring
that queries are routed appropriately, especially how the reference string is queried in the hybrid world.
We describe this with a small “adaptor” protocol in section 3.9, ledger-adaptor. This forwards most
queries, and treats uSRS queries as querying the appropriate part of the leader state after time δ, and
by ignoring them before. Formally, our real world consists of the global clock Gclock, and the system
ledger-adaptor(δ,F real

nakLedger(FRNIZK)).

3.3.5 Alternative Usage of Gclock

In both worlds, Gclock is used to determine the cutoff point after which the reference string is deemed
secure. A simple alternative to this usage of the clock is to instead rely on the length of the chain
for this purpose. We did not make this choice as it complicates the ideal world: The delay wrapper
would have to communicate with the ideal world ledger, and query it for the length of parties’ chains.
We do not regard a clock as a significant additional assumption, however, little of the remainder of
this chapter differs if chain lengths are used instead. Even in this case, a clock is present to guarantee
liveness, although it is used only to constrain the adversary.

3.3.6 UC Emulation

Our security is derived through UC-emulation, stated in the following theorem:

Theorem 3. For any updateable reference string scheme S, satisfying correctness, structure preser-
vation, update uniformity, update simulation with Sρ, and permutation extraction, ledger-adaptor
(in the (F real

nakLedger,FRNIZK)-hybrid world, parameterised as in subsection 3.3.4) UC-emulates the pair of
functionalities (F ideal

nakLedger,Wdelay(δ,FuSRS)), parameterised as in subsection 3.3.3, in the presence of the
global clock functionality Gclock, with the simulator Sledger-adaptor.

A full security proof of Theorem 3 may be found in section 3.12, and the simulator Sledger-adaptor may
be found in section 3.10.

3.4 Implementation and Parameter Selection
We have implemented [Ker20] Sonic’s update mechanism (described in section 3.7), and using this
provide performance estimates for SRS generation in a live blockchain network. Further, we simulate the
optimal adversarial attack strategy, and demonstrate how this may be used to select optimal parameters

25

D3.3 – Revision of Extended Core Protocols

for the secure generation of reference strings. We demonstrate that for currently typical applications,
these parameters are practical for real-world usage.

While we have not modified a full blockchain client to utilise this extended consensus, we discuss
the impact it would have on each of the following points:

• block verification

• block generation

• chain reorganisation

• network usage

• local storage

While the Bitcoin backbone paper [GKL15b] provides bounds on chain parameters in given situations,
these have three main drawbacks in the context of this chapter:

1. The bounds are not tight.

2. The criteria for security is stricter than required: It asserts liveness and persistence are never
violated, while this chapter only requires them in a few select cases.

3. The analysis is in the synchronous model – while the generation and verification of reference
strings can take a significant amount of time.

To obtain sensible parameters to generate reference strings, we measure the time taken for computing
and verifying updates, and factor this processing overhead into a simulation of the optimal adversarial
strategy to subvert the SRS generation procedure.

The implementation and numbers provided for execution time and storage use the commonly used
BLS12-381 curve pair. Circuits which have been practically deployed tend to require a depth of at
most half a million, so we will often assume a Sonic uSRS depth of 500,000. All data shown is available
at [Ker20], and may be reproduced with the provided source code.

3.4.1 Execution Time of uSRS Operations

We tested our implementation of the uSRS generation mechanism on an AMD Ryzen 7 2700X 8-core
processor with hyper-threading enabled. This processor is a standard consumer-grade CPU – in proof-
of-work mining it is likely that miners will have access to better hardware. All operations have been
parallelised, and the verification operation has been additionally optimised to use less pairing operations.
The workload, especially for uSRS generation, is also highly parallelisable (consisting of primarily a large
number of group exponentiations), suggesting further improvements by utilising GPUs and clusters of
machines are possible. If such improvements are applied, the total time delay required for the secure
generation procedure, as well as the optimal intended block time could be reduced proportionally to the
increase in parallelisation; assuming paralellisation across 10 machines could reduce both by an order
of magnitude, for instance.

We measured the time taken for create and verify a uSRS update in relation to the uSRS depth in
Figure 3.1. For our NIZK, we use a UC-secure Fischlin proof, described in subsection 3.7.3. We measure
the overhead of these proofs to be 23.956ms for proving and 1.567ms for verifying (a Fiat-Shamir proof
of the same type was measured to 0.921ms and 0.870ms respectively), using SHA-3 in place of a random
oracle. For larger dimensions of reference strings, neither have much impact on the total runtime.

Finally, we implemented aggregate updates: The bulk of Sonic’s update verification procedure is
concerned with verifying the structure of the reference string, while a few parts of it verify that it is
an exponentiation of the previous string. By retaining only the latter parts, a series of updates can be

26

D3.3 – Revision of Extended Core Protocols

20 24 28 212 216 220

10−1

100

101

102

103

d

Ex
ec
ut
io
n
tim

e
(s
)

Generation
Verification

Figure 3.1: The time taken to produce and verify uSRS updates.

verified almost as quickly as a single update. The verification of aggregate proofs has an overhead of
1.634ms per update included in the aggregate. The bulk of this cost arises from the verification of the
Fischlin proof. This allows for even large chain reorganisations to be quickly verified.

3.4.2 Simulating the Optimal Attack Strategy

The mechanism we have presented in this chapter operates in two phases. In the first phase, the
adversary has the chance to subvert the reference string, while in the second phase it can carry out
a denial of service attack, potentially convincing users that an incorrect (but not subverted) reference
string is the canonical one.

For the first phase, the adversary’s optimal strategy is to mine entirely independently from any
honest activity: the adversary cannot adopt any honest block – doing so would break the subversion of its
reference string. Further, the adversary has no reason to share any of its own blocks except if it reached
the threshold of having a fully valid subverted reference string – it only gives the honest network a chance
to catch up, in the case that the adversary is ahead. This allows for a straightforward simulation of the
consensus protocol: The probability of either honest parties, or the adversary creating an individual
block is exponentially distributed. In addition to this, honest parties have a fixed processing overhead
before they may start mining: This may include a networking delay, but more crucially it includes the
time taken to verify a newly received block’s uSRS update, and to produce the subsequent update. We
assume that the adversary can bypass large parts of this overhead, by virtue of network dominance,
by skipping verification, and by producing reference string updates with small (and therefore insecure)
exponents.

The overhead manifests as shifting the honest party’s exponential distribution for block generation
by a fixed constant. More precisely, we parameterise each experiment by:

• The intended time between blocks b

• The combined networking, and update overhead d

• The fraction of adversarial mining power α

Of these three, d can be seen as fixed, depending on the depth of the uSRS being generated, and the
corresponding speed of verification and update generation. For simplicity, we assume a uSRS depth of

27

D3.3 – Revision of Extended Core Protocols

0 20 40 60 80 100

10−1

100

101

102

Intended time between blocks b (min)

Ph
as
e
1
le
ng

th
δ 1

(d
ay
s)

α = .45 ε = 10−5

α = .33 ε = 10−4

α = .1 ε = 10−3

Figure 3.2: The time required to generate a secure uSRS, as a function of the intended time between
blocks. This depends on the proportion of adversarial mining power α, and the bound ε on the prob-
ability of subversion. Each data point represents the time until at most a fraction of ε of one million
parallel experiments ended in adversarial victory. Values are given assuming d = 250s, and both axes
scale linearly to d.

500,000, which corresponds to d being approximately 250 seconds on our single-CPU setup.
We draw the time of the next adversarial block from the exponential distribution with λ = α/b,

and the next honest block from the exponential distribution with λ = (1 − α)/b, shifted to the right
by d (i.e. the probability density is 0 for x < d). The simulation is then advanced to the lesser of the
two times, which is resampled from the same distribution. The number of times the adversary or the
honest parties have extended their chain is counted, and the honest parties win at any point if and only
if the honest chain is longer than the adversarial chain.

We run one million experiments in parallel, either up to a fixed end time, or until a large enough
fraction of the experiments end in honest victory. We refer to the probability of an adversarial success
as the probability of subversion ε. Figure 3.2 demonstrates that for a fixed d, a tradeoff exists between
the target time between blocks b, and the time until any given subversion threshold ε is met.

A practical limit of this simulation approach is that it cannot by itself determine the length of time
needed to wait until ε is negligible for most typical security parameters. We can however observe that
for fixed parameters, ε decreases approximately exponentially as time passes, as seen in Figure 3.3,
outside of a brief initial window.

While the second phase – that where the adversary attempts to create disagreement as to which
reference string is the canonical one – may initially seem different, its optimal strategy is identical, as
it essentially wishes to create as long as possible a fork, starting one block prior to the end of the first
phase (to select a different reference string). As creating the longest fork forking at this point does not
allow the adversary to accept honest blocks after it, nor gives the adversary a reason to share its blocks,
the adversarial strategy – and this analysis – is the same.

3.4.3 Storage and Network Usage

A Sonic reference string consists of 4d+ 1 elements in G1 and 4d+ 2 elements in G2. For the commonly
used BLS12-381 curve pair, G1 elements have a storage requirement of 48 bytes each, and G2 elements
of 96 bytes each. An update proof includes an additional two G1 elements, and a Fischlin proof, which

28

D3.3 – Revision of Extended Core Protocols

0 100 200 300 400 500

2−6

2−5

2−4

2−3

2−2

2−1

20

Time (multiples of b)

Pr
ob

ab
ili
ty

of
su
bv

er
sio

n
ε

α = .45
α = .33
α = .1

Figure 3.3: The probability of the reference string being subverted ε, as a function of the time passed, in
multiples of the intended time between blocks b. This depends on the proportion of adversarial mining
power α, and the compound overhead d. b is selected to be approximately at the minimum seen in
Figure 3.2, with d = .15b, d = .4b, and d = 2b for the α = .45, .33, and .1 respectively.

itself consists of twelve iterations, each with 2 elements in F∗q (each of which requires 32 bytes to store),
two elements of G1, and a 16-bit nonce. Each part of an aggregate update has an additional two G2
elements.

As it is not necessary to retain intermediate reference strings, and aggregate updates are sufficient,
for a chain of length l, and with an uSRS depth of d, this is a storage requirement of 576d+ 288 bytes
for the uSRS itself, and l · (2 · 48 + 2 · 96 + 12 · (2 · 32 + 2 · 48 + 2)) = 2, 232l bytes for storing updates.

For 500,000 gates and chains of length 20,000, this corresponds to a total storage requirement
of 318MiB, with the reference string itself being the largest part, at 275MiB. Although this is quite
manageable as a storage requirement, it must be considered that the SRS itself (and a single update of
around 2KiB) has to be re-transmitted with each block. While at the common home-internet upload
speed of 10Mb/s, a block would take slightly under 4 minutes to transmit, it is reasonable to assume that
miners would invest in high-grade connections to offset the chance of their block being replaced with
a competitor. Speeds up to 10Gb/s are commercially available, which would reduce the transmission
time to under a second.

One remaining issue is that of denial-of-service. The receipt and verification of a reference string is
costly, and should therefore only be done after a block’s proof-of-work has been received, which should
depend on a commitment to the subsequently sent reference string – such as the update proof itself.
An attacker can still perform a limited denial of service attack with blocks they legitimately mined –
however this uses no more resources in verification than a legitimate block would.

3.4.4 Conclusion

Figure 3.2 provides insight into the space of tradeoffs which can be made for the secure generation of
reference strings. While the secure generation of a reference string is possible even for a small honest
majority, the time required to do so is much higher than for a more relaxed setting, with δ1 being
approximately three months for α = .45, in contrast to around two days for α = .33. The full setup
is double this: six months for α = .45, and four days for α = .33. Perhaps surprisingly, the desired
probability of subversion ε has a more muted effect on the required setup time.

The minima observed for δ1 suggest that simply deploying this system on existing blockchain systems

29

D3.3 – Revision of Extended Core Protocols

as they are currently parameterised is unwise: Most blockchains emphasise small values of b to enable
transactions to settle quickly, with even notoriously slow chains such as Bitcoin having values on the
lower end of our scale. This is directly linked to the compound overhead of verification and update
generation – when b is small, the adversary can better use its advantage of bypassing large parts of the
verification and update procedure. As previously noted, there is a lot of room for speedup by assuming
miners use greater computation power – if each miner used ten machines, even the α = .45 case would
be reduced to under a month in total.

3.5 Low-Entropy Update Mitigation
While our analysis indicates that in a Byzantine, honest majority setting, our protocol produces a
trustworthy reference string, it also asks participants to dedicate computational resources to updates.
It follows that in a rational setting, players need to be properly incentivised to follow the protocol. We
emphasise that the rational setting is not the focus of this chapter, and optimistically, in a setting where
the majority of miners are rational and a small fraction honest, the few honest blocks are sufficient to
eliminate the issue described in this section.

For Sonic, a protocol deviation exists that breaks the security of the reference string: By choosing the
exponent in a specific low-entropy fashion, (e.g., y = 2l) the computation of the update, which primarily
relies on repeated squaring, can be done significantly faster. More generally, some permutations in P
may be more efficiently computable. In more detail, instead of using a random permutation p, a specific
choice is made that eases the computation of srs′ – in the most extreme case, for any uSRS scheme, the
update for p = id is trivial.

3.5.1 Proposed Construction

In order to facilitate a mitigation for this class of attacks, we will need to assume an additional property
of the underlying ledger, in particular it must provide a “resettable” randomness beacon: With each
advance operation (where adversary must be restricted in how often it may do such advance queries),
a random beacon value is sampled in a variable bcn and is associated with the corresponding block.
Beacons of this kind are often easily available, for instance by hashing the proof-of-work [BCG15], and
are inherent in many proof-of-stake designs. Prior work [DGKR18] demonstrates that such beacon
values allow for the adversary to bias them only by “resetting” it at most a certain number of times,
say t, before they are fixed by entering the ledger’s confirmed state, with the exact value of t depending
on the chain parameters.

We can then amend Gen to derive its random values from the random oracle, by sending the query
(bcn, nonce) to FRO, where nonce is a randomly selected nonce, and bcn is the previous block’s beacon
value. The response is used to index the set of trapdoor permutations P , choosing the result p, and
the nonce is stored by miners locally, and kept private. We adapt the Phase 1 period δ1 so that at
least l′ := l(1 − θ)−1 + c blocks will be produced, where θ and c are new security parameters (to be
discussed below). Next, after Phase 2 ends, we can be sure that the beacon value associated with the
end of Phase 1 has been reset at most t times.

We extract from bcn l′ biased coins, each with probability θ. For each block, if the corresponding
coin is 1, it is required to reveal its randomness within a period of time at least as long as the liveness
parameter. Specifically, a party which created one of the selected blocks may reveal its nonce. If its
update matches this nonce, the party receives an additional reward of value R times the standard block
reward.

While this requires a stricter chain quality property, with the ledger functionality instead enforcing
that one of these l non-opened updates are honest, we sketch why this property still holds in the next
section.

30

D3.3 – Revision of Extended Core Protocols

3.5.2 Security Intuition

Consider now a rational miner with hashing power α. We know that, at best, using an underlying
blockchain like Bitcoin, the relative rewards such a miner may expect are at most α/(1 − α) in ex-
pectation; this assumes a selfish mining strategy that wins all network races against the other rational
participants. Now consider a miner who uses low entropy exponents to save on computational power
on created blocks and, as a result, boosts their hashing power α to an increased relative hashing power
of α′ > α. The attacker can further try to influence the blockchain by forking and selectively disclosing
blocks which has the effect of resetting the bcn value to a preferred one. To see that the impact of this
is minimal, we prove the following lemma.

Lemma 1. Consider a mapping ρ 7→ {0, 1}l′ that generates l′ independent biased coin flips, each with
probability θ, when ρ is uniformly selected. Consider any fixed n ≤ l′ positions and suppose an adversary
gets to choose any one out of t independent draws of the mapping’s random input with the intention to
increase the number of successes in the n positions. The probability of obtaining more than n(1 + ε)θ
successes is exp(−Ω(ε2θn) + ln t).

Proof. In case t = 1, result follows from a Chernoff bound on the event E defined as obtaining more
than n(1 + ε)θ successes, and has probability exp(−Ω(ε2θn)). Given that each reset is an independent
draw of the same experiment, by applying a union bound we obtain the lemma’s statement.

The optimal strategy of a miner utilising low-entropy attacks is to minimise the number of blocks
of other miners are chosen, to increase its relative reward. Lemma 1 demonstrates that at most a
factor of (1 + ε)−1 damage can be done in this way. Regardless of whether a miner utilises low-entropy
attacks or not, their optimal strategy beyond this is selfish mining, in the low-entropy attack mining in
expectation l′α′/(1−α′) blocks [GKL15b]. A rational miner utilising low-entropy attacks will not gain
any additional rewards, while a miner not doing so will gain at least l′α/(1 − α)(1 + ε)−1θR rewards
from revealing their randomness, by Lemma 1. It follows that for a rational miner, this strategy can
be advantageous to plain selfish mining only in case:

α′

1− α′ > (1 + θ(1 + ε)−1R) α

1− α

If we assume a miner can increase their effective hash rate by a factor of c, using low-entropy exponents,
then their advantage in the low entropy case is α′ = αc/(αc+β), where β = 1−α is the relative mining
power of all other miners. If follows that the miner benefits if and only if:

αc
αc+β ·

αc+β
β > (1 + θ(1 + ε)−1R)αβ

⇐⇒ c > 1 + θ(1 + ε)−1R

If we adopt a sufficiently large intended time interval between blocks it is possible to bound the rel-
ative savings of a selfish miner using low-entropy exponents; following the parameterisation of sub-
section 3.4.2, if a selfish miner using such exponents can improve their hashing power by at most a
multiplicative factor c then we can mitigate such attack by setting R to (c− 1)/(θ(1 + ε)−1).

3.6 Discussion
While the clean generation of a new reference string from a ledger protocol is itself useful, real-world
situations are likely to be more complex. In this section we discuss practical adjustments that may be
made.

31

D3.3 – Revision of Extended Core Protocols

3.6.1 Upgrading Reference Strings

As distributed ledgers are typically long-lived, and may well outlive any reference string used within
it – or have been running before a reference string was needed. Indeed, the Zcash protocol has seen
upgrades in its reference string. A reference string being replaced with a new one is innocuous without
further context, however, it is important to consider how they are usually used in zero-knowledge proofs.
If the proof they are used in is stateless, upgrading from an insecure to a secure reference string behaves
as one may naively expect: It ensures that after the upgrade, security properties hold.

In the example of Zcash, which runs a variant of the Zerocash [BCG+14] protocol, the situation is
more muddy. Zerocash makes stateful zero-knowledge proofs. Suppose a user is sceptical of the security
of the initial setup – and there is good reason to be [SWB19] – but is convinced the second reference
string is secure. Is such a user able to use Zcash with confidence in its security?

Had Zcash not had safeguards in place, the answer would be no. While the protocol may operate as
intended currently, and the user can be convinced of that, due to the stateful nature of the proofs, the
user cannot be convinced of the correctness of this state. The Zcash cryptocurrency did employ similar
safeguards to those we outline below. We stress the importance of such here, as not every project may
have the same foresight.

Specifically, for a Zerocash-based system, an original reference string’s backdoor could have been
used to create mismatched transactions, and to effectively “mint” large coins illicitly. This process is
undetectable at the time, and the minted coins would persist across a reference string upgrade. Our
fictitious user may therefore be rightfully suspicious as to the value of any coins he is sold – they may
be a part of an almost infinite pool!

Such an attack, once carried out (especially against a currency) is hard to recover from – it is
impossible to identify “legitimate” owners of the currency, even if the private transaction history were
deanonymised, and the culprit identified. The culprit may have traded whatever he created already.
Simply invalidating the transaction would therefore harm those he traded with, not himself. In an
extreme case, if he traded one-to-one with legitimate owners of the currency, he would succeed in
effectively stealing the honest users funds. If such an attack is identified, the community has two
unfortunate options: Annul the funds of potentially legitimate users, or accept a potentially large
amount of inflation.

We may assume a less grim scenario however: Suppose we are reasonably confident in the security of
our old reference string, but we are more confident of the new one. Is it possible to convince users that
we have genuinely upgraded our security? We suggest the usage of a type of firewalling property. Such
properties are common in the domain of cross-chain transfers [GKZ19], and are designed to prevent a
catastrophic failure on one chain damaging another.

For monetary transfers, the firewall would guarantee an upper-bound of funds was not exceeded.
Proving the firewall property is preserved is easy if a small loss of privacy is accepted – each private coin
being re-minted before it can be used after the upgrade, during which time its value must be declared.
Assuming everything operates fine, and the firewall property is not violated, users interacting with the
post-firewall state can be confident as to the upper bound of funds available. Further, attacks on the
system can be identified: If an attacker mints too many coins, eventually the firewall property will be
violated, indicating that too many coins were in circulation – bringing the question of how to handle
this situation with it. We believe that a firewall property does however give peace of mind to users of
the system, and is a practical means to assuage concerns about the security of a system which once had
a questionable reference string.

In Zcash, a soft form of such firewalling is available, in that funds are split across several “pools”,
each of which uses a different proving mechanism. The total value of each pool can be observed, and
values under zero would be considered a cause for alarm, and rejected. Zcash use the terminology
“turnstiles” [Zca19], and no attacks have been observed through them.

A further consideration for live systems is that as subsection 3.4.2 shows, the time required strongly

32

D3.3 – Revision of Extended Core Protocols

depends on the frequency between blocks. This may conflict with other considerations for selecting the
block time – a potential solution for this is to only perform updates on “superblocks”: blocks which
meet a higher proof-of-work (or other selection mechanism) criteria than usual.

3.6.2 The Root of Trust

An important question for all protocols in the distributed ledger setting is whether a user entering the
system at some point during its runtime can be convinced to trust in its security. Early proof-of-stake
protocols, such as [KRDO17a], did poorly at this, and were subject to “stake-bleeding” attacks [GKR18]
for instance – effectively meaning new users could not safely join the network.

For reference strings, if a newly joining user is prepared to accept that the honest majority assump-
tion holds, they may trust the security of the reference string, as per Theorem 3. There is a curious
difference to the security of the consensus protocol however: to trust the consensus – at least for proof-
of-work based protocols – it is most important to trust a current honest majority, as these protocols
are assumed to be able to recover from dishonest majorities at some point in their past. The security
of the reference string on the other hand only relies on assuming honest majority during the initial δ
time units. This may become an issue if a large period of time passes – why should someone trust the
intentions of users during a different age?

In practice, it may make sense to “refresh” a reference string regularly to renew faith in it. It is
tempting to instead continuously perform updates, however, as noted in subsection 3.6.1, this does not
necessarily increase faith in a stateful system, although is can remove the “historical” part from the
honest majority requirement when used with stateless proofs.

Most subversion attacks are detectable – they require lengthy forks which are unlikely to occur
during a legitimate execution. In an optimistic case, where no attack is attempted, this may provide an
additional level of confirmation: if there are no widespread claims of large forks during the initial setup,
then the reference string is likely secure (barring large-scale out-of-band censorship). A flip side to this
is that it may be a lot easier to sow doubt, however, as there is no way to prove this: A malicious actor
could create a fork long after the initial setup, and claim that it is evidence of an attack to undermine
the credibility of the system.

3.6.3 Applications to Non-Updateable SNARKs

Updateable SNARK schemes have two distinct advantages which our protocol makes use of: First, they
have an explicit update procedure which allows a party φ to replace a reference string whose security
depends on some assumption A, with one whose security depends on A ∨ (φ is honest). Second, they
can survive with a partially biased reference string, a fact which we don’t use directly in this chapter,
however, the functionality FuSRS we provide permits rejection sampling, encoding it into the ideal world.

The lack of an update algorithm can be resolved for some zk-SNARKs, such as [Gro16], by the
existence of a weaker property: In two phases, the reference string can be constructed with (potentially
different) parties performing round-robin updates (also group exponentiations) in each phase. This
approach is also detailed in [BGM17], and it implies a natural translation to our protocol, in which
the first phase is replaced with two phases of the same length, performing the first and second phase
updates respectively.

The security of partially biased references strings has not been sufficiently analysed for non-updateable
SNARKs, however, this weakness can be mitigated. Following [BGM17], it is possible to use a pure
random beacon (as opposed to the resettable one used in section 3.5) to create a “pure” reference string
from the “impure” one presented so far. To sketch the design: The random beacon would be queried
after time δ, and the randomness used to select a trapdoor permutation over the reference string. This
would then be applied by each party independently, arriving at the same – randomly distributed –
reference string.

33

D3.3 – Revision of Extended Core Protocols

As this is not required for updateable SRS schemes, we did not perform this analysis in depth.
However, the approach to the simulation would be to perform the SRS generation identically, and then
program the random beacon to invert all permutations applied to the honest reference string. Since
this includes the one honest permutation applied on every honest update, this is indistinguishable from
a random value to the adversary. It is worth noting that the requirement of a random beacon is on
the stronger side of requirements, especially as it should itself not allow adversarial influence to provide
the desired advantage. Approaches using block hashes for randomness introduce exactly the limited
influence which we are attempting to remove!

3.7 The Sonic uSRS
Sonic’s uSRS [MBKM19, Section 4.3] consists of a series of exponentiations of group elements in pairing
groups G1 and G2 of prime order q, where a bilinear pairing e : G1 × G2 → GT exists. Specifically,
given generators g ∈ G1, h ∈ G2 and a depth parameter d ∈ Zq, the SRS has a trapdoor of (α, x) ∈ F∗2q ,
with τ0 = (1, 1).

The corresponding structure function is defined as:

S((α, x)) :=
({
gx

i
, hx

i
, hαx

i
}d
i=−d

,
{
gαx

i
}d
i=−d,i 6=0

)

3.7.1 Specification of Sonic Updates

We omit the e(g, hα) term presented in Sonic, as this can be computed from the rest of the SRS,
and is therefore immaterial to the update procedure. The permitted trapdoor permutations are field
multiplications:

P := { (α, x) 7→ (αβ, xy) | (β, y) ∈ F∗2q }.
Correspondingly, † exponentiates group elements:

p = (α, x) 7→ (αβ, xy) =⇒

p† =
({
Gi, Hi, H

′
i

}d
i=−d ,

{
G′i
}d
i=−d,i 6=0

)
7→
({
Gy

i

i , H
yi

i , H
′βyi

i

}d
i=−d

,
{
G′βy

i

i

}d
i=−d,i 6=0

)
Observe that field multiplications over α or x can efficiently be applied to the corresponding structure
through exponentiation: g(αxi)βyi = (gαxi)βyi . The full update proof procedure is as follows:
procedure ProveUpd(srs, p)

let (β, y)← p((1, 1))
return (gy, gβy, π)

The verification procedure ensures correct computation by checking the consistency of various pairing
computations:
procedure VerifyUpd(srs, ρ, srs′)

let ({Gi, Hi, H
′
i}di=−d, {G′i}di=−d,i6=0)← srs

let ({Ii, Ji, J ′i}di=−d, {I ′i}i=−d,i6=0)← srs′
let (A,B, π)← ρ
if
e(I ′1, h) 6= e(B,H ′1) ∨ e(g, J ′1) 6= e(B,H ′1) ∨ e(I1, h) 6= e(A,H1) ∨ e(g, J1) 6=
e(A,H1) ∨ I0 6= g ∨ J0 6= h then
return 0

for i = −d to d do
if
¬(i = d ∨ e(Ii, J1) = e(I1, Ji) = e(Ii+1, h) =
e(g, Ji+1)) ∨ ¬(e(Ii, J ′0) = e(g, J ′i)) ∨
(i 6= 0 ∧ ¬e(Ii, J ′0) = e(I ′i, h)) then

34

D3.3 – Revision of Extended Core Protocols

return 0
return 1

3.7.2 Satisfaction of Security Properties

Theorem 4. Sonic, as described in subsection 3.7.1, is an updatable reference string scheme, satisfying
correctness, structure preservation, update uniformity, update extraction, permutation extraction, and
permutation lifting.

Proof. We prove each property individually.

Correctness Follows from all pairing checks being satisfied.

Structure preservation Suppose a structured input S(τ), and an update proof ρ, and a new SRS
srs′, where:

S(τ) =
({
gx

i
, hx

i
, hαx

i
}d
i=−d

,
{
gαx

i
}d
i=−d,i 6=0

)
srs′ =

({
gki , hmi , hni

}d
i=−d

,
{
gli
}d
i=−d,i6=0

)
ρ = (gy, gβy)

If VerifySRS returns 1, we know all of the following hold, due to the conditions checked:

• e(gl1 , h) = e(g, hn1) = e(gβy, hαx)

• e(gk1 , h) = e(g, hm1) = e(gy, hx)

• ∀i ∈ [−d, d) : e(gki , hm1) = e(gk1 , hmi) = e(gki+1 , h) = e(g, hmi+1)

• ∀i ∈ [−d, d] : e(gki , hn0) = e(g, hni)

• ∀i ∈ [−d, d] \ {0} : e(gki , hn0) = e(gli , h)

As e(g, h) is a generator over GT , and each of the above can be expressed as an equality of exponenti-
ations of the form e(g, h)a = e(g, h)b, we simplify these to equalities within F∗q of their exponents:

• l1 = n1 = αβxy

• k1 = m1 = xy

• ∀i ∈ [−d, d) : kim1 = k1mi = ki+1 = mi+1

• ∀i ∈ [−d, d] : kin0 = ni

• ∀i ∈ [−d, d] \ {0} : kin0 = li

It follows directly that n0 = αβ, ki = mi = (xy)i, and li = ni = αβ(xy)i. As a result, srs′ matches
exactly the structured reference string S((αβ, xy)) = p†(S(τ)).

Update uniformity Let τ = (α, x). p
R←− P is defined by a multiplication with two uniformly

sampled field elements in β, y
R←− F∗q , such that the trapdoor p(τ) = (αβ, xy). Due to multiplication

in prime fields with a fixed element (here α and x) being a bijective function, the result (αβ, xy) is
also distributed uniformly at random in F∗2q , therefore being indistinguishable from a new, randomly
sampled trapdoor.

35

D3.3 – Revision of Extended Core Protocols

Update proof simulation We present the following simulation algorithm:
procedure Sρ((α, x), srs)

({Gi, Hi, H
′
i}di=−d, {G′i}di=−d,i6=0)← srs

return
(
G

(x−1)
1 , G

′(x−1)(α−1)
1

)
This utilises only a small number of efficient group operations, and is therefore PPT. As the VerifyUpd
pairing checks all succeed, the returned update proof will verify.

Permutation Extraction Observe that

R((A,B), p) ⇐⇒ let (a, b) = p((1, 1)) in A = ga ∧B = gb.

A straightforward encoding of p is the pair of field elements (a, b). This relation is clearly in NP, and
is also a bijection due to the relation of G1 and F∗q .

3.7.3 Instantiating FNIZK

We can employ Fischlin’s transform [Fis05] in combination with a simple sigma protocol to prove
knowledge of pairs of exponents. Specifically, we propose the parallel composition of two Schnorr
proofs of knowledge of exponent [Sch90b]. It is important to treat these as a single proof, and not
two separate proofs, as the latter would enable the adversary to create proofs which are only partially
extractable. We posit that these would still allow for simulation, however, the simulator would be
tasked with a more difficult, and implementation specific book-keeping.

3.8 The Nakamoto Ledger
The basic functionality of this ledger allows the submission of transactions, and retrieving each of the
following:

• A confirmed prefix of the ledger state.

• A “projection” of the ledger state – i.e. what the local state will approach, if there is no chain
reorganisation.

• The confirmed “leader state”, which models the mechanism used for the SRS generation.

When any of these values is queried, the functionality ensures that liveness and chain quality properties
still hold. The adversary further has the power to instruct the creation of a new block on behalf of
any party, and to instruct any party to adopt a different chain. In both cases, the functionality ensures
that the common prefix property is preserved. The adversary has full control over the contents of both
honest and adversarial blocks, as well as their order.

3.8.1 Functionality Definition

Functionality FnakLedger

A ledger following a Nakamoto-style consensus, with each party having a projected chain, a prefix of which
is common to all parties. Common prefix, chain quality and chain growth are guaranteed.

36

D3.3 – Revision of Extended Core Protocols

State variables and initialisation values:
Variable Description

Π := φ 7→ ε Mapping of parties to projected ledger states
T := ∅ Multiset of submitted transactions

hon := ∅ Mapping of block ids to 1 if they are honest, or 0 if not

When receiving a message (submit, tx) from a party φ:
send read to Gclock and receive the reply t
let T ← T ∪ {(tx, t)}
query A with (transaction, tx, t)

When receiving a message read from a party φ:
assert liveness(φ) ∧ chainQuality(φ)
return map(proj1, txs(Π(φ)dk))

When receiving a message projection from a party φ:
assert liveness(φ) ∧ chainQuality(φ)
return map(proj1, txs(Π(φ)))

When receiving a message leader-state from a party φ:
assert liveness(φ) ∧ chainQuality(φ)
let ~a← map(λ(·, a, ·, t) : (a, t),Π(φ)dk)
return foldl(Apply,∅,~a)

When receiving a message (extend, φ,B, t, a) from A:
send read to Gclock and receive the reply t′

let id R←− {0, 1}κ
if φ ∈ H then

let ~a← map(λ(·, a, ·, t) : (a, t),Π(φ))
let σ ← foldl(Apply,∅,~a)
let a R←− Gen(σ, t′)
let t← t′ let hon(id)← 1

else
let hon(id)← 0
if t′ < t then let t← t′

else if ∃t′′ : (·, ·, ·, t′′) = last(Π(φ)) ∧ t′′ > t then let t← t′′

let Π(φ)← Π(φ) ‖ (B, a, id, t)
assert ∀φ′ ∈ P : Π(φ)dk ≺ Π(φ′)
return (B, a, id, t)

When receiving a message (advance, φ,Σ′) from A:
assert ∃φ′ ∈ P : Σ′ ≺ Π(φ′)
assert ∀φ′ ∈ P : Σ′dk ≺ Π(φ′) ∧Π(φ′)dk ≺ Σ′
let Π(φ)← Σ′

Helper procedures:
function txs(Πφ)

let ~B ← map(proj1,Πφ)
return concat(~B)

procedure liveness(φ)
send read to Gclock and receive the reply t
if
∃t0 < t : |[tb | (·, ·, ·, tb) ∈ Π(φ), t0 − s ≤ tb < t0]|
< γ ∧ t0 − s ≥ 0 then
return ⊥

return ∀(tx, t′) ∈ T : t′ + d(l + k)γ−1es > t ∨ (tx, t′) ∈ txs(Π(φ)dk)

37

D3.3 – Revision of Extended Core Protocols

procedure chainQuality(φ)
let ~id← map(proj3,Π(φ)dk)
return ∀i ∈ Z|~a|−l :

(∑
j∈Zl

ids(~idi+j)
)
≥ µl

In order to judge chain growth, this functionality needs access to a simple global clock, given in sub-
section 3.11.1.

3.8.2 Relation to Existing Protocols

Existing UC treatments of Nakamoto-style ledgers, such as [BGK+18,BMTZ17] already provide func-
tionalities which provide persistence and liveness guarantees. Moreover, the protocols used in their
implementation have been independently shown to satisfy the properties of common prefix, chain qual-
ity, and chain growth.

Given similar assumptions, such as a limited random oracle, and a synchronous or semi-synchronous
network, these protocols will also fit the FnakLedger functionality presented above. Notably the UC-proof
of these ledgers relies on first proving these three chain properties, then proving persistence and liveness,
and finally concluding that these satisfy their ledger functionality.
FnakLedger exposes more of the internals of the protocol – the fact that there is a chain selection

process, and that this is subject to the constraints of common prefix, chain quality, and chain growth
– but otherwise does not greatly change the ideal world behaviour.

Due to this strengthened functionality being designed to merely expose more of the well-understood
protocol properties, we conjecture that UC implementations which have a proof relying on the three
Nakamoto chain properties can be used to realise FnakLedger, with a large part of the proof applying
directly.

3.9 The Adaptor Protocol
We provide a small protocol which adapts the honest interface of the Nakamoto ledger to match that
of the ideal world – specifically ensuring the leadership state seen matches the ideal world’s, and that
the SRS is read only if sufficient time has passed.

Protocol ledger-adaptor

The protocol adaptor fits the interface of F real
nakLedger to match those of FuSRS and F ideal

nakLedger. It operates in
the (F real

nakLedger,Gclock)-hybrid world.

When receiving a message (submit, tx) from a party φ:
send (submit, tx) to F real

nakLedger
When receiving a message read from a party φ:
send read to F real

nakLedger and receive the reply txs
return txs

When receiving a message projection from a party φ:
send projection to F real

nakLedger and receive the reply txs
return txs

When receiving a message leader-state from a party φ:
send leader-state to F real

nakLedger and receive the reply (·, σideal)
return σideal

When receiving a message srs from a party φ:
send read to Gclock and receive the reply t

38

D3.3 – Revision of Extended Core Protocols

if t < δ then return ⊥
else

send leader-state to F real
nakLedger and

receive the reply (srs, ·)
return srs

Forward submit, read, and projection queries to F real
nakLedger

3.10 The Simulator
Simulator Sledger-adaptor

The simulator between the protocol adaptor over F real
nakLedger, and F ideal

nakLedger and FuSRS. It operates in the
Gclock-hybrid world.

State variables and initialisation values:
Variable Description
F simul

nakLedger A simulation of the hybrid-world ledger
FRNIZK A simulation of the low-level NIZK functionality

A := ∅ Map from honest updates to the applied permutation

When receiving a message (transaction, tx, t) from F ideal
nakLedger:

simulate sending (submit, tx) to F simul
nakLedger

When receiving a message (submit, tx) from A for F real
nakLedger:

send (submit, tx) to F ideal
nakLedger

When receiving a message (permute, φ) from FuSRS:

simulate sending leader-state to F simul
nakLedger

through φ and
receive the reply (srs, ·)

let ~a← map(proj2,F simul
nakLedger.Π(φ))

return Xp(~a)
When receiving a message (extend, φ,B, t, a) from A for F real

nakLedger:
send read to Gclock and receive the reply t′
if φ ∈ H ∧ t′ ≤ dlγ−1es then

let ~a← map(proj2,F simul
nakLedger.Π(φ))

let (srs, ·)← foldl(Apply,∅,~a)
let p← Xp(~a)
if p−1†(srs) 6= S(τ0) then

// We cannot extract a trapdoor;
// the SRS is already secure
let p′ R←− P ; ρ← ProveUpd(srs, p′)
let srs′ ← p′†(srs)

simulate sending (prove, ρ, p′) to FRNIZK and
receive the reply π

else
// We produce an update to match a
// random "initial" SRS
let τ ← p(τ0)
let p′ R←− P

39

D3.3 – Revision of Extended Core Protocols

send honest-srs to FuSRS and
receive the reply srsH

let srs′ ← p′†(srsH)
let ρ← Sρ(p(τ), srs′)

query A with (prove, ρ) and receive the reply π,
satisfying π 6= ⊥ ∧ (ρ, π) /∈ FRNIZK.Π ∧ (·, π) /∈ FRNIZK.Π, else sampling from {0, 1}κ

let FRNIZK.Π← FRNIZK.Π ∪ {(ρ, π)}
let A(ρ)← p

let aideal ← ⊥
else if φ ∈ H then

let srs′, ρ, π ← ε
let aideal ← ⊥

else let (srs′, ρ, π, aideal)← a

send (extend, φ,B, t, aideal) to F ideal
nakLedger and

receive the reply (B, aideal, id, t)
if φ ∈ H then

let F simul
nakLedger.hon(id)← 1

else
let F simul

nakLedger.hon(id)← 0

let F simul
nakLedger.Π(φ)← F simul

nakLedger.Π(φ) ‖ (B, (srs′, ρ, π, aideal), id, t)

assert ∀φ′ ∈ P : F simul
nakLedger.Π(φ)dk ≺ F simul

nakLedger.Π(φ′)
return (B, (srs′, ρ, π, aideal), id, t)

When receiving a message (advance, φ,Σ′) from A for F real
nakLedger:

simulate sending (advance, φ,Σ′) to F simul
nakLedger

// Remove SRS updates from Σ′
let Σ′ ← map(λ(B, (·, ·, ·, aideal), t) : (B, aideal, t),Σ)
send (advance, φ,Σ′) to F ideal

nakLedger

Forward requests to FRNIZK, and all other adversarial messages for F real
nakLedger to F simul

nakLedger.

Helper procedures:
procedure Xp(~a)

let p← id
let srs = S(τ0)
for (srs′, ρ, π, ·) in ~a do

// Skip invalid updates
if ¬VerifyUpd(srs, ρ, srs′) ∨ (ρ, π) /∈ FRNIZK.Π then continue
let srs← srs′
if (ρ, π) ∈ FRNIZK.W then

let p← FRNIZK.W ((ρ, π)) ◦ p
else if ρ ∈ A then

// The update is honest.
// Start with its permutation.
let p← A(ρ)

else
// A witness-less adversarial update
// was encountered.
abort

return p

40

D3.3 – Revision of Extended Core Protocols

3.11 Minor UC Functionalities

3.11.1 The Global Clock

Functionality Gclock

The global clock allows parties to agree on some discrete notion of time.

State variables and initialisation values:
Variable Description
t := 0 Current time
T := ∅ Timekeepers
A := ∅ Agreements to advance

When receiving a message register from a party φ:
let T ← T ∪ {φ}

When receiving a message deregister from a party φ:
let T ← T \ {φ}

When receiving a message update from a party φ:
let A(φ)← >
if ∀φ ∈ T : A(φ) then

let t← t+ 1;A← λφ : ⊥
query A with tick-tock

When receiving a message read from a party φ:
return t

3.11.2 Non-Interactive Zero-Knowledge

Functionality FRNIZK

The (malleable) non-interactive zero-knowledge functionality FRNIZK allows proving of statements in an NP
relation R.

State variables and initialisation values:
Variable Description
W := ∅ Mapping of statement/proof pairs to witnesses
Π := ∅ Set of statement/proof pairs
Π := ∅ Set of known invalid statement/proof pairs

When receiving a message (prove, x, w) from a party φ:
if ¬xRw then

return ⊥

query A with (prove, x) and receive the reply π,
satisfying π 6= ⊥ ∧ (x, π) /∈ Π ∧ (·, π) /∈ Π, else sampling from {0, 1}κ

let Π← Π ∪ {(x, π)};W (x, π)← w
return π

When receiving a message (maul, x, π, π′) from A:
if (x, π) ∈ Π then

let Π← Π ∪ {(x, π′)}
let W (x, π′)←W (x, π)

When receiving a message (verify, x, π) from a party φ:
if (x, π) /∈ Π ∪Π ∧ π 6= ⊥ then

41

D3.3 – Revision of Extended Core Protocols

query A with (verify, x, π)
// The adversary has been given a chance to
// prove the statement. It didn’t take it.
if (x, π) /∈ Π ∪Π then

let Π← Π ∪ (x, π)
return (x, π) ∈ Π

3.11.3 Random Oracle

Functionality FRO

The random oracle functionality FRO returns a uniform random value in {0, 1}κ for each input.

State variables and initialisation values:
Variable Description
H := ∅ A map from inputs to (fixed) outputs

When receiving a message (query, x) from a party φ:
if x /∈ H then let H(x) R←− {0, 1}κ
return H(x)

3.11.4 Delay Wrapper

Functionality Wdelay(δ,F)

The wrapper functionality Wdelay(δ,F) of F accepts honest inputs only after δ time slots.

When receiving a message M from a party φ:
send read to Gclock and receive the reply t
if t < δ ∧ φ ∈ H then return ⊥
else

send M to F and receive the reply y
return y

3.12 Security Analysis
As for any UC proof, we require a simulator which ensures the ideal world behaves indistinguishably
from the real world. Our simulator, Sledger-adaptor, is formally described in section 3.10. Intuitively,
this simulator ensures that the real and ideal world’s ledgers are equivalent, and that the real world
uSRS is equal to the uSRS produced in the ideal world.

In order to achieve this, the simulator ensures that the initial honest reference string provided
by FuSRS is the basis of the uSRS of a simulated execution of the real-world protocol. Doing so
relies primarily on three things: First, the simulator’s ability to extract the permutation from any
adversarial reference string update. Second, the simulator’s ability to, given the adversarial trapdoors,
then produce a valid “honest” update which ensures the reference string is a random permutation of the
ideal-world honest string S(τH). And finally, the simulator’s knowledge that the final reference string
in its simulation will have at least one honest update.

The simulator observes each of the competing chains, and when the first honest update occurs in
each, coerces the simulated update into a permutation of the ideal honest reference string. For each

42

D3.3 – Revision of Extended Core Protocols

subsequent honest update, the simulator performs the update normally, remembering the randomness
used. Combined with extracting from adversarial updates, the simulator either knows the entire trap-
door of the reference string (if there was no honest update), or all except for the first honest update. By
the backbone properties enforced by FnakLedger, the simulator knows that the first case will not apply,
and that only one prefix of valid updates will exist, after δ time has passed. As a result, the simulator
knows exactly which permutation to apply to the honest ideal reference string to match the real world’s
result.

As FuSRS only provides a single honest SRS, the simulator applies a random permutation to this for
each initial honest update, ensuring that the updates of different chains remain unlinkable.

We will prove UC-emulation, and will therefore refer to the ideal and real worlds frequently through-
out the proof. Beyond this, the simulator locally simulates the NIZK functionality and the ledger
functionality. To be clear which functionality we are talking about at any point, we will use F ideal

nakLedger,
F simul

nakLedger, and F real
nakLedger to refer to the ideal, simulated, and real ledgers respectively. We refer to the

real-world NIZK functionality as FRNIZK, and the simulted NIZK as Sledger-adaptor.FRNIZK. The notation
F.x is used to mean “the variable x within the functionality F” – it is also used to refer to the ideal
trapdoor FuSRS.τH.

Our simulator, which we assume is provided with the update simulation algorithm Sρ, and can
extract permutations from adversarial updates via a simulated NIZK, is equipped with a helper function
Xp. Given a series of updates, Xp computes the permutation applied to the reference string’s trapdoor
as far back as possible. It receives as inputs the sequence of updates ~a, and has access to a mapping
W from NIZK statements and proofs to corresponding witnesses (as far as the simulator knows them),
and a mapping A from honest updates to the permutation applied to the honest SRS. It returns a
permutation in P , which can be applied either to the initial trapdoor τ0, or the initial honest trapdoor
τH, to create the same SRS as the sequence of updates. We prove this in the following auxiliary lemma
that will be used in the proof of our main theorem.

Lemma 2. In the ideal-world execution of Sledger-adaptor, Xp(~a) outputs a permutation p ∈ P , such
that its inverse, applied to the underlying trapdoor of the SRS generated from the given sequence of
updates ~a, is either the initial trapdoor τ0, or the honest trapdoor τH.

Proof. The output of Xp is either id, a permutation in the mapping A, a permutation recorded by the
simulated NIZK, or a series of function compositions of the above. As only permutations in P are stored
in A, id ∈ P , and as P is closed under composition, the returned permutation is in P . The permutation
applied corresponds directly to how the underlying trapdoor of the uSRS is updated by longest suffix of
updates in ~a for which the trapdoor is known – i.e. the trapdoor permutation is recorded in FRNIZK.W , or
a permutation of the honest trapdoor is recorded in A. When this isn’t the case, the update is skipped,
and the trapdoor reset, ensuring that any trapdoors preceeding a non-extractable value are ignored.
The case that the trapdoors are known for all of the updates is trivial; as by definition inverting this
permutation will result in the initial trapdoor τ0.

If, however, at any point the trapdoor is not recorded in FRNIZK.W (despite VerifyUpd succeeding), at
this point the trapdoor must be honestly generated: As this update was not skipped, the NIZK proofs
associated with it must verify. The only way for the proofs to verify, and the NIZK functionality not to
have recorded the corresponding witnesses, however, is that the simulator added the proof manually to
the NIZK’s set of valid proofs. This only happens at one point – when creating simulated NIZK proofs
to accompany simulated update proofs, which is used only for random permutations applied to the
honest reference string. While (if the adversary is capable of inverting the structure function) multiple
honest updates may exist in the same chain, if at least one of them is a replayed update, the last such
effectively “resets” the reference string to a known permutation of the honest reference string.

Finally, we note that for this witness-less update, the remaining trapdoor defines a permutation of
FuSRS.τH. Algorithm Xp extracts the trapdoors from all subsequent updates to compute the permutation

43

D3.3 – Revision of Extended Core Protocols

applied to this honest trapdoor – ensuring precisely that inverting this permutation results in FuSRS.τH.

of Theorem 3. If the environment can distinguish between these worlds, there must exist a minimal
series of interactions the environment, combined with its adversary, can make to cause the other UC
ITMs to behave sufficiently differently to allow distinguishing. We will show that for any interaction the
environment makes, it will not learn enough information to distinguish the two worlds, and therefore
that across all (polynomially many) interactions it also cannot distinguish. First, we consider what
actions the adversary/environment pair can take. The interactions fall into the following categories:

1. Honest or adversarial submit, read, leader-state, or projection queries

2. Interactions with FRNIZK, or Gclock

3. advance queries

4. extend queries

5. srs queries

We will establish the following invariants throughout the execution of the UC security game:

• Gclock has the same internal state in both the real and ideal worlds.

• Sledger-adaptor.FRNIZK has the same internal state as the real-world FRNIZK, except that it does not
know the witnesses for honestly generated proofs or their mauled variants.

• Sledger-adaptor.F simul
nakLedger has the same internal state as the real-world ledger F real

nakLedger, and differs
from the ideal-world ledger F ideal

nakLedger only in that all state updates contain an addition SRS update
term.

Ledger reads and submissions Given these invariants, it is clear that the environment cannot
distinguish given the results of read and projection queries – they must return the same value!
Further, as the adaptor protocol strips the SRS component from the leader state, and the ideal world’s
leader state is precisely defined as being without this component, it is clear that also leader-state
queries will be indistinguishable (even if made directly by the adversary, since these are answered by
F simul

nakLedger). For submit queries by either the environment or the adversary, both worlds will add the
transaction, with the current timestamp, to their ledger’s submitted transactions, and will notify the
adversary once, and return the transaction together with the timestamp. This does not reveal any
information to the environment which could be used to distinguish.

Queries to other functionalities Likewise, FRNIZK queries clearly will not permit the environment
to distinguish, or invalidate the above mentioned invariants – they do not go beyond the NIZK function-
ality, and this does not read – only update – the witness map. Similarly for Gclock, as this exists in both
worlds, and is not manipulated by the simulator (or any other entity), beyond read-only operations, it
will behave identically.

advance queries The simulator first simulates advancing a specified party’s ledger state on F simul
nakLedger.

If this succeeds, the simulator knows that the advancement will succeed in the ideal world as well, where
the ledger state is less constrained. It removes the SRS updates from the ledger state being switched
to, and issues a corresponding advance query to F ideal

nakLedger. If the simulated advance does not succeed,
it will also have failed in the real world execution, both of which will abort. If the update succeeds, the
invariant between the various ledger states is preserved – up to the lack of SRS updates in the ideal
world, they are the same. If the update fails, both worlds terminate execution.

44

D3.3 – Revision of Extended Core Protocols

(extend, φ,B, t, a) queries Let us first detail the function of extend queries. Called by the adver-
sary, if the party parameter φ represents an honest party, the query runs Gen to generate a new update
a to apply to this party’s view of the leadership state. If the party is adversarial on the other hand, an
adversary-supplied update parameter a is used instead. With the timestamp t (or the accurate time for
honestly created blocks), block content B, state update a, and a randomly sampled ID, a new block is
created, and appended to φ’s projected chain. Finally, it is asserted that the common prefix property
still holds.

Once the simulator intercepts such a query, it needs to ensure not only that the same extends are
carried out in the simulated and ideal ledgers, but also that honest SRS updates are (when necessary)
sourced from the FuSRS functionality. In the case that the party extending the chain is adversarial, this
is simple – split the adversarial real world update a into an SRS update and an ideal-world update (it
is worth noting that these need not be valid), and forward only the ideal-world update in an extend
query to F ideal

nakLedger. This already results in the real and ideal ledgers satisfying the invariant, leaving
the simulated ledger. For this, the simulator manually inserts the ID returned from the ideal-world
ledger, inserts the new block, and asserts the same common prefix condition as the real world does,
ensuring these two ledgers are in the same state and – crucially – abort under the same conditions. The
returned value is identical to that returned in the real world.

For honest updates, things are more complex. If the current time is after when honest SRS up-
dates are performed, the honest SRS update is set to ε, as in the real world. Otherwise, the SRS is
reconstructed from the party’s current projected ledger view, and the simulator attempts to extract
the trapdoor permutation from this SRS. If it succeeds in extracting the entire trapdoor, the simulator
ensures it is updated such that it can no longer do so: It updates the uSRS to a permutation of the
honest uSRS FuSRS.τH, by first applying a fresh permutation to it, recording this in the map A, and
creating the corresponding update proof using Sρ.

By the update uniformity property, this is indistinguishable from the result of Gen, which the
environment expects. In case the full trapdoor cannot be extracted, Gen is used to generate the “honest”
SRS update, ensuring the simulator knows the trapdoor for this update as well (as it retains the NIZK
witness used). Finally, the ideal ledger is sent an extend query, with aideal set to ⊥. Execution
proceeds as in the adversarial case, with the SRS part of the update being distributed equally in the
real and simulated ledgers, and the ideal-world component being generated directly by the ideal world
functionality (and therefore also being distributed the same as in the real world, which samples from
the same distribution).

srs queries Finally, a user may query the SRS. If this happens before time δ, both worlds return
⊥ – the delay wrapper does so in the ideal world, and the adaptor protocol does so in the real world.
Otherwise, the real world reconstructs the leadership state, and returns only the SRS component, while
the ideal world queries the simulator for a trapdoor permutation, and, if the SRS is not yet finalised,
applies it to the honest SRS.

Recall that after every extension, FnakLedger ensures that the common prefix property holds. Further,
once a party’s projected ledger state has some common prefix, this is only ever extended – either by
extending the whole projection (in extend), or by switching to a different one with the same prefix (in
advance). After time δ, if chain quality and liveness hold, we can split each party’s projected chain
into two parts: Blocks with a timestamp at or before the time δ1, and those with a timestamp after it.
As extend enforces timestamps to be monotonically increasing, these concatenate to form the entire
chain. By the chain growth property, and as it is at least time δ, we know that the first part contains
at least l blocks, and the second at least k blocks. Chain quality ensures that the first part contains at
least µ honest blocks, while Apply ignores updates with a timestamps after δ1. Combined, these facts
imply that, for any party, the valid SRS updates, taken from their stable chain, are identical.

After the first SRS query, both the ideal and real worlds will not change what value they return,

45

D3.3 – Revision of Extended Core Protocols

the former because it has then recorded the final trapdoor, and the latter because the common prefix
containing valid reference string updates cannot change. The first query is therefore the most interesting.

From Lemma 2, we know that the permutation p extracted by the simulator when it is queried for
the SRS permutation will, inverted and applied to the SRS’ underlying trapdoor, either result in τ0,
or FuSRS.τH. From the above we know that the SRS the simulator is extracting from matches that
which honest parties generate – containing at least one honest update (by chain quality). As the first
honest update in any chain is extracted from a FuSRS-provided reference string, (and, by the correctness
property, it is valid) it cannot be τ0. Therefore, the simulator, by providing p to FuSRS, satisfies its
requirements of a permissible permutation in P , and ensures that once the permutation is applied, the
same SRS is returned: S(p(τH)) = S(p(p−1(τ))) = S(τ).

In the above we have brushed aside the issue of aborts, however, these are also simple to deal with.
FuSRS aborts if given an invalid permutation, which the simulator does not do. In the real world, if
liveness or chain quality are violated, FnakLedger aborts. In each query, the simulator ensures that the
same query is run against the simulated ledger, ensuring that both will abort under the same conditions.
This is the primary purpose for which FuSRS asks for a permutation on each invocation, despite only
using it on the first, as well as why it supplies the identity of the calling party.

As it is possible to construct (non-succinct) non-interactive zero-knowledge from a random oracle,
we can remove the requirement on FRNIZK and instead rely on a random oracle FRO (formally described
in subsection 3.11.3). As almost all constructions of Nakamoto-style ledgers are in the random oracle
model, our usage of a low-level NIZK is not a major additional assumption.

Corollary 1. For any updateable reference string scheme S, it is possible to realise the pair of function-
alities (F ideal

nakLedger,Wdelay(δ,FuSRS)) in the (F real
nakLedger,FRO)-hybrid world, and in the presence of Gclock.

46

Chapter 4

Mir-BFT: High-Throughput Robust
BFT for Decentralized Networks

In this Chapter, we describe Mir-BFT, a basis for the flexible consensus toolkit in Hyperledger Fabric.
Since April 2021, Mir-BFT is a Hyperledger Lab1, developed open-source as a standalone Byzantine
fault-tolerant consensus library, and is foreseen to be integrated as an ordering service in Hyperledger
Fabric.

Mir-BFT is a robust Byzantine fault-tolerant (BFT) total order broadcast protocol aimed at max-
imizing throughput on wide-area networks (WANs), targeting deployments in decentralized networks,
such as permissioned and Proof-of-Stake permissionless blockchain systems. Mir-BFT is developed
open-source and is planned to be integrated in a major permissioned blockchain project.

Mir-BFT is the first BFT protocol that allows multiple leaders to propose request batches inde-
pendently (i.e., parallel leaders), in a way that precludes request duplication attacks by malicious
(Byzantine) clients, by rotating the assignment of a partitioned request hash space to leaders. As
this mechanism removes a single-leader bandwidth bottleneck and exposes a computation bottleneck
related to authenticating clients even on a WAN, our protocol further boosts throughput using a client
signature verification sharding optimization. Our evaluation shows that Mir-BFT outperforms state-of-
the-art and orders more than 60000 signed Bitcoin-sized (500-byte) transactions per second on a widely
distributed 100 nodes, 1 Gbps WAN setup, with typical latencies of a few seconds. We also evaluate
Mir-BFT under different crash and Byzantine faults, demonstrating its robustness.

Mir-BFT relies on classical BFT protocol constructs, which simplifies reasoning about its correct-
ness. Specifically, Mir-BFT is a generalization of the celebrated and scrutinized PBFT protocol. In
a nutshell, Mir-BFT follows PBFT “safety-wise”, with changes needed to accommodate novel features
restricted to PBFT liveness.

Mir-BFT PoC code, as described in this chapter, is available at https://github.com/hyperledger-labs/
mirbft/tree/research.

4.1 Introduction
Background. Byzantine fault-tolerant (BFT) protocols, which tolerate malicious (Byzantine [LSP82])
behavior of a subset of nodes, have evolved from being a niche technology for tolerating bugs and in-
trusions to be the key technology to ensure consistency of widely deployed decentralized networks
in which multiple mutually untrusted parties administer different nodes (such as in blockchain sys-
tems) [Vuk15, CDE+16, GHM+17]. Specifically, BFT protocols are considered to be an alternative
(or complementing) to energy-intensive and slow Proof-of-Work (PoW) consensus protocols used in

1https://github.com/hyperledger-labs/mirbft

47

https://github.com/hyperledger-labs/mirbft/tree/research
https://github.com/hyperledger-labs/mirbft/tree/research
https://github.com/hyperledger-labs/mirbft

D3.3 – Revision of Extended Core Protocols

early blockchains including Bitcoin [Vuk15, GKW+16]. BFT protocols relevant to decentralized net-
works are consensus and total order (TO) broadcast protocols [CGR11], which establish the basis for
state-machine replication (SMR) [Sch90a] and smart-contract execution [Woo16].

BFT protocols are known to be efficient on small scale (few nodes) in clusters (e.g., [AGK+15,
KAD+07]), or to exhibit modest performance on large scale (thousands or more nodes) across WAN (e.g.,
[GHM+17]). Recently, considerable research effort (e.g., [Buc16,CNG18,GAG+19,YMR+19,MXC+16])
focused on maximizing BFT performance in medium-sized WAN networks (e.g., at the order of 100
nodes) as this deployment setting is highly relevant to different types of decentralized networks.

On the one hand, permissioned blockchains, such as Hyperledger Fabric [ABB+18a], are rarely
deployed at scales above 100 nodes, yet use cases gathering dozens of organizations, which do not
necessarily trust each other, are very prominent [Cor]. On the other hand, the setting of up to 100
nodes is also highly relevant in the context of large scale permissionless blockchains, in which anyone
can participate, that use weighted voting (based e.g., on Proof-of-Stake (PoS) [BG17, KRDO17b] or
delegated PoS (DPoS) [Ten]), or committee-voting [GHM+17], to limit the number of nodes involved in
the critical path of the consensus protocol. With such weighted voting, the number of (relevant) nodes
for PoS/DPoS consensus is typically in the order of a hundred [Ten], or sometimes even less [EOS19].
Related open-membership blockchain systems, such as Stellar, also run consensus among less than 100
nodes [LLM+19].

Challenges. Most of the BFT scalability research (e.g., [Buc16,CNG18,GAG+19,YMR+19]) aims at
addressing the scalability issues that arise in classical leader-based BFT protocols, such as the seminal
PBFT protocol [CL02]. In short, in a leader-based protocol, a leader, who is tasked with assembling
a batch of requests (block of transactions) and communicating it to all other nodes, has at least O(n)
work, where n is the total number of nodes. Hence the leader quickly becomes a bottleneck as n grows.

A promising approach to addressing scalability issues in BFT is to allow multiple nodes to act
as parallel leaders and to propose batches independently and concurrently, either in a coordinated,
deterministic fashion [CNG18,MBS13], or using randomized protocols [DRZ18,MXC+16,L. 16]. With
parallel leaders, the CPU and bandwidth load related to proposing batches are distributed more evenly.
However, the issue with this approach is that parallel leaders are prone to wasting resources by proposing
the same duplicate requests. As depicted in Table 4.1, none of the current BFT protocols that allow
for parallel leaders deal with request duplication, which is straightforward to satisfy in single leader
protocols. The tension between preventing request duplication and using parallel leaders stems from
two important attacks that an adversary can mount and an efficient BFT protocol needs to prevent:
(i) the request censoring attack by Byzantine leader(s), in which a malicious leader simply drops or
delays a client’s request (transaction), and (ii) the request duplication attack, in which Byzantine clients
submit the exact same request multiple times.

To counteract request censoring attacks, a BFT protocol needs to allow at least f + 1 different
leaders to propose a request (where f , which is typically O(n), is the threshold on the number of
Byzantine nodes in the system). Single-leader protocols (e.g., [CL02,YMR+19]), which typically rotate
the leadership role across all nodes, address censoring attacks relatively easily. On changing the leader,
a new leader only needs to make sure they do not repeat requests previously proposed by previous
leaders.

With parallel leaders, the picture changes substantially. If a (malicious or correct) client submits
the same request to multiple parallel leaders concurrently, parallel leaders will duplicate that request.
While these duplicates can simply be filtered out after order (or after the reception of a duplicate, during
ordering), the damage has already been done — excessive resources, bandwidth and CPU have been
consumed. To complicate the picture, naïve solutions in which: (i) clients are requested to sequentially
send to one leader at the time, or (ii) simply to pay transaction fees for each duplicate, do not help.
In the first case, Byzantine clients mounting a request duplication attack are not required to respect

48

D3.3 – Revision of Extended Core Protocols

Parallel Leaders Prevents
Req. Duplication

PBFT [CL02] no yes
BFT-SMaRt [BSA14] no yes
Aardvark [CWA+09] no yes
RBFT [AMQ13] no yes
Spinning [VCBL09] no yes
Prime [AAC+08] no yes
700 [AGK+15] no yes
Zyzzyva [KAD+07] no yes
SBFT [GAG+19] no yes
HotStuff [YMR+19] no (yes)
Tendermint [Buc16] no yes
BFT-Mencius [MBS13] yes no
RedBelly [CNG18] yes no
Hashgraph [L. 16] yes no
Honeybadger [MXC+16] yes no
BEAT [DRZ18] yes no
Mir (this work) yes yes

Table 4.1: Comparison of Mir to related BFT protocols. By (yes) we denote a property which can be
satisfied with minor modifications to the protocol.

sending a request sequentially and, what is more, such a behavior cannot be distinguished from a correct
client who simply sends a transaction multiple times due to asynchrony or network issues. Even though
some blockchain systems, such as Hedera Hashgraph, charge transaction fees for every duplicate [Bai20],
this approach penalizes correct clients when they resubmit a transaction to counteract possible censoring
attacks, or a slow network. In more established decentralized systems, such as Bitcoin and Ethereum,
it is standard to charge for the same transaction only once, even if it is submitted by a client more
than once. In summary, with up to O(n) parallel leaders, request duplication attacks may induce an
O(n)-fold duplication of every single request and bring the effective throughput of unique requests to be
inversely proportional to number of nodes n, practically voiding the benefits of using multiple leaders.

Contributions. This chapter presents Mir-BFT (or, simply, Mir2), a novel BFT total order broadcast
(TOB) protocol that is the first to combine parallel leaders with robustness to attacks [CWA+09]. Mir
is developed open-source as a part of Hyperledger Labs.

In particular, Mir precludes request duplication performance attacks, and addresses other notable
performance attacks [CWA+09], such as the Byzantine leader straggler attack. Mir is further robust to
arbitrarily long (yet finite) periods of asynchrony and is optimally resilient (requiring optimal n ≥ 3f+1
nodes to tolerate f Byzantine faulty ones). On the performance side, Mir achieves the best throughput
to date on public WAN networks, as confirmed by our measurements on up to 100 nodes. The following
summarizes the main features of Mir, as well as contributions of this chapter:
• Mir allows multiple parallel leaders to propose batches of requests concurrently, in a sense multiplexing
several PBFT instances into a single total order, in a robust way. As its main novelty, Mir partitions
the request hash space across replicas, preventing request duplication, while rotating this partitioned
assignment across protocol configurations (epochs), addressing the request censoring attack. Mir further
uses client signature verification sharding throughput optimization to offload CPU, which is exposed as
a bottleneck in Mir once we remove the single-leader bandwidth bottleneck using parallel leaders.
• Mir avoids “design-from-scratch”, which is known to be error-prone for BFT [AGK+15,AGM+17].
Mir is a generalization of the well-scrutinized PBFT protocol 3, which Mir closely follows “safety-
wise” while introducing important generalizations only affecting PBFT liveness (e.g., (multiple) leader
election). This simplifies the reasoning about Mir correctness.
• We implement Mir in Go and run it with up to 100 nodes in a multi-datacenter WAN, as well as

2In a number of Slavic languages, the word mir refers to universally good, global concepts, such as peace and/or world.
3Mir variants based on other BFT protocols can be derived as well.

49

D3.3 – Revision of Extended Core Protocols

in clusters and under different faults, comparing it to state of the art BFT protocols. Our results
show that Mir convincingly outperforms state of the art, ordering more than 60000 signed Bitcoin-sized
(500-byte) requests per second (req/s) on a scale of 100 nodes on a WAN, with typical latencies of few
seconds. In this setup, Mir achieves 3x the throughput of the optimistic Chain of [AGK+15], and more
than an order of magnitude higher throughput than other state of the art single-leader BFT protocols.
To put this into perspective, Mir’s 60000+ req/s on 100 nodes on WAN is 2.5x the alleged peak capacity
of VISA (24k req/s [Cap18]) and more than 30x faster than the actual average VISA transaction rate
(about 2k req/s [Vuk15]).

Roadmap. The rest of the chapter is organized as follows. In Section 4.2, we define the system
model and in Section 4.3 we briefly present PBFT (for completeness). In Section 4.4, we give an
overview of Mir and changes it introduces to PBFT. We then explain Mir implementation details in
Section 4.5. We further list the Mir pseudocode in Section 4.6. This is followed by Mir correctness
proof in Section 4.7. Section 4.8 introduces an optimization tailored to large requests, such as the ones
featured by Hyperledger Fabric. Section 4.9 gives evaluation details. Finally, Section 4.10 discusses
related work and Section 4.11 concludes.

Figure 4.1: PBFT communication pattern and messages. Bottleneck messages are shown in bold.

4.2 System Model
We assume an eventually synchronous system [DLS88] in which the communication among correct
processes can be fully asynchronous before some time denoted by GST , unknown to nodes, after which
it is assumed to be synchronous. Processes are split into a set of n nodes (the set of all nodes is denoted
by Nodes) and a set of clients. We assume a public key infrastructure in which processes are identified
by their public keys; we further assume node identities are lexicographically ordered and mapped by a
bijection to the set [0 . . . n − 1] which we use to reason about node identities. In every execution, at
most f nodes can be Byzantine faulty (i.e., crash or deviate from the protocol in an arbitrary way),
such that n ≥ 3f + 1. Any number of clients can be Byzantine.

We assume an adversary that can control Byzantine faulty nodes but cannot break the crypto-
graphic primitives we use, such as PKI and cryptographic hashes (we use SHA-256). H(data) denotes
a cryptographic hash of data, while dataσp denotes data signed by process p (client or node). Processes
communicate through authenticated point-to-point channels (our implementation uses gRPC [gRP] over
TLS, preventing man-in-the-middle and related attacks).

Nodes implement a BFT total order (atomic) broadcast service to clients. To broadcast request
r, a client invokes bcast(r), with nodes eventually outputting commit(sn, r), such that the following
properties hold:

50

D3.3 – Revision of Extended Core Protocols

• P1 (Validity) If a correct node commits r then some client broadcasted r.

• P2 (Agreement/Total Order): If two correct nodes commit requests r and r′ with sequence
number sn, then r = r′.

• P3 (No duplication) If a correct node commits request r with sequence numbers sn and sn′,
then sn = sn′.

• P4 (Totality) If a correct node commits request r, then every correct node eventually commits
r.

• P5 (Liveness) If a correct client broadcasts request r, then some correct node p eventually
commits r.

Note that P3 (No duplication) is a standard TOB property [CGR11] that most protocols can
easily satisfy by filtering out duplicates after agreeing on request order, which is bandwidth wasting.
Mir enforces P3 without ordering duplicates, using a novel approach to eliminate duplicates during
agreement to improve performance and scalability.

4.3 PBFT and its Bottlenecks

Protocol PBFT [CL02] Mir
Client request authentication vector of MACs (1 for each node) signatures
Batching no (or, 1 request per “batch”) yes
Multiple-batches in parallel yes (watermarks) yes (watermarks)
Round structure/naming views epochs
Round-change responsibility view primary (round-robin across all nodes) epoch primary (round-robin across all nodes)
No. of per-round leaders 1 (view primary) many (from 1 to n epoch leaders)
No. of batches per round unbounded bounded (ephemeral epochs); unbounded (stable epochs)
Round leader selection primary is the only leader primary decides on epoch leaders (subject to constraints)
Request duplication prevention enforced by the primary hash space partitioning across epoch leaders (rotating)

Table 4.2: High level overview of the original PBFT [CL02] vs. Mir protocol structure.

We depict the PBFT communication pattern in Figure 4.1. PBFT proceeds in rounds called views
which are led by the primary. The primary sequences and proposes a client’s request (or a batch
thereof) in a PRE-PREPARE message — on WANs this step is typically a network bottleneck. Upon
reception of the PRE-PREPARE, other nodes validate the request, which involves, at least, verifying
its authenticity (we say nodes pre-prepare the request). This is followed by two rounds of all-to-all
communication (PREPARE and COMMIT messages), which are not bottlenecks as they leverage n
links in parallel and contain metadata (request/batch hash) only. A node prepares a request and sends
a COMMIT message if it gets a PREPARE message from a quorum (n − f ≥ 2f + 1 nodes) that
matches a PRE-PREPARE. Finally, nodes commit the request in total order, if they get a quorum of
matching COMMIT messages.

The primary is changed only if it is faulty or if asynchrony breaks the availability of a quorum.
In this case, nodes timeout and initiate a view change. View change involves communication among
nodes in which they exchange information about the latest pre-prepared and prepared requests, such
that the new primary, which is selected in round-robin fashion, must re-propose potentially committed
requests under the same sequence numbers within a new-view message (see [CL02] for details). The
view-change pattern can be simplified using signatures [CL99b].

After the primary is changed, the system enters the new view and common-case operation resumes.
PBFT complements this main common-case/view-change protocols with checkpointing (log and state
compaction) and state transfer subprotocols [CL02].

51

D3.3 – Revision of Extended Core Protocols

4.4 Mir Overview
Mir is based on PBFT [CL02] (Sec. 4.3) — major differences are summarized in Table 4.2. In this
section we elaborate on these differences, giving a high-level overview of Mir.

Request Authentication. While PBFT authenticates clients’ requests with a vector of MACs, Mir
uses signatures for request authentication to avoid concerns associated with “faulty client” attacks
related to the MAC authenticators PBFT uses [CWA+09] and to prevent any number of colluding nodes,
beyond f , from impersonating a client. However, this change may induce a throughput bottleneck, as
per-request verification of clients’ signatures requires more CPU than that of MACs. We address this
issue by a signature verification sharding optimization described in Sec. 4.5.6.

Batching and Watermarks. Mir processes requests in batches (ordered lists of requests formed
by a leader), a standard throughput improvement of PBFT (see e.g., [KAD+07,AGK+15]). Mir also
retains request/batch watermarks used by PBFT to boost throughput. In PBFT, request watermarks,
low and high, represent the range of request sequence numbers which the primary/leader can propose
concurrently. While many successor BFT protocols eliminated watermarks in favor of batching (e.g,
[KAD+07, BSA14,AGK+15]), Mir reuses watermarks to facilitate concurrent proposals of batches by
multiple parallel leaders.

Protocol Round Structure. Unlike PBFT, Mir distinguishes between leaders and a primary node.
Mir proceeds in epochs which correspond to views in PBFT, each epoch having a single epoch pri-
mary — a node deterministically defined by the epoch number, by round-robin rotation across all the
participating nodes of the protocol.

Each epoch e has a set of epoch leaders (denoted by EL(e)), which we define as nodes that can
sequence and propose batches in e (in contrast, in PBFT, only the primary is a leader). Within an
epoch, Mir deterministically partitions sequence numbers across epoch leaders, such that all leaders
can propose their batches simultaneously without conflicts. Epoch e transitions to epoch e + 1 if (1)
one of the leaders is suspected of failing, triggering a timeout at sufficiently many nodes (ungracious
epoch change), or (2) a predefined number of batches maxLen(e) has been committed (gracious epoch
change). While the ungracious epoch change corresponds exactly to PBFT’s view change, the gracious
epoch change is a much more lightweight protocol.

Selecting Epoch Leaders. For each epoch, it is the primary who selects the leaders and reliably
broadcasts its selection to all nodes. In principle, the primary can pick an arbitrary leader set as long
as the primary itself is included in it. We evaluated a simple “grow on gracious, reduce on ungracious
epoch” policy for leader set size. If primary i starts epoch e with a gracious epoch change it adds itself
to the leader set of the preceding epoch e− 1. If i starts epoch e with an ungracious epoch change and
e′ is the last epoch for which i knows the epoch configuration, i adds itself to the leader set of epoch e′
and removes one node (not itself) for each epoch between e and e′ (leaving at least itself in the leader
set).

Moreover, in an epoch e where all nodes are leaders (EL(e) = Nodes), we define maxLen(e) =∞
(i.e., e only ends if a leader is suspected). Otherwise, maxlen(e) is a constant, pre-configured system
parameter. We call the former stable epochs and the latter ephemeral.

More elaborate strategies for choosing epoch lengths and leader sets, which are outside the scope
of this chapter, can take into account execution history, fault patterns, weighted voting, distributed
randomness, or blockchain stake. Note that with a policy that constrains the leader set to only the
epoch primary and makes every epoch stable, Mir reduces to PBFT.

52

D3.3 – Revision of Extended Core Protocols

Request Duplication and Request Censoring Attacks. Moving from single-leader PBFT to
multi-leader Mir poses the challenge of request duplication. A simplistic approach to multiple leaders
would be to allow any leader to add any request into a batch ([MBS13,CNG18,L. 16]), either in the
common case, or in the case of client request retransmission. Such a simplistic approach, combined
with a client sending a request to exactly one node, allows good throughput with no duplication only
in the best case, i.e., with no Byzantine clients/leaders and with no asynchrony.

However, this approach does not perform well outside the best case, in particular with clients sending
identical request to multiple nodes. A client may do so simply because it is Byzantine and performs
the request duplication attack. However, even a correct client needs to send its request to at least
f + 1 nodes (i.e., to Θ(n) nodes, when n = 3f + 1) in the worst case in any BFT protocol, in order to
avoid Byzantine nodes (leaders) selectively ignoring the request (request censoring attack). Therefore,
a simplistic approach to parallel request processing with multiple leaders [MBS13,CNG18,L. 16] faces
attacks that can reduce throughput by factor of Θ(n), nullifying the effects of using multiple leaders.

Note the subtle but important difference between a duplication attack (submitting the same request
to multiple replicas) and a DoS attack (submitting many different requests) that a Byzantine client can
mount. A system can prevent the latter (DoS) by imposing per-client limits on incoming unique request
rate. Mir enforces such a limit through client request watermarks. A duplication attack, however, is
resistant to such mechanisms, as a Byzantine client is indistinguishable from a correct client with a less
reliable network connection. We demonstrate the effects of these attacks in Section 4.9.5.

Figure 4.2: Request mapping in a stable epoch with n = 4 (all nodes are leaders): Solid lines represent
the active buckets. Req. 1 is mapped to the first bucket, first active in node 1. Req. 2 is mapped to
the third bucket, first active in node 3. Rotation redistributes bucket assignment across leaders.

53

D3.3 – Revision of Extended Core Protocols

Buckets and Request Partitioning. To cope with these attacks, Mir partitions the request hash
space into buckets of equal size (number of buckets is a system parameter) and assigns each bucket
to exactly one leader, allowing a leader to only propose requests from its assigned (active) buckets
(preventing request duplication). For load balancing, Mir distributes buckets evenly (within the limits
of integer arithmetics) to all leaders in each epoch. To prevent request censoring, Mir makes sure
that every bucket will be assigned to a correct leader infinitely often. We achieve this by periodically
redistributing the bucket assignment. Bucket re-distribution happens (1) at each epoch change (see
Sec. 4.5.2) and (2) after a predefined number of batches have been ordered in a stable epoch (since a
stable epoch might never end), as illustrated in Figure 4.2. Note that all nodes, while proposing only
requests from their active buckets, still receive and store all requests (this can be optimized, see 4.5.1).

Parallelism. The Mir implementation (detailed in Sec. 4.5.10) is highly parallelized, with every
worker thread responsible for one batch. In addition, Mir uses multiple gRPC connections among
each pair of nodes which proves to be critical in boosting throughput in a WAN especially with a small
number of nodes.

Generalization of PBFT and Emulation of Other BFT Protocols. Mir reduces to PBFT
by setting StableLeaders = 1. This makes every epoch stable, hides bucket rotation (primary is the
single leader) and makes every epoch change ungracious. Mir can also approximate protocols such as
Tendermint [Buc16] and Spinning [VCBL09] by setting StableLeaders > 1, and fixing the maximum
number of batches and leaders in every epoch to 1, making every epoch an ephemeral epoch and rotating
leader/primary with every batch.

4.5 Mir Implementation Details

4.5.1 The Client

Upon bcast(r), broadcasting request r, client c creates a message 〈REQUEST, r, t, c〉σc . The message
includes the client’s timestamp t, a monotonically increasing sequence number that must be in a sliding
window between the low and high client watermark tcL < t ≤ tcH . Client watermarks in Mir allow
multiple requests originating from the same client to be “in-flight”, to enable high throughput without
excessive number of clients. These watermarks are periodically advanced with the checkpoint mechanism
described in Section 4.5.5, in a way which leaves no unused timestamps.

In principle, the client sends the REQUEST to all nodes (and periodically re-sends it to those
nodes who have not received it, until request commits at at least f + 1 nodes). In practice, a client
may start by sending its request to fewer than n nodes (f + 1 in our implementation) and only send it
to the remaining nodes if the request has not been committed after a timeout.

4.5.2 Sequence Numbers and Buckets

Sequence Numbers. In each epoch e, a leader may only use a subset of e’s sequence numbers for
proposing batches. Mir partitions e’s sequence numbers to leaders in EL(e) in a round-robin way, using
modulo arithmetic, starting at the epoch primary (see Fig. 4.3). We say that a leader leads sequence
number sn when the leader is assigned sn and is thus expected to send a PRE-PREPARE for the
batch with sequence number sn. Batches are proposed in parallel by all epoch leaders and are processed
like in PBFT. Recall (from Table 4.2) that batch watermarking (not to be confused with client request
watermarking from Sec. 4.5.1) allows the PBFT primary to propose multiple batches in parallel; in
Mir, we simply extend this to multiple leaders.

54

D3.3 – Revision of Extended Core Protocols

Figure 4.3: PRE-PREPARE messages in an epoch where all 4 nodes are leaders balancing the proposal
load. Mir partitions batch sequence numbers among epoch leaders.

Buckets. In epoch e = 0, we assign buckets to leaders sequentially, starting from the buckets with
the lowest hash values which we assign to epoch primary 0. For e > 0, the primary picks a set of
consecutive buckets for itself (primary’s preferred buckets), starting from the bucket which contains the
oldest request it received; this is key to ensuring Liveness (P5, Sec. 4.2). Mir distributes the remaining
buckets evenly and deterministically among the other leaders — this distribution is determined from an
epoch configuration which the epoch primary reliably broadcasts and which contains preferred buckets
and leader set selection (see Sec. 4.5.4). Buckets assigned to a leader are called its active buckets.

Additionally, if e is stable (when maxLen(e) = ∞ and thus no further epoch changes are guaran-
teed), leaders periodically (each time a pre-configured number of batches are committed) rotate the
bucket assignment: leader i is assigned buckets previously assigned to leader i+ 1 (in modulo n arith-
metic). To prevent accidental request duplication (which could result in leader i being suspected and
removed from the leader set), leader i waits to commit all “in-flight” batches before starting to propose
its own batches. Other nodes do the same before pre-preparing batches in i’s new buckets. In the
example shown in Fig. 4.2, after the rotation, node 0 waits to commit all batches (still proposed by
node 1) from its newly active red (second) bucket, before node 0 starts proposing new batches from the
red (second) bucket.

4.5.3 Common Case Operation

REQUEST. In the common case, the protocol proceeds as follows. Upon receiving 〈REQUEST, r, t, c〉σc

from a client, an epoch leader first verifies that the request timestamp is within the client’s current wa-
termarks tCL

< t ≤ tCH
and maps the request to the respective bucket by hashing the client timestamp

and identifier hr = H(t||c). Each bucket is implemented as a FIFO queue. We do not hash the request
payload, as this would allow a malicious client to target a specific bucket by adapting the request pay-
load, mounting load imbalance attacks. If the request falls into the leader’s active bucket, the leader
also verifies the client’s signature on REQUEST. A node i discards r if i already preprepared a batch
containing r or if r is already pending at i (we call a valid request pending if it has been received by i
but not yet committed).

55

D3.3 – Revision of Extended Core Protocols

PRE-PREPARE. Once leader i gathers enough requests in its current active buckets, or if timer
Tbatch expires (since the last batch was proposed by i), i adds the requests from the current active
buckets in a batch, assigns its next available sequence number sn to the batch (provided sn is within
batch watermarks) and sends a PRE-PREPARE message. If Tbatch time has elapsed and no requests
are available, i sends a PRE-PREPARE message with an empty batch.. This guarantees progress of
the protocol under low load.

A node j accepts a PRE-PREPARE (we say preprepares the batch and the requests it contains),
with sequence number sn for epoch e from node i provided that: (1) the epoch number matches the
local epoch number and j did not preprepare another batch with the same e and sn, (2) node i is in
EL(e), (3) node i leads sn, (4) the batch sequence number sn in the PRE-PREPARE is between
a low watermark and high batch watermark: w < sn ≤ W , (5) none of the requests in the batch
have already been preprepared, (6-8) every request in the batch: (6) has timestamp within the current
client’s watermarks, (7) belongs to one of i’s active buckets, and (8) has a signature which verifies
against client’s id (i.e., corresponding public key).

Conditions (1)-(4) are equivalent to checks done in PBFT, whereas conditions (5)-(8) differ from
PBFT. Condition (5) is critical for enforcing No Duplication (Property P3, Sec. 4.2). Conditions (6)
(allowing clients to send more than one request concurrently) and (7) (prohibiting malicious leaders to
propose requests outside their buckets) are performance related. Condition (8) is the key to Validity
(Property P1). As this step may become a CPU bottleneck if performed by all nodes, we use signature
sharding as an optimization (see Sec. 4.5.6).
The Rest. If node j preprepares the batch, j sends a PREPARE and the protocol proceeds exactly as
PBFT. Otherwise, j ignores the batch (which may eventually lead to j entering epoch change). Upon
committing a batch, j removes all requests present in the committed batch from j’s pending queues.

4.5.4 Epoch Change

Locally, at node j, epoch e can end graciously, by exhausting all maxLen(e) sequence numbers, or
ungraciously, if an epoch change timer (corresponding to the PBFT view change timer) at j expires.
In the former (gracious) case, a node simply starts epoch e+ 1 (see also Sec. 4.5.4) when it: (1) locally
commits all sequence numbers in e, and (2) reliably delivers epoch configuration for e+ 1. In the latter
(ungracious) case, a node first enters an epoch change subprotocol (Sec. 4.5.4) for epoch e+ 1.

It can happen that some correct nodes finish e graciously and some others not. Such (temporary)
inconsistency may prevent batches from being committed in e+1 even if the primary of e+1 is correct.
However, such inconsistent epoch transitions are eventually resolved in subsequent epochs, analogously
to PBFT, when some nodes complete the view change subprotocol and some do not (due to asynchrony).
As we show in in Section 4.7.5, the liveness of Mir is not violated.

Epoch Change Subprotocol

The epoch change subprotocol is triggered by epoch timeouts due to asynchrony or failures and gen-
eralizes PBFT’s view change subprotocol. Similarly to PBFT, after commiting batch sn in epoch e a
node resets and starts an epoch-change timer ecT imer expecting to commit batch sn+ 1.

If an ecT imer expires at node i, i enters the epoch-change subprotocol to move from epoch e to
epoch e+ 1.

In this case, i sends an EPOCH-CHANGE message to the primary of epoch e+ 1. An EPOCH-
CHANGE message follows the structure of a PBFT VIEW-CHANGE message (page 411, [CL02])
with the difference that it is signed and that there are no VIEW-CHANGE-ACK messages exchanged
(to streamline and simplify the implementation similarly to [CL99a]). The construction of a NEW-
EPOCH message (by the primary of e + 1) proceeds in the same way as the PBFT construction of a

56

D3.3 – Revision of Extended Core Protocols

NEW-VIEW message. A node starts epoch e+ 1 by processing the NEW-EPOCH message the same
way a node starts a new view in PBFT by processing a NEW-VIEW message.

However, before entering epoch e + 1, each correct node resurrects potentially pre-prepared but
uncommitted requests from previous epochs that are not reflected in the NEW-EPOCH message. This
is required to prevent losing requests due to an epoch change (due to condition (5) in pre-preparing a
batch — Sec. 4.5.3), as not all batches that were created and potentially preprepared before the epoch
change were necessarily delivered when starting the new epoch. Resurrecting a request involves each
correct node: (1) returning these requests to their corresponding bucket queues, and (2) marking the
requests as not preprepared. This allows proposing such requests again. Together with the fact that
clients make sure that every correct replica eventually receives their request (Sec. 4.5.1), this helps
guarantee Liveness (P5).

Starting a New Epoch

Every epoch e be it gracious or ungracious, starts by the primary reliably broadcasting (using Bracha’s
classic 3-phase algorithm [BT85]) the epoch configuration information4 containing: (1) EL(e), the set
of epoch leaders for e, and (2) identifiers of primary’s preferred buckets (that the primary picks for
itself), which the primary selects based on the oldest request pending at the primary.

Before starting to execute participate in epoch e (including processing a potential NEW-EPOCH
message for e) a node i first waits to reliably deliver the epoch e configuration. In case of gracious
epoch change, node i also waits to locally committing all “in-flight” batches pertaining to e− 1.

4.5.5 Checkpointing (Garbage Collection)

Exactly as in PBFT, Mir uses a checkpoint mechanism to prune the message logs. After a node i
commits all batches with sequence numbers up to and including snC , where snC is divisible by predefined
configuration parameter C, i sends a 〈CHECKPOINT, snC , H(sn′C)〉σi message to all nodes, where
sn′C is the last checkpoint and H(sn′C) is the hash of the batches with sequence numbers sn in range
sn′C ≤ sn < snC . Each node collects checkpoint messages until it has 2f + 1 matching ones (including
its own), constituting a checkpoint certificate, and persists the certificate. At this point, the checkpoint
is stable and the node can discard the common-case messages from its log for sequence numbers lower
than sn.

Mir advances batch watermarks at checkpoints like PBFT does. Clients’ watermarks are also pos-
sibly advanced at checkpoints, as the state related to previously delivered requests is discarded. For
each client c, the low watermark tcL advances to the highest timestamp t in a request submitted by c
that has been delivered, such that all requests with timestamp t′ < t have also been delivered. The
high watermark advances to tcH = tcL + wc, where wc is the length of the sliding window.

4.5.6 Signature Verification Sharding (SVS)

To offload CPU during failure-free execution (in stable epochs), we implement an optimization where
not all nodes verify all client signatures. For each batch, we distinguish f + 1 verifier nodes, defined
as the f + 1 lexicographic (modulo n) successors of the leader proposing the batch. Only the verifiers
verify client signatures in the batch on reception of a PRE-PREPARE message (condition (8) in Sec.
4.5.3). Furthermore, we modify the Mir (and thus PBFT) common-case protocol such that a node
does not send a COMMIT before having received a PREPARE message from all f + 1 verifiers (in
addition to f other nodes and itself). This maintains Validity, as at least one correct node must have
verified client’s signature. This way, however, if even a single verifier is faulty, SVS may prevent a batch

4We optimize the reliable broadcast of an epoch configuration using piggybacking on other protocol messages where
applicable.

57

D3.3 – Revision of Extended Core Protocols

from being committed. Therefore, we only apply this optimization in stable epochs where all nodes are
leaders. In case (ungracious) epoch change occurs, reducing the size of the leader set, Mir disables SVS.

4.5.7 State Transfer

Nodes can temporarily become unavailable, either due to asynchrony, or due to transient failures. Upon
recovery/reconnection, nodes must obtain several pieces of information before being able to actively
participate in the protocol again. Mir state transfer is similar to that of PBFT, and here we outline
the key aspects of our implementation.

To transfer state, nodes need to obtain current epoch configuration information, the latest stable
checkpoint (which occurred at sequence number h), as well as information concerning batches having
sequence numbers between h + 1 and the latest sequence number. Nodes also exchange information
about committed batches.

The state must, in particular, contain two pieces of information: (1) the current epoch configuration,
which is necessary to determine the leaders from which the node should accept proposals, and (2) client
timestamps at the latest checkpoint, which are necessary to prevent including client requests that have
already been proposed in future batches.

A node i in epoch e goes to state transfer when i receives common-case messages from f + 1 other
nodes with epoch numbers higher than e, and i does not transition to e+ 1 for a certain time. Node i
obtains this information by broadcasting a 〈HELLO, nei, ci, bi〉 message, where nei is the latest NEW-
EPOCH message received by i, ci is the node’s last stable checkpoint, and bi is the last batch i delivered.
Upon receipt of a HELLO message, another node j replies with its own HELLO message, as well as
with any missing state from the last stable checkpoint and up to its current round n.

From the latest stable checkpoint, a node can derive the set of 2f + 1 nodes which signed this stable
checkpoint. This also allows a node to transfer missing batches even from one out of these 2f+1 nodes,
while receiving confirmations of hashes of these batches from f additional nodes (to prevent ingress of
batches from a Byzantine node).

We perform further optimizations in order to reduce the amount of data that needs to be exchanged
in case of a state transfer. First, upon reconnecting, nodes announce their presence but wait for the next
stable checkpoint after state transfer before actively participating in the protocol again. This enables
us to avoid transferring the entire state related to requests following the preceding stable checkpoint.
Second, the amount of data related to client timestamps that needs to be transmitted can be reduced
through only exchanging the root of the Merkle tree containing the client timestamps, with the precise
timestamps being fetched on a per-need basis.

4.5.8 Membership Reconfiguration

While details of membership reconfiguration are outside of the scope of this chapter, we briefly describe
how Mir deals with adding/removing clients and nodes. Such requests, called configuration requests
are totally ordered like other requests, but are tagged to be interpretable/executed by nodes. As
Mir processes requests out of order (just like PBFT), configuration requests cannot be executed right
after committing a request as the timing of commitment might diverge across nodes resulting in non-
determinism. Instead, configuration requests are taken into account only at checkpoints and more
specifically all configuration requests ordered between checkpoints k − 1 and k, take effect only after
checkpoint k + 1.

4.5.9 Durability (Persisting State)

By default, Mir implementation does not persist state or message logs to stable storage. Hence, a node
that crashes might recover in a compromised state — however, such a node does not participate in the

58

D3.3 – Revision of Extended Core Protocols

protocol until the next stable checkpoint which effectively restores the correct state. While we opted
for this approach assuming that for few dozens of nodes simultaneous faults of up to a third of them
will be rare, for small number of nodes the probability of such faults grows and with some probability
might exceed threshold f . Therefore, we optionally persist state pertaining to sent messages in Mir,
which is sufficient for a node to recover to a correct state after a crash.

We also evaluated the impact of durability with 4 nodes, in a LAN setting, where it is mostly relevant
due to small number of nodes and potentially collocated failures, using small transactions. We find
that durability has no impact on total throughput, mainly due to the fact that persisted messages are
amortized due to batching, Mir parallel architecture and the computation-intensive workload. However,
average request latency increases by roughly 300ms.

4.5.10 Implementation Architecture

We implemented Mir in Go. Our implementation is multi-threaded and inspired by the consensus-
oriented parallelism (COP) architecture previously applied to PBFT to maximize its throughput on
multicore machines [BDK15]. Specifically, in our implementation, a separate thread is dedicated to
managing each batch during the common case operation, which simplifies Mir code structure and helps
maximize performance. We further parallelize computation-intensive tasks whenever possible (e.g.,
signature verifications, hash computations). The only communication in common case between Mir
threads pertains to request duplication prevention (rule (6) in accepting PRE-PREPARE in Sec. 4.5.3)
— the shared data structures for duplication prevention are hash tables, synchronized with per-bucket
locks; instances that handle requests corresponding to different leaders do not access the same buckets.
The only exception to the multi-threaded operation of Mir is during an ungracious epoch-change, where
a designated thread (Mir Manager) is responsible for stopping worker common-case threads and taking
the protocol from one epoch to the next. This manager thread is also responsible for sequential batch
delivery and for checkpointing, which, however, does not block the common-case threads processing
batches.

Our implementation also parallelizes network access using a configurable number of independent
network connections between each pair of nodes. This proves to be critical in boosting Mir performance
beyond seeming bandwidth limitations in a WAN that stem from using a single TCP/TLS connection.

In addition to multiple inter-node connections, we use an independent connection for handling
client requests. As a result, the receipt of requests is independent of the rest of the protocol — we
can safely continue to receive client requests even if the protocol is undergoing an epoch change. Our
implementation can hence seamlessly use, where possible, separate NICs for client’s requests and inter-
node communication to address DoS attacks [CWA+09].

4.6 Pseudocode
In this section we introduce Mir pseudocode. We first present PBFT [CL02] pseudocode to demonstrate
the common message flow in the common case of the two protocols.

Each node executes its own instance of the algorithm described by the pseudocode. The node
atomically executes each upon block exactly once for each assignment of values satisfying the block’s
triggering condition.

For better readability we do not include batching in the pseudocode. Implementing batching is
trivial by replacing requests with batches of requests, except request handling (lines 53-60). Moreover,
whenever appropriate, instead of performing a request-specific action on a batch, we perform this action
on all requests in a batch, like request validity checks in PRE-PREPARE (lines 74-77) and request
resurrection (lines 138-146). In the context of request-specific validity checks, we consider the whole
batch invalid if any of the contained requests fails its validity check. Finally, condition on line 62 should
be replaced with checking if there exist enough requests for a batch.

59

D3.3 – Revision of Extended Core Protocols

Moreover, for readability, the pseudocode does not include a batch timeout which ensures that even
with low load leaders continuously send batches (even if empty) to drive the checkpoint protocol and
so that EpochChangeTimeout does not fire.

Algorithm 1 Common
1: function IsPrimary(i, v) :
2: return i = v mod N ;
3:
4: function Valid(v, n) :
5: if (lv = v) and (w <= n < W) then
6: return True;
7: else
8: return False;
9:
10: function GetOldest(S) :
11: Returns the oldest entry in set S \ Preprepared.
12:

60

D3.3 – Revision of Extended Core Protocols

Algorithm 2 PBFT [CL02]
1: import Common
2: import PbftViewChange
3:
4: Parameters:
5: id
6: // The node identity
7: f
8: // Number of faults tolerated
9: RequestT imeout
10: // Timeout to prevent waiting indefinitely for q request to commit
11: w
12: // Low watermark, advances at checkpoints
13: W
14: // High watermark, advances at checkpoints
15:
16: Struct Request contains
17: bytes o
18: // Request payload
19: int t
20: // Client timestamp
21: bytes c
22: // Client public key (ID)
23:
24: Init:
25: lv ← 0
26: // Local view number
27: next← 0
28: // The next available sequence number
29: R← ∅
30: // The set of received requests
31: Preprepare_msgs← {}
32: // A map from (view, sequence number) pairs to PRE-PREPARE messages, initially ⊥
33: Prepare_msgs← {}
34: // A map from (view, sequence number) pairs to a set of unique PREPARE messages
35: Commit_msgs← {}
36: // A map from (view, sequence number) pairs to a set of unique COMMIT messages
37: RequestT imeouts← {}
38: // A map from requests to timers
39:

61

D3.3 – Revision of Extended Core Protocols

Algorithm 2 PBFT (continues)
40: upon receiving r ← 〈REQUEST, o, t, c〉σc

41: such that SigV er(r, σc, c)
42: and not (r′ in R s.t. r′.c = r.c and r′.t 6= r.t) do
43: R← r ∪R
44: RequestT imeouts[r]← schedule RequestT imeout
45:
46: upon receiving |R| > 0 and w <= next < W
47: and common.IsPrimary(id, lv) do
48: r ← common.GetOldest(R)
49: Send 〈PRE-PREPARE, lv, next, r, id〉 to all nodes
50: next← next+ 1
51: upon receiving pp← 〈PRE-PREPARE, v, n, r, i〉
52: such that common.V alid(v, n)
53: and common.IsPrimary(i, v)
54: and Preprepare_msgs[v, n] = ⊥
55: and r in R do
56: Preprepare_msgs[v, n]← pp
57: send 〈PREPARE, v, n,D(r), id〉 to all nodes
58:
59: upon receiving p← 〈PREPARE, v, n,D(r), i〉
60: such that D(Preprepare_msgs[v, n].r) = D(r)
61: and common.V alid(n, v) do
62: Prepare_msgs[v, n]← Prepare_msgs[v, n] ∪ {p}
63:
64: upon |Prepare_msgs[lv, n]| = 2f + 1 do
65: r ← Preprepare_msgs[lv, n].r
66: send 〈COMMIT, lv, n,D(r), id〉 to all nodes
67:
68: upon receiving c← COMMIT, v, n,D(r), i〉
69: such that D(Preprepare_msgs[v, n].r) = D(r)
70: and common.V alid(n, v) do
71: Commit_msgs[v, n]← Commit_msgs[v, n] ∪ {c}
72:
73: upon |Commit_msgs[lv, n]| = 2f + 1 do
74: r ← Preprepare_msgs[v, n].r
75: R← R \ r
76: Deliver(n, r)
77: cancel RequestT imeouts[r]
78:
79: upon RequestT imeout do
80: lv ← lv + 1
81: PbftV iewChange.V iewChange()
82:

62

D3.3 – Revision of Extended Core Protocols

Algorithm 3 Mir initialization
1: import Common
2: import PbftViewChange
3: import ReliableBroadcast
4:
5: Parameters:
6: id
7: // The node identity
8: f
9: // Number of faults tolerated
10: EpochChangeT imeout
11: // Timeout for epoch change
12: w
13: // Low watermark, advances at checkpoints
14: W
15: // High watermark, advances at checkpoints
16: NumBuckets
17: // Number of buckets
18: BucketsPerLeader
19: // The number of buckets per leader when all nodes are leaders
20: RotationPeriod
21: // Bucket rotation period
22: EphemeralEpLen
23: // Number of sequence numbers in an ephemeral epoch
24:
25: Struct Request contains
26: o
27: // Request payload
28: t
29: // Client timestamp
30: c
31: // Client struct
32:
33: Struct Client contains
34: pk
35: // Client public key (ID)
36: H
37: // Client high watermark, advances at checkpoint
38: L
39: // Client low watermark, advances at checkpoint
40:
41: Struct EpochConfig contains
42: First
43: // First sequence number of the epoch
44: Last
45: // Last sequence number of the epoch
46: Leaders
47: // List of leaders of the epoch
48: PrimaryBuckets
49: // Buckets the primary chose for itself
50:
51: Init:
52: le← 0
53: // Local epoch number
54: next← id
55: // The next available sequence number
56: Buckets← Set of NumBuckets empty buckets
57:
58: // Each bucket is a FIFO queue of received requests
59: Preprepare_msgs← {}
60: // A map from (epoch, sequence number) pairs to PRE-PREPARE messages
61: Prepare_msgs← {}
62: // A map from (epoch, sequence number) pairs to a set of unique PREPARE messages
63: Commit_msgs← {}
64: // A map from (epoch, sequence number) pairs to a set of unique COMMIT messages
65: Preprepared← ∅
66: // A set of preprepared requests to prevent duplicates
67: committed← {}
68: // A map from (epoch, sequence number) pairs to committed requests, initially ⊥
69: delivered← {}
70: // A map from (epoch, sequence number) booleans
71: EpochConfig ← []
72: // List of epoch configurations
73: for all bucket ∈ Buckets do
74: bucket← ∅
75: end for
76: EpochConfig[0].F irst = 0
77: EpochConfig[0].Last =∞
78: EpochConfig[0].Leaders = Nodes
79: EpochConfig[0].P rimaryBuckets = arbitrary dNumBuckets/Nodese buckets
80: ActiveBucketAssignment(0, EpochConfig[0])
81:

63

D3.3 – Revision of Extended Core Protocols

Algorithm 4 PBFT ViewChange
1: import Common
2:
3: Parameters:
4: N
5: // Number of nodes
6: f
7: // Number of faults
8: id
9: // The node identity
10: lv
11: // Local view number
12: P
13: // Map form sequence number
14:
15: // to Entry struct for the latest prepared request in previous views
16: Q
17: // Map form sequence number
18:
19: // to all Entry structs for a unique pre-prepared request in previous views
20: C
21: // Local checkpoints
22: h
23: // Latest stable checkpoint
24:
25: Init:
26: Sset← {}
27: // A map from node id to ViewChange message
28: Xset← {}
29: // A map from sequence number to selected value
30: cp← ⊥
31: // The highest stable checkpoint available at f+1 nodes
32:
33: Struct Request contains
34: n
35: // Sequence number
36: d
37: // Request digest
38: v
39: // View
40:
41: upon receiving m← VIEWCHANGE, v, h, C, P,Q, i, σi〉
42: such that SigV er(m,σi, i.pk)
43: V [i]← m
44: if |Sset| ≥ 2f + 1
45: CalculateHighCheckpoint(Sset)
46: CalculateXset(Sset) 5

47: if Xset 6= {}
48: // If the Xset is successfully calculated
49: send 〈NEWVIEW, v, Sset,Xset, cp, id, σid〉 to all nodes
50: end if
51: end if
52:
53: upon receiving m← NEWVIEW, v, S,X, cp′, i, σi〉
54: such that SigV er(m,σi, i.pk)
55: CalculateHighCheckpoint(S)
56: CalculateXset(S)
57: if Xset = X and cp = cp′

58: // Verify NEWVIEW
59: for all (n, r) ∈ Xset do
60: send 〈PREPARE, v, n,D(r), id〉 to all nodes
61: end for
62: end if
63:
64: function ViewChange() :
65: lv ← lv + 1
66: // Advance local view
67: p← lv mod N ;
68: // Find the new primary
69: send 〈VIEWCHANGE, lv, h, C, P,Q, id, σid〉 to p
70:
71: function CalculateHighCheckpoint(V) :
72: cp← cp′|cp′ the highest checkpoint in m.C(∀m ∈ Sset) and at least f + 1 nodes have a checkpoint in cp′.
73:
74: function CalculateXset(V) :
75: L← the highest sequence number in m.P (∀m ∈ Sset)
76: for all n such that cp < n ≤ L do
77: if ∃m ∈ Sset with 〈n, d, v〉 ∈ m.P
78: such that ∃2f + 1 messages m′ ∈ Sset
79: such that m′.h < n
80: and ∀〈n, d′, v′〉 ∈ m′.P
81: such thatv′ < v or (v′ = v and d′ = d)
82: and ∃f + 1 messages m′ ∈ Sset
83: such that ∃〈n, d′, v′〉 ∈ m′.Q
84: such that v′ ≥ v and d′ = d
85: X[n]← request with digest d
86: // Request with digest d could have been prepared for n
87: else if ∃2f + 1 messages m ∈ Sset
88: such that m.h < n and m.P has no entry for n
89: X[n]← ⊥
90: // No request could have been prepared for n
91: else
92: Xset← {}
93: // Not enough VIEWCHANGE messages
94: return
95: end if
96: end for
97:

64

D3.3 – Revision of Extended Core Protocols

Algorithm 4 Mir (continues)
82: upon receiving r ← 〈REQUEST, o, t, c〉σc

83: such that SigV er(m,σc, c.pk)
84: and r.c.L <= r.t < r.c.H
85: and r /∈ Preprepared do
86: bucket← GetBucket(H(t||c.pk))
87: if @r′ ∈ bucket : r′.c = r.c ∧ r′.t = r.t
88: bucket.append(r)
89: end if
90:
91: upon |ActiveBuckets(i, le, next)| > 0
92: and w <= n < W
93: and ActiveRotation(le, n)
94: and n ≤ EpochConfig[le].Last do
95: r ← common.GetOldest(ActiveBuckets(i, le, next))
96: send 〈PRE-PREPARE, le, n, r, id〉 to all nodes
97: next← next+ |EpochConfig[le].Leaders)|
98:
99: upon receiving pp← 〈PRE-PREPARE, e, n, r, i〉
100: such that common.V alid(e, n)
101: and IsLeader(i, e, n)
102: and Preprepare_msgs[e, n] = ⊥)
103: and r.c.L <= r.t < r.c.H
104: and H(r.o||r.t||r.c.pk) not in Preprepared
105: and H(r.t||r.c.pk) in ActiveBuckets(i, e, n)
106: and SigV er((r, r.σc, c.pk) do
107: Preprepared← Preprepared ∪ {r}
108: Preprepare_msgs[e, n]← pp
109: send 〈PREPARE, v, n,D(r), id〉 to all nodes
110:
111: upon receiving p← 〈PREPARE, e, n,D(r), i〉
112: such that D(Preprepare_msgs[e, n].r) = D(r)
113: and common.V alid(e, v) do
114: Prepare_msgs[e, n]← Prepare_msgs[e, n] ∪ {p}
115:
116: upon |Prepare_msgs[le, n]| = 2f + 1 do
117: r ← Preprepare_msgs[e, n].r
118: send 〈COMMIT, le, n,D(r), id〉 to all nodes
119:
120: upon receiving c← 〈COMMIT, e, n,D(r), i〉
121: such that D(Preprepare_msgs[e, n].r) = D(r)
122: and common.V alid(e, v) do
123: Commit_msgs[e, n]← Commit_msgs[e, n] ∪ {c}
124:
125: upon |Commit_msgs[e, n]| = 2f + 1 do
126: r ← Preprepare_msgs[e, n].r
127: committed[e, n]← r
128: GetBucket(H(r.t||r.c.pk)).remove(r)
129:
130: upon committed[le, n] 6= ⊥ and delivered[n− 1] do
131: Deliver(n, r)
132: delivered[n]← True
133: reset EpochChangeTimeout
134:
135: upon EpochChangeT imeout do
136: PBFTV iewChange.V iewChange()
137: // PBFT view change
138:
139: upon delivered[EpochConfig[e].Last]
140: and common.IsPrimary(id, e+1) do
141: EpochConfig[e+ 1].Leaders← EpochConfig[e].Leaders ∪ {id}
142: EpochConfig[e+ 1].P rimaryBuckets
143: ← dNumBuckets/Nodese buckets containing the oldest requests
144: EpochConfig[e+ 1].F irst← EpochConfig[e].Last+ 1
145: if EpochConfig[e+ 1].Leaders = Nodes then
146: EpochConfig[e+ 1].Last←∞
147: else
148: EpochConfig[e+ 1].Last
149: ← EpochConfig[e+ 1].F irst+ ephemeralEpLen

150: ReliableBroadcast.Broadcast(EpochConfig[e+ 1], e+ 1)

65

D3.3 – Revision of Extended Core Protocols

Algorithm 4 Mir (continues)
151: upon sending PBFT NEW-EPOCH message for epoch e+ 1 do
152: EpochConfig[e+ 1].Leaders← ShrinkingLeaderset(e+ 1, id)
153: EpochConfig[e+ 1].P rimaryBuckets
154: ← dNumBuckets/Nodese buckets containing the oldest requests
155: EpochConfig[e+ 1].F irst← EpochConfig[e].Last+ 1
156: EpochConfig[e+ 1].Last← EpochConfig[e+ 1].F irst+ ephemeralEpLen
157: ReliableBroadcast.Broadcast(EpochConfig[e+ 1], e+ 1)
158:
159: upon ReliableBroadcast.Delivered(EpochConfig, e) and le = e do
160: EpochConfig[e]← EpochConfig
161: if ∃k : EpochConfig[e].Leaders[k] = id then
162: next← EpochConfig[e].F irst+ k

163: ActiveBucketAssignment(e, EpochConfig)
164:
165: upon sending or receiving PBFT NEW-EPOCH message do
166: for all r ∈ Preprepared do
167: if r not in NEW-VIEW then
168: Preprepared← Preprepared \ {r}
169: end for
170: for all r ∈ PBFT NEW-VIEW do
171: Preprepared← Preprepared ∪ {r}
172: end for
173:
174: function IsLeader(i, e, n) :
175: // Returns True if i is leader of n in epoch e
176: if i in EpochConfig[e].Leaders then
177: return (EpochConfig[e].F irst+ n ≡ i mod |EpochConfig[e].Leaders|
178: else
179: return False
180:
181: function GetBucket(hash) :
182: Returns the bucket containing requests r such that H(r.t||r.c.pk) = hash.
183:
184: function ActiveBucketAssignment(e, EpochConfig) :
185: Evenly partition Buckets \ EpochConfig.PrimaryBuckets
186: among EpochConfig.Leaders \ {i : IsPrimary(i, e)}
187:
188: function ActiveBuckets(i, e, n) :
189: Returns the union of buckets which are active for node i in epoch e and sequence number n
190:
191:
192: // ActiveRotation returns true if all the sequence numbers from the previous rotation are

delivered
193: function ActiveRotation(e, n) :
194: period← RotationPeriod
195: rotation← dn− (EpochConfig[e− 1].Last)/periode
196: return delivered[EpochConfig[e− 1].Last+ (rotation− 1) ∗ period]
197:
198: function ShrinkingLeaderset(e, i) :
199: elast ← the last epoch for which i has the configuration
200: Leaders← EpochConfig[elast].Leaders ∪ {i}
201: RemovedLeaders← a random set of min((e′ − e), 1) nodes from EpochConfig[elast].Leaders \ {i}
202: return Leaders \RemovedLeaders
203:

66

D3.3 – Revision of Extended Core Protocols

4.7 Mir Correctness
In this section we outline Mir correctness proof, proving TOB properties as defined in Section 4.2. We
pay particular attention to Liveness (Section 4.7.5), as we believe it is the least obvious out of four Mir
TOB properties to a reader knowledgeable in PBFT. Where relevant, we also consider the impact of
the signature verification sharding (SVS) optimization (Sec. 4.5.6).

We define a function for assigning request sequence numbers to individual requests, output by
commit indication of TOB as follows. For batch with sequence number sn ≥ 0 committed by a
correct node i, let Ssn be the total number of requests in that batch (possibly 0). Let r be the kth
request that a correct node commits in a batch with sequence number sn ≥ 0. Then, i outputs
commit(k +∑sn−1

j=0 Sj , r), i.e., node i commits r with sequence number k +∑sn−1
j=0 Sj .

4.7.1 Validity (P1)

(P1) Validity: If a correct node commits r then some client broadcasted r.

Proof (no SVS). We first show Validity holds, without signature sharding. If a correct node commits
r then at least n − f correct nodes sent COMMIT for a batch which contains r, which includes at
least n− 2f ≥ f + 1 correct nodes (Sec. 4.3). Similarly, if a correct node sends COMMIT for a batch
which contains r, then at least n − 2f ≥ f + 1 correct nodes sent PREPARE after pre-preparing a
batch which contains r (Sec. 4.5.3). This implies at least f + 1 correct nodes executed Condition (8) in
Sec. 4.5.3 and verified client’s signature on r as correct. Validity follows.

Proof (with SVS). With signature verification sharding (Sec. 4.5.6), clients’ signatures are verified
by at least f + 1 verifier nodes belonging to the leader set, out of which at least one is correct. As no
correct node sends COMMIT before receiving PREPARE from all f + 1 verifier nodes (Sec. 4.5.6),
no request which was not correctly signed by a client can be committed — Validity follows.

4.7.2 Agreement (Total Order) (P2)

(P2) Agreement: If two correct nodes commit requests r and r′ with sequence number sn, then r = r′.

Proof. Assume by contradiction that there are two correct nodes i and j which commit, respectively,
r and r′ with the same sequence number sn, such that r 6= r′. Without loss of generality, assume i
commits r with sn before j commits r′ with sn (according to a global clock not accessible to nodes),
and let i (resp. j) be the first correct node that commits r (resp. r′) with sn.

By the way we compute request sequence numbers, the fact that i and j commit different requests at
the same (request) sequence number implies they commit different batches with same (batch) sequence
number. Denote these different batches by B and B′, respectively, and the batch sequence number by
bsn.

We distinguish several cases depending on the mechanism by which i (resp. j) commits B (resp.
B′). Namely, in Mir, i can commit req contained in batch B in one of the following ways (commit
possibilities (CP)):

• CP1: by receiving a quorum (n − f) of matching COMMIT messages in the common case of
an epoch for a fresh batch B (a fresh batch here is a batch for which a leader sends a PRE-
PREPARE message — see Sec. 4.3 and Sec. 4.5.3),

• CP2: by receiving a quorum (n − f) of matching COMMIT messages following an ungracious
epoch change, where NEW-EPOCH message contains B (Sec. 4.5.4),

• CP3: via the state transfer subprotocol (Sec. 4.5.7).

67

D3.3 – Revision of Extended Core Protocols

As i is the first correct node to commit request r with sn (and therefore batch B with bsn), it is
straightforward to see that i cannot commit B via state transfer (CP3). Hence, i commits B by CP1
or CP2.

We now distinguish several cases depending on CP by which j commits B′. In case j commits B′
by CP1 or CP2, since Mir common case follows the PBFT common case, and Mir ungracious epoch
change follows PBFT view change — a violation of Agreement in Mir implies a violation of Total Order
in PBFT, a contradiction.

The last possibility is that j commits B′ by CP3 (state transfer). Since j is the first correct node
to commit B′ with bsn, j commits B′ after a state transfer from a Byzantine node. However, since (1)
Mir checkpoint messages (see Sec. 4.5.5) which are the basis for stable checkpoints and state transfer
(Sec. 4.5.7) are signed, and (2) stable checkpoints contain signatures of 2f + 1 nodes including at least
f + 1 correct nodes, j is not the first correct node to commit B′ with bsn, a contradiction.

4.7.3 No Duplication (P3)

(P3) No duplication: If a correct node commits request r with sequence numbers sn and sn′, then
sn = sn′.

Proof. No-duplication stems from the way Mir prevents duplicate pre-prepares (condition (5) in accept-
ing PRE-PREPARE, as detailed in Sec. 4.5.3).

Assume by contradiction that two identical requests req and req′ exist such that req = req′ and
correct node j commits req (resp. req′) with sequence number sn (resp. sn′) such that sn 6= sn′.

Then, we distinguish the following exhaustive cases:

• (i) req and req′ are both delivered in the same batch, and

• (ii) req and req′ are delivered in different batches.

In case (i), assume without loss of generality that req precedes req′ in the same batch. Then, by
condition (5) for validating a PRE-PREPARE (Sec. 4.5.3), no correct node preprepares req′ and all
correct nodes discard the batch which hence cannot be committed, a contradiction.

In case (ii) denote the batch which contains req by B and the batch which contains req′ by B′.
Denote the set of at least n − f ≥ 2f + 1 nodes that prepare batch B by S and the set of at least
n− f ≥ 2f + 1 that prepare batch B′ by S′. Sets S and S′ intersect in at least n− 2f ≥ f + 1 nodes
out of which at least one is correct, say node i. Assume without loss of generality that i preprepares B
before B′. Then, the following argument holds irrespective of whether i commits batch B before B′, or
vice versa: as access to datastructure responsible for implementing condition (5) is synchronized with
per-bucket locks (Sec. 4.5.10) and since req and req′ both belong to the same bucket as their hashes
are identical, i cannot preprepare req′ and hence cannot prepare batch B′ which cannot be delivered,
a contradiction.

It is easy to see that signature verification sharding optimization does not impact the No-Duplication
property.

4.7.4 Totality (P4)

Lemma 3. If a correct node commits a sequence number sn, then every correct node eventually commits
sn.

Proof. Assume, by contradiction, that a correct node j never commits any request with sn. We distin-
guish 2 cases:

68

D3.3 – Revision of Extended Core Protocols

1. sn becomes a part of a stable checkpoint of a correct node k. In this case, after GST, j eventually
enters the state transfer protocol similar to that of PBFT, transfers the missing batches from k,
while getting batch hash confirmations from f additional nodes that signed the stable checkpoint
sn belongs to (state transfer is outlined in Sec. 4.5.7), a contradiction.

2. sn never becomes a part of a stable checkpoint. Then, the start of the watermark window will
never advance past sn, and all correct nodes, at latest when exhausting the current watermark
window, will start infinitely many ungracious epoch changes without any of them committing any
requests. Correct nodes will always eventually exhaust the watermark window, since even in the
absence of new client requests, correct leaders periodically propose empty requests (see Section
4.6). Infinitely many ungracious epoch changes without committing any requests, however, is a
contradiction to PBFT liveness.

(P4) Totality: If a correct node commits request r, then every correct node eventually commits r.

Proof. Let i be a correct node that commits r with sequence number sn. Then, by (P2) Agreement, no
correct node can commit another r′ 6= r with sequence number sn. Therefore, all other correct nodes
will either commit r with sn or never commit sn. The latter is a contradiction to Lemma 3, since i
committed some request with sn, all correct nodes commit some request with sn. Totality follows.

4.7.5 Liveness (P5)

We first prove a number of auxiliary lemmas and then prove liveness. Line numbers refer to Mir
pseudocode (Sec. 4.6).

Lemma 4. In an execution with a finite number of epochs, the last epoch elast is a stable epoch.

Proof. Assume by contradiction that elast is not stable, this implies either:

1. a gracious epoch change from elast at some correct node and hence, elast is not the last, a contra-
diction; or

2. ungracious epoch change from elast never completes — since Mir ungracious epoch change protocol
follows PBFT view change protocol, this implies liveness violation in PBFT, a contradiction.

Lemma 5. If a correct client broadcasts request r, then every correct node eventually receives r and
puts it in the respective bucket queue.

Proof. This holds by assumption of a synchronous system after GST, and by the correct client sending
and periodically re-sending request to all nodes until a request is committed (see Section 4.5.1).

Lemma 6. In an execution with a finite number of epochs, any request a correct node has received
which no correct node commits before the last epoch elast, is eventually committed by some correct node.

Proof. Assume that a correct node i has received some request r that is never committed by some
correct node j. Since (by Lemma 4) elast is an (infinite) stable epoch, i is the leader in elast and i
will propose infinitely often exhausting all available requests until r is the oldest uncommitted request.
Next time i proposes a batch from r’s bucket (this eventually occurs due to bucket rotation in a stable
epoch), if no other node proposed a batch with r, i includes r in its proposed batch with some sequence
number sn.

69

D3.3 – Revision of Extended Core Protocols

Assume some node j, also a leader in elast (since all nodes are leaders in a stable epoch), never
commits any batch with sequence number sn. Then, epoch change timeout fires at j and j does not
propose more batches. Eventually, epoch change timeout fires at all other correct nodes causing an
epoch change. A contradiction (that j never commits any batch with sequence number sn).

Therefore, j commits a batch with sequence number sn. By (P2) Agreement the batch j commits
is the same as the batch i commits and contains req. A contradiction (that j never commits req).

Lemma 7 (Liveness with Finitely Many Epochs). In an execution with a finite number of epochs, if a
correct client broadcasts request r, then some correct node eventually commits r.

Proof. By Lemma 4, elast is a stable epoch. There are 2 exhaustive possibilities.

1. Some correct node commits r in epoch preceding elast.

2. r is not committed by any correct node before elast. By Lemma 5 all correct nodes eventually
receive request r and by Lemma 6 some correct node commits r. The lemma follows.

Definition 5 (Preferred request). Request r is called preferred request in epoch e, if r is the oldest
request pending in buckets of primary of epoch e, before the primary proposes its first batch in e.

Lemma 8. If, after GST, all correct nodes start executing the common-case protocol in a non-stable
epoch e before time t, then there exists a ∆, such that if a correct leader proposes a request r before
time t and no correct node enters a view change before t+ ∆, every correct node commits r.

Proof. Let δ be the upper bound on the message delay after GST and let a correct leader propose a
request r before t. By the common-case algorithm without SVS (there is no SVS in a non-stable epoch
e) all correct nodes receive at least 2f + 1 COMMIT messages for r before t + 3δ (time needed to
transmit PRE-PREPARE, PREPARE and COMMIT). All correct nodes will accept these messages,
since they all enter epoch e by time t. As every correct node receives at least 2f + 1 COMMITs, every
correct node commits r by t+ 3δ + rd. Therefore, ∆ = 3δ + rd.

Lemma 9. If all correct nodes perform an ungracious epoch change from e to e + 1 and the primary
of e+ 1 is correct, then all correct nodes reliably deliver the epoch configuration of e+ 1.

Proof. Let p be the correct primary of e + 1. As p is correct, by the premise, p participated in the
ungracious epoch change subprotocol. Since the PBFT view change protocol is part of the ungracious
view change, p sends a NEW-EPOCH message to all nodes. By the algorithm (line 157), p reliably
broadcasts the epoch configuration of e+ 1. Since all correct nodes participate in the ungracious view
change, all correct nodes enter epoch e + 1. By the properties of reliable broadcast, all correct nodes
deliver the epoch configuration in e+ 1 (line 159).

Lemma 10. There exists a time after GST, such that if each correct node reliably delivers the configu-
ration of epoch e after entering e through an ungracious epoch change, and the primary of e is correct,
then all correct nodes commit e’s preferred request r.

Proof. Let p be the primary of epoch e, and C the epoch configuration p broadcasts for e. By the
algorithm, the leader set C does not contain all nodes (and thus SVS is disabled in e), as all correct
nodes entered e ungraciously. Since (by the premise) all correct nodes deliver C, all correct nodes will
start participating in the common-case agreement protocol in epoch e. Let tf and tl be the time when,
respectively, the first and last correct node does so.

By the algorithm, p proposes r immediately when entering epoch e, and thus at latest at tl. Then,
by Lemma 8, there exists a ∆ such that all correct nodes commit r if none of them initiates a view
change before tl + ∆.

70

D3.3 – Revision of Extended Core Protocols

Eventually, after finitely many ungracious epoch changes, where all correct nodes double their epoch
change timeout values (as done in PBFT [CL02]), all correct nodes’ epoch change timeout will be greater
than (tl − tf) + ∆. Then, even if a node i enters epoch e and immediately starts its timer at tf , i will
not enter view change before tl + ∆ and thus all correct nodes will deliver r in epoch e.

Lemma 11. There exists a time after GST, such that if all correct nodes perform an ungracious epoch
change from e to e+ 1, and the primary of e+ 1 is correct, then some correct node commits preferred
request in e+ 1.

Proof. Follows from Lemmas 9 and 10.

Lemma 12. In an execution with infinitely many epochs there exist an infinite number of pairs of
consecutive epochs with correct primaries.

Proof. Epoch primaries succeed each other in a round-robin way across all the lexicographically ordered
nodes of the system (see Sec. 4.4 and Sec. 4.2). Assume such pair of two consecutive epochs with correct
primaries never exists after some epoch e. Then, in every full rotation across all 3f + 1 nodes after
e, there exist an epoch with a faulty primary node between every two epochs with correct primaries,
which implies the number of faulty nodes to be greater than f , a contradiction.

Lemma 13. There exists a time after GST, such that for any pair of consecutive epochs e and e + 1
with correct primaries i and j (respectively), some correct node commits at least one of the preferred
requests in e and e+ 1.

Proof. Let re (resp. r′e) be preferred request in e (resp. e′). For the epoch change from e to e+ 1 there
are two exhaustive possibilities.

1. At least one correct node performs a gracious epoch change from e to e + 1. Recall that Mir
requires the primary of an epoch to be in the leader set (Section 4.4). As e graciously ends at at
least one correct node, it follows from the specification of the gracious epoch change (Section 4.5),
that at least one node commits all requests proposed in e.
Since, by the protocol, the primary of e is in the leader set of e and the correct primary always
proposes the preferred request, at least one correct node commits the preferred request of e.

2. No node performs a gracious epoch change. This holds by Lemma 11.

(P5) Liveness: If a correct client broadcasts request r, then some correct node eventually commits r.

Proof. We distinguish two cases:

1. In an execution with a finite number of epochs, Liveness follows from Lemma 7.

2. Consider now an execution with an infinite number of epochs. By Lemma 5, every correct node
eventually receives r. Let P be the set of all requests that some correct node received before it
received r. After r has been received by all correct nodes, following from Definition 5, if r′ 6= r is
a preferred request, then r′ ∈ P . By Lemma 13, however, all such requests r′ will eventually be
committed by all correct nodes. Therefore, by Definition 5, unless r is committed earlier by some
correct node, r will eventually become the preferred request of all epochs with correct primaries,
and will be committed by some correct node by Lemma 13.

71

D3.3 – Revision of Extended Core Protocols

4.8 LTO: Optimization for large requests
When the system is network-bound (e.g., with large requests, such as those found in Hyperledger Fabric
and/or on a WAN) the maximum throughput is driven by the amount of data each leader can send in
a PRE-PREPARE message. However, data, i.e., request payload, is not critical for total order, as the
nodes can establish total order on request hashes. While in many blockchain systems all nodes need
data [Bit, Eth], in others [ABB+18a], ordering is separated from request execution and full payload
replication across ordering nodes is unnecessary.

For such systems, Mir optionally boosts throughput using what we call Light Total Order (LTO)
broadcast. LTO is defined in the same way as TO broadcast (Sec. 4.2) except that LTO requires
property P4 (Totality) to hold for the hash of the request H(r) (instead for request r).

label=P4 Totality: If a correct node commits a request r or a request hash H(r), then every correct
node eventually commits H(r).

LTO follows SVS high-level approach (Sec. 4.5.6) and applies to Mir only in stable epoch. A leader
only sends a full PRE-PREPARE message to a subset of f + 1 replica nodes. To the remaining 2f
observer nodes, the leader sends a lightweight PRE-PREPARE message where request payloads are
replaced with their hashes. Since inside the Mir (and PBFT) common-case (Sec. 4.5.3) subprotocol,
before sending a COMMIT message, a node waits to receive 2f + 1 PREPARE messages, this implies
that at least f + 1 of PRE-PREPARE messages were sent by replica nodes, ensuring that at least one
correct (replica) node has the full payload.

LTO has minor impact on PBFT view change (Mir epoch change) as a new primary might have
a hash of the batch (lightweight PRE-PREPARE) but not the full batch payload. To this end, our
Mir-LTO makes the primary in this situation look for the payload at f +1 replicas, which is guaranteed
not to block liveness after GST and with the correct primary.

Max batch size 2 MB (4000 requests)
Cut batch timeout 500 ms (n < 49), 1s(n = 49),

2s(n = 100)
Max batches
ephemeral epoch 256 (n ≤ 16), 16 ∗ n (n > 16)
Bucket rotation period 256 (n ≤ 16), 16 ∗ n (n > 16)
Buckets per leader (m) 2
Checkpoint period 128
Watermark window size 256
Parallel gRPC connections 5 (n = 4), 3 (n = 10), 1 (n > 10)
Client signatures 256-bit ECDSA

Table 4.3: Mir configuration parameters used in evaluation

4.9 Evaluation
In this section, we report on experiments we conducted in scope of Mir performance evaluation, which
aims at answering the following questions:
(Sec. 4.9.1) How does Mir scale on a WAN?
(Sec. 4.9.2) How does Mir scale in clusters?
(Sec. 4.9.3) What is the impact of optimizations (SVS, LTO) and bucket rotation and what are typical
latencies of Mir?
(Sec. 4.9.4) What is the benefit of Mir duplication prevention?
(Sec. 4.9.5) How does Mir perform under faults and attacks (crash faults, censoring attacks, straggler

72

D3.3 – Revision of Extended Core Protocols

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

pe
ak

 th
ro

ug
hp

ut
 (k

re
q/

s)

number of nodes

Mir (noSVS)
Mir-500b

PBFT-500b
Chain-500b

Honeybadger-250b

(a) Mir vs. Chain, PBFT, Honeybadger.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80 100

pe
ak

 th
ro

ug
hp

ut
 (k

re
q/

s)

number of nodes

Mir (hashes-w/o client auth)
HotStuff (hashes-w/o client auth)

(b) Mir vs. Hotstuff (no client authentication, only
hashes ordered).

Figure 4.4: WAN scalability experiments.

attacks)?

Experimental Setup. Our evaluation consists of microbenchmarks of 500 byte requests, which cor-
respond to average Bitcoin tx size [Bit19]. These are representative of Mir performance, both absolute
and relative to state of the art. We also evaluate Mir in WAN for larger 3500 byte requests, typical in
Hyperledger Fabric [ABB+18a] to better showcase the impact of available bandwidth on Mir.

We generate client requests by increasing the number of client processes and the request rate per
client process, until the throughput is saturated. We report the throughput just below saturation. The
client processes estimate which node i has an active bucket for each of their requests and initially send
each request only to nodes i− 1, · · · , i+ k, where k ≤ f − 1, i.e.,. to f + 1 nodes.

We compare Mir to a state-of-the-art PBFT implementation optimized for multi-cores [BDK15]. For
fair comparison, we use the Mir codebase tuned to closely follow the PBFT implementation of [BDK15]
hardened to implement Aardvark [CWA+09]. As another baseline, we compare the common case
performance of Chain, an optimistic subprotocol of the Aliph BFT protocol [AGK+15] with linear
common-case message complexity, which is known to be near throughput-optimal in clusters, although
it is not robust and needs to be abandoned in case of faults [AGK+15]. In this sense, Chain is not
a competitor to Mir, but rather an upper bound on performance in a cluster. PBFT and Chain
are always given the best possible setups, i.e., PBFT leader is always placed in a node that has most
effective bandwidth and Chain spans the path with the smallest latency. We further compare to HotStuff
[YMR+19] (a recent, popular, O(n) common-case message complexity BFT protocol) and Honeybadger
[MXC+16] using their open source implementations 6. We present comparison to HotStuff separately,
due to its implementation specifics. We allow Honeybadger an advantage with using 250 byte requests,
as its open source implementation is fixed to this request size. We do not compare to unavailable (e.g.,
Hashgraph [L. 16], Red Belly [CNG18]) or unmaintained (BFT-Mencius7 [MBS13]) protocols, those
faithfully approximated by PBFT (e.g., BFT-SMaRt [BSA14], Spinning [VCBL09], Tendermint [Ten]),
or those that report considerably worse performance than Mir (e.g., Algorand [GHM+17]).

We use virtual machines on IBM Cloud, with 32 x 2.0 GHz VCPUs and 32GB RAM, equipped with
1Gbps networking and limited to that value for experiment repeatability, due to non-uniform bandwidth
overprovisioning we sometimes experienced. Table 4.3 shows the used Mir configuration parameters.

6https://github.com/hot-stuff/libhotstuff at commit 978f39f... and https://github.com/initc3/
HoneyBadgerBFT-Python

7We, however, demonstrate the expected effective throughput of Hashgraph, Red-Belly and BFT-Mencius under request
duplication, by “switching off” request duplication prevention in Mir, see Sec. 4.9.4.

73

https://github.com/hot-stuff/libhotstuff
https://github.com/initc3/HoneyBadgerBFT-Python
https://github.com/initc3/HoneyBadgerBFT-Python

D3.3 – Revision of Extended Core Protocols

Figure 4.5: Distribution of the 16 datacenters for WAN deployment. Yellow pins indicate the n = 4
deployment.

Unless stated otherwise, Mir uses signature sharding optimization.

4.9.1 Scalability on a WAN

To evaluate Mir scalability, we ran it with up to n = 100 nodes on a WAN setup spanning 16 distinct
datacenters across Europe, America, Australia, and Asia Beyond n = 16, we collocate nodes across
already used datacenters. Our 4-node experiments spread over all 4 mentioned continents. Client
machines are also uniformly distributed across the 16 datacenters. Figure 4.5 shows the datacenter
distribution.

Figure 4.4a depicts the common-case (failure-free) stable epoch performance of Mir, compared to
that of PBFT and Chain and Honeybadger. We observe that PBFT throughput decays rapidly, following
an O(1/n) function and scales very poorly. Chain scales better and even improves with up to n = 16
nodes, sustaining 20k req/s, but is limited by the bandwidth of the “weakest link”, i.e., a TCP connection
with lowest bandwidth across all links between consecutive nodes. Compared to Honeybadger, Mir
retains much higher throughput, even though: (i) Honeybadger request size is smaller (250 bytes vs 500
bytes), and (ii) Honeybadger batches are significantly larger (up to 500K requests in our evaluation).
This is due to the fact that Honeybadger is computationally bound by O(n2) threshold signatures
verification and on top of that the verification of the signatures is done sequentially. Honeybadger’s
throughput also suffers from request duplication (on average 1/3 duplicate requests per batch), since the
nodes choose the requests they add in their batches at random. Moreover, we report on Honeybadger
latency, which is in the order of minutes (partly due to the large number of requests per batch and
partly due to heavy computation), significantly higher than that of Mir. In our evaluation we could not
increase the batch size as much as in the evaluation in [MXC+16], especially with increasing the number
of nodes beyond 16, due to memory exhaustion issues. Finally, in our evaluation PBFT outperforms
Honeybadger (unlike in [MXC+16]), as our implementation of PBFT leverages the parallelism of Mir
codebase.

Mir dominates other protocols, delivering 82.5k (roughly 4x the throughput of Chain) with n = 4.
With n = 100, Mir maintains more than 60k req/s (3x Chain throughput). Even without the signature
verification sharding otptimization (“Mir (noSVS)”) Mir significantly outperforms other protocol, de-
livering with n = 4 70.2k req/s (3.5x Chain throughput) while reaching 31.7k req/s with n = 100 (1.5x
Chain throughput).

74

D3.3 – Revision of Extended Core Protocols

Comparison to HotStuff in WANs. We present the comparison of Mir to the HotStuff [YMR+19]
leader-based protocol separately, in Figure 4.4b. Despite HotStuff specifying that the leader dissem-
inates the request payload [YMR+19], the available HotStuff implementation orders only hashes of
requests, relying optimistically on clients for payload dissemination. This approach is vulnerable to
liveness/performance attacks from malicious clients which can be easily mounted by clients not sending
the requests to all nodes (an attack which the HotStuff version we evaluated does not address). Besides,
the evaluated HotStuff implementation did not authenticate clients at all (which jeopardizes Validity).

For these reasons and for a fair comparison, we perform an experiment with: 1) disabled Mir client
authentication (i.e,. client signature verification) and 2) with leaders disseminating payload hashes
(relying on clients to disseminate payload as in HotStuff). We also increase batch sizes in HotStuff as
much as needed, resulting in up to 32K requests per batch, to saturate the system.

We observe that HotStuff offers about 2x lower throughput than Mir with n = 4 nodes bounded
by the number of available network connections, whereas Mir uses multiple connections among pairs of
nodes. As n and number of network connections from the leader grow, HotStuff throughput first grows
until the network at the leader is saturated (with n = 16 HotStuff performs about 10% better than
Mir). However, as leader bandwidth becomes the bottleneck even with hash-only ordering, HotStuff’s
O(n−1) network-bound scalability starts to show with n > 16, while Mir continues to scale well and
is only computationally bounded by the implementation. With 100 nodes, Mir orders 110k hashes per
second, compared to roughly 10k hashes per second throughput of HotStuff.
Experiments with 3500-byte payload With request payload size (500 bytes), CPU related to
signature verification is the primary bottleneck. It is therefore interesting to evaluate the impact on
performance with larger requests. Intuitively, with larger requests, we would be able to stress the
1Gbps WAN bottleneck of our evaluation testbed. Moreover, large requests are not only of theoretical
importance, some prominent blockchain systems feature relatively large transaction sizes. For instance,
minimum size transaction in Hyperledger Fabric is about 3.5kbytes [ABB+18a].

Therefore, we conducted additional WAN experiments with 3500 bytes request size.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 20 40 60 80 100

pe
ak

 th
ro

ug
hp

ut
 (k

re
q/

s)

number of nodes

Mir (LTO, noSVS)
Mir (noSVS)

PBFT
Chain

Figure 4.6: WAN scalability experiment with large payload (3500 bytes).

For large requests, where network bandwidth is the bottleneck, throughput of Mir (with no SVS)
reduces to 7k req/s with 100 nodes, with a drop from 28.3k req/s with n = 4 nodes, see Figure 4.6. We

75

D3.3 – Revision of Extended Core Protocols

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

pe
ak

 th
ro

ug
hp

ut
 (k

re
q/

s)

number of nodes

Mir
PBFT
Chain

ChainSigs

Figure 4.7: Throughput performance of Mir compared to Chain and PBFT in a single datacenter.

attribute this in part to the heterogeneity of VMs across datacenters (despite the identical specifications)
and, most importantly, to the non-uniform partition of the available uplink bandwidth. Nevertheless,
Mir delivers the best performance of all protocols to date with 100 nodes on a WAN, even compared
to very optimistic protocols such as Chain, which delivers consistent throughput of about 4.5k req/s
regardless of number of nodes. Mir is, hence, the first robust BFT protocol which could be used as an
ordering service in Fabric with n = 100 nodes, without making ordering service a bottleneck (validation
in Fabric is currently capped at less than 4k transactions per second [ABB+18a]).

In addition to Mir (with no SVS), Chain and PBFT, Figure 4.6 also shows an experimental variant
of Mir which implements what we call Light Total Order (LTO) broadcast, instead of full TOB (labelled
“Mir (LTO, noSVS)”). LTO is an optimization, counterpart of SVS, to help alleviate network bottlenecks
in TOB. In short, LTO broadcast is identical to TOB, except that it provides partial data availability
guaranteeing the delivery of the payload of every request to at least one correct node. This entails
replicating batch payload to f + 1 nodes in stable epoch, compared to all nodes without LTO. Other
correct nodes get and agree on the order of cryptographic hashes of requests, which is the basis for
maintaining other TOB properties. We provide more insight into LTO in Section 4.8.

LTO boosts throughput of Mir to 40k 3500-byte req/s with n = 4 nodes (roughly 40% through-
put improvement over Mir) and maintains about 12.5k req/s with n = 100 nodes (70% throughput
improvement over Mir).

4.9.2 Scalability in a Cluster/Datacenter

Figure 4.7 depicts fault-free performance in a single datacenter with up to n = 100 nodes. Chain
(the highest throughput BFT protocol to date in clusters) outperforms Mir, delivering roughly 1.6x
of Mir’s peak throughput (130k req/s vs 83k req/s). This difference is due to difference in client
authentication: Mir verifies clients’ signatures, whereas Chain uses vectors of MACs to authenticate a
request to f + 1 replicas (these are vulnerable to “faulty client” attacks [CWA+09]). Indeed, as soon as
we add clients’ signatures to Chain as in robust version of Chain [AGK+15] (denoted by ChainSigs in
Fig. 4.7), Chain’s throughput drops below that of Mir. Mir maintains more than 80k req/s throughput,
significantly outperforming PBFT.

76

D3.3 – Revision of Extended Core Protocols

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

La
te

nc
y

[s
]

Throughput [kreq/s]

Mir (noRotation)
Mir (noSVS)

Mir
Chain
PBFT

(a) 500 byte payload

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

La
te

nc
y

[s
]

Throughput [kreq/s]

Mir (LTO, noSVS)
Mir (noRotation)

Mir (noSVS)
Chain
PBFT

(b) 3500 byte payload

Figure 4.8: Impact of bucket rotation and Mir optimizations on a WAN with n=16 nodes.

4.9.3 Impact of optimizations and bucket rotation.

Fig. 4.8 shows the average latency and throughput of different flavors of Mir in fault-free executions
using n = 16 nodes. We also show the performance of Chain and PBFT as a reference. Nodes are
distributed over 16 distinct datacenters across the world.

Mir without signature sharding (“Mir (noSVS)” in Fig. 4.8) saturates at roughly 53k req/s (resp.
12.3k req/s for large requests), an approximate overhead of about 3% (resp. 9.5%) compared to an
idealized non-robust version of Mir which involves no bucket rotation (“Mir (noRotation)”). Hence,
the penalty of robust bucket rotation in Mir is small. It is more than compensated for by signature
sharding which boosts Mir throughput to 74k req/s (resp. to 33.5k req/s with LTO).

All variants of Mir maintain roughly from 1–2s latency at relatively low load, to 3–5s latency close
to saturation. PBFT latency is lower at 600–800 ms, yet PBFT saturates under very low load compared
to Mir. We measured latency by: (1) synchronizing clocks between a client and a node belonging to
the same datacenter with NTP, (2) deducting request timestamp at a client from commit timestamp
at a node, (3) averaging across all requests (and, consequently, all datacenters).

4.9.4 Benefits of Duplication Prevention

In this section we examine the impact of duplicate requests to goodput, i.e., throughput of unique
requests. In Fig. 4.9 we compare the performance of Mir (noSVS) to a version of Mir where the leaders
do not partition requests in buckets, but rather add in batches all their available requests, following
what Hashgraph [L. 16], Red Belly [CNG18], and BFT-Mencius [MBS13] parallel leader protocols do.

We examine the impact of duplicates in two scenarios, (1) where clients submit their requests to
f+1 nodes — intuitively, this is the minimum number of nodes to which a client must submit a request
in any BFT protocol that insures liveness (due to possible censoring by f nodes), and (2) where clients
submit their requests to all nodes.

The impact is a hefty performance penalty of 61% (resp. 72%) reduction in goodput compared to
Mir (noSVS) in the first (resp. second) scenario on n = 4 nodes. This reaches as much as 97% (resp.
99%) with n = 100, demonstrating O(n−1) goodput scalability in protocols with duplication.

77

D3.3 – Revision of Extended Core Protocols

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 20 40 60 80 100

pe
ak

 g
oo

dp
ut

 (k
re

q/
s)

number of nodes

Mir (noSVS)
Mir (no duplication prevention - client to f+1)
Mir (no duplication prevention - client to all)

Figure 4.9: The impact of duplication prevention on a WAN with n = 16.

 0
 10000
 20000
 30000
 40000
 50000

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (t

xs
/s

)

Time (seconds)
 0 100 200 300 400 500 600

Time (seconds)

1 leader failure 2 simultaneous leader failures

leader
failure

first leader
failure

suspected

second
 leader
failure

suspected

16
leaders

15
leaders

16
leaders

15
ldrs.

14
leaders

14
leaders

14
leaders

15
leaders

16
leaders

back to
stable
epoch

faulty
 leaders
return

Figure 4.10: Performance under crash faults.

4.9.5 Performance Under Faults

Leader Crash Faults. Figure 4.10 shows throughput as a function of time when one and two leaders
fail simultaneously. We run this experiment in a WAN setting with 16 nodes, and trigger a view change
if an expected batch is not delivered with fixed timeouts of 20 seconds. With one leader failure, a view
change is triggered and the system immediately transitions to a configuration with 15 leaders. When
two failures occur simultaneously, the first view changes takes the system to a configuration with 15
leaders. The first few batches are delivered in this configuration, but, since one of the 15 leaders has
failed, a second view change is triggered that takes the system to a configuration with 14 leaders, from
which execution can continue normally. In this scenario, the figure also depicts the evolution of the
leader set in case the failed nodes recover: within three epochs, the system is in a stable state with 16
leaders again.

We can observe that gracious epoch changes are seamless in Mir (these occur from second 141
onwards in the experiment with 2 faults), whereas ungracious epoch changes (when throughput tem-
porarily drops to 0) last approximately one epoch change timeout.
Request Censoring (Byzantine Leaders Dropping Requests). In this experiment we emulate
Byzantine behavior by having an increasing number (from 0 to f = 5) of Byzantine leaders dropping
(censoring) requests in our 16-node WAN setup. Fig. 4.11a shows that mean latency remains below 4.6s

78

D3.3 – Revision of Extended Core Protocols

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 1 2 3 4 5

la
te

nc
y

[s
]

number of Byzantine leaders

100% censoring - mean
100% censoring - 95P
25% censoring - mean

25% censoring - 95P

(a) Mean and tail latencies (95%) for increasing num-
ber of Byzantine leaders that drop 25% or 100% of their
requests.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0 5 10 15 20 25 0

 0.2

 0.4

 0.6

 0.8

 1

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

la
te

nc
y

C
D

F

latency [s]

latency distribution
latency CDF

(b) Latency distribution and CDF with f = 5 Byzantine
leaders censoring 100% of requests.

Figure 4.11: Latency under the request censoring attack.

(resp. 2.2s) when Byzantine leader drops 100% (resp. 25%) of the requests they receive. Tail latencies
(95th percentile) remain below 16s (resp. 7s). Fig. 4.11b shows distribution and CDF of latency with 5
Byzantine leaders censoring 100% of requests. When clients sent to all nodes we observe a drop up to
15% for mean and 18% for tail latencies. A decrease of up to 44% for mean and 49% for tail latencies
we observe by reducing bucket rotation period to 128 batches. This introduces, though, a trade-off of
approximately 10% in peak throughput.
Stragglers (Byzantine Leaders Delaying Proposals). In this experiment we evaluate Mir resis-
tance to stragglers. Stragglers delay the batches they lead and propose empty batches. The key to Mir
straggler resistance is that a correct node starts an epoch change timeout for sequence number sn as
soon as it commits sn− 1. With multiple leaders proposing and committing batches independently, a
straggler can only impose a delay of one epoch change timeout once per epoch without being detected,
as compared to once per sequence number in single-leader protocols.

We perform both WAN and LAN experiments with n = 16 nodes, starting from a stable epoch.
The load is set at about 25-30% peak throughput (corresponding to roughly 25k req/s). Epoch change
timeout is set to 20s and ephemeral epoch length to 256 batches. We run our experiment until the
straggler is removed from and re-added to the leader set (when it becomes epoch primary).

On WAN, fault-free throughput gives a baseline of 24.8k req/s. With a single Byzantine straggler
leader delaying each of its batches by 15s, the average throughput is 18k req/s (penalty of 25% over
the baseline). The straggler is always detected and removed from the leader set almost immediately.

On LAN, baseline throughput without faults is 28.1k req/s. For reference, Mir latency in LAN is in
milliseconds. We set straggler delay to 2 seconds (while keeping epoch change timeout to, for LAN very
big, 20s) to keep the straggler longer in the leader set. This time, straggler remains in the leader set
for over 600 sequence numbers, after which it is removed from the leader set. In this case, we measure
average throughput of 15.7k req/s in the entire execution (a penalty of 44%).

To put these numbers into perspective, a single-leader Aardvark [CWA+09] suffers a 90% perfor-
mance penalty with a straggler primary on a LAN delaying batches for 10ms. We conclude that Mir
has very good performance in presence of stragglers, even with simple fixed epoch change timeouts.
Future optimizations of Mir Byzantine node detection are possible, following the approaches of Aard-
vark [CWA+09] and RBFT [AMQ13].

79

D3.3 – Revision of Extended Core Protocols

4.10 Related Work
The seminal PBFT [CL02] protocol sparked intensive research on BFT. PBFT itself has a single-leader
network bottleneck and does not scale well with the number of nodes. Mir generalizes PBFT and
removes this bottleneck with a multi-leader approach, enforcing a robust request duplication prevention.
Request duplication elimination is simple in PBFT and other single-leader protocols, where this is the
task of the leader.

Aardvark [CWA+09] was one of the first BFT protocols, along with [VCBL09,AAC+08,AMQ13],
to point out the importance of BFT protocol robustness, i.e., guaranteed liveness and reasonable per-
formance in presence of active denial of service and performance attacks. In practice, Aardvark is a
hardened PBFT protocol that uses clients’ signatures, regular periodic view-changes (rotating primary),
and resource isolation using separate NICs for separating client-to-node from node-to-node traffic. Mir
implements all of these and is thus robust in the Aardvark sense. Beyond Aardvark features, Mir is the
first protocol to combine robustness with multiple leaders, preventing request duplication performance
attacks, enabling Mir’s excellent performance.

The first replication protocol to propose the use of multiple parallel leaders was Mencius [MJM08].
Mencius is a crash-tolerant Paxos-style [Lam98] protocol that leverages multiple leaders to reduce
the latency of replication on WANs, an approach later followed by other crash-tolerant protocols (e.g.,
EPaxos [MAK13]). The approach was extended to the BFT context by BFT-Mencius [MBS13]. Mencius
and BFT-Mencius are geared towards optimizing latency and shard clients’ requests by mapping a client
to a closest node. However, as a node can censor the request, a client is forced and allowed to re-transmit
the request to other nodes exposing a vulnerability to request duplication attacks which BFT-Mencius
does not handle. As illustrated in our evaluation (Sec. 4.9.4), malicious clients can severely impact the
throughput of such a scheme, by sending their requests to multiple or all nodes. Unlike in a regular
DoS attack, these clients cannot be naively declared Byzantine or rate-limited, as such request traffic
may be needed by correct clients to deal with Byzantine leaders dropping requests (request censoring
attack) or to optimize the latency of a BFT protocol. Unlike BFT-Mencius, Mir maps clients’ requests
to buckets which are then assigned to nodes, similarly to consistent hashing [KLL+97]. Mir further
redistributed bucket assignment in time to enforce robustness to request censoring. Unlike Mencius,
EPaxos and BFT-Mencius, Mir does not optimize for latency in the best case, paying a small price
as it does not assign clients to the closest nodes. However, our experiments show that this impact is
acceptable, in particular given that the blockchain is not the most latency-sensitive application.

Recent BFT protocols, proposed in the blockchain context [CNG18,L. 16], that exhibit multi-leader
flavor, also do not address request duplication. Furthermore, unlike Mir, these proposals invent new
BFT protocols from scratch which is a highly error-prone and tedious process [AGK+15]. In con-
trast, Mir follows an evolutionary rather than revolutionary design approach to a multi-leader protocol,
building upon proven PBFT/Aardvark algorithmic and systems’ constructs, considerably simplifying
the reasoning about Mir correctness.

Two recent protocols, HotStuff [YMR+19] and SBFT [GAG+19], are leader-based protocols that
improve on PBFT’s quadratic common-case message complexity and require a linear (O(n)) number of
messages in the common case. HotStuff is optimized for throughput and features O(n) messages in view
change as well (SBFT requires O(n2) messages in view change). While Mir approach of multiplexing
PBFT instances and SBFT/HotStuff improvements over PBFT appear largely orthogonal, our experi-
ments show that Mir multi-leader approach scales better than HotStuff, which is a single-leader protocol.
Namely, even though PBFT/Mir have quadratic common-case message complexity, these messages are
load balanced across n nodes, yielding O(n) messages at a bottleneck replica, just like HotStuff/SBFT.
Our experiments also showed that HotStuff retains the downside of other single-leader protocols, i.e.,
bottlenecks related to leader sending all proposals, yielding an infavorable O(n−1) throughput scala-
bility trend. An unimplemented HotStuff variant, called ChainedHotStuff [YMR+19], suggests having
different leaders piggyback their batches on other protocol common-case messages. As Hotstuff has 4

80

D3.3 – Revision of Extended Core Protocols

common case phases, this allows up to 4 “chained” leaders in ChainedHotStuff regardless of the total
number of nodes, which is less efficient than Mir which allows up to n parallel leaders. In future, it
would be very interesting to combine the two approaches, O(n) common case message complexity and
parallel leaders, by implementing Mir variants based on HotStuff/SBFT instead of PBFT.

Optimistic BFT protocols [AGK+15,KAD+07] have been shown to be very efficient on a small scale
in clusters. In particular, Aliph [AGK+15] is a combination of Chain crash-tolerant replication [vRS04]
ported to BFT and backed by PBFT/Aardvark outside the optimistic case where all nodes are correct.
We demonstrated that Mir holds its ground with BFT Chain in clusters and it considerably outperforms
it in WANs. Nevertheless, Mir remains compatible with the modular approach to building optimistic
BFT protocols of [AGK+15], where Mir can be used as a robust and high-performance backup protocol.
Zyzzyva [KAD+07] is an optimistic leader-based protocol that optimizes for latency. While we chose
to implement Mir based on PBFT, Mir variants based on Zyzzyva’s latency-efficient communication
pattern are conceivable.

Eventually synchronous BFT protocols, to which Mir belongs, circumvent the FLP consensus impos-
sibility result [FLP85] by assuming eventual synchrony. These protocols, Mir included, guarantee safety
despite asynchrony but rely on eventual synchrony to provide liveness. Alternatively, probabilistic BFT
protocols such as Honeybadger [MXC+16] and BEAT [DRZ18] provide both safety and liveness (except
with negligible probability) in purely asynchronous networks. By comparing Honeybadger and Mir,
we showed that this comes as a tradeoff, as Mir significantly outperforms Honeybadger, even though
both protocols target the same deployment setting (up to 100 nodes in a WAN). Notably, Honeybadger
authors realize the importance of duplicate elimination and suggest that each leader randomly sam-
ples the requests in their pending queue. This approach would result to no duplicates on expectation.
However, in practice, unless the system is deep in saturation, the pending queue does not contain sig-
nificantly more requests than the next batch. Indeed, in our Honeybadger evaluation we observed that
goodput (effective throughput) was roughly only 20% of the nominal throughout. BEAT suggests some
optimizations over Honeybadger without significantly outperforming the former.

As blockchains brought an arms-race to BFT protocol scalability [Vuk15], many proposals focus
on large, Bitcoin-like scale, with thousands or tens of thousands of nodes [GHM+17, EGSR16]. In
particular, Algorand [GHM+17] is a recent BFT protocol that deals with BFT agreement in populations
of thousands of nodes, by relying on a verifiable random function to select a committee in the order of
hundred(s) of nodes. Algorand then runs a smaller scale agreement protocol inside a committee. We
foresee Mir being a candidate for this “in-committee” protocol inside a system such as Algorand as
well as in other blockchain systems that effectively restrict voting to a smaller group of nodes, as is the
case in Proof of Stake proposals [BG17]. In addition, Mir is particularly interesting to permissioned
blockchains, such as Hyperledger Fabric [ABB+18a].

ByzCoin [KJG+16] scales PBFT for permissionless blockchains by building PBFT atop of CoSi
[STV+16], a collective signing protocol that efficiently aggregates hundreds or thousands of signatures.
Moreover, it adopts ideas from PoW based Bitcoin-NG [EGSR16] to decouple transaction verification
from block mining. This approach is orthogonal to that of Mir and variants of Byzcoin with Mir instead
of PBFT are interesting for future work.

Stellar [LLM+19] uses SCP, a Byzantine agreement protocol with asymmetric quorums and trust
assumptions targeting payment networks, which targets similar network sizes with Mir. Asymmetric
quorums of SCP modify trust assumptions and the liveness guarantees of traditional BFT protocols,
with [KKK19] showing liveness violation with failures of only two specific nodes in a production config-
uration of Stellar. We show it is possible to obtain high throughput and low latencies while maintaining
the strong guarantees of BFT protocols with classical (symmetric) quorums and trust assumptions.

Finally, sharding protocols [LNZ+16, KJG+18] partition transaction verification into independent
shards. Mir is complementary to such protocols as they either require ordering within a shard or
total ordering of the shards. Monoxide [WW19] also uses sharding to increase throughput, but provides

81

D3.3 – Revision of Extended Core Protocols

weaker guarantees (eventual atomicity across shards). Moreover, Monoxide’s scalability heavily depends
on transaction payload semantics.

4.11 Conclusions
This chapter presented Mir, a high-throughput robust BFT protocol for decentralized networks. Mir is
the first BFT protocol that uses multiple parallel leaders thwarting censoring attacks and preventing
request duplication. In combination with reducing CPU overhead through the “signature verification
sharding” optimization, this allows Mir to achieve unprecedented throughput at scale even on a wide
area network, outperforming state-of-the-art protocols.

The main insight behind Mir is multiplexing multiple parallel instances of the PBFT protocol into
a single totally ordered log, while preventing duplicate request proposals by partitioning the request
hash space and assigning each subset to a different leader. Mir prevents request censoring attacks by
periodically changing this assignment to guarantee that each request is eventually assigned to a correct
leader. Being based on well understood and thoroughly scrutinized PBFT makes it is easy to reason
about Mir’s correctness.

82

Chapter 5

Removing Data from Bitcoin
Transactions

Illegal content on Bitcoin. Bitcoin [Nak09] is sometimes described as a censorship-free financial
platform due to the inability of governments and institutions of blocking and restricting the creation
and transfer of the cryptocurrency. Unfortunately, recent research [MHH+18,BMS19] raises issues on
the immutable Bitcoin’s blockchain. Indeed, the Bitcoin’s blockchain can also store non-financial data
and among them Matzett et al. [MHH+18] discovered files with child pornography and links to dark
web services. As a result, the researchers argued that “...it could become illegal (or even already is
today) to possess the blockchain, which is required to participate in Bitcoin.”.

Methods to inject illicit data on the blockchain. Henceforth, we will use the term blockchain
as synonym for the Bitcoin’s blockchain.

The most typical transactions in Bitcoin are based on the Pay to-Public Key Hash (P2PKH) mech-
anism which allows transfers of funds from one user to another. Other common transactions include the
Pay to Public Key (P2PK) mechanism used until 2012 in coinbase transactions to remunerate miners,
the multi-signature mechanism and data output (OP_RETURN) transactions. We defer to Bistarelli et
al. [BMS19] for a complete analysis and statistics of standard and non-standard transactions.

In the blockchain, non-financial data can be encoded arbitrarily: the space of possible encodings
is infinite. For instance, somebody could claim that a given function f applied to a set S of blocks
results into a string that represents illicit content and as consequence asks for deletion of any block
in S. If the function f is simple the illicit content may be evident, e.g., it can be looked up as a
consecutive string of characters. However, the function f might have the following complex form: take
the characters number i1, . . . , in from the blockchain and concatenate them together; the resulting string
might encode an offensive English sentence.

Therefore, it is not generally possible to even define where and how illicit content is stored. For this
reason, we have to be concrete and focus on specific patterns and places in which illicit content can and
has been stored on the blockchain so far. (In the following we assume the reader to be familiar with
the Bitcoin internals.)

• Coinbase transactions. A coinbase transaction is a transaction in which the TXID field is all
zeros and the VOUT field is all ones (since it does not refer to an existing transaction and
does not refer to an existing output), and the scriptSig field can actually contain arbitrary
data. For instance, the scriptSig field of the genesis coinbase transaction, identified by TXID
4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b, is (decoded as) the string
“The Times 03/Jan/2009 Chancellor on brink of second bailout for banks”.

• Data output transactions. The OP_RETURN mechanism is used to store non-financial data and this

83

D3.3 – Revision of Extended Core Protocols

is usually done through the use of OP_RETURN <DATA> inside the script specified in a transaction.
The OP_RETURN functionality was actually introduced in Bitcoin with the purpose of mitigating
the misuse and abuse of coinbase and other mechanisms to store data on the blockchain.

5.1 The Limitations of Previous Solutions and Our Scenario
The first approach to the problem of data removal from blockchains was proposed in the work of Ateniese
et al. [AMVA17] that mainly tackles the permissioned setting and thus has no applicability to Bitcoin.

Puddu et al. [PDC17] propose a protocol in which users can set alternate versions, called “muta-
tions”, of their transactions that can be later activated after running an expensive MPC protocol. A
request of a modification has to be approved by means of a voting procedure based on proofs of work.
In this solution, only the creator of a transaction can allow modifications, thus preventing deletion of
content inserted by malicious parties.

Deuber et al. [DMT19] aims at constructing a publicly verifiable redactable blockchain in the per-
missionless setting. In the Deuber et al. protocol, each user can propose a modification by writing it
on the blockchain. The redaction proposal is subject to a voting procedure based on consensus and
computational power. The redaction is considered accepted by a majority if a certain number of blocks
confirming the proposal is added to the blockchain and in such a case, the old block can be accordingly
redacted. The new proposed block along with the next blocks produced during the voting procedure
guarantee the public verifiability.

Thyagarajan et al. [TBM+20] propose Reparo, a protocol that improves on the Deuber et al.’s
protocol by adding the possibility of redacting or modifying already (before the fork) inserted blocks
in the blockchain, a property that they call Repairability of Existing Content (REC).

The common thread in the aforementioned approaches for the permissionless setting is the use of
consensus protocols to agree on a redaction. Is consensus and agreement on redactions really needed?

Until now, we used the term “illicit content” without a definition. The categories of content that
can harm the Bitcoin users and in particular the nodes keeping the blockchain is very diversified and
does include material like illegal pornography, privacy and copyright violations and malwares. However,
in some countries unauthorized content may be also of religious or political nature.

The duty of deletion of some content might be imposed by an authority to a set of nodes falling
under its legislation and not to others. Yet, different legislations do or could not agree on which contents
to redact.

For this reason, we envision a scenario in which a Bitcoin node keeping the full blockchain wants
to or is requested to delete some string from either a coinbase or a data output transaction (of the
general form described before). Therefore, our approach departs from previous ones in that we deem
not reaching a consensus on which content to delete as a feature. We call such a property Individual
Honest Deletion (IHD) or simply individual deletion. Moreover, consensus protocols are expensive and
require a lot of time to reach the agreement.

Quality of the deletion decision. Another issue with the Deuber et al. and Reparo protocols, when
instantiated for Bitcoin, lies in the fact that even if the adversary does not have half of the hashing
power can have impact on the voting procedure. According to Garay et al. [GKL15a], an adversary
controlling a fraction t of the hashing power can control up to a fraction t

1−t of the blocks in the chain.
Thyagarajan et al. (Appendix E) concretely propose to consider a redaction in Bitcoin accepted

if it received 50% (threshold 1
2) of the votes in the 1024 blocks after the redaction proposal. Due to

Garay et al.’s analysis, we deem such a 50% parameter too optimistic since it would render the voting
procedure and so the ability of redacting the blockchain monopolized by a malicious attacker owning
about 1

3 of the hashing power.

84

D3.3 – Revision of Extended Core Protocols

We say that a protocol for deletion in Bitcoin achieves t-quality if no adversary controlling a fraction
t < 1

2 of the hash power can delete some arbitrary content stored in other nodes if all other nodes are
against deletion. As argued above, the protocols in the aforementioned works are such that whatever
threshold f is selected there exists a value t < 1

2 such that an adversary controlling a fraction t of the
hash power succeeds in the attack.

For instance, Reparo instantiated with voting threshold 1
2 (as suggested by the authors) and as-

suming adversaries owning 1
3 of the total hashing power does not satisfy 1

3 -quality neither does satisfy
2
5 -quality when instantiated with voting threshold 2

3 and assuming adversaries controlling a fraction 2
5

of the hashing power. But Reparo for threshold parameter 3
4 and assuming adversaries controlling 4

10
of the total hashing power satisfies 4

10 -quality. Notice that, in order to make Reparo achieve a certain
quality, the protocol is then subject to the symmetrical issue: in the latter example, if a large majority,
e.g., 3

4 −
1

100 , is in favour of deletion, the adversary can subvert the decision. We informally say that a
protocol has good quality whether it is not subject to such issues.

Redaction protocols based on voting are also prone to bribing attacks in which a player interested
in deletion can bribe other users out-of-band.

Despite the fact that we do not seek for consensus on deletion, we do require public verifiability,
the absence of which would render the problem trivial. We remark that here, by public verifiability we
mean the ability of verifying the consistency of the Bitcoin’s financial state and not, like in Thyagarajan
et al., the accountability of redactions.

Our main questions. Having discussed the specific points on the blockchain in which illicit content
can be added (and has been added so far) and the actors interested in the deletion (i.e., a Bitcoin node
on an individual basis or under request from an authority), it is natural to pose the following questions:

• Question I: can illicit content be ever deleted by individual nodes without requiring a hard fork
and preserving public verifiability? The obvious requirement is that the deletion of the illicit
content should not affect the blockchain in any harmful way, e.g., by invalidating other content
or the financial integrity. If a node could not delete a string without being unable to participate
in Bitcoin in the future, the owner of the node would be in a lose-lose situation: (1) delete the
string and shutdown the node or (2) keep on participating in Bitcoin but at the cost of infringing
the laws.

• Question II: If it is not possible to delete illicit content in general by individual nodes, under what
circumstances is it instead possible?

5.2 Our Contributions
Our results can be summarized as follows.

• We answer Question I by carefully analyzing the Bitcoin protocol and showing in which cases naive
deletion may be harmful and why it is not possible in general to delete content from Bitcoin.

• Having clarified that trivial deletion is not possible, we provide a theoretical solution to sanitize
Bitcoin from illicit content in the specific cases in which it is possible and present tweaks to the
Bitcoin protocol to enable deletion.

• We demonstrate our approach to be practical by providing a tool to sanitize the Bitcoin blockchain.
We explain how our tool can be used black-box to sanitize Bitcoin presenting concrete examples.

85

D3.3 – Revision of Extended Core Protocols

1. Take outScript and delete all instances of
OP_CODESEPARATOR and denote by Subscript the re-
sult of this step.

2. Copy t′ in string TxCopy.

3. Remove from TxCopy all sections relative to the input
scripts.

4. Add to TxCopy the script Subscript in the point where at
the previous step the input scripts have been removed.

5. Sign the so computed string TxCopy.

Figure 5.1: Bitcoin’s algorithm used to sign transactions.

5.2.1 Can data be removed from Bitcoin in general?

A naive thought can suggest that deleting illicit content from data output transactions is innocuous since
“strings following OP_RETURN <DATA>” are not necessary to keep the integrity of transaction and data
output transactions cannot be redeemed; and similar consideration applies to coinbase transactions.

The issue of signatures. To elaborate on this, we firstly need to analyze how transactions are signed
in Bitcoin. To sign a transaction, the following steps are carried out. Let t be a transaction that has
to be redeemed and t′ a transaction that redeems t. Let outScript the script of output in t and let
inScript the input script in t′ that, concatenated to outScript returns TRUE on the stack and renders
the transaction t′ valid. If in outScript is encountered the command OP_CHECKSIG, the signature is
computed as shown in Figure 5.1.

The issue is that the Script language has logical opcodes OP_IF, OP_NOTIF, OP_ELSE, OP_END that
allows an OP_RETURN to be set in a branch that is never executed. In this case a redeemable output script
can also contain a substring of the form OP_RETURN <DATA> and, according to the previous algorithm,
a redeeming input script of a subsequent transaction needs to sign the concatenation of such output
script with all the input scripts in the redeeming transaction. The script in Figure 5.2 is an example.
The instruction 3 will be never executed whatever input script in a future transaction will try to redeem
the above output script; only instructions 5-9 will be executed as in a typical scriptPubKey script of
P2PK transactions.

We also stress that the signature in a redeeming script is (skipping details) the signature of the
string resulting from the concatenation of the redeemed output script as it is and the redeeming trans-
action after that all input scripts are removed by the redeeming transaction. Indeed, if the Bitcoin’s
specification happened to give as input to the signature the hashes of the redeemed output script, one
could delete the illicit content and only save the hashes for future use. (Technically, this would still
require a software update for the nodes.)

Therefore, we conclude that a hard fork is needed to enable deletion of illicit content in general. An
objection to the conclusion could be that scripts like the one in Figure 5.2 are artificial and indeed are
non-standard.

A standard script is one that passes the isStandard() and isStandardTx() tests in policy/policy.cpp
of Bitcoin Core. However, as shown by Bistarelli et al. a non-negligible quantity of non-standard transac-
tions have been mined by pools of miners that deviate from the standard Bitcoin Core implementation.

86

D3.3 – Revision of Extended Core Protocols

1. OP_TRUE

2. OP_NOTIF

3. OP_RETURN <Idiot who reads>

4. OP_ENDIF

5. OP_DUP

6. OP_HASH160

7. <pubKeyHash>

8. OP_EQUALVERIFY

9. OP_CHECKSIG

Figure 5.2: Script that contains a branch that is never executed in which arbitrary content can be
stored.

Moreover, if any measure to mitigate the problem of illicit content were ever conditioned to the absence
of non-standard transaction, more nodes could start accepting and mining non-standard transactions
as an attack.

5.3 Related Work and Comparison
Ateniese et al. [AMVA17] propose the first protocol for illicit content deletion from blockchains. Their
solution is simple and efficient but, unfortunately, mainly targets the permissioned setting and cannot
be adapted to Bitcoin. Moreover, unlike ours, in their approach a deletion does not leave trace and
goes unnoticed to users not participating in the redaction.

Paddu et al. [PDC17] provide a more complex protocol for dealing with redactions of harmful
content. The main drawback of their solution is that the ability of “mutating some content” (in their
terminology) has to be explicitly set by the miners and so malicious miners can simply bypass the
mutation mechanism. Moreover, mutation of some content has a cascade effect on any subsequent
transaction, thus incurring a huge performance penalty.

Deuber et al. [DMT19] propose a novel redactable blockchain protocol that can be integrated in
Bitcoin. The Deuber et al.’s proposal requires users to interact online in a consensus protocol to request
approval from the majority whereas in our protocol each node can individually perform a deletion
without the need of interaction with another nodes. Dueber et al.’s introduce the property of “public
verifiability”, that is the ability of tracing redactions. In our protocol redactions can be traced as well.
However, we notice that this form of accountability can be actually achieved in all natural protocols so
we do not consider it as a fundamental property.

Thyagarajan et al. [TBM+20] propose Reparo, a protocol that improves the Deuber et al.’s solution
with the property of “Repairability of Existing Content” (REC), that is the possibility of redacting or
modifying already (before the fork) inserted blocks in the blockchain. As in Deuber et al. Reparo is
based on expensive and interactive consensus protocols that requires several days to be run as opposed
to our protocol in which deletion can be performed in few minutes.

Both Thyagarajan et al. and Deuber et al. do not guarantee individual deletion and good quality as
defined and discussed in Section 5.1.

87

D3.3 – Revision of Extended Core Protocols

Solution Permissionless? REC?
Ateniese et al. [AMVA17] × ×
Puddu et al. [PDC17]

√
×

Deuber et al. [DMT19]
√

×
Thyagarajan et al. [TBM+20]

√ √

Ours
√ √

Table 5.1: Comparison of our solution with the state of the art in redaction of blockchains.

Solution Individual Deletion? Good Quality? Runs in few minutes?
Deuber et al. [DMT19] × × ×

Thyagarajan et al. [TBM+20] × × ×
Ours

√ √ √

Table 5.2: Comparison of our solution with the protocols of Deuber et al. and Thyagarajanan et al. when
instantiated for Bitcoin. The individual deletion and good quality properties are defined in Section 5.1.

Florian et al. [FHBS19] put forward a different approach to deletion in Bitcoin in which the nodes
do not completely validate the chain while in our solution a blockchain subject to deletions of data can
be completely validated from any other node in the network and vice versa.

In Table 5.1 we summarize the state of the art comparing it to our solution.
In Table 5.2 we compare our work to Deuber et al. and Thyagarajan et al. when instantiated for

Bitcoin.

5.4 Preliminaries

5.4.1 Bitcoin in a nutshell

Bitcoin [Nak09] is a permissionless blockchain system that allows users to perform electronic payments
based on cryptographic proofs instead of trust. Two parties interested in exchanging coins can transact
directly without the need of a trusted party. An electronic coin is a chain of digital transactions and
each owner can transfer his coin to another party using one of the possible standard transactions:

• Pay to Public Key (P2PK), a public-key script used to send a transaction to one Bitcoin addresses;

• Pay To Public Key Hash (P2PKH), the most common form of public-key script used to send a
transaction to one or multiple Bitcoin addresses;

• Pay To Script Hash (P2SH), used to send a transaction to a script hash;

• Multisig, used to require multiple signatures before a UTXO can be spent;

• Pubkey, that are a simplified form of the P2PKH public-key script.

Since Bitcoin was used to store data on the blockchain, another standard transaction was added to
add arbitrary data to a provably unspendable public-key script. This transaction is called NullData
transaction and uses the OP_CODE OP_RETURN to store arbitrary data on the blockchain. It is preferable
to use NullData transactions to insert arbitrary data on Bitcoin instead of using the other transactions,
since NullData transactions can be automatically pruned by the UTXO database.

88

D3.3 – Revision of Extended Core Protocols

All transactions are public and can be viewed by everyone that can check that the blockchain is
valid and no coins are double spent.

Bitcoin is based on a Proof-of-Work system, every time that a miner Miner wants to publish a new
block, Miner needs to solve a cryptographic puzzle, that consists of scanning for a value that when
hashed, the hash begins with a number of zero bits. The average work required is exponential in
the number of zero bits required and can be verified by executing a single hash. Rewrite the Bitcoin
transaction history means recompute all the blocks after the modified block.

The following operations are performed in the Bitcoin network:

• every time that a party has a new transaction tr, tr is broadcast to all nodes;

• each miner collects new transactions into a block;

• each miner works on finding a difficult proof-of-work for its block;

• when a miner finds a Proof-of-Work, it broadcasts the block to all nodes;

• nodes accept the block only if all transactions in it are valid and not already spent;

• miners express their acceptance of the block by working on creating the next block in the chain,
using the hash of the accepted block as the previous hash.

Miners always consider the longest chain to be the correct one and will keep working on extending
it. If two nodes broadcast different versions of the next block simultaneously, some nodes may receive
one or the other first. In that case, they work on the first one they received, but save the other branch
in case it becomes longer. The tie will be broken when the next Proof-of-Work is found and one branch
becomes longer; the nodes that were working on the other branch will then switch to the longer one.

To modify a past block, an attacker would have to redo the Proof-of-Work of the block and all
blocks after it and then generate enough new blocks to surpass the work of the honest parties.

The first transaction in a block is a special transaction that starts a new coin owned by the creator
of the block. This adds an incentive for nodes to support the network, and provides a way to initially
distribute coins into circulation, since there is no central authority to issue them. The incentive can
also be funded with transaction fees. If the output value of a transaction is less than its input value, the
difference is a transaction fee that is added to the incentive value of the block containing the transaction.
Once a given number of coins is reached, the only incentive for miners will become the transaction fees.

In order to save disk space, it is possible to delete locally the oldest data of Bitcoin. It is possible
to delete local data without breaking the block’s hash, since transactions are hashed in a Merkle Tree,
with only the root included in the block’s hash.

A node that maintains all the Bitcoin history is a full network node. It is possible to verify payments
without running a full network node. A user only needs to keep a copy of the block headers of the
longest Proof-of-Work chain and obtain the Merkle branch linking the transaction to the block it is
timestamped in. He cannot check the transaction for himself, but by linking it to a place in the chain,
he can see that a network node has accepted it, and blocks added after it further confirm the network
has accepted it.

5.4.2 SNARKs/STARKs

We assume the reader is familiar with succinct ZK proofs (SNARKs) [Mic00,Kil95,GGPR13]. SNARKS
are essentially non-interactive ZK proofs that have short size and fast verification. For our solution
to work, succinctness is not strictly necessary but offers a clear improvement in terms of parameters.
STARKs [BBB+18b,BCS16] are variants of SNARKs that do not require trusted parameters.

89

D3.3 – Revision of Extended Core Protocols

5.4.3 Isekai

Our implementation is based on Isekai, a versatile framework for verifiable computation. Isekai allows
to transform a C/C++ program into a set of R1CS constraints, an internal representation for many
SNARK and STARK systems. Then, Isekai offers an interface to several SNARK/STARK systems like
the SNARK of [GGPR13], Bulletproof [BBB+18b] and Aurora [BCS16] allowing to invoke the prover
and the verifier of such system in a black-box way.

Usage. Isekai can generate a proof of the execution of a C/C++ function. The C function must have
one of the following signatures:
void outsource(struct Input *input, struct NzikInput *nzik, struct Output *output);
void outsource(struct Input *input, struct Output *output);
void outsource(struct NzikInput *nzik, struct Output *output);

Input and Output are public parameters and NzikInput is the private input. The inputs are given
in an external file with the same name of the C program but with extension .in by putting each value
one per line. With the option --r1cs the R1CS files are generated from the .in file and then with
this R1CS it is possible to generate the proof using the --prove option. The proof is verified using the
--verif option. The specific SNARK/STARK scheme is chosen using the option --scheme.

Isekai does not offer a way to encode the secret input for the verifier in the R1CS format - this can be
done only for files containing both public and private inputs. For these reasons, in our implementation
we had to add this functionality to Isekai.

5.5 Our Bitcoin Sanitizer
We will first show that the problem of secure deletion from Bitcoin boils down to computing and verifying
non-interactive zero-knowledge (NIZK) proof [DMP88] for conceptually simple (class of) statements.
Then we will show how to implement proofs for such statements in an efficient way by losing only
harmless information.

The general statement. Let h and X1, . . . , Xn, Xn+1, n ≥ 1 be public strings (possibly empty) and
let H be the SHA256 function used in Bitcoin. Consider the following statement PreImageh,X1,...,Xn+1 :

∃y1, . . . , yn H(X1||y1 · · ·Xn||yn||Xn+1) = h,

in which we implicitly assume that the indices of the substrings y1, . . . , yn and their length are public
and part of the statement and for simplicity omitted. When it is clear from the context we will drop
the subscript.

We will next show how all cases of deletion we want to take into account can be reduced to proving
and verifying in zero-knowledge (ZK) the previous class of statements.

• Deletion from input scripts and non-redeemable output scripts. This can be the case of illicit
content in coinbase transactions, illicit content of the type OP_RETURN <DATA> nested inside a
branch of an input script that is never executed and standard data output transactions that are
not redeemable.
In all such cases, the transaction has the form s = X1||y1|| · · ·Xn||yn||Xn+1 such that H(s) = h
and the substrings y1, . . . , yn represent illicit content. Observe that the case n > 1 models the
possibility of having, e.g., multiple OP_RETURN <DATA> occurrences nested inside a script or the
fact that only some parts (but not all) of the string DATA in a OP_RETURN <DATA> or some parts
in a scriptSig of a coinbase transaction have to be deleted.

90

D3.3 – Revision of Extended Core Protocols

A nodeA proceeds as follows. The node computes a NIZK proof π of the statement PreImageh,X1,...,Xn+1
and then replaces all occurrences of y1, . . . , yn by zeros.
What is the purpose of the NIZK proof? In a normal scenario (when no deletion happens), when
a node B requests from A a block B, B has to verify that B is “consistent” with all transactions
inside it. Precisely B contains a field called Merkle Root that, basically, is the root of the Merkle
tree that has the transactions as leaves. Each transaction can be hashed so that the root of
the transactions can be reconstructed and compared to the field Merkle Root. When deletion
happens, a leaf representing a transaction subject to deletion would have an invalid hash (due to
the fact that the illicit content has been replaced by zeros), so the node B would have to reject
the block.
Here, it is where the NIZK proof π comes into the play. By means of π, E can check that the
block, identified by Merkle Root, is consistent with some set T ′ of transactions that is identical
to the set T in B except for some substrings. (Recall that the indices in which the substrings yi’s
occur and their lengths are public.)

• Deletion from output scripts that are redeemable. In this case, the issue is the following. We have
an output script out in which a node A performs a deletion at time t. At a time t′ > t, a node
B that is not aware of the deletion generates a transaction containing, e.g., a single input script
inp attempting to redeem out. Node A has to sign the string s resulting from the concatenation
of out and inp. Observe that node A, as well as any other node that has downloaded the same
block from A, lost the original string out so is unable to verify the signature.
This issue is solved by tweaking the Bitcoin signature as being signature of the concatenation of
the hashes, i.e., setting the string s to be signed as concatenation of H(out) and H(inp). Indeed,
notice that whatever string s has to be signed, the signing algorithm internally “signs” the digest
H(s). Therefore, we can tweak the OP_CHECKSIG protocol as follows. First, attempt to verify the
signature as usual. If the verification algorithm fails, check a NIZK proof π of the fact the string
h=H(s) is such that s is the concatenation of H(out) with H(inp) and a NIZK proof π2 of the
fact that H(out) is consistent with out after the deletion. Both statements can be expressed as a
special case of the class of statements PreImage.

Multiple deletions at different times. Our solution allows deletions of illicit content from different
transactions in the same block at different times. That is, a transaction T1 in a block D can be subject
to deletion at time t1 and later at time t2 a transaction T2 belonging to B can be subject to deletion
as well. We note that in our solution we do not consider the case in which the same transaction T1 has
to be modified multiple times in different time.

Breaking the general statement in more “efficient” statements. We could implement our
system using a SNARK proof for the class of statements PreImageh,X1,...,Xn+1 described above. There
are two problems with this approach, one theoretical and one practical. The first problem is that, even
if there is only a single and short deletion of few bytes, the complexity will depend on the length of the
overall transaction and this is a wasteful overkill. The second problem is that for larger transactions,
the length of the R1CS circuits generated by the Isekai system becomes huge. For transaction > 1KB,
we would need hundreds gigabytes.

Instead of proving and verifying the previous statements directly in ZK (i.e., using a ZK proof
system for those statements), we essentially prove and verify such statements in a more efficient way.
The idea is to consider all intermediate outputs of each round of SHA. Recall that SHA essentially
works as follows: given an input X, it extends X to an input X ′ of a length multiple of 64 bytes, break
X ′ into chunks (blocks) of 64 bytes and for each of such chunks it executes a round function SHARound

91

D3.3 – Revision of Extended Core Protocols

that takes as input a chunk and the output of the previous round. The first round takes as input the
first chunk and a fixed value h0.

Let X be a string that has been redacted in some points starting from a string Y and let h = H(Y).
Recall that the string after redaction X and the hash h are public information as long as the points in
which the redaction has been done. The secret is the original string Y before the redaction. Our scope
is to design an efficient proof system to convince a verifier that the public inputs are consistent with
the redaction.

Let us say that SHA extends Y (resp. X) into a string Y ′ (resp. X ′) consisting of m chunks
Y1, . . . , Ym (resp. X1, . . . , Xm) of 64 bytes. The prover will reveal the intermediate outputs h1, . . . , hm =
h of each round1, where for each 1 ≤ i ≤ m hi = SHARound(hi−1, Yi).

Then, only for one of intervals subject to redaction, the prover proves using the Aurora proof system
(see below) that there exists a string Xi such that Yi is the result of applying the redaction to Xi and
hi = SHARound(hi−1, Yi). The verifier verifies each ZK proof relative to the chunks subject to redaction
and for each other chunk i not subject to redaction additionally verifies that hi = SHARound(hi−1, Yi);
notice that the latter is verified just by running the round function on the known preimage.

We can see the overall proof system as a proof system for the class of statements PreImageh,X1,...,Xn+1
described above. Indeed, completeness and soundness are easy to check. ZK does not hold since,
revealing the intermediate outputs of the SHA function does reveal whether two transactions have
a common prefix. However, we adopt a pragmatic approach and do not consider such a leakage as
harmful. Moreover, we do not employ complex ZK proofs for the intervals not subject to the redaction,
so preserving efficiency.

Practicality of our construction. Even though our solution seems theoretically and conceptually
simple, it was never adopted or proposed before, perhaps due to the belief that ZK proofs are not
practical. We remark that it is out of the scope of this chapter to provide a complete implementation
of our Bitcoin sanitizer. Notwithstanding, taking advantage of recent progress on succinct ZK proofs
(SNARK/STARKs) [GGPR13,BBB+18b,BCS16], we demonstrated the feasibility and practicality of
our approach by providing a Bitcoin sanitizer that is fully functional and that can be integrated later
with Bitcoin (or even other blockchains).

The purpose of our Bitcoin sanitizer is actually to give a lower-bound on the practicality of our
approach, showing that our solution allows to perform redactions in minutes rather than days as for
previous solutions based on different approaches. Therefore, we were driven to SNARK/STARKs
combined with Isekai (see Section 5.4.3) from the need of an easy instrument to convert C++ code into
ZK proofs.

Among other ZK tools our choice fell on Aurora because it is at the same time transparent (no need
for trusted parameters) and has short proofs. Having a trusted setup in the context of deletion from
Bitcoin would be questionable.

Observe that the toolkit for ZK proofs for ledgers that is part of the activities of PRIViLEDGE but
according to the description in Deliverable 4.2 (chapter 5) would only partially fulfill our needs. Indeed,
such toolkit implements SNARKs in the CRS model with subversion-resistance. The latter property
solves the problem of the trust in the CRS with respect to the ZK property. However, the setup still
needs to be trusted with respect to the soundness property. Soundness with updatable CRS goes in the
direction of mitigating this issue. Unfortunately, this would require additional changes/complications
at the protocol layer in order to allow sequential updates of the CRS.

1Notice that it is not necessary for the prover to send all intermediate output, but only the intermediate outputs of the
modified chunks, since the outputs of the unmodified chunks can be independently computed by the verifier.

92

D3.3 – Revision of Extended Core Protocols

5.6 Our Implementation
In this section we provide a demo implementation of our Bitcoin sanitizer, a tool that can be integrated
in Bitcoin to deal with deletions of illicit content from Bitcoin.

Our implementation is based on Isekai (see Section 5.4.3) as compiler to convert our C++ programs
into R1CS representation. Isekai also provides an interface to several major SNARK/STARK systems
and our choice fell on Aurora due to its following unique properties.

• Post-quantum. Aurora is post-quantum secure guaranteeing security even against future advances
in quantum technology.

• Fast verification. Aurora does not just provide short proofs but offers a verifier of logarithmic
time in the circuit size compared to the linear performances of other SNARK/STARK systems.
Having used a system like Ligero or Bulletproof with linear verification2 would have rendered our
solution infeasible since deletion is an infrequent operation but verification is frequent.

• Transparency. Aurora is transparent meaning that there is no trusted setup like in Gentry et
al.’s [GGPR13] SNARK. Having used a CRS-based SNARK, our solution would have introduced
the annoying issue of the secure generation of the CRS.

Our implementation is deployed for the Linux OS and consists of the following modules. The
statement proved by our implementation is the following. Let

• X be the original transaction padded to a multiple of 64 bytes as described by SHA256 specifica-
tions;

• y1, . . . , ym be the bytes to delete by X;

• Y be the transaction obtained substituting y1, . . . , ym fromX with 0 bytes and padded as described
by the SHA256 specifications;

• int be the set of intervals in which the y1, . . . , ym are modified in X;

• SHARound be the circuit that given a chunk of X and h0, . . . , h7, the output of the previous round,
produces new values h′0, . . . , h′7 as described by the SHA256 specifications.

We say that X = X1, . . . , Xn meaning that X is composed by n chunks of 64 bytes. The same holds
for Y . Moreover, for simplicity, we define a function f that given Y , int, and y1, . . . , ym is able to recon-
struct the original X. The statement ChunkPreImage that our implementation proves for each modified
block is the following: ∃y1, . . . , ym s.t. SHARound(h0, . . . , h7, f(Yi, int, y1, . . . , ym)) = h′0, . . . , h

′
7, where

Yi is the modified chunk, y1, . . . , ym is the witness owned by the prover and h0, . . . , h7, Yi, int, h
′
0, . . . , h

′
7

are all public values. We remark that the verifier can compute the output of all SHA256 rounds on
unmodified blocks and check that the final hash is equal to the value stored in the Merkle tree of the
Bitcoin blockchain.

We explain the content of our tool describing how it works for a modified chunk Xi of X.

• hash.cpp. This source file implements the statement ChunkPreImage for use in Isekai. The main
routine is:
void outsource(struct Input *input, struct NzikInput *nzik, struct Output *output)
that specifies the public input input of type struct Input, corresponding to the variables

2There are variant of these systems for specific classes of statement that have logarithmic verifiers. However, we cannot
employ them for our application.

93

D3.3 – Revision of Extended Core Protocols

Xi, h0, . . . , h7 and the secret input nzik of type struct NzikInput corresponding to the vari-
ables y1, . . . , yn. output of type struct Output corresponds to the variables h′0, . . . , h′7. The
routine outsource will use the public and secret inputs to compute the intermediate hash of
SHA256 on the current chunk and store it in output.

• hash.h. This header file specifies the types of the structures struct Input, struct NzikInput
and struct Output. The structure struct Input has the following format:
struct Input {
unsigned char tr[64];
unsigned int h0[2];
unsigned int h1[2];
unsigned int h2[2];
unsigned int h3[2];
unsigned int h4[2];
unsigned int h5[2];
unsigned int h6[2];
unsigned int h7[2];
unsigned int start[64];
unsigned int end[64];

};
and NzikInput the following: struct NzikInput{
unsigned char deleted_data[DELETED_DATA_LENGTH];

};

The field tr contains the 64 bytes of Yi, deleted_data contains the data y1, . . . , ym, and the
h values contain the output of the previous round of SHA2563. Isekai and Aurora work in the
circuit model, so we have to fix an upper-bound to the maximum number of bytes that can be
removed by a single 64 bytes chunk, that in our implementation is represented by the constant
DELETED_DATA_LENGTH in the file hash.h. The arrays start and end represents the starting points
and the end points of each interval in which the data are removed.
From Yi, the routine outsource will first perform the string replacement using deleted_data,
start, and end obtaining back Xi. Xi together with h0, ..., h7 will be passed to SHARound to
obtain h′0, . . . , h′7 that will be put in struct Output that is: struct Output {
unsigned int h_out[8];
};

If the number of deletion intervals is less than DELETED_DATA_LENGTH, the remaining elements of
the arrays start and end can be set to 0.

• proofdel.py. This source file contains routine to generate the inputs to the statement from a
transaction file and original_tx file , to generate the circuits for Isekai, to create and to verify
the proofs.

Analysis. To assess the performance of our code, we executed the following tests. A first test was
done with a simple transaction with 64 bytes, in which only 4 bytes contained in the first chunk were
deleted. A second test was performed on the coinbase transaction of the genesis block, deleting the 69
bytes of the Chancellor sentence. The third test was performed on the Bitcoin transaction indexed as
“db27236623f19ceaf8535407e74b5dfad613aef7d5558631f4837fd0f6d83c83”, that we call db2723tr in

3If the modified chunk is the first chunk we note that the h values are known and defined by the SHA256 specifications.

94

D3.3 – Revision of Extended Core Protocols

Size (B.) Modified chunks (num.) Deleted data size (B.) Prover (sec.) Verifier (sec.)
Simple tr. 64 1 4 36.8 3.0
Chancellor tr. 204 2 69 82.9 6.1
db2723tr 283 3 76 123.9 9.2
Example tr. 3888 23 576 921.0 69.2

Figure 5.3: Performance of deletion using our Bitcoin sanitizer.

Table 5.3. The last test was performed on an ad-hoc OP_RETURN transaction with 3888 bytes, in which
there are 16 OP_RETURN codes, in which we have deleted the data contained in the 16 OP_RETURNs.

The performance analysis reports the transaction dimension in bytes, the number of modified chunks,
the number of bytes deleted by the entire transaction and the execution time in seconds of the prover
and the verifier. The results are shown in Table 5.3.

95

Chapter 6

Contact Tracing and Blockchains as
Shared Memory

Following recommendations of epidemiologists, governments are proposing the use of smartphone ap-
plications to allow automatic contact tracing of citizens. Such systems can be an effective way to defeat
the spread of the SARS-CoV-2 virus since they allow to gain time in identifying potentially new infected
persons that should therefore be in quarantine. This raises the natural question of whether this form
of automatic contact tracing can be a subtle weapon for governments to violate privacy inside new and
more sophisticated mass surveillance programs.

In order to preserve privacy and at the same time to contribute to the containment of the pan-
demic, several research partnerships are proposing privacy-preserving contact tracing systems where
pseudonyms are updated periodically to avoid linkability attacks. A core component of such systems is
Bluetooth low energy (BLE, for short) a technology that allows two smartphones to detect that they are
in close proximity. Among such systems there are some proposals like DP-3T, MIT-PACT, UW-PACT
and the Apple&Google exposure notification system that through a decentralized approach claim to
guarantee better privacy properties compared to other centralized approaches (e.g., PEPP-PT-NTK,
PEPP-PT-ROBERT). On the other hand, advocates of centralized approaches claim that centralization
gives to epidemiologists more useful data, therefore allowing to take more effective actions to defeat the
virus.

Motivated by Snowden’s revelations about previous attempts of governments to realize mass surveil-
lance programs, in this chapter we first analyze mass surveillance attacks that leverage weaknesses of
automatic contact tracing systems. We focus in particular on the DP-3T system (still our analysis is
significant also for MIT-PACT and Apple&Google systems).

Based on recent literature and new findings, we discuss how a government can exploit the use
of the DP-3T system to successfully mount privacy attacks as part of a mass surveillance program.
Interestingly, we show that privacy issues in the DP-3T system are not inherent in BLE-based contact
tracing systems. Indeed, we propose a system named Pronto-C2 that, in our view, enjoys a much better
resilience with respect to mass surveillance attacks still relying on BLE. The system is based on a
paradigm shift: instead of asking smartphones to send keys to the Big Brother (this corresponds to
the approach of the DP-3T system), we construct a decentralized BLE-based automatic contact tracing
system where smartphones anonymously and confidentially talk to each other in the presence of the Big
Brother. Pronto-C2 relies on Diffie-Hellman key exchange providing better privacy but also requiring a
bulletin board to translate a BLE beacon identifier into a group element.

In particular, the Pronto-C2 system can be implemented using blockchain as a shared memory offering
complete transparency and resilience through full decentralization, therefore being more appealing for
citizens.

Part of this work will appear in the proceedings of the CoronaDef workshop of NDSS 2021.

96

D3.3 – Revision of Extended Core Protocols

6.1 Introduction
In 2013 Edward Snowden disclosed global surveillance programs [CHRT20] opening a worldwide dis-
cussion about the tradeoff between individual privacy and collective security. A common opinion of
scientists after those facts is that the task of establishing standards to be used for cryptographic pro-
tocols should not be assigned to an organization that decides on its own, without providing the full
transparency that such processes deserve.

SARS-CoV-2. A major threat is currently affecting humanity: the COVID-19 pandemic. The ag-
gressiveness and fast spread of the SARS-CoV-2 virus have a strong impact on public opinion. Several
governments are taking the most restrictive measures of the last decades in order to contain the loss of
human lives and to preserve their economies. Fear is spreading, citizens are forced to stay home, many
jobs have been lost, and more dramatically the number of deaths goes up very fast day by day.

Contact tracing. According to epidemiologists, a major problem with COVID-19 is that the virus
spreads very quickly while current procedures to detect infected people and to find and inform po-
tentially infected people are slow. When a new infected person is detected, too much time is spent
to inform her recent contacts and to take proper restrictive actions. Commonly when a new infected
person is discovered, by the time her recent contacts are informed they have had already a significant
chance to infect others.

In order to improve current systems, many researchers are proposing automatic systems for contact
tracing. Such systems can dramatically increase chances that recent contacts of an infected person are
informed before infecting others. Essentially, whenever a person is diagnosed as infected, all her recent
contacts (i.e., persons that have been in close proximity to the infected one) are informed immediately.
This allows to promptly take appropriate countermeasures.

Automatic contact tracing (ACT, for short) is therefore considered an important component that
in synergy with physical distancing and other already existing practices can contribute to defeating the
SARS-CoV-2 virus.

Privacy threats. There are serious risks that ACT systems might heavily affect privacy. Citizens
could be permanently traced and arguments like “If you have nothing to hide, you have nothing to fear”
(Joseph Goebbels - Reich Minister of Propaganda of Nazi Germany from 1933 to 1945) are already
circulating in social networks. Governments could leverage the world-wide fear to establish automatic
contact tracing systems in order to realize mass surveillance programs. Motivated by such risks, several
researchers and institutions are advertising to citizens the possibility of realizing automatic contact
tracing systems that also preserve privacy to some extent. Such systems crucially rely on Bluetooth
low energy (BLE, for short).

The BLE-based approach. BLE is a technology that allows smartphones physically close to each
other to exchange identifiers requiring an extremely low battery consumption. Such communication
mechanism avoids GPS technology and third-party devices like Wi-Fi routers or base stations of cellular
networks. It is therefore a viable technology to allow the design of privacy-preserving ACT systems.

BLE-based tracing is used by Apple in a privacy-preserving system to find lost devices [Gre19].
Matthew Green in a interesting webinar with Yehuda Lindell [GL20] explicitly proposed to start with
Apple’s tracing system when trying to design a privacy-preserving proximity ACT system for citizens.
Apple and Google have recently announced a partnership to provide an application program interface
for exposure notification (GAEN, for short) [App20b] that can be used to include such features in
smartphone applications.

97

D3.3 – Revision of Extended Core Protocols

In parallel with the Apple&Google initiative of GAEN, other BLE-based approaches very similar
in spirit were proposed. Such BLE-based systems commonly rely on the use of pseudonyms that
smartphones announce through BLE identifier beacons. After a short period of time, each smartphone
replaces the already announced pseudonym with a (seemingly independent) new one. Each smartphone
receives pseudonyms sent by others and stores them locally. Therefore, a smartphone will have a
database of the announced pseudonyms and a database of the received pseudonyms. The central idea is
that whenever a person is diagnosed with COVID-19, smartphones that have been physically close to the
smartphone of the infected person should be notified and should compute a local risk scoring. In order to
realize this, the smartphone of the infected person should use the above two databases to somehow reach
out the smartphones that have recently been physically close to it. This communication is achieved
through a backend server as follows. First the smartphone of the infected person will use the above
two databases to communicate data to the backend server. The server could run some computations on
data received from smartphones of infected citizens. The server will also use collected/computed data
to answer pull requests of smartphones that desire to check if there is any notification for them.

Intuitively, the above approach through the unlinkability of the pseudonyms guarantees some degree
of privacy. Despite the privacy-preserving nature of the BLE-based approach, the risk that such systems
can be misused to realize mass surveillance programs remains a major concern that might slowdown the
actual adoption of such systems. Indeed, most governments are not imposing the use of ACT systems.

Centralized vs Decentralized BLE-Based ACT. An important point of the design of a BLE-
based ACT system is the generation of pseudonyms used by smartphones. Two major approaches have
been proposed so far.

In a centralized approach pseudonyms are generated by the server. Each smartphone, during the
setup of the ACT smartphone application, connects to the server and receives its pseudonyms. Therefore
the server knows all the pseudonyms honestly used in the system. This is pretty obviously a clear open
door to mass surveillance. Such dangers are discussed in [DP-20]. Currently the centralized approach is
part of the protocols named NTK and ROBERT that are developed inside the Pan-European Privacy-
Preserving Proximity Tracing (PEPP-PT) initiative [PEP20].

The decentralized approach breaks the obvious linkability of pseudonyms belonging to the same
smartphone by letting the smartphone itself generate such pseudonyms.

While the decentralized approach has a better potential to protect privacy, the centralized approach
has a better potential to provide useful data to epidemiologists.

Straight-forward decentralized BLE-Based ACT. The most trivial way to realize a decentralized
BLE-Based ACT system consists of giving to the server the role of proxy that forwards to non-infected
persons the pseudonyms of those infected persons that decide to upload their pseudonyms1 after being
detected infected. Therefore, everyone, including the server, clearly learns directly pseudonyms that
have been used during the previous days by recently infected persons. Instead the pseudonyms generated
by smartphones belonging to non-infected persons are not uploaded to the server and thus they are
visible only to whoever was physically close to those smartphones. In terms of privacy, such straight-
forward decentralized systems seemingly have a potential to offer a better protection compared to known
systems that use the centralized approach. There are a few proposals based on the straight-forward
decentralized approach, most notably Decentralized Privacy-Preserving Proximity Tracing (DP-3T, for
short) and Private Automated Contact Tracing (MIT-PACT, for short).

Is privacy-preserving ACT a fig leaf? The unlinkability of pseudonyms advertised in BLE identi-
fier beacons is completely useless if the BLE MAC address associated to a smartphone does not change
in a synchronized way with the pseudonyms [BLS19]. Notice that iOS and Android make up (almost

1The actual information uploaded is a seed that generates the pseudonyms.

98

D3.3 – Revision of Extended Core Protocols

completely) the vast majority of the currently deployed operating systems for smartphones and have
some serious restrictions on updating a BLE MAC address. In contrast, the smartphone application
should obviously work in the background and should have control over the BLE MAC address so that
this value can rotate along with the pseudonyms announced in the BLE identifier beacons. Therefore,
because of such limitations of the vendors, it is absolutely problematic to realize BLE-based privacy-
preserving smartphone applications that can practically (in the sense of usability, battery consumption,
and so on) work on (almost) all currently used BLE smartphones, unless some flexibility is allowed by
Apple&Google through updates of iOS and Android.

The move of Apple&Google. Interestingly, Apple&Google have released updates of iOS and An-
droid providing GAEN to some “chosen” smartphone apps 2 resolving along with it also the MAC
address linkability problem. However, the two features are seemingly connected, more precisely: if you
want to implement a usable smartphone application (i.e., an application that runs in the background
without battery drain on a very large percentage of the currently available smartphones) that needs to
rotate the BLE MAC address synchronously with the content of the BLE identifier beacon then you
must use their API and therefore you must use their approach for pseudonym generation and exposition.

This lack of flexibility generates some interesting consequences. First of all, the centralized approach
does not seem to be implementable since it relies on pseudonyms generated by the server and then
advertised in the BLE identifier beacon by the smartphone. Instead, the generation of pseudonyms
can only happen inside the smartphone when using GAEN. Such mismatch implies that the decision
of Apple&Google makes hard to realize the centralized approach to privacy-preserving ACT. Indeed,
it is not surprising that some governments that originally had a bias towards centralization at some
point decided to switch to the GAEN approach. Very sadly, GAEN also excludes better approaches
that avoid replay attacks [Pie20a]. Snowden’s revelations included memos confirming the existence of
backdoors (e.g., see Dual_EC_DRBG) in standardized cryptographic algorithms [Wik]. It is therefore
important to make sure that Apple&Google will not abuse such systems, and will not help governments
interested in mass surveillance.

6.1.1 Our Contribution

Starting with the inspiring list of attacks presented by Vaudenay [Vau20a], in this chapter we first
analyze the degree of privacy protection achieved by the DP-3T systems. In some of the attacks a
government through its natural power controls (even partially) the server, the laboratories that detect
infections and the national territory to realize mass surveillance programs.

We consider quite dangerous the fact that in the DP-3T systems (and all analogue systems) one
can be traced even when walking alone, silently. Indeed, a passive antenna can detect the pseudonym
without transmitting anything, and can later on check if the sniffed pseudonym belongs to the list of
infected persons. It is easy to link the real identity of an infected person with the pseudonyms she used
in the last two weeks. Indeed, such antennas can also be installed nearby any place where the citizen
can be identified (e.g., showing an ID card or paying with a credit card) and this allows to connect
pseudonyms to identities. We believe that this is an open door to help mass surveillance programs.
Also other BLE devices that are in general used for other purposes (e.g., information kiosks) can be
used to trace people. Obviously one can not expect that nothing else will be done with BLE except
contact tracing, and thus preserving privacy while other uses of BLE continue is a necessary goal. Notice
also that the use of active kiosks running precisely the BLE-based contact tracing protocol is actually
recommended in [PAC20] (see Remark 1 in Section 6.6). Instead, we believe that they can be a source
of privacy attacks. The lack of privacy with respect to such adversaries is a major vulnerability in the

2They provide only the part concerning the generation, rotation, and exposure of pseudonyms along with a flag to
activate/dis-activate this service in the settings. There is no user application and neither a server collecting pseudonyms.

99

D3.3 – Revision of Extended Core Protocols

side of DP-3T and other analogue systems3. We stress that the issues exist regardless of the update of
the MAC address of the BLE device. Technically speaking, the key weakness of the DP-3T system is
actually a weakness of the straight-forward decentralized approach: asking smartphone applications to
hand over the used keys/pseudonyms to the server is like asking citizens to kneel down in front of the
Big Brother4.

Next we present Pronto-C2, a new decentralized privacy-preserving automatic proximity contact
tracing systems based on BLE. We show that our system is arguably more resilient than the DP-3T
systems against mass surveillance attacks, while remaining useful for epidemiologists. Our system needs
crucially a bulletin board, and this of course can be implemented through government servers if citi-
zens trust the government. The bulletin board can be completely decentralized relying on blockchain
technology. We believe that full decentralization can play an important role to help the work of epidemi-
ologists since citizens obviously prefer to use their smartphones in ACT systems that are transparent
and resilient to attacks, in addition to being privacy preserving.

6.1.2 High-Level Overview of Pronto-C2
Our main idea can be seen as a paradigm shift compared to the straight-forward decentralized approach.
Indeed, instead of asking infected people to hand over their keys to the Big Brother as in DP3-T systems,
we allow citizens to anonymously and confidentially call each other in the presence of the Big Brother.
The way we do it is explained below.

In the 70s Merkle, Diffie and Hellman invented public-key cryptography. Starting with Merkle’s
puzzles, Diffie and Hellman proposed a key exchange protocol [DH76] (i.e., the Diffie-Hellman protocol)
where two parties can establish a secret key K by just sending one message each on a public channel. A
message consists of a group element in a setting where the so called Decision Diffie-Hellman assumption
holds.

In our view, the most natural way to realize a privacy-preserving ACT system consists of having as
pseudonym a group element that corresponds to a message in the DH protocol. This natural idea was
also proposed to the DP-3T team by the github user a8x9 [a8x]. In order to actually realize such form
of ACT system, one needs to solve the following two main problems.

Anonymous call: realizing a mechanism that allows an infected party to use K in order to call the
other party in a secure and privacy-preserving way.

Shortening pseudonyms: making sure that the size of a group element fits the number of available
bits in a BLE identifier beacon.

Calling (anonymously) the infected person. We solve the first problem by asking the infected
party, after having received a proper authorization from the laboratory that detected the infection, to
upload K along with the authorization to a bulletin board. The bulletin board can be just managed
by a server as in the DP-3T systems, but it can be preferable to rely on decentralization through the
use of blockchain technology, making the entire process transparent and reliable.

When implementing the bulletin board with a blockchain 5 then the authorization must be performed
by a smart contact and thus the check should be accomplished uniquely with public information. For
this reason, we suggest the use of digital signatures for implementing the authorization mechanism to
upload data. In order to make the upload of K unlinkable with the real identity of the infected person,
we suggest the use of blind signatures [Cha83]. The basic idea is that laboratories receive from the

3We will instead show that our Pronto-C2 system does not suffer from such drawbacks.
4We refer to the George Orwell book “1984”, in which the Big Brother was the leader of Oceania and every citizen of

Oceania was under constant surveillance by the authorities.
5In this chapter, when referring generically to a blockchain we always mean a permissioned blockchain (e.g., Hyperledger

Fabric [ABB+18b]).

100

D3.3 – Revision of Extended Core Protocols

government some unpredictable activation codes that are then one by one given to infected persons.
Then, an infected person connects to a service in order to exchange the authorization code with some
blind signatures that will be useful to then upload on the bulletin board data associated to calls. In
case of use of a blockchain to implement the bulletin board, this exchange of an authorization code
with a blind signature is performed off-chain since the server will use a signature secret key and thus it
can not be directly implemented by a smart contract.

Notice that the approach of Pronto-C2 is therefore completely different from the one adopted in
the DP-3T systems. Indeed, while in the DP-3T systems the pseudonyms of the infected person are
broadcast to everyone (or added to a Cuckoo filter by the server that then transmits the filter) we
instead ask the infected party to send a message that is understandable uniquely by the party with
which she was in close proximity (i.e., a message that can be computed in an unique way based on
information in its possession). Therefore, K is more like a phone call where the infected party sends
to the answering party the following message:6 “Hello, it is you that were next to me... and I’ve just
discovered that I’m infected”.

Every person that is not infected will connect to the server (or to the blockchain) and will download
the recently uploaded keys to search for K (data don’t need to be stored, the search can happen while
downloading data). Notice that there is a different key K to check for every BLE identifier beacon
received in the last two weeks that has not been already discovered. This step should be preferably
performed while the phone is connected to the charger and to a Wi-Fi network. Moreover, for those
cases where the daily amount of data to download is excessive, one can think of specifying target
states/regions in the country, in order to manage a restricted amount of information. In this case a call
would also specify a corresponding state/region.

In addition to K, the infected person can also upload the root of a Merkle tree where the leaves
include committed information (e.g., about BLE signal strength, location, body temperature) that
later on the infected person might like to share with epidemiologists. The binding of the commitment
is important to avoid that such data are adaptively changed. The hiding through a Merkle tree is
important to leave the ownership of this information to the person until she decides to selectively
disclose it.

We remark that avoiding that two smartphones with pseudonyms A and B upload the same K
(this would leak some –most likely irrelevant – information), is straightforward: A could just upload
H(K||A||B) while B could just upload H(K||B||A), where H is a cryptographic hash function.

6.1.3 Blockchain as Shared Memory

Current standards suggest at least 256 bits for a group element to safely run the DH protocol over
elliptic curves. This size, however, exceeds the space available in a BLE identifier beacon. Moreover,
we really stand for defeating mass surveillance attacks, and our system works with only a small overhead
using 384 or even 512 bits. One might think to resolve the issue of the small space in a BLE identifier
beacon by just resorting to very short (and therefore in our view too risky in case of mass surveillance
attacks) keys [a8x20a] or by splitting the information into multiple identifier beacons that rotate quickly.
Obviously Pronto-C2 can work smoothly with such workarounds, but since they all bring some issues,
we propose a different approach that allows to use many bits for the group element while still remaining
with one standard identifier beacon only.

In Pronto-C2, we decouple the group element from the pseudonym precisely like in operating systems
a large amount of data is represented by a pointer. Recall that following also previous work, a value
announced in a BLE identifier beacon should last only for a few minutes, to then be replaced by a
new one. The smartphone will periodically generate new independent group elements for DH and
will keep them locally. Since such group elements are too large to be sent in BLE identifier beacons,

6The Italian word “Pronto” stands for “Hello” and C2 pronounced in English stays for “it is you” in Neapolitan language
as in the title of a very popular song of Nino D’Angelo [D’A83] (see also the movie [Lau83], min. 59:00).

101

D3.3 – Revision of Extended Core Protocols

the smartphone will upload them to a bulletin board. Again, our design is flexible and the bulletin
board can be maintained by a server or alternatively be implemented with a blockchain. As above,
we support the second option since it gives full decentralization and makes more citizens willing to
participate, having more chances to defeat the virus. Notice that this generation of group elements is
done only once in a while, and therefore can typically be performed when the smartphone is on charge
and is connected to a Wi-Fi network.

In Pronto-C2 we decouple the group element from the pseudonym by setting the 128 bit7 pseudonym
as the address on the bulletin board of the corresponding group element. In other words, a pseudonym
is a pointer to a public shared memory, therefore one can just refer to a short string to refer to an
arbitrarily large amount of data 8. Note that there is no downgrade of security from 256 to 128 bits
since the pseudonym is used just as a pointer. By using as pseudonym a short representation of the
group element, we need a different mechanism to implement the key exchange. Recall that the infected
person must compute the key K and push it to the server, while the non-infected person needs to
compute the key K to then check if it exists on the server. Starting from a short pseudonym every
player will recover the actual group element from the bulletin board that records all group elements.
This is a fast operation since the pseudonym is the address of the group element and thus there is no
need to download a large amount of data or to do any expensive search.

6.1.4 Tracing

There are two quite different ways to trace.

Silent tracing. Pronto-C2 is clearly secure with respect to silent tracing. The key point is that
Pronto-C2 is based on virtual anonymous calls originated from a recently detected infected person,
and addressed to whoever has been in close proximity to her. Indeed, when a person walks alone and
passes by a silent tracing device, the sole transmission of the pseudonym used in that moment by the
smartphone does not allow to understand if later on that person is infected. There will be no key K
corresponding to a key agreement in the silent tracing device that can be found in the list of virtual
anonymous calls.

Shameless tracing. A government can also try to trace citizens by having on its territory many
devices that behave as smartphones, therefore announcing pseudonyms with the hope of receiving a call
or making calls in order to infer some information on the locations and identities of the citizens. It goes
without saying that such attack is easier to detect compared to silent tracing. Indeed, the smartphone
application could easily inform the owner at any time on the number of BLE identifier beacons that
are currently received. Therefore, there is more room for citizens to realize the existence of malicious
devices and ask police to destroy them and to identify the criminals that were trying to abuse the
ACT system. Any government that would like to save its reputation convincing citizens to still use
the smartphone application should take severe actions against such criminals. Obviously, if there is no
prompt reaction of the government then citizens will feel that some attempts of mass surveillance are
in progress and will simply switch off the smartphone application.

Notice that the only dangerous BLE devices are the ones that announce the very specific identifier
beacon for the contact tracing system. There are specific codes to differentiate identifier beacons for
different systems. Therefore, in our system, it is still completely fine (i.e., they do not have to be
destroyed) to have on the territory devices (e.g., information kiosks) that use BLE to provide other
services.

7This is the size for a pseudonym that is commonly allowed by BLE identifier beacons.
8A similar idea is used in IPFS [PL20].

102

D3.3 – Revision of Extended Core Protocols

Pronto-C2 is secure also against shameless tracing. Notice that with shameless tracing the infected
user will upload a call for the active tracing device that was in close proximity. However, there will be
no way to link calls coming from the same infected citizens when sending different pseudonyms as BLE
identifier beacons. Therefore, unless we are in the extreme case where there is only one new infected
person in a large area and in a significant amount of time, Pronto-C2 protects infected citizens from
attempts to trace their movements through active BLE beacons.

Unlinkability over TCP/IP, timing, and other side-channel attacks. As in all ACT sys-
tems, users could be de-anonymized through the IP address when connecting to servers. Moreover, in
Pronto-C2 when uploading a batch of group elements some attention should be paid so that they are
not linkable. We therefore suggest the use of artificial delays and uploads of bogus data (i.e., dummy
traffic) with the only purpose to confuse the adversary making harder any profiling attempt. We also
discuss a simple solution to mitigate the above linkability issues using mixers. We assume that each
user can select her own favorite mixer among several options that can belong to heterogeneous entities
(e.g., political parties, large organizations defending civil rights). By doing so, users could pick their
favorite options to protect their IP addresses when uploading their pseudonyms and their anonymous
calls to the bulletin board and when downloading pseudonyms corresponding to the received BLE bea-
con identifiers. Moreover the user can send a batch of pseudonyms and calls since they will be mixed
by the mixer that will also apply some artificial delays, and dummy traffic therefore guaranteeing some
degree unlinkability (i.e., mixers that serve large communities give a satisfying degree of privacy, unlike
mixers that serve only very few citizens). We give a more detailed description of this idea in Section 6.8.
We remark that the server can also perform mixing and the privacy will be based on at least one among
server and mixer behaving honestly. We stress that ACT systems currently deployed are affected by
such issues and mostly ignore them, but still we prefer to discuss possible workarounds, even though
they obviously introduce extra overhead.

Replacing DH with other key-exchange protocols. We have proposed the DH protocol because
it is computationally efficient and has very low space requirements. Nevertheless, our design is flexible
and one can use other key-exchange systems as long as there is just one message per party that is
moreover independently computed from the other message.

Countermeasures to DoS attacks. Typical DoS attacks can be mitigated with pretty standard
approaches, just to mention some: CAPTCHAs, proofs of work, anonymous tokens. We will discuss
how to mitigate DoS attacks to the bulletin boards, by allowing regular (i.e., non-infected) citizens to
upload a limited amount of pseudonyms, while infected citizens will be allowed to upload a very large
amount of calls.

Removing old data from the bulletin boards (even from the blockchains). The entire in-
formation available on the bulletin boards does not disclose identities. Moreover, it does not allow any
player that is not a sender nor a receiver of the call to link calls with pseudonyms. Nevertheless, in
order not to overload servers with old information (e.g., anything uploaded more than 20 days ago),
past data can be removed from the bulletin board pretty easily. If the bulletin board is managed by a
server, then old data can just be deleted. If instead the bulletin board is realized through a blockchain,
then we suggest that periodically the pointer to the genesis block moves forward to the next block. Es-
sentially, the blockchain will always consist of the blocks generated in the last relevant time period (e.g.,
20 days). Moreover, this process can be made even more transparent by uploading every 10 minutes
on the Bitcoin blockchain the cryptographic hash of the blocks generated in the last 10 minutes. This
allows everyone to constantly verify that the bulletin board is correctly decentralized and redacted.

103

D3.3 – Revision of Extended Core Protocols

Refuting a claim of the DP-3T team. Vaudenay in [Vau20a] showed a privacy attack to DP-3T
proposing an antenna that can be used to eavesdrop the identifier beacons sent by smartphones. Some
of our attacks follow the same idea even though we present them with a different syntax and focusing
on a government that eavesdrops BLE communication as part of mass surveillance programs. The main
point of this remark is that the DP-3T team answered to [Vau20a] in [DT20c] claiming that “This is a
known attack vector inherent to all contact tracing systems, whether centralized or decentralized (SRE,
Inherent Risk 1)”. We refute this claim of the DP-3T team and indeed we contradict it by showing that
Pronto-C2 is not affected by such attacks. It might be that the DP-3T team was implicitly referring to
systems that follow the straight-forward approach only. This would imply that Apple&Google through
GAEN are providing an ACT system that inherently suffers of privacy and security issues, and that
could be exploited to help mass surveillance.

6.2 Related Work
In this chapter, we mainly focus on the security of the systems proposed by the DP-3T [DP-20] team.
However, the attacks we present are significant to many other decentralized ACT systems such as MIT-
PACT [PAC20], UW-PACT [CFG+20b] and TCN [TCN20]. Such decentralized ACT systems are very
prone to be abused. Attacks can be carried out not only by the government, but also by unknown
adversaries. These vulnerabilities have been acknowledged in [CFG+20b] (Section 3.1.3) where it is
affirmed: “This can be abused for surveillance purposes, but arguably, surveillance itself could be
achieved by other methods”. As previously discussed, MIT-PACT [PAC20] even makes an explicit
recommendation that active BLE devices should be placed on the territory by the government itself.
Their intended purpose is to relay previously detected pseudonyms in order to warn users about possibly
contaminated surfaces. However, they could easily be exploited for mass surveillance, being a perfect
front for shameless tracing.

Several vulnerabilities of the DP-3T systems have been previously analyzed in various works [Tan20a,
Pie20a,Vau20a,Vau20b]. Vaudenay [Vau20a,Vau20b] presents a detailed list of attacks against the DP-
3T systems; some of the attacks in this chapter are indeed inspired to the ones of Vaudenay, but show
with more emphasis the possibility to exploit such attacks for mass surveillance. The DP-3T team
reacted to Vaudenay’s work by presenting a public response to his attacks [DT20c] that does not object
on their applicability, and sometimes tries to convey the message that those attacks are inherent to any
decentralized approach. In this chapter we show that this is not true.

As part of a joint partnership, Google and Apple [App20b] recently released an update to their
mobile operating systems to introduce a new set of exposure notification APIs that is subject to all the
attacks shown in this paper for the low-cost DP-3T system. The new APIs are not open source (e.g.,
in Android the APIs can be accessed via inter process communication to the Google play service that
is a closed source application executed in background) and cannot even be tested: in order to use the
APIs you need authorization by Google and Apple.

Pietrzak [Pie20a] proposes solutions and mitigations to replay and relay attacks against the DP-3T
systems. Furthermore, Pietrzak identifies the issue that users in the DP-3T system can easily provide
digital evidence of contacts with infected users. Tang [Tan20a] observes that the DP-3T systems may
be subject to identification attacks, and presents a comprehensive survey on proximity tracing systems.
Furthermore, a subset of our attacks is taken into account in [BAL20], where the authors propose new
attacks inspired by ours and the other previous papers.

Pinkas and Ronen [PR20], building upon a design similar to the DP-3T systems, propose a system
with an improved resilience to relay attacks, a better verification of risks and other useful features.

The aforementioned works all focus on decentralized ACT systems. In contrast, there are several
centralized proximity tracing systems, in particular TraceTogether [Tra], adopted in Singapore and
ROBERT [IPT20b], designed by Inria and Fraunhofer (a French and a German research institution

104

D3.3 – Revision of Extended Core Protocols

respectively).
In [Fra20] the authors review the most prominent European proximity tracing systems, DP-3T,

NTK, and ROBERT, analyzing the different adversarial models assumed by each system.
WeTrace [CFG+20a] proposes a system 9 based on the use of public-key cryptography, similarly to

Pronto-C2. Public keys are exchanged over the BLE channel and to solve the problem of having only 16
bytes available in the BLE beacon, users broadcast only the first 16 bytes, while the remaining bytes
can be retrieved by querying a server. In order to access the full public keys efficiently, these data are
indexed by hashing (a part of) the first 16 bytes obtained via BLE. (i.e., using the first 16 bytes as
an address to find the remaining bytes of the key, similar to the pointers proposed in Pronto-C2). An
infected user A who wishes to report, uploads messages encrypted with the public keys related to close
contacts she had. These encrypted messages are independent of the public key A was broadcasting while
being in contact with the recipients of the messages. While this might be beneficial for A’s privacy,
it can be severely affected by false positives attacks. Indeed a user B may be alerted consequently to
an upload performed by an infected user TSen who did not come into contact at all with B, but just
received B’s key trough other means.

Another system similar to Pronto-C2 that appeared online on April 202010 is TraceCORONA
[SSL20]. TraceCORONA is based on the exchange of exposure tokens that can be computed using
the Diffie-Hellman protocol. Currently there are no papers associated with this ACT application pro-
posal, therefore we do not have technical details to properly compare this solution with Pronto-C2.

After a preprint of this chapter appeared on ePrint, Inria published on Github a new ACT system
named DESIRE [IPT20a], which is also based on the Diffie-Hellman key exchange scheme. After being
tested positive, a user uploads data related to the encounters he had during the previous days. As
in Pronto-C2, such data is computed hashing the shared key along with an information depending on
which of the two users is creating the report. This guarantees that if two users A and B have been in
close proximity, and both of them end up being positive to SARS-CoV-2, they will send two different
values to the server, making it impossible for the server itself to infer that A and B have been co-located.
Differently from Pronto-C2, the users’ at-risk status is computed on the central server.

Interestingly, in [Sei20] Seiskari shows that the DP-3T low-cost system (that is even referred as
“semi” decentralized) is attackable in practice. In particular he shows that positions in the prior two
weeks of new infected users can be tracked by any third party (i.e., not only the government!) who can
install a large fleet of BLE-sniffing devices. Notice that such devices can be completely passive (i.e., they
do not broadcast an identifier beacon) and therefore are hard to detect. The attack is therefore hard
to mitigate and inherent in the design of the DP-3T low-cost system. The github repository includes a
Proof-of-Concept implementation of such BLE sniffer that succeeds against the low-cost DP-3T system.

Baumgärtner et al. [BDF+20] provide empirical evidence for the two main risks of the Apple&Google
design, namely, as in DP-3T, tracing of infected users and replay/relay attacks.

6.3 Threat Model
In this section we present the adversary goals, capabilities, and the threats covered and not covered in
this chapter. We remark that this chapter introduces several distinct attacks against automatic contact
tracing systems and for each of the attacks the adversary may have different goals and capabilities and
collude with different entities. So, the following discussion is general in nature.

Adversary goals and threats. An adversary attacking the privacy of the system wishes to trace
users. By tracing users we mean that the adversary can link different locations visited by the same

9We became aware of WeTrace only in mid June 2020, informed by Adrienne Fichter.
10We have been informed of the existence of such system only in August 22nd 2020.

105

D3.3 – Revision of Extended Core Protocols

user. This is irrespective of the fact that the adversary may not know the real identity of the user who
made such visits.

Notice that, due to the fact that pseudonyms in BLE packets do not change during a time slot,
tracing in these periods is inevitable. Generally, we will not deem inevitable attacks as a threat. For
instance, an adversary that can place a different smartphone at each location of the space and at each
time window11 can know where and at which time each diagnosed person has been in the case that there
has been only a single diagnosed person; or can know at what time one of the smartphones under his
control met a diagnosed person. These threats are inherent to any automatic contact tracing system.

An adversary attacking the privacy also wishes to link locations visited by users, both diagnosed
and non-diagnosed, to their real identities. For instance, the adversary may attack the privacy by
attempting to link information uploaded by the user to a server through the user’s IP address.

An adversary attacking the integrity wishes to falsely alert users of having been in contact with a
diagnosed person; replay and relay attacks fall in this category.

Adversary capabilities. We will consider different threats that involve adversaries of different capa-
bilities. The adversary may place an arbitrary number of listening BLE devices at arbitrary locations.
Such devices may operate exclusively in reception mode over the BLE channel. In this case, we say
that the adversary is passive and is performing a silent tracing. An adversary may also try to trace
citizens by placing many hidden devices that behave as regular smartphones. In this case, the adversary
is active and is performing a shameless tracing. As explained in Section 6.1, shameless tracing can be
easily detected by citizens that will react uninstalling the application.

An adversary may instead use smartphones belonging to actual citizens (e.g., policemen) to collect
information about citizens without allowing them to detect such attack.

For some of our attacks we will consider an adversary that can even corrupt the server and/or the
health authority.

Types of tracing attacks. Many of the proposed attacks (cfr., Sections 6.4.1, 6.4.2, 6.4.3) deal
with tracing the movements of infected individuals over the contagion time window. Let us consider
the strongest possible adversary who may try to trace infected users that is, as specified above, an
adversary using active devices (i.e., behaving as regular smartphones) and colluding with the server.
We now evaluate what is the highest level of privacy protection that can be guaranteed to infected users
in this scenario. Note that an active adversary Adv is completely indistinguishable from a regular user
of the system, this means that whenever Adv comes into contact with an infected user U who decides
to upload data to the system, Adv will be alerted as prescribed by the system itself. In addition, Adv
gets to see all the data uploaded by U to alert all the users she came into contact with. Suppose that
Adv has placed a series of active devices over a certain territory, then for each of such locations where U
has been over the contagion time window, U will upload data to server in order to alert Adv’s devices.
This means that Adv will certainly know which of his devices has been in proximity of an infected user
and when.

Therefore, the best we can hope for in this scenario is that Adv cannot know whether data related
to different locations are relative to the same individual. In this case, a certain degree of privacy is
provided to infected users whose movements remain hidden within the set of movements of all other
diagnosed people who uploaded data during the same day.

More specifically, we say that a protocol enjoys partial protection (with respect to passive or active
adversaries) when a (passive or active) adversary who placed (passive or active) devices at two different
locations X and Y cannot figure out whether X and Y have been visited by the same infected user. This
also implies that if Adv received one alert related to position X at time t1 and one related to position

11We mean that for each location and for each time window the adversary initializes a new smartphone with the
automatic contact tracing application under his control.

106

D3.3 – Revision of Extended Core Protocols

Y at time t2 > t1, the adversary cannot know which user visited X at time t1 and which user visited
Y at time t2. (Indeed, if Adv could know which user visited resp. X and Y could also know whether X
and Y have been visited by the same user, in contradiction with the partial protection property.)

Of course, in general, there may be additional information that helps Adv to disambiguate. For
instance, consider the scenario in which a pseudonym is listened at location X at time t1 and another
one is listened at location Y at time t2 > t1. If no other pseudonym has been listened at nearby
locations at times < t1, there are two possible explanations: 1) a user turned on his phone at location
X at time t1 and then moved to position Y at time t2; 2) a user U1 turned on his phone at location X
at time t1 and then, at time t2, U1 turned his phone off while another user U2 turned his phone on. In
this simple scenario, it seems obvious that the first case is more likely than the second one. However,
disambiguating gets more difficult as the number of infected individuals and locations increases.

We say that an ACT system enjoys full protection from tracing attacks w.r.t. a certain passive
adversary Adv, if Adv is not able at all to trace the movements of infected individuals during the
contagion time window. To be more specific, even if there is a single infected user U, Adv does not get
to know even one single location visited by U during the contagion time window. Notice instead that
partial protection with respect to passive adversaries does not offer any guarantee in the case there is
only a single infected user, in particular all the movements of such user could be leaked.

Furthermore, U may pass nearby such devices both when she is alone or when some other users of
the system are also there. In the first case, U may not upload any data related to the period of time she
was alone since there is no one to be alerted, while in the second case an alert should be sent to whom
has been in contact with U. For this reason, an ACT may exhibit different levels of resilience to tracing
attacks depending on the actual encounters the user had, in particular: it could protect infected users
from being traced in any case (i.e., it provides full protection) or only for the periods of time they have
been alone. We name the latter as solitary protection from tracing attacks. Obviously, full protection
implies solitary protection.

Threats not addressed. We do not consider threats at the BLE layer such as using power signal
and other side-channel information to identify users or issues at the operating system level.

6.4 Privacy Attacks for Mass Surveillance
Mass surveillance is an activity put in place to watch, even discontinuously, over a substantial fraction
of the population by monitoring, for example, their movements and/or habits.

Even though decentralized solutions guarantee, in general, better privacy compared to centralized
ones, mass surveillance is still a possible threat and must be mitigated as much as possible when
introducing new intrusive technologies.

In the following paragraphs, we present several possible attacks towards contact tracing systems
which, when successful, undermine users’ privacy, eventually contributing to mass surveillance activities.
Furthermore, we evaluate and compare the resilience of our Pronto-C2 system (see Section 6.7) and the
DP-3T systems against such attacks.

Our attacks are inspired by the works of Vaudenay [Vau20a] and by the issues reported in the
DP-3T’s git repository [a8x20b, a8x20a]. We carefully take into account these issues and attacks to
illustrate more precise scenarios unveiling significant mass surveillance attacks.

Both the DP-3T systems, and Pronto-C2 protect the privacy of non-diagnosed people and protect
the privacy of diagnosed people out of the contagion time. Since these systems are the main focus of
this chapter, in some of the following attacks we will assume that the adversary only attacks the privacy
of diagnosed people during the contagion time window (e.g., roughly, the last two weeks before being
tested positive). However, we remark that privacy protection is important for all users at any time, and

107

D3.3 – Revision of Extended Core Protocols

ACT systems might strongly violate privacy, especially when there is an extremely centralized design
and when there is collusion among the various authorities of the system.

6.4.1 Paparazzi Attack: Tracing Infected Users with Trusted Server

This attack is similar to the Paparazzi attack reported in [Vau20a]. The main difference between the
two, is that the one of [Vau20a] has the purpose of de-anonymizing infected users, while here we focus
on building a mass surveillance infrastructure to trace citizens12.

• Attacker’s capabilities: The attacker Adv is anyone with enough economical resources. Adv
has the ability to install, in a sufficiently large number of different locations, passive BLE devices.
The only capability of a passive device is to operate over BLE channels in reception mode. We
also assume that such devices are provided with enough memory to store a significant amount of
received data (i.e., pseudonyms and auxiliary information).

• Attack description: The passive devices record the observed pseudonyms along with a fine-
grained time log. The location of each device is fixed and determined by the attacker Adv. When
a user B is tested positive and uploads data into the ACT system, the system itself provides
related data to all users. Adv then combines these data with his logs. Furthermore, the attack is
practically undetectable by the users since the BLE devices operate only in reception mode.

• Attack’s outcome: Adv traces the infected users over the contagion time window. The attack
is considered successful if the system fails to provide full protection. Variants of the attack can be
considered, where Adv is interested in breaking solitary protection or partial protection respectively.
We name the first variant as Solitary Paparazzi attack and the second one Partial Paparazzi attack.

6.4.2 Orwell Attack: Tracing Infected Users with Colluding Server

Orwell attack differs from Paparazzi attack only for the capabilities of the attacker.

• Attacker’s capabilities: The attacker Adv is the same as in Paparazzi attack. However, in ad-
dition, Adv can collude with the server. Note that the server could be under a significant influence
of the government.

• Attack description: Adv is analogous to the one described in Paparazzi attack. The only dif-
ference is that, along with data provided to all regular users, Adv receives all data that are in
possession of the server.

• Attack’s outcome: The outcome is analogous to the one of Paparazzi attack, we adopt also
here the same naming convention for the variants of the attack.

6.4.3 Matrix Attack: Shameless Tracing of Infected Users with Colluding Server

• Attacker’s capabilities: The attacker Adv is identical to the one of the Orwell attack in terms
of the information he has access to. On the other hand, Adv’s devices are active and can actively

12This kind of attack was described in [SSL20] when was discussed the possible attacks against GAEN.

108

D3.3 – Revision of Extended Core Protocols

send messages over the BLE channel.

• Attack description: Adv operates similarly to what has been shown in the previous attacks.
Adv combines the data in his possession with the ability to actively send messages of the contact
tracing protocol over the BLE channel in order to trace infected citizens over the contagion time
window.

• Attack’s outcome: Adv traces the infected users over the contagion time window. The attack
is considered successful if the system fails to provide partial protection.

6.4.4 Brutus13 Attack: Creation of Mappings Between Real Identities and Pseudonyms

• Attacker’s capabilities: The attacker Adv consists of the server and the health authorities col-
luding together.

• Attack description: Adv exploits the authorization mechanism, also used to avoid uploads of
false positives, to find a mapping between the real identity of a user B and her uploaded data.

• Attack’s outcome: a mapping between the real identity of B and her uploaded data.

Every ACT system where the authorization mechanism grants a user B permission to upload data
forwarding to the authentication server some data (e.g., an activation code) provided to B by the
health authority, is vulnerable to this attack. Indeed, the health authority, who is aware of the real
identity of B, can communicate the mapping between the activation code and the real identity of B
to the server, which can in turn derive the mapping between this code and data uploaded by B. The
authorization mechanism is not made explicit in many relevant proposals [PAC20, PR20]. A reason
advocated for this choice is the flexibility to different deployment scenarios. However, we want to point
out that the way this check is performed reflects into serious implications on users’ privacy.

6.5 Other Attacks

6.5.1 Bombolo14 Attack: Leakage of Contacts of Infected Users

• Attacker’s capabilities: The attacker Adv consists of the server and the health authorities col-
luding together.

• Attack description: When users are tested positive, they upload data to the system. The
attacker uses such data to extract information related to contacts among infected users and the
number of contacts of an infected user.

• Attack’s outcome: Adv succeeds in computing data as specified in the attack description.

13Marcus Junius Brutus was a close friend of Julius Caesar, who took a leading role in his assassination. His name has
become synonymous with severe acts of betrayal.

14Franco Lechner, best known as Bombolo, was an Italian comedian. His characters usually played hilarious but harmless
jokes.

109

D3.3 – Revision of Extended Core Protocols

Systems in which the infected users upload an encoding of the observed pseudonyms are more prone
to this attack since the content and the amount of communicated data depend on the actual number
of experienced contacts. One could think to mitigate this issue by putting a bound on the number of
contacts that a user can notify. However, it is not evident what is the appropriate value for this bound
to effectively fight the pandemic. Also, co-location of infected users is more likely to be exposed since
infected users who met each other might end up reporting some linkable information. If at some point
two infected users met each other, the information that these users sent to the server may enable the
reconstruction of clusters of infected users who have been co-located. Nevertheless, such attacks are
ineffective to link multiple locations visited by a given user and thus it is hard to imagine how such
leakage could be exploited by mass surveillance attacks.

6.5.2 Gossip Attack: Proving Contact With an Infected User

This attack deals with the possibility to exploit ACT in order to produce plausible digital evidence
of an encounter. An attack of this type against the DP-3T systems has already been reported by
Pietrzak [Pie20a]. Starting from Pietrzak’s work, we give a formulation of such attack against a general
ACT.

• Attacker’s capabilities: The attacker Adv has the same power as a regular user. Additionally,
Adv might get access to a service making him able to prove the ownership of some data at a
specific time (e.g., a blockchain).

• Attack’s outcome: Adv provides a plausible evidence of having met an infected user B before
B declared himself as positive through the ACT system.

Turning Gossip attack into a feature. Suppose that, due to the pandemic, laboratories are over-
whelmed by requests for tests. In this scenario, having a way to prioritize the requests could be certainly
useful. Indeed, there could be malicious users trying to fake risk notifications so that they eventually
get tested, even if it is not actually needed.

To address this issue, one could leverage the Gossip attack as a feature. Laboratories could give
a higher priority to users who are able to provide a plausible evidence of having met an infected
individual. Depending on the system, a malicious user attempting to provide such fake proof would
need the collaboration of someone who actually observed at least a pseudonym of an infected user.
Such complications might reduce the noise of malicious users trying to create a fake plausible evidence.
Therefore, prioritizing users with plausible (though not formally provable) evidence can be a concrete
strategy for a health system.

This feature could be also very useful in assuring that reliable data are provided to epidemiologists.
Such data are mainly related to encounters between infected individuals, therefore, providing evidence
of these encounters could help to ensure that data provided to the epidemiologists are more reliable.

6.5.3 Matteotti15 Attack: Putting Opponents in Quarantine

• Attacker’s capabilities: The attacker Adv colludes with the server and the health authority. In
addition, Adv can place passive BLE devices at selected locations.

15Giacomo Matteotti was an Italian socialist politician who openly denounced the electoral fraud committed by Fascists.
He was kidnapped and killed by Fascists. The day he was murdered, Matteotti should have taken a speech at the parliament
in which he would have disclosed significant scandals about the Duce.

110

D3.3 – Revision of Extended Core Protocols

• Attack description: The aim of Adv is to produce false alerts causing non-at-risk users to get
tested.

• Attack’s outcome: A non-at-risk user is erroneously alerted and declared as positive.

We motivate the attack with the following example. In the vast majority of world’s country e-
voting is not currently deployed, and, also at parliamentary level, voting is always held in presence.
Suppose that a law, proposed by the government, risks not to get the approval of the parliament for
very few votes. Then a malicious government could attempt to falsely report hostile parliamentarians
as positive. Let B be a hostile parliamentarian. Hidden passive BLE devices could be put in place near
the house of B during a given period. These BLE devices will intercept the pseudonyms EphIDBs of B
and the pseudonyms EphIDTSens of TSen, a person who lives with B. Then the government will add the
EphIDTSens to the list of users that will be notified as at-risk users. It is very likely that the next day
TSen will go to get tested. At this point, if the test of TSen is positive, since there is a good chance that
B and TSen will be in close proximity during the given period, the malicious health authority, colluding
with the government, could issue an order of quarantine for B so that B will be unable to join the next
parliament session.

We emphasize that in this attack, the adversary, that controls the server, has the power to generate
false-positive notifications for a target user.

6.5.4 Replay Attack

• Attacker’s capabilities: The attacker Adv is anyone who is capable of recording and broadcast-
ing pseudonyms.

• Attack description: Vaudenay [Vau20a] and Pietrzak [Pie20a] discuss attacks in which Adv,
who collects a pseudonym at location X where the probability to meet an infected person is
higher, can then broadcast those pseudonyms to users at a different location Y . This attack is
denoted as replay attack when the listened pseudonyms are broadcast at a later time slot and is
the only case that we consider in this work16.

• Attack’s outcome: Users at location Y will be notified a risk even though they have been never
in contact with infected people at location X.

6.6 Brief Description of DP-3T
In this section, we briefly overview the DP-3T systems as reported in the white paper [DP-20]. We
describe two versions of the system: the first one, termed as “low-cost”, is more efficient but provides
lower privacy guarantees than the second one, which is termed “unlinkable”. There is also another
design proposed by the DP-3T team to provide better privacy requiring the users to secret share the
ephemeral identifiers to be transmitted. Unfortunately, it seems that according to the DP-3T team
this design is not practical. Indeed, the split of an identifier beacon among multiple different packets is
analyzed by the DP-3T team in [DT20a] where it is remarked that there are several issues at the BLE
layer: splitting a beacon identifier among multiple different packets increases the load on the battery
as the CPU has to be woken up more frequently.

16If the attack is completely run in the same time slot, then any solution inherently requires some location information
(e.g., by GPS) or problematic assumptions on time synchronization, therefore we do will stick with replay attacks only
since they can be defeated without adding assumptions or penalizing privacy.

111

D3.3 – Revision of Extended Core Protocols

Low-cost design. As in every straightforward decentralized ACT system, smartphones broadcast
locally generated ephemeral pseudonyms (EphIDs) via BLE advertisements.

Whenever a smartphone detects an incoming EphID, it locally stores this pseudonym EphID along
with a coarse time information and every data which might be needed later to compute the risk of con-
tagion (e.g., signal strength, duration of the contact). As the word ephemeral suggests, the pseudonyms
are periodically changed to prevent tracing.

All the EphIDs that a device will ever generate can be deterministically derived from a short uni-
formly random secret key sk0. At each day t, a new secret key is derived as skt = H(skt−1) where H is
a cryptographic hash function.

Starting from skt the whole set of EphIDs for day t, is determined partitioning in 16-byte chunks
a string whose length depends on how frequently the EphIDs are changed. Such string is computed
as PRG(PRF(skt, c)) where PRF is a pseudo-random function, c is a fixed public string, and PRG is a
stream cipher. The EphIDs obtained with this procedure will be eventually broadcast in random order.

When a user is tested positive, she uploads the pair (skt, t) to a backend server which is trusted
to provide this information to all other users and to check that the uploads are performed by au-
thorized users, therefore preventing the dissemination of false positives. In [DT20d], three candidate
authorization mechanisms are proposed. After this step, the infected user’s device disappears from the
application scenario and her device generates a completely new random secret key sk0.

Each user can periodically query (e.g., at the end of the day) the backend server in order to get
the new pairs that have been added to the system. Given these pairs, the device can generate the
corresponding values EphIDs seeking for matches in its local contact database. If a match is found, the
risk of infection is computed given the auxiliary information and the user is notified when needed.

Unlinkable design. In order to get better privacy guarantees at the cost of a larger volume of
downloads and storage space needed by the smartphone, the DP-3T team also proposes a slightly
different design which they term unlinkable.

In this design, the EphIDs are randomly and independently generated in the following manner: when
a new ephemeral pseudonym is needed, the smartphone generates the ephemeral pseudonym EphIDi as
TRUNCATE128(H(seedi)).

Smartphones store all the seeds used in a relevant time window (e.g., 14 days). When a patient is
tested positive, she can selectively decide which pseudonyms she wants to communicate to the server
(e.g., she can exclude pseudonyms used in the presence of a specific person).

After this decision has been made, the smartphone uploads the set composed by the selected pairs
(seedi, i). Upon receiving them, the server computes H(TRUNCATE128(H(seedi))||i) for each pair and
inserts it in a Cuckoo filter 17. Such filters are generated and made available to the users on a regular
basis.

Each smartphone uses these filters to determine if contacts with infected individuals occurred. In this
regard, the smartphone checks the inclusion into the filters of all its recorded ephemeral pseudonyms.

6.6.1 Security Analysis of the DP-3T Systems

In this section we describe the security of both designs of the DP-3T team with respect to the attacks
proposed in Section 6.4 and 6.5.

The low-cost design of DP-3T is vulnerable to Paparazzi attack. It is not difficult to imagine
the feasibility of such an attack, as an example, one could consider a company with many stores spread
over the territory. This corporation can have an interest in tracing infected costumers, even if it is not

17A Cuckoo filter is a space-efficient probabilistic data structure used to test whether an element is a member of a set.
False positive matches are possible, but false negatives are not.

112

D3.3 – Revision of Extended Core Protocols

particularly interested in their health conditions, in order to use their movements to perform accurate
profiling without costumers’ consent.

What is needed is merely the capability to install, in a sufficiently large number of different locations,
passive BLE devices recording the received EphIDs. The attack is carried out as follows. The attacker
Adv controls a set of passive devices {D1, . . . ,Dn}.

1. Each passive device Di collects the information of people that pass nearby Di, the information
stored consists of a set of pairs (EphIDj , τj), where EphIDj is the pseudonym of a user that passes
near Di and τj is a fine-grained time log.

2. At the end of the day, Adv downloads the secret key of each infected user from the server and
collects all data from each device Di.

3. Adv checks if each collected EphIDj is generated starting by a secret key skj downloaded from the
server.

4. Adv tracks the infected individuals who passed nearby the passive devices over a given contagion
time window.

In the scenario we envision, the amount of gathered data can be considerably large, thus resulting
in a possibly very fine-grained tracing.

The key issue of the low-cost design, leading to the applicability of Paparazzi attack, lies in the
fact that when the secret key of an infected person is added to the system everyone can derive all the
related EphIDs, enabling the linking of pseudonyms to infected individuals. We point out that this
attack is practically undetectable, at least at the application level, since the devices do not need to
propagate any signal. Given the huge impact that this easy-to-deploy attack can have on users’ privacy,
the DP-3T’s low-cost design appears utterly unsuitable for practical deployment, unless one wants to
give up on protecting citizens from mass surveillance attacks.

Unlinkable design of DP-3T is vulnerable to Orwell attack. Since the Cuckoo filter allows
users to only test inclusion of seemingly uncorrelated EphIDs in the filter itself, the unlinkable design
succeeds in preventing the Paparazzi attack. However, the claim that “infected people in the unlinkable
design are not traceable”, as affirmed in [DT20b] is oversimplified and requires a deeper treatment. In
fact, such claim is true only with respect to attackers who do not cooperate with the server. Considering
also the fact that governments might have control over the servers, an attack similar to the one described
for the low-cost design can be put in place.

The devices listening on the BLE channels could be deployed or hidden in many ways. As an
example consider smart kiosks, which are already used in many cities to provide useful functionalities
to the citizens. For the purpose of the description, we will refer to all possible passive devices as kiosks.
The attack works as follows:

1. Each kiosk D collects the information of people that pass near D, the information stored consists
of (EphIDj , τj) where the EphIDj are the pseudonyms of the users that pass near D and τj is a
fine-grained time log.

2. Adv, that controls the kiosks and colludes with the server, obtains from the server all the seeds of
the infected citizens.

3. Adv matches the EphIDs of records stored in the kiosks with the ones generated from the seeds of
the infected individuals, thus tracing the infected individuals who passed nearby the kiosks over
a given contagion time window.

113

D3.3 – Revision of Extended Core Protocols

The element of centralization in DP-3T requiring the server to compute the Cuckoo filter of the
EphIDs, enables mass surveillance with low overhead. Moreover, it is almost impossible to determine if
a process of surveillance is actually active or not.

Another important point is that governments can do a further step associating a pseudonym to the
real identity of an infected user: whenever there is a police checkpoint to control people, the police
can be instructed to collect EphIDs and associate them with the name and surname of the controlled
persons. When a person is tested positive, the government can check data collected by the police. If
one of the EphIDs comes from the seed of an infected person B, the governments can obtain all the
movements of B during the contagion time window.

The same thing can happen when a citizen gets tested for SARS-CoV-2. In fact the tests are typically
performed after some form of identification. If a citizen B goes to a laboratory and the smartphone
application of B is active in the laboratory, EphIDs of B can be detected by a kiosk. If B is eventually
tested positive and B uploads the seeds related to time in which he visited the lab, a match between
B’s real identity and his movements during the contagion time window can be easily exposed.

Remark 1. The idea of having kiosks spread over the territory could seem somewhat artificial. How-
ever, as stated by MIT-PACT [PAC20], it is possible to justify kiosks as a way to add functionalities
to contact tracing systems. In particular, the authors of MIT-PACT state that there should be a way
to inform persons if a surface can be contaminated due to the prior presence of an infected individ-
ual. Therefore, in their system, kiosks actively participatea in the protocol registering and relaying
pseudonyms of people who have been in close proximity to the kiosks. By doing so, the kiosks could
inform people about the risk of having been in contact with a contaminated surface. This system could
provide an easy way to justify the deployment of kiosks in location where there is no clear need for
them, thus facilitating the tracing of citizens disguising it as a service.

DP-3T systems are vulnerable to Matrix Attack. Since both designs of DP-3T provide no
countermeasure to the linking of infected users’ pseudonyms, it clearly follows that they are vulnerable
to the Matrix attack. In particular, the additional capability of placing active devices over the territory
is not even needed by an adversary succeeding in the attack against both designs.

DP-3T systems withstand Bombolo Attack. DP-3T and similar systems are not affected by this
attack. Indeed, the data which are sent to the server are independent on the actual encounters the
infected user had. Then, even if the attacker colludes with the server and the health authorities, the
attacker cannot co-locate the seeds published on the server or infer the number of contacts infected
users had.

DP-3T systems are vulnerable to Brutus attack. DP-3T proposes three candidate authorization
mechanisms [DT20d]:

1. Simple Authorization Codes, in which the server generates authorization codes that are distributed
to infected users after a positive test;

2. Activated Authentication Codes, in which the authentication codes are assigned at the testing
time and only if the user is positive to SARS-CoV-2, the code is activated;

3. Data-Bound Authorization, in which the users commit at test time the data to upload to the
server, if the user is positive to SARS-Cov-2, and then the health authority authorizes the upload
of the data.

It is simple to notice that the three ways proposed by the DP-3T team are subject to the attack,
and none of these mechanisms addresses the problem of collusion between the server and the health

114

D3.3 – Revision of Extended Core Protocols

authority. Indeed the data uploaded by an infected user can be always related to a single authorization
code and then to the identity of the infected user.

DP-3T systems are vulnerable to Gossip Attack. An attack of this type against the DP-3T
systems has already been reported by Pietrzak [Pie20a]. As plausible evidence of an encounter with a
user B, A proves to have been in possession, at a time t1 < t2, of the pseudonym EphIDB of B, who,
after having been tested, reported himself as positive to the ACT system at time t2. The attack is
really straightforward and it is instantiated as in [Pie20a]. Whenever A receives a pseudonym from a
user B, he commits it to the Bitcoin blockchain. If B is later diagnosed infected and decides to upload
his data to the system, A could then prove that he knew the pseudonym of B prior to this upload. To
do so, A just needs to open the commitment on the blockchain. This procedure works in the same way
for both designs of DP-3T, since the revealed EphID can be easily matched both with the published
filters and secret keys. Notice that there is no guarantee about the fact that A himself received the
pseudonym over the BLE channel. For example a device D in another (even remote) location could
have committed the pseudonym and transferred its opening to A, by e-mail. However, in this case the
attacker is actually the pair (A,D), who indeed met B. As noted in [Pie20a], the attack becomes a more
serious threat if coupled with de-anonymization of B.

As we note in Section 6.5.2, it is possible to consider this attack as a feature, but it is very problematic
in the DP-3T systems. The DP-3T white paper [DP-20] proposes that users, who are willing to do
it, can share additional data with epidemiologists to help them in their analysis. Such additional data
are mainly related to encounters between infected individuals, therefore, providing evidence of these
encounters could help to ensure that data provided to the epidemiologists are more reliable.

Even though in the DP-3T systems it is possible to provide a plausible evidence of being at risk by
leveraging the Gossip attack as a feature, it seems, at least at a first glance, that it would not be easily
scalable to a considerable portion of the users.

The DP-3T team does not mention any explicit procedure to take advantage of this feature. However,
the actual utility to provide additional data to the epidemiologists may be seriously compromised if the
Gossip attack is not taken into account as a feature. The way the functionality to help epidemiologists
is implemented, at least as in the current version of the DP-3T white paper [DP-20], presents some
shortcomings. Indeed, users who want to give a further help in fighting SARS-CoV-2 anonymously
communicate data related to contacts they had with infected users. However, in both designs, the
system does not provide a mechanism to verify the legitimacy of the alleged contacts. Furthermore,
there is also the need to trust the correctness of any additional metadata provided by users, although
this seems an inherent problem.

The unlinkable design of DP-3T is vulnerable to Matteotti attack. Even though the unlink-
able design solves in part the issue of linkability of the pseudonyms, the attacker Adv that controls the
server gets more power, since Adv can add in the Cuckoo filter every EphID that Adv gets to know. This
can cause additional false positives.

If Adv observes EphIDB and EphIDTSen in the same location and during the same time slot, then Adv
adds EphIDB and EphIDTSen to the filter. The probability that, after checking the filter, both B and
TSen are notified a risk is high since B will find EphIDTSen in the filter as well as TSen will find EphIDB.
Let us assume that B is the target of the attack. At this point, if B goes to a laboratory to get tested,
the health authority would declare B as positive to SARS-CoV-2.

Replay attack against DP-3T systems. According to [DP-20], the low-cost design of DP-3T is
subject to replay attacks occurring within a day. Differently to the low-cost design of DP-3T, the
GAEN environment uses an ephemeral identifier that is valid for 24 hours and mitigations are proposed
in [Vau20a] and [Pie20a]. On the other side, since in the unlinkable design, ephemeral identifiers are

115

D3.3 – Revision of Extended Core Protocols

cryptographically linked to the epoch in which they are broadcast, it is possible to make a replay attack
only in an epoch.18

Differently to the low-cost design of DP-3T, the GAEN environment uses a secret key that is valid
for 24 hours and, as stated in the documentation of GAEN [App20b], the system is vulnerable to replay
attacks in a window of 2 hours.

6.7 Pronto-C2: Design and Analysis
One of the main drawbacks of previous solutions, in particular in DP-3T [DP-20] and MIT-PACT
[PAC20] systems (in all their variants), is the possibility for an attacker to test whether a set of
pseudonyms belongs to the same infected person and thus to infer the victim’s movements. The problem
is evident in the low-cost DP-3T system but, as analyzed in Section 6.6, also arises in the DP-3T’s
unlinkable variant.

Our approach diverges radically from the one of the DP-3T systems in that we turn the paradigm
upside down. In our system it is the infected person in charge of publishing data directly to people
with whom he/she got in touch. It is up to each participant to verify the occurrence of a risk. This
is done through careful use of cryptography, still maintaining the system practical. In this section, we
present our protocol Pronto-C2. In the description of Pronto-C2 we will not explicitly deal with the use
and the need of anonymous channels; these details will be taken in account in Section 6.8.

6.7.1 Pronto-C2
Pronto-C2, a brief overview. In a nutshell, Pronto-C2 works as follows. We assume the generator
g of an elliptic curve group of prime order to be known to all participants. For simplicity, we will
describe our scheme using a server Server that manages a bulletin board accessible to all participants.
As explained in Section 6.1, our design is flexible, we can have blockchains or just servers depending on
the desired level of transparency and performances.

Periodically, each user U performs the following update operation. Let i be the current time slot.
U setups a set of ephemeral and secret keys (EphU,i+j = gskU,i+j , skU,i+j), j = 0, . . . , n − 1 for some
parameter n. For k = i, . . . , i + n − 1, U sends to Server the string EphU,k and privately stores the
address addrU,k in which EphU,k appears on the bulletin board. The idea is that these addresses will be
used for the next n time slots. Each n time slots U runs again the update operation; previous pairs of
ephemeral and secret keys are not overridden.

At each time slot i, user U proceeds as follows. U broadcasts addri and listens for addresses sent by
other users. Each address received can be recorded along with auxiliary information.

Consider a simple scenario in which Bob is declared infected for COVID-19 by a medical laboratory
and moreover he has been in close proximity to his neighbor Alice at time i (among possibly many
other contacts). Let us denote by EphA = gskA (resp., EphB = gskB) Alice’s (resp., Bob’s) ephemeral
key at the time of the contact. Bob computes K ′ = EphskB

A and uploads to Server the “key” (or “call”)
K = H(K ′||EphB||EphA) after requiring some authentication service AuthService to blind sign K. We
require signatures by the authentication service to prevent DoS attacks, and we use blind signatures to
prevent the government to link patients to information on the server. To perform the authentication

18The DP-3T documents suggest 15 minutes as length of an epoch, so concluding that the replay attack can be performed
only in a same length window. In our opinion this is imprecise due to the following reason. To preserve privacy, the length
of the epochs should be randomized otherwise trivial tracing attacks can be carried out. Therefore, the epoch should not
be exactly 900 seconds but a random number of seconds between, e.g., 900-d and 900+d minutes where d is a given bound
(e.g., 60 seconds). Taking in account such randomization, the n-th ephemeral identifier derived by the secret key will be
used up to n · d seconds later than the case without randomization. So, to preserve privacy the epoch length needs to be
randomized and in this case the window in which the unlinkable design is secure against replay attacks turns out to be
hours, not few minutes. Notice that randomization of epochs is concretely implemented in GAEN, probably for the same
reason, and in fact GAEN is vulnerable to replay attacks in a window of 2 hours.

116

D3.3 – Revision of Extended Core Protocols

Bob needs to send to AuthService an activation code that Bob received from the laboratory when he got
the diagnosis. We assume that Server accepts only keys with valid signatures.

At the end of the day, if Alice wants to know whether she has been in contact with an infected person,
she does the following. For each address she received from a nearby user, she retrieves from Server the
corresponding ephemeral key so she has Bob’s ephemeral key EphB. She computes K ′ = EphskA

B and
K = H(K ′||EphB||EphA), downloads from Server the recent keys and then searches for occurrences of
K in the downloaded keys. If K is present she is notified the risk.

As an additional step, to avoid DoS attacks at the moment in which users store their ephemeral
keys to the bulletin board, we add a further authentication step: each user U that wants to store the
ephemeral keys to the bulletin board must contact AuthService and obtains a blind signature for each of
the ephemeral keys that U wishes to store. This step will leak information to AuthService: AuthService
will know which person is using Pronto-C2 and which one is not using it. It is possible to mitigate this
issue by requiring persons not using Pronto-C2 to request to AuthService blind signatures for dummy
ephemeral keys.

Pronto-C2’s system and crypto ingredients. The ingredients of our system are:

• A secure elliptic curve group of prime order p. We assume a generator g of the group to be
publicly known to all participants.

• A blind signature scheme. The blind signature is used only to authorize an authentication service
managed by the government to sign user’s data while hiding the message. We refer to [Cha83,
Cha88] for the syntax and security properties of blind signatures.

• A server Server that is used as a bulletin board (see previous discussion and Section 6.1). The
server allows any user to write data of the type “ephemeral keys” and “key”, if the user is able
to provide a valid (blind) signature issued by the authentication service. Keys will be written on
the server only if the signature is valid.

• We assume the smartphone application has the capability to communicate with Server in an
anonymous manner, hiding the real identity of the user. In Section 6.8 we show how to implement
this functionality.

Pronto-C2’s setting and actors. The actors involved in our protocols are:

• The users who run a smartphone application endowed with a BLE identifier beacon. A generic
user will be denoted by U.

• The server (Server) that manages the bulletin board.

• A set of medical laboratories (HAs) who can engage with users in medical examinations and tests
for the virus and release the activation codes to users (see below).

• The authentication service (AuthService) that is used by all users to be authorized to upload the
ephemeral keys on the bulletin board and is used by an infected U to get authorization to write
data about contacts on the bulletin board. AuthService releases a set of random activation codes
to each HA. User U is handed an activation code Code from HA when tested positive and U can
later use Code to request a signature on some data K to AuthService. The authentication service
will blind sign K only if Code is a valid authentication code released by AuthService. U can then
use the signature to upload K to Server.

117

D3.3 – Revision of Extended Core Protocols

– U: configure the smartphone application and set the time slot to 1.

– Server: perform any necessary step to accept incoming read and write
requests.

– AuthService: publish two public keys for a blind signature scheme, one
to be used by the users to request an authorization to upload ephemeral
keys and one to request an authorization to upload shared keys. In
addition, choose random activation codes and distribute a set of them
to each HA.

– HA: receive a set of activation codes from AuthService.

Figure 6.1: Setup procedure.

The Pronto-C2 system. Each user U keeps a set PU that is empty at the onset. Moreover, U keeps
an internal variable called time slot. At the start of the protocol U’s time slot is set to 0 and each X
seconds the time slot is increased by 1. X is a parameter of the protocol (e.g., 300 seconds).

We describe Pronto-C2 through the following procedures and events.

• Setup procedure. Each actor runs a setup as described in Figure 6.1 when joining the system
(i.e., the setup procedure is not a pre-processing performed simultaneously by all players before
next steps).

• Update procedure. This procedure, described in Figure 6.2, is run periodically by each user U
each n time slots (i.e., when U is at time slot j and j is a multiple of n).
We assume each time slot to be short enough to prevent significant linkage of ephemeral keys to
users’ movements, but long enough to correctly evaluate exposure risks. Moreover, we assume
the parameter n to be sufficiently large to not require the users to perform the expensive Update
procedure too frequently (e.g., n can be set so that the update is performed each week).

• Broadcast procedure. There is a Broadcast procedure, described in Figure 6.3 that is run multiple
times within the time slot. The frequency with which this procedure is executed within a single
time slot is another parameter of the protocol.

• Listen Event. The Listen Event, described in Figure 6.4, is triggered when a BLE identifier beacon
is received.

• Test Positive Event. The Test Positive Event is triggered when a user tests positive for SARS-
CoV-2 at one of the laboratories of one of the HAs. When a user U gets a positive result for
SARS-CoV-2 at HA’s lab, U gets from HA an activation code Code. After the test (and possibly
during a certain number days), U chooses a subset P ′U of PU. U can decide upon which time slots
to insert in P ′U based on any arbitrary criteria (e.g., can exclude time slots in which U suspects
to have met some people to whom he wants to hide his disease) and interacts with AuthService to
get a blind signature and then perform an upload to Server.
More in details, when the event is triggered, U interacts with Server and HA as depicted in Figure
6.5.

118

D3.3 – Revision of Extended Core Protocols

In the Update procedure executed at time slot i, each user U interacts with
Server and AuthService as follows.

– U→ AuthService: for each j = 0, . . . , n−1 generate a pair of ephemeral
and secret keys (EphU,i+j = gskU,i+j , skU,i+j) drawing an element skU,i+j
at random from Zp.a For each j = 0, . . . , n−1 interact with AuthService
to obtain a blind signature of EphU,i+j .

– U → Server: for each j = 0, . . . , n − 1 upload EphU,i+j to Server after
showing the corresponding blind signature computed at the previous
step and store the address addri+j in which EphU,i+j appears on the
bulletin board.

HAs do not perform any operation.
aTo optimize the space, the user could choose a single seed s during the Setup procedure

and in each time slot i derive skU,i = PRF(s, i).

Figure 6.2: Update procedure.

– U: Let i be the current U’s time slot. Broadcast the address addri
generated in the last Update procedure using BLE.

Other participants (HAs, Server and AuthService) do not perform any opera-
tion.

Figure 6.3: Broadcast procedure.

When a BLE message is received as consequence of a broadcast procedure,
the Listen Event is triggered by the user U that receives the message and
proceeds as follows.

– U: let addrR be the address contained in the received message, i the
current time slot and t any other auxiliary information (e.g., BLE sig-
nal, location, time).
Add (EphU,i, skU,i, addrR, t) to the set PU, where EphU,i (resp., skU,i)
is the ephemeral key (resp., secret key) that U computed in the last
Update procedures.

Other participants (HAs, Server and AuthService) do not perform any opera-
tion.

Figure 6.4: Listen Event.

119

D3.3 – Revision of Extended Core Protocols

– Interaction between U and HA: once U is tested positive at HA, U gets
from HA an activation code Code to interact with AuthService.

– U $←− Server: (at any time after the positive test or during some
given time window) choose a subset P ′U of PU and for each quadru-
ple (EphU, skU, addrR, t) ∈ P ′U, retrieve from Server the ephemeral
key EphR stored at address addrR, compute K ′ = EphskU

R and K =
H(K ′||EphU||EphR) and add K to K, where K is the set of all keys that
U wants to store on Server. Next, do the following:

∗ Interaction between U and AuthService: for each valueK ∈ K com-
puted by U as before, U uses its activation code Code to interact
with AuthService to compute a blind signature σ of K.

∗ U → Server: for each K ∈ K computed by U as before, send K
and σ to Server.

∗ Server $←− U: upon receiving any pair (K,σ) from U, verify σ and
if the signature is valid add K to the bulletin board.

Figure 6.5: Test Positive Event.

• Verify procedure. This procedure, described in Figure 6.6, is carried out by a user U who wants to
discover whether she got in contact with some other user U+ who tested positive for SARS-CoV-2.

6.7.2 Analysis of Pronto-C2
In this section, we informally argue that Pronto-C2 withstands all the attacks shown in Section 6.4
and 6.5. For the sake of simplicity for all attacks except Paparazzi attack, we analyze Pronto-C2 as if
ephemeral keys were directly sent over the BLE channel, ignoring the use of addresses. We therefore
assume that the procedure to store ephemeral keys on the bulletin board effectively hides the real
identity of the owner of each key.

• Paparazzi attack (cfr., Section 6.4.1):
Recall that this attack assumes the attacker Adv to use only passive devices which operate in
reception mode and are not able to transmit any signal. The only information a passive device D
observes consists of ephemeral keys exchanged by users at the position in which D is located.
To track a user of the system the attacker Adv can do what follows.
Adv can try to link together the ephemeral keys used by the target user U with the ones recorded
using passive devices. Knowing which ephemeral keys belong to U, Adv could easily track U. This
attack is not applicable to Pronto-C2 since different ephemeral keys generated by the same user
U are not linkable.
Adv could try to track a target user U exploiting the calls available on the bulletin board. In this
case the target of the attack is an infected user. Since the devices used by Adv are passive, no
calls of U will ever be directed to a device D controlled by Adv. The only way for Adv to track
U is to extract the ephemeral keys used to generate the calls and associate them to a single user.
Since the calls are anonymously sent to Server, it is impossible for Adv to link together the calls

120

D3.3 – Revision of Extended Core Protocols

When a user U wants to verify whether she got in contact with any user
U+ who got a positive result for SARS-CoV-2, U engages in an interactive
protocol with Server as follows.

– U $←− Server: Let PU the set computed by U during the protocol ex-
ecution so far. For each quadruple (EphU, skU, addrR, t) in PU do the
following:

∗ Retrieve from Server the ephemeral key EphR located at address
addrR. Compute K ′ = EphskU

R and K = H(K ′||EphR||EphU),
download the recently uploaded keys from Server and search for
K.a If K is present, compute the risk and notify U.

HAs and AuthService do not perform any operation.
aAs we described the protocol, the user does not directly check the signature since the

validity of the signatures is checked when the keys are uploaded to Server. For a stronger
verifiability guarantee we can change the protocol so that the user is given the possibility
to download and check the signatures.

Figure 6.6: Verify procedure.

of U. However, the analysis of Orwell attack reported below shows that, even linking all the calls,
it would be impossible for Adv to extract the ephemeral keys related to each call.

• Orwell attack (cfr., Section 6.4.2):
The attack differs from Paparazzi attack in the fact that the adversary Adv can collude with
Server,AuthService and HA. In this scenario, Adv has the following additional advantages with
respect to the attacker of Paparazzi attack:

– Adv knows the real identities of the infected users and the associated code Code assigned to
them by HA to be authorized to obtain the blind signatures for the calls;

– Adv knows the blinded messages that the infected users asked AuthService to sign.

This information is not useful for Adv to track a user U. Indeed, to track U, Adv needs to link all
the calls published by U with U’s ephemeral keys. Assuming that the upload of the calls on the
bulletin board is performed through an anonymous channel, in order to link these calls, Adv needs
to discover which calls were blinded by U to obtain the corresponding signature from AuthService.
This would require Adv to break the blindness property of the blind signature, that is unlikely for
a polynomial adversary. Even if Adv broke the blindness of the signature scheme, the additional
information received is the set of calls sent to Server by U, but none of them can be a call that Adv
can understand, since none of passive devices controlled by Adv is the recipient of a call. Then,
Adv would need to take all the couples of ephemeral keys recorded by each passive device Di, and
try to compute a call between the two users that owns these two ephemeral keys. If the computed
call is equal to a call published by U, then Adv knows that U was located in proximity to Di. By
doing it for each passive devices, Adv could track the movements of U in the last 14 days. However,
if Adv is able to successfully compute a call starting from two ephemeral identifiers, it is easy to
show that Adv can be used to define an adversary breaking the computational Diffie-Hellman
assumption.

• Matrix attack (cfr., Section 6.4.3):

121

D3.3 – Revision of Extended Core Protocols

The level of resilience of Pronto-C2 to this attack can be shown with a similar argument to the
one presented above for the Orwell attack. Indeed, Adv cannot link U’s calls in different time slots
since U uses different and unlinkable pseudonyms that in turn will produce unlinkable DH keys.
Obviously there are some inherent leaks in extreme situations like for instance when there is only
one new infected person in the town where pseudonyms have been collected by the adversary.
Such leaks are inherent, instead the most general case with multiple new infected citizens is nicely
protected by Pronto-C2 since Adv will not know which specific call was made by which infected
user. Obviously the actual location related to the different calls may act as another information
to disambiguate the path of an infected user, but again this is inherent and with Pronto-C2 the
adversary gets lost as soon as there is some ambiguity.

• Bombolo attack (cfr., Section 6.5.1):
Co-location information among infected users are not leaked since an infected user A will upload
to Server a call of the form KA = H(EphskA

B ||EphA||EphB) if A passed nearby B, likewise if B is an
infected user B will upload the key KB = H(EphskB

A ||EphB||EphA) if B passed nearby A. Then, the
calls KA and KB uploaded by A and B are different and it is hard to “co-locate” these keys19. On
the contrary, Pronto-C2 exposes the number of calls that an infected user U does when U sends
these calls to the AuthService. We note that this leak of information can be mitigated adding
some dummy calls.
We propose this attack because the unlinkability of the calls introduced by uploading K =
H(K ′||EphA||EphB) instead of just K ′ contradicts the message that DP-3T’s risk analysis (SR
6) [DT20b] seems to convey when claiming that “an infected person uploads all identifiers ob-
served during the contagious window to the server. For epochs in which groups of at least three
people were in close proximity to each other, this will reveal temporal colocation information
about infected individuals to the server.”.

• Brutus Attack (cfr., Section 6.4.4):
The data uploaded by a user U in Pronto-C2 cannot be linked to the real identity of U. Data are
uploaded in the following steps:

1. when the infected user uses Code to access AuthService in order to obtain the blind signatures
of the calls and

2. when the infected user uploads the calls to Server along with the unblinded signatures.

The first step involves uploading Code to AuthService in order to obtain the blind signature of
the calls. Since HA knows the real identity of each infected user, it is possible for Adv to link
the blind signature requests with an infected person. However, since the upload of the calls is
performed through an anonymous channel, Adv cannot link the calls with the signature requests
thanks to the blindness property of the signature scheme. This of course hides the authorship of
the uploaded data only inside the set of the infected users, which is known to Adv.

• Gossip attack (cfr., Section 6.5.2):
At first sight, one could think that a proof of contact with an infected user U can be given by user
A providing a proof about the calls on the bulletin board. For instance, let A be a user holding a
secret key skA corresponding to EphA and let EphU be the ephemeral key of a user U. If A finds
a call K = H(EphskA

U ||EphU||EphA) on the bulletin board, A could prove that he knows the secret
key skA corresponding to EphA and that K is computed as before, thus proving that U made a

19We note that this analysis shows that co-location is difficult to obtain for both the regular users and the server that
colludes with the health authority.

122

D3.3 – Revision of Extended Core Protocols

call to A. (Notice that the only data needed by A to prove a contact with U is the secret key skA.)
However, this alleged attack does affect Pronto-C2. Let us elaborate on that.
Recall that in Pronto-C2 all the pseudonyms used by the users are made public on the bulletin
board. So, if A has never been in contact with U, A could use EphU, that is public on the bulletin
board, to compute a call K = H(EphskA

U ||EphU||EphA) (a call from U to A) and show skA as proof
of the fact that such call has been done. Generally, any proof of the fact that U made a call to A
is not evidence of the fact that U met A since such proof could have been computed by A even if
U has never been in contact with A.
Notice however, that in the case that A is not infected, a proof of the fact that U made a call to A
is instead plausible evidence of the fact that U met A: indeed, only infected users can write calls
to the bulletin board and U is honest. (If U is dishonest, the pair U and A can be seen as a single
adversary.) For this reason, we say that the attack affects Pronto-C2 minimally in the sense that
an attacker A can provide a proof (that, as shown before, is the secret key skA) of the contact
between U and A that convinces a third party B who believes that A is not infected. Using this
fact, we can interpret this attack as a feature. Indeed, similarly to what stated in Section 6.5.2,
laboratories could give a higher priority to users who are able to provide such a plausible evidence
of having met an infected individual. This feature could be also very useful in assuring that
reliable data about encounters among infected individuals are provided to epidemiologists.

• Matteotti attack: (cfr., Section 6.5.3).
Every key K stored on the bulletin board has the form K = H(K ′||EphTSen||EphB). A user B who
at some time t broadcasts EphB will be notified a risk only if B received at time t an ephemeral
key EphTSen and K ′ = EphskB

TSen. Since it is hard for Adv to compute K ′ without knowing skB or
skTSen, we conclude that B is alerted only when B actually met TSen and TSen put an alert for
B. However, in such case the alert corresponds to an actual risk for B and does not represent a
successful attack.

• Replay attack: (cfr., Section 6.5.4).
Pronto-C2 is not subject to replay attacks. An adversary Adv who broadcasts, at location X, the
pseudonym of a user U1 collected during a prior time slot in a different location Y , would fail in
the attempt of causing false at-risk notifications. Indeed, to be notified, a user U2 needs to find,
on the bulletin board, a call which is directed to himself and is generated by the infected user
U1. Since the generation of such call requires the secret key of U1 related to the time slot when
the alleged meeting took place, it would be computationally infeasible for Adv to trigger a fake
at-risk notification for U2.
Similarly, it is easy to see that Pronto-C2 is secure against relay attacks that are one-way, that
is in which the adversary can only forward information from a location X to a location Y of the
space (but not from Y to X).

6.8 Suggestions for a Practical Realization of Pronto-C2
In this section we suggest a practical implementation of Pronto-C2 and analyze its performance in a
real-world scenario. In the following section, Pronto-C2 will involve the following actors:

• the user U, who runs the smartphone application;

• the server Server, that manages the bulletin board;

• the medical laboratory HA;

123

D3.3 – Revision of Extended Core Protocols

Attacks Low-cost
DP-3T

Unlinkable
DP-3T Pronto-C2

Paparazzi 7 3 3

Orwell 7 7 3

Matrix 7 7 3

Bombolo 3 3 ©
Brutus 7 7 3

Gossip 7 7 ©
Matteotti 3 7 3

Replay 7 3 3

Figure 6.7: We show which system is susceptible to which attack. 7 denotes that the system is vulnerable
to the attack, 3 denotes safety against the attack, © denotes almost safety against the attack in the
sense that the system is only very mildly affected (cfr., Section 6.7.2), and = denotes that a given
protocol offers solitary protection as described in Section 6.3. Recall that Gossip attack can be turned
into a feature in Pronto-C2, but not in DP-3T systems.

• the authentication service AuthService.

There is a risk for U because of linkability/deanonymization attacks due to timings and IP addresses
of the TLS connections with Server when uploading or downloading data. Such attacks also affect the
DP-3T designs that seems to ignore them, and in general are applicable to any system if no specific
countermeasure is used. One might consider onion routing and mix networks to protect U against
such attacks, but the impact on performance remains unclear. In order to give a fair description of a
practical realization of our solutions, we do not ignore this issue and we therefore include in this section
a mitigation based on mixers. We will consider a setting where U can freely select a mixer MixServer
that she trusts, and mixers do not need to be approved by the government, they can be spontaneously
run by anyone.

Server owns a pair of private and public keys (skServer, pkServer) of a public key encryption scheme
(e.g., ElGamal [Gam85] instantiated on the elliptic curve used for the key exchange), the public key
of Server is made publicly available at set-up time. Every time U has to send data to Server, U will
actually encrypt the data with pkServer and send the resulting ciphertexts to MixServer. A mixer waits
for enough data to be collected, and then performs a mixing and sends them to Server. In addition,
MixServer can also download all data from Server so that U can use MixServer also to retrieve anonymous
calls and ephemeral keys.

There can be several heterogeneous mixers available, provided by large institutions like no-profit
organizations, political parties, national/state/local governments, as well as several smaller mixers that
can serve a district, a school, a group of friends/relatives. U will obviously choose the one that he trusts
more in performing properly the service with a sufficiently large amount of collected data and without
abusing it. It remains possible for a user to ignore this suggestion and to just to use some proper timing
and then sending the encrypted data directly to Server using onion routing and/or relying on the partial
hiding provided by mobile operators and public Wi-Fi networks since somehow they can also be seen
as light forms of mixers. We will continue our discussion considering the case of a citizen using a mixer
that she trusts and that remains uncorrupted.

Server works as a bulletin board, so all data ever received by Server are made publicly available after
being decrypted. HAs are the laboratories that perform the SARS-CoV-2 tests. If a user U gets tested
positive, a HA hands U an authorization code Code. AuthService is the service in charge of authorizing
users to upload anonymous calls to the bulletin board. Moreover, in Pronto-C2, it can also be useful to

124

D3.3 – Revision of Extended Core Protocols

issue credentials to upload ephemeral keys to the bulletin board, in order to mitigate DoS attacks. In
Pronto-C2, we instantiate H using SHA256 [NIS02] as hash function.

6.8.1 Pronto-C2 Practical Implementation

Here we discuss the main operations performed by users in Pronto-C2 and the recommendations that
users should follow.

• U generates a set of 96 ephemeral and secret keys to be used for the next day (a pair every 15
minutes).

• U connects to AuthService in order to prove to be a legitimate user of the system needing to
announce new pseudonyms. With this connection, U obtains 96 blind signatures of the generated
ephemeral keys. This step is needed to avoid DoS attacks on the bulletin board.

• U uploads the ephemeral keys to the bulletin board. U encrypts the 96 ephemeral keys, along
with the related unblinded signatures, and sends the resulting ciphertexts to MixServer that,
after having collected a sufficiently large amount of data, mixes and sends them to Server who
will eventually decrypt and publish them. U will obtain the addresses of his ephemeral keys
by querying Server with the first l bits20 of each key. Server will return, for each query, all the
ephemeral keys that match these bits, along with the addresses of such keys. U will store the
addresses of his ephemeral keys and will broadcast them during the following day. By doing so,
U is able to efficiently retrieve his addresses while hiding the link between them to Server since
each query corresponds to a fairly big set of ephemeral keys. To add more noise, dummy queries
may also be performed.

• U downloads from Server (this step could also be performed through MixServer that can have a
local copy of data available on Server) the ephemeral keys EphUi

for all addri collected during the
day by querying Server (or MixServer) with the first l bits of each address collected during the
day. For each query, U will receive a set of ephemeral keys and U can select the needed key.

• U downloads from Server (as above this step could also be performed through MixServer) all the
calls.

• If U is positive to SARS-CoV-2, U receives Code from HA who delivered him the diagnosis.

• The infected user U computes the anonymous call for each ephemeral key received.

• The infected user U encrypts the calls along with the unblinded signatures, with pkServer. Then,
U uploads these data via MixServer, as done for the upload of the ephemeral keys. If U feels
uncomfortable in giving evidence of being infected to MixServer, U can send dummy encrypted
calls on a daily basis (i.e., whenever U uploads new ephemeral keys).

We note that following our recommendations, Pronto-C2 will behave exactly as in both DP-3T
designs regarding data sent during the day over the BLE channel (e.g., it will send and receive the same
amount of data without performing additional computations).

20The parameter l will be discussed later.

125

D3.3 – Revision of Extended Core Protocols

6.8.2 Performance Analysis

To give an idea of the overall performance, we report an example of a concrete execution in a typical
scenario. To analyze the performance, we take into account the memory usage of the smartphone
application, the amount of uploaded and downloaded data, and the number of exponentiations the
smartphone has to execute.

In the following examples we assume that:

1. each user U has 100 contacts per day on average21;

2. we assume that there are on average 5000 new infected individuals per day within a single coun-
try22;

3. U uses a new pseudonym every 15 minutes;

4. the contagion time window is 10 days long23;

5. the dummy calls produced by the user are 100 per day on average;

6. only for Pronto-C2, we consider a scenario in which there are 5 million users that upload their
ephemeral keys each day and that l is equal to 17. By doing so the resulting set of ephemeral
keys would be of about 3663 elements on average. 24. In the same scenario, if l is equal to 10, the
number of ephemeral keys that is downloaded by each user to compute the anonymous calls is
468750 on average, while, increasing l to 25 the number of ephemeral keys downloaded is 15. In
general, the average number of downloaded keys is the total number of ephemeral keys published
divided by 2 to the number of bits fixed in the prefix. Compared to l equal to 15, in case l is
equal to 10 the requests of the user are hidden in a larger number of calls, while in case l is equal
to 25 the number of ephemeral keys downloaded by U is smaller and it is easier for an adversary
to guess which ephemeral key was searched by U.

6.8.3 Performance Analysis of Pronto-C2
Memory consumption. Every smartphone has to maintain on the local memory all the secret keys
and the ephemeral keys to be used the next day, and all the shared keys and ephemeral keys associated
to the people encountered during the last 10 days. This requires (32 + 33) × 96 × 11 = 68KB for the
secret keys and the ephemeral keys, 100×10×32 = 32KB for the shared keys and 33×96×10 = 31KB
for the ephemeral keys received in the last 10 days. Indeed, 33 is the size in bytes of the the compressed
representation of an ephemeral key and 32 is the size of a secret key and of a shared key (each shared
key is 32 bytes long since there is no need to reconstruct the curve point later on). In addition, all
pseudonyms to be transmitted the next day occupy 96 × 16 = 2KB, where 16 is the size in bytes of
each pseudonym addri.

We did not count the space required by blind signatures since they are sent to MixServer and erased
as soon as they are received.

21Recall that this is an average value that takes very roughly into account that there are citizens staying at home for the
entire day, areas with poor public transport, social distancing and several other factors that, at least in some countries,
make this expectation quite conservative. It is anyway easy to adjust the analysis using different values.

22This is also a very conservative average for many countries according to current statistics.
23We use 10 days as contagion time window following the assumptions in [CKL+20].
24In practice, the smartphone could decide l dynamically, taking into account the number of ephemeral keys that have

been added that day. By doing so, it can ensure that the size of the returned set of keys allows for an efficient search while
providing a sufficient level of anonymity

126

D3.3 – Revision of Extended Core Protocols

Amount of downloaded data. The vast majority of downloaded data comes from the anonymous
calls.

There are four other phases in which the user will download data:

1. to obtain the addresses of the ephemeral keys stored on the bulletin board;

2. to obtain the ephemeral keys corresponding to the addresses collected during the day;

3. to obtain the blind signatures that authorize the user to store the ephemeral keys on the bulletin
board and

4. to obtain the blind signatures that authorize the user to store the calls on the bulletin board when
positive to SARS-CoV-2.

If Pronto-C2 is instantiated using blind signatures based on RSA [BNPS03] with a length of 2048
bits for the modulus, the overall data exchanged to obtain a signature corresponds to 256B, therefore,
the only significant steps in terms of downloaded data are 1 and 2.

To obtain the addresses of all ephemeral keys stored on the server, the data downloaded are 3663×
33 × 96 = 12MB. The same applies to obtain the ephemeral keys corresponding to the addresses
collected during the day.

Amount of uploaded data. The amount of uploaded data depends on the amount of anonymous
calls.

In addition, in Pronto-C2, each user uploads to Server every day the ephemeral keys to be used the
next day. The amount of data uploaded is 33 × 96 = 4KB. Moreover, each user uploads 96 blind
signatures to AuthService, that means uploading 256× 96 = 24KB and each user will upload every day
1000 dummy calls on average, that means 281KB per day.

Number of exponentiations. Pronto-C2 uses a blind signature scheme based on RSA to generate
the signatures and an ElGamal encryption scheme to encrypt the messages.

We assume that every day each user computes 1000 dummy calls, computing 2000 exponentiations.
Every time U uploads an ephemeral key on Server, U needs to obtain a blind signature by AuthService

and must encrypt the ephemeral key. To get such a signature, U needs to compute 1 exponentiation. To
encrypt the ephemeral key and the related signature U computes 9 more exponentiations, in addition
to the one for the ephemeral key itself. So the overall process requires 11 exponentiations.

Since the ephemeral keys to be uploaded each day are 96, the total number of exponentiations
needed to store all the ephemeral keys is 96× 11 = 1056 per day.

Every time an infected user U uploads his set of anonymous calls, U needs to obtain a blind signature
for each of these calls and must encrypt the call along with the related signature. Then, the total number
of exponentiations is (10× 1000) = 1000025.

Checking the risk of contagion requires 1 exponentiation to compute the shared key for each
pseudonym encountered during the day, since the shared keys of the encounters of the previous days
are already stored. The total number of exponentiations is 100.

Therefore, the total number of exponentiations computed on average per day by a smartphone of
a non-infected user is 1056 + 100 + 2000 = 3156. If the user is tested positive to SARS-CoV-2, the
number of additional exponentiations he performs is 10000.

25We remark that, there is no need for the user U to compute the shared key to put in the call since U computes the
shared keys from the pseudonyms encountered day by day and stores these data for 10 days.

127

D3.3 – Revision of Extended Core Protocols

Improved performance. We now consider a concrete instantiation which is resilient to all attacks as
discussed in the analysis of Pronto-C2 except for Bombolo and Brutus attacks. Indeed if one is protected
by Paparazzi attack and Orwell attacks, then we notice that the impact of a successful Bombolo or
Brutus attack is much milder (the same does not hold for DP-3T designs since they are insecure
w.r.t. Orwell attacks). We show that under this relaxed but acceptable privacy, still way better than
what is achieved by the DP-3T designs, one could obtain consistent performance improvements. For
instance, an ACT system which is vulnerable to both Brutus and Orwell attacks is in turn vulnerable
to link users’ movements to their real identities. On the other hand, the Brutus attack on its own just
leaks the ownership of the data uploaded by an infected user, which in Pronto-C2 are computationally
indistinguishable from random strings 26. Therefore, taking this trade-off into account, one could also
opt for improving the overall performance as follows:

• Batching all the anonymous calls in a single signature request to AuthService. This would leak
the number of contacts an infected user had, but would dramatically reduce the number of expo-
nentiations.

• Uploading the authorized calls directly to Server without the intervention of MixServer. This
would simplify the upload procedure, at the price of exposing infected users to the Brutus attack
via IP address linking, if Server and AuthService collude.

26Strictly speaking this is true only for a distinguisher who is not the recipient of a call. If one is the recipient of a call,
she can of course discriminate a call from a random string and evaluate her risk of contagion.

128

Chapter 7

Smart Contracts Realizing the Terrorist
Attack to GAEN

In this chapter, we show that an adversary can attack the integrity of contact tracing systems based
on Google-Apple Exposure Notifications (GAEN) by leveraging blockchain technology. We show that
through smart contracts there can be an on-line market where infected individuals interested in mone-
tizing their status can upload to the servers of the GAEN-based systems some keys (i.e., TEKs) chosen
by a non-infected adversary. In particular, the infected individual can anonymously and digitally trade
the upload of TEKs without a mediator and without running risks of being cheated. This vulnerability
can therefore be exploited to generate large-scale fake exposure notifications of at-risk contacts with se-
rious consequences (e.g., jeopardizing parts of the health system, affecting results of elections, imposing
the closure of schools, hotels or factories).

As main contribution, we design a smart contract with two collateral deposits that works, in general,
on GAEN-based systems. Roughly, in such smart contract both parties deposit some amount of cryp-
tocurrency, and when the infected individual uploads a list of TEKs signed by a verification authority,
the smart contracts checks if (1) the signature is correct and (2) if the terrorist TEKs, stored into the
the smart contract, are present in the provided TEKs list. If such conditions are correctly verified (by
the smart contract) the terrorist deposit is transferred together with the infected individual’s deposit
to the infected individual’s wallet. Otherwise, as a punishment, the terrorist gets back his deposit and
the infected individual’s deposit gets burned. We then also suggest the design of a more sophisticated
smart contract, using DECO, that could be used to attack in a different way GAEN-based systems (i.e.,
this second smart contract can succeed even in case GAEN systems are repaired making ineffective the
first smart contract). The main feature of DECO is that offers a decentralized oracle certifying that a
TLS communication between two parties has been established, and that certain data have been indeed
transferred. By relying on this system, the infected individual can certify the smart contract that the
he has correctly uploaded the TEKs that are stored in the smart contract (the terrorist TEKs) to the
server’s authority.

Our work shows how to realize with GAEN-based systems (in particular with Immuni and Swiss-
Covid), the terrorist attack to decentralized contact tracing systems envisioned by Vaudenay.
This work is part of a paper accepted to ACNS ’21 [AFV21].

7.1 Introduction
During the COVID-19 pandemic, several governments have decided to use digital contact tracing sys-
tems in addition to other practices to contain the spread of SARS-CoV-2. The reason is that digital
contact tracing could help in notifying at-risk exposures to individuals that have been in close proximity
to people who subsequently tested positive to SARS-CoV-2. This could be very useful especially when

129

D3.3 – Revision of Extended Core Protocols

the involved individuals do not know each other. If digital contact tracing systems worked perfectly,
they would certainly be effective in alerting at-risk individuals who, following some prescribed proce-
dures (e.g., informing doctors, staying at home in self-quarantine), may significantly limit the spread of
the virus. Such systems have been highly recommended by some governments and in some cases (e.g.,
in Switzerland) an alert received by a contact tracing smartphone application allows to get a test for
free.

The most used contact tracing systems rely on Google-Apple Exposure Notifications (GAEN), a fea-
ture offered by recent updates of iOS and Android and therefore available on a large fraction of currently
used smartphones. These systems are widely used in Europe (e.g., Austria, Belgium, Germany, Ireland,
Italy, Poland, Spain, Switzerland) and cross-border compatibility has recently been implemented1.

Moreover, in the US, several states have adopted GAEN-based systems. GAEN allows to run
decentralized contact tracing where there is very low control from governments, and this makes attacks
from third parties generally simpler to mount and harder to mitigate.

GAEN-based contact tracing systems. The approach of GAEN-based contact tracing systems
is to use Bluetooth Low Energy (BLE) to detect close proximity contacts among smartphones. Each
smartphone broadcasts random pseudonyms via BLE, and this information is received by smartphones
in close proximity along with some encrypted metadata. If a citizen is tested positive and decides to
notify others, she will upload a set of secret keys named Temporary Exposure Keys (we will refer to them
as TEKs in the remainder of the paper) corresponding to previous days in which she was presumably
contagious. Starting from a TEK, it is possible to generate all the pseudonyms broadcast by a user
during a day. The receivers of such pseudonyms will then manage to decrypt the stored metadata
to then evaluate a risk factor2. The TEKs are disseminated to the users via a back-end server that
periodically posts a list of digitally signed TEKs. A detailed description of GAEN can be found at
https://covid19.apple.com/contacttracing.

An important point is that GAEN evaluates the reported TEKs if and only if the digital signature
verifies successfully under a public key that has been previously communicated by the developers to
Apple and Google. Google motivates this requirement saying that it ensures that keys received by the
devices are actually from the authorized server and not from malicious third parties3.

Theoretically, one could also rely on server authentication using TLS, but the use of Content De-
livery Networks (CDNs) to disseminate TEKs (e.g., the CDN used by Immuni is operated by Akamai,
while the SwissCovid’s one is operated by Amazon) requires protection against malicious modifications
operated by the CDN itself. Unfortunately, as we will see next, this requirement paves the way for the
development of dark economies where TEKs to be uploaded by infected users are traded through smart
contracts.

False positives due to attacks. Since BLE was not originally designed to detect a precise distance
among devices, the evaluation of the risk factor is prone to significant errors. To this regard, Leith
and Farrell recently evaluated the reliability of BLE for digital contact tracing in several real-world
scenarios [LF20b].

While false positives due to BLE limitations in measuring distance can indiscriminately affect all
individuals using the smartphone apps, a much more concerning threat allowing to direct false posi-
tive alerts to specific targets has been pointed out in prior work (e.g., see [Vau20a, Pie20a]). Indeed,
GAEN-based contact tracing systems4 can be heavily abused through replay attacks. In this case, the

1EU eHealth Network: European Proximity Tracing. An Interoperability Architecture https://lasec.epfl.ch/people/
vaudenay/swisscovid/swisscovid-ana.pdf.

2For example, metadata include information useful to estimate the distance among the smartphones which clearly
impacts on estimating the risk of a contact.

3Google: Exposure Notification Reference Key Server https://google.github.io/exposure-notifications-server/.
4Sometimes for brevity we will just say GAEN systems.

130

https://covid19.apple.com/contacttracing
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://google.github.io/exposure-notifications-server/

D3.3 – Revision of Extended Core Protocols

pseudonyms sent by an individual considered at risk (e.g., a person who is taking a test) are trans-
mitted by an adversary to a different location in order to create a fake proximity contact. The attack
can have a specific target but can also be performed at large scale. Recently, in [RGK20] Gennaro et
al. discussed how the capability of running such attacks at large scale can be used to put a category
of citizens in quarantine with the consequence of severely compromising the results of an election. In
general, the malicious generation of false positives can be harmful in various ways, the health system
can be overloaded of requests that can penalize those citizens who instead are really affected by the
virus. A student can cause the complete closure of a school or university and similar attacks can be
directed to shops, malls, gyms, post offices, restaurants, factories.

Risks related to replay attacks were already known back in April 2020, and GAEN systems have
a pretty large time window (about 2 hours) [Goo20b] for pseudonyms to be replayed successfully.
Nevertheless, governments have so far considered unlikely that such attacks can produce enough damage
to cancel out the positive effects of genuine notifications of at-risk contacts. This could be due to
complications involved in the attack. Indeed, an adversary may not want to get herself infected, or it
could not be easy to identify, and be in physical proximity with, an individual that soon will report
to be infected. In [Vau20b], Vaudenay envisioned the possibility of using smart contracts to realize a
terrorist attack against decentralized systems, therefore the attack could potentially apply to GAEN-
based systems as well. In this case, the attacker would spread on his targets some pseudonyms, e.g.
by placing beacons close to the targets or getting close to the targets while running the digital contact
tracing app on a smartphone, subsequently promising through a smart contract a reward to whoever
uploads the corresponding keys. Therefore, an infected individual who participates in the contract will
cash a reward, and false positive alerts will raise on the smartphones of the targets selected by the
terrorist. More details are discussed in Sec. 7.1.2.

7.1.1 Our Contribution

We show that the terrorist attack envisioned by Vaudenay can be concretely mounted against currently
deployed GAEN-based contact tracing systems. In particular, we have analyzed its concrete feasibility
with respect to two systems, such as Immuni [Imm20], used in Italy and SwissCovid [Swi20a], used in
Switzerland. We expect several other deployed GAEN systems to suffer from the same vulnerabilities.

More generally, our work shows how to attack the integrity of currently deployed GAEN-based
contact tracing systems by leveraging blockchain technology. A very alarming side of our contribution is
that current systems can be compromised without the need for the attacker to get infected, or to be with
high probability in close proximity to individuals that will be soon detected positive and will upload
the keys. Our attacks consist of smart contracts to establish a mediator-free market where parties,
without knowing each other, without meeting in person and without running risks to be cheated, can
abuse exposure notifications procedures of GAEN systems. We give a brief description of the mentioned
smart contracts in the following.

Trading TEKs exploiting publicly verifiable lists of infected TEKs. As a main contribution
we show a smart contract named Take-TEK that allows a buyer (i.e., the adversary willing to spread
false positive alerts)to store the TEKs that the seller (i.e., the infected individual that is willing to
monetize her right to upload TEKs to the servers of the GAEN system) will then upload to the server
. The smart contract requires the buyer to deposit the amount of cryptocurrency (we will call it prize)
that he is willing to give to the seller. The seller instead will deposit an amount of cryptocurrency in
order to reserve a time slot in which she will try to upload the TEKs. In case she does not manage
to complete the upload of the TEKs5, the deposit will be assigned to the buyer. The deposit of the

5Notice that if the seller was infected in a period of time that can include the buyers’ TEKs stored in two (or more)
different smart contracts, he can serve both of them by uploading to the server the buyer TEKs stored in both the smart
contract.

131

D3.3 – Revision of Extended Core Protocols

seller is therefore useful to make unlikely that a seller tries to prevent other sellers from completing the
job. Additionally, we can hide the TEKs so that, even when observing all transactions, it is not clear
which TEKs have been traded using the smart contract among the many TEKs jointly published by
the server of the contact tracing system during a slot.

Take-TEK crucially relies on the server publishing such lists of TEKs along with a signature verifiable
with a publicly known public key. We show that the Take-TEK attack can be deployed to generate fake
false positive alerts w.r.t. both Immuni and SwissCovid. Indeed, both systems follow strongly the
design of GAEN and announce such signed lists of TEKs using ECDSA signatures.

Regardless of Immuni and SwissCovid making available or not their signature public keys, we have
successfully extracted the public keys from previously released signatures6. Therefore, Take-TEK can be
instantiated to attack both (and possibly many more) systems. More details are discussed in Sec. 7.2.

Trading TEKs without publicly verifiable signatures: DECO. One might think that realizing
the terrorist attack via smart contracts (e.g., Take-TEK) crucially relies on exploiting those signed
lists of TEKs under a known (or extractable) public key since the smart contract needs to check the
signature of the list of TEKS to ensure its integrity. At first sight, a fix to such vulnerabilities consists
of hiding the public keys and to use a signature scheme such that it is hard to extract the public key
from signed messages. However, we show that things are actually more complicated for designers of
contact tracing systems. In particular, we show another way to buy/sell TEKs that follows a completely
different approach. The key idea is requiring the seller to prove that a TLS session with the server
led to a successful upload of the buyer’s TEKs. The necessary requirements on the communication
between smartphone app and server are that 1) both the TEKs and the positive (or negative) outcome
of the upload procedure are part of the exchanged application data in the TLS session, and 2) the
upload phase consists of just one request made by the client and the response of the server (e.g., as it
is in SwissCovid). At first sight, the attack seems very hard to realize since notoriously TLS produces
deniable communication transcripts when it comes to application data (i.e., exchanged messages are
only authenticated and not digitally signed). However, we exploit a very recent work of Zhang et
al. [ZMM+20]. They show how to build a fully decentralized TLS oracle, named DECO, for commonly
used ciphersuites. Further details are described in Sec. 7.3.

Remark on the actual work done by our smart contracts. Both Take-TEK and the DECO-
based smart contract provide full guarantees to both seller and buyer at the expense of running some
cryptographic operations that can obviously produce transaction costs. Nevertheless, if we make an
additional optimization based on pragmatism, the expensive computations may happen very rarely
in practice. Indeed, we notice that the main computational cost for those smart contracts consists
of checking at the very end that the seller has completed the task of uploading TEKs correctly. We
observe that a buyer can check that TEKs are published by the server on his own. As a result, he
would be satisfied in finding out that the trade has been completed successfully. Therefore, it is natural
to expect that the buyer would give his approval to the smart contract to transfer the money to the
seller avoiding the execution of expensive computations, and therefore saving transaction costs7. Since
this behavior would be visible in the wild, the reputation of the buyer would also benefit from such
approvals and more sellers would want to run contracts with him. Moreover, a (somewhat irrational)
buyer that refuses to speed up the execution of the smart contract would anyway not stop the final

6In GAEN-based systems, signature verification is crucial to ensure data integrity. Our smart contract needs to check
the signature to be sure that the seller did not sent corrupted data.

7Obviously, the smart contract can be adjusted so that, in case the buyer does not give his approval and the seller
shows that she completed successfully her part of the contract, the expensive transactions costs due to the lack of help
from the buyer are charged to the wallet of the buyer. A simple way to realize this could be asking for an additional
deposit made by the buyer which could clearly cover the transaction costs of the seller in case the buyer does not give his
approval and the seller shows that she successfully completed the upload procedure.

132

D3.3 – Revision of Extended Core Protocols

transfer of the deposited money to the seller. As a result, the buyer would only get a worse reputation.
In conclusion, the expensive work done by our smart contracts belongs to pieces of code that would
rarely be executed in practice.

7.1.2 Related Work

The design of GAEN is very similar to the low-cost design of DP-3T [DP-20], and thus several vulner-
abilities identified in prior work generally apply to both systems. Tang [Tan20b] observes that DP-3T
is vulnerable to identification attacks, and presents an accurate survey about contact tracing systems.
In [Vau20a], Vaudenay reports both privacy and security issues. The most famous privacy attack is
the so-called Paparazzi attack. Basically, it is possible through passive antennas to track infected
individuals over a certain time window8 during which pseudonyms are linkable.

Regarding security issues, Vaudenay extensively considers false alert injection attacks, where the
adversary manages to raise false alerts on the smartphone apps of targeted victims. Within this category,
there are replay and relay attacks. GAEN is vulnerable to relay attacks and to replay attacks carried
out within two hours. Vaudenay in [Vau20a] and Pietrzak in [Pie20b] proposed, back in April 2020,
some solutions to defeat these attacks, but they have not been included neither in DP-3T nor in GAEN
designs so far. Baumgärtner et al. [BDF+20] provide empirical evidence of the concrete feasibility of
both Paparazzi and replay attacks. Pietrzak et al. [ACK+21b] analyze inverse-sibyl attacks in which
multiple adversaries cooperate to use the same pseudonyms. If one of the attackers gets to upload his
TEKs, many false alerts may be raised. This attack could be used in combination with either the replay
attack or our smart-contract based attacks in order to increase the number of affected targets. Iovino et
al. [IVV21] concretely demonstrate the possibility to inject false alerts by replaying released TEKs. In
particular, pseudonyms associated with already published TEKs are transmitted to smartphones whose
clock is corrupted in order to make them believe these pseudonyms are valid for risk matching. They
also show that several apps may publish TEKs that are still valid. These TEKs can be used to generate
false alerts without the need of corrupting smartphones’ clocks.

Several GAEN-based systems are currently used in the world for digital contact tracing. Vaudenay
and Vuagnoux, and later Dehaye and Reardon, extensively evaluated SwissCovid [VV20,DR20b,DR20a],
confirming some vulnerabilities showed in previous works and elucidating new ones. Finally, another
class of attacks leading to false alerts involves bribing. Vaudenay envisions various possibilities for the
development of dark economies [Vau20b] which could support false alert injection attacks, allowing
them to be carried out at very large scales. In particular, the Lazy Student attack is connected to
replay attacks. It is based on a dark economy where a hunter (i.e., seller) collects pseudonyms of
individuals who will likely become infected later on, and deposits them on a smart contract. If the
TEKs corresponding to such pseudonyms are uploaded to the server of the contact tracing system,
the hunter gets a reward paid by a buyer (i.e., the lazy student). If replay attacks are doable, the
buyer can use them to make target victims’ apps raise false alerts. This dark economy is sustainable
only if the smart contract has a way to check that pseudonyms were actually reported to the official
server. Another form of dark economy described by Vaudenay is the terrorist attack. It involves users
reporting pseudonyms that differ from the ones used during the previous days. In fact, in both Immuni
and SwissCovid there is no mechanism forcing users to upload genuine TEKs. Again, a TEK could be
posted on a smart contract automatically issuing a reward to whoever reports it to the contact tracing
system. This purchase may lead to a massive amount of fake notifications, without relying on replay
attacks.

On the (missing) risk assessment of the terrorist attack. The huge impact of false injection
attacks seems to have gone unnoticed or just ignored. In [LHML20] the cybersecurity risks of contact

8In GAEN, depending on the particular application, this time may amount to up 14 days if the adversary colludes with
the authorities, and to one day assuming TEKs are properly mixed and anonymized prior to publication.

133

D3.3 – Revision of Extended Core Protocols

tracing systems are reviewed and compared using a subjective scoring scheme. The report considers in-
jection of false alerts notifications by only mentioning replay attacks or trivial attacks such as recruiting
people with symptoms, while the terrorist attack is not even mentioned.

Vaudenay and Vuagnoux expressed these and other concerns in their analysis of SwissCovid [VV20].
The Swiss National Cyber Security Center (NCSC) answered to their criticism seemingly downplaying
those risks. The possible development of dark economies was ignored [Swi20b] and a recap table on
security issues reports on SwissCovid marks the concerns expressed by Vaudenay as addressed, including
false alert injection attacks (see page 8 [Swi20c]) Nevertheless, no solution or mitigation to such problems
is reported.

Bribing attacks on smart contracts. As we discuss in Section 7.2, our smart contracts make
possible to trade TEKs reducing at a minimum the risks related to interacting with a dangerous entity
such as a criminal. Bribery attacks on smart contracts for different scenarios have been proposed in
the context of bribing miners in Ethereum and Bitcoin [MHM18,LK17,TJS16,VTL17,NKW21].

7.2 Trading TEKs in GAEN Systems
The GAEN API has been created to provide an efficient platform for exposure notifications on top of
which countries can easily develop digital contact tracing systems. GAEN is supposed to solve various
technical problems (e.g., changing BLE MAC address synchronously with the rotation of pseudonyms,
keeping BLE advertisements on in background) on a large fraction of available smartphones9. At the
same time, the API is so inflexible that it forces anyone who is willing to benefit from it to adopt a
specific design for contact tracing. What is left in the hand of the developers is merely the creation
of the graphical interface, the choice of some parameters and the realization of a server to gather and
spread data about infected users and, more importantly, an authentication mechanism to avoid the
upload of data by non-infected users.

Whenever a user is tested positive, she is given the right to upload her TEKs to the server so that
the other users can be notified a risk of infection. The mechanism can be implemented in different
ways. For example, a simple method consists of a code generated by the app that is given first to the
health operator in order to activate it on the server. Then, once the server has authorized the code,
the app will upload the TEKs along with the code (e.g., Immuni follows this approach). More complex
mechanisms may be put in place. However, the attack we show next works for every GAEN-based
contact tracing system under some natural assumptions that we will discuss later.

In order to evaluate the contagion risk, GAEN provides appropriate methods that take as input
two files containing the last TEKs and the related signature. The matching is not performed if the
signature does not verify under a public key previously known to Google and Apple. The first file is
named export.bin and contains, along with other fields, a list of TEKs belonging to infected users that
have decided to perform the upload procedure. Each TEK has also a date attached, which indicates
when such TEK was used. The second file, named export.sig, contains a digital signature of the file
export.bin [Goo20a,App20a]. An example of export.bin is reported in Sec. 7.2.3.

7.2.1 Take-TEK Smart Contract: Buying/Selling TEK Uploads

To simplify the description, we will refer to the TEKs file published by the server as a list of pairs of
values. In each pair, the first value is a TEK and the second value is the corresponding date of usage
date. Let the seller P be an infected user who would like to monetize her right to upload TEKs, and
buyer B someone who is interested in paying P in order to upload TEKs of his interest. If the seller

9Indeed, see the case of UK that tried to develop a system without GAEN but had to give up https://www.bbc.com/
news/technology-53095336.

134

https://www.bbc.com/news/technology-53095336
https://www.bbc.com/news/technology-53095336

D3.3 – Revision of Extended Core Protocols

can prove she acted as promised, this selling process can be executed remotely remaining automated,
anonymous, and scalable. GAEN’s design requiring the list of TEKs to be signed makes the verification
easy to the smart contract, and greatly facilitates such trades. The trade can be performed using a
blockchain capable of executing sufficiently powerful smart contracts (e.g., Ethereum). Such smart
contract guarantees that P gets an economic compensation if and only if P uploads the TEKs specified
by B to the server.

The high-level functioning of the smart contract is as follows. (1) B creates the smart-contract
posting a list of TEKs with the related date, and deposits a prize to be redeemed by a seller. (2) An
interested P also makes a small deposit to declare her intention to upload the TEKs specified by B (the
purpose of this small deposit is explained later). After having made this deposit, (3) P has a specified
amount of time to complete the upload procedure. Before the time runs out, P must provide a list
of TEKs which includes all the pairs (tek, date) specified by B, along with a valid signature under the
server’s public key. If P manages to do so, she gets a reward, otherwise both deposits go back to B.

By making a deposit, the seller reserves a time slot during which she can perform the upload. Such
deposit protects the buyer from denial of service (DoS) attacks by sellers who actually do not have the
right to upload TEKs. Here, as in the remainder of the paper, with the word DoS we mean attacks
carried out by fake sellers which prevent honest sellers from participating to the trade.

We name the above smart contract Take-TEK and the attack that leverages the use of this smart
contract Take-TEK attack. The time window given to P must be wide enough to take into account
that new TEKs are not continuously released by the server, in fact, several hours may pass between the
submission of a TEK and its publication. Obviously, the amounts of both deposits will be significantly
higher than transaction fees. A custom software is needed to upload arbitrary TEKs. However, this
simple software may be developed even by other entities (not just the buyers), and publicly distributed
on the Internet or other sources (e.g., Darknet). Therefore, all the seller would need to do is just
running a software on a smartphone/computer, something that is easily doable by a large fraction of
the infected citizens willing to gain money10. Additionally, the time given to the seller to complete the
upload after having been tested positive must be long enough to reserve a slot on the blockchain (i.e.,
enough to wait that the transaction related to the seller’s deposit gets confirmed) and subsequently
send the TEKs via the custom software.

Attack description. B and P owns wallets pkB and pkP respectively. The buyer has no assurance
that the seller is actually an infected person, and she is not just a malicious party trying to slow
down the buyer’s plan. Thus, some collateral must be deposited by P too. The seller will lose the
collateral deposit in case she is not able to prove that she sent the buyer’s TEKs to the server S. We
use a signature scheme (GenS, SignS,VerS). The protocol description is depicted in Fig. 7.1 and a brief
overview of the main functions follows below.

Constructor(TB, vkS, t, dP): It takes as input a set of tuples TB := (tekBi , dateBi)i∈[n] with n ≤ maxteks
11, where teki is the i-th TEK of the buyer and datei is the associated date, the verification key
vkS to be used to verify the signature of the TEKs list, a timestamp t, indicating the maximum
time the seller has to provide the correct list and signature, and the collateral value dP that the
seller must deposit.

Deposit(): must be triggered by B and takes as input a quantity p of coins as the payment for the
seller.

Promise(): must be triggered by the seller P by sending a quantity of collateral deposit dP as a payment
when invoked.

10COVID-19 by itself caused a global economic crisis which led to lower wages and job losses. More details at https:
//en.wikipedia.org/wiki/COVID-19_recession.

11The maximum number of TEKs that can be uploaded in one shot depends on the particular contact tracing system.

135

https://en.wikipedia.org/wiki/COVID-19_recession
https://en.wikipedia.org/wiki/COVID-19_recession

D3.3 – Revision of Extended Core Protocols

SendTeks(TKS, σT): must be triggered by the seller P to provide a list of TEKs together with its
signature σT . Let the list released by the server be T = (teki, datei)i∈[N], where N is the number
of published TEKs. It checks that:

• TB ⊆ T and VerS(T, σT; vkS) = 1.

If the checks pass, dB coins are transferred to the seller’s wallet pkP .

Take-TEK Attack

We consider two entities: the seller P and the buyer B, with wallets pkB and pkP respectively. The
protocol works as follows:

1. B invokes the constructor, taking as input the buyer’s TEKs list TB, the server verification key
vkS that will be used to verify the signed TEKs list, a timestamp t, and a value dP indicating
the minimal amount that P must deposit in order to participate.
After having created the contract, B triggers the function Deposit to deposit the prize p
aimed for the seller who uploads TB to the server.

2. P deposits her collateral by triggering the function Promise. Now the seller has at most time
t to send a TEKs list T signed by the server.

3. If P, before time t, triggers the function SendTeks submitting a signed TEKs list T such that
it satisfies conditions TB ⊆ T and VerS(T, σT; vkS) = 1, the collateral deposit dP of P and
the prize p are transferred to P’s wallet. Otherwise, if t seconds have passed, they are moved
to B’s wallet.

Figure 7.1: The steps followed by buyer B and seller P to carry out the Take-TEK attack.

7.2.2 On the Practicality of Take-TEK Attack

Various proposed upload authorization mechanisms include manual steps (e.g., SwissCovid uses an
authorization code, termed covidcode, which lasts for 24 hours) which, in order to function properly,
naturally give the seller enough time to perform the steps mentioned in the section above. For example,
if a code is communicated to the infected user via a phone call, she should be given a fairly large amount
of time to write down the code and insert it in the app later on (the needs of people with disabilities
and of elder people must be taken into account). Even systems that have fairly strict requirements
on the time by which the upload procedure must be completed should allow for errors and recovery
procedures, which may give additional time to the future seller. For example, Immuni requires that
the infected user dictates, via phone call, a code that appears on her device. After that, the user must
complete the upload within two minutes. If this does not happen, the procedure must be repeated.
Additionally, the system should be tolerant. People should have the opportunity to perform the upload
procedure later on if they are unable to do it in that precise moment. It is worth noting that strict
requirements on the upload phase reduce users’ privacy. A clear example is Immuni, where the medical
operator, by checking whether a code has been used or is instead expired, gets to know whether or not
the infected user actually uploaded her TEKs.

136

D3.3 – Revision of Extended Core Protocols

Implementation. We implemented our results as a smart contract for Ethereum, published it in a
public repository12 and tested it locally. Since Ethereum does not use ECDSA-SHA256 (i.e., the one used
in GAEN) for built-in transaction signature verification, there is the need to use specific solidity smart
contract libraries13 which lead to extra gas usage.

Considering the change of 206 dollars per single ETH token on the 20th of July 2020, signature
verification costs around 11 dollars (1235000 of gas). In order to compute the full cost, one should add
about 0.4 dollars (45000 of gas) for each TEK that is contained in the export.bin file14. Note that our
smart contract can handle export files large as the maximum data that an Ethereum transaction can
handle at most.

This limitation can be overcome by making the smart contract accepting the file split in multiple
chunks (a transaction for each chunk), and then extracting the keys and verifying the signature by
hashing the concatenation of all the stored chunks. A trivial solution to this problem can be to store
n − 1 chunks in the smart contract, and when the seller sends the n-th chunk, the smart contract
performs the concatenation, extracts the keys, and verifies the signature. Unfortunately, storing data
in a smart contract is the most expensive operation in terms of gas cost, and storing such a big piece
of data in a smart contract state may be too expensive. However, exploiting the Merkle-Damgård
construction used by SHA to hash multiple blocks, way less amount of data needs to be stored. Let us
define Hash as the hashing algorithm and Hi as the hash of the i-th chunk Ci. TEKs extraction and
signature verification in the chunk-based mechanism can be done in the following way:

• The seller divides the export file in different chunks in such a way that, when each chunk is hashed,
the hash climbs up to the same level of the Merkle tree of the other hashed chunks.

• When the seller sends a new chunk to the smart contract, the latter extracts all the TEKs
contained in the chunk, checks which of the buyer’s TEK are present in the chunk and stores this
information15. After that, it hashes the chunk and stores the hashed value Hi.

• When the last chunk is sent to the smart contract by the seller (together with the signature
of the entire export file), the smart contract extracts the last pieces of information, checks if
the TEKs contained in the last chunk cover the not yet appeared buyer’s TEKs, computes its
hash Hn, hashes its concatenation with the previously stored hashed chunks (i.e. it calculates
Hout = Hash(H1, . . . ,Hn)) and triggers the signature verification procedure giving the value Hout
and the signature file as input.

As can be noticed, the application of the hashing algorithm to the concatenation of the His makes the
hashing algorithm climbing up to the root of the Merkle tree, thus giving the expected hash of the
entire file as output. Now the amount of bits needed to be stored is around |H| · n = 512 · n, vs |Ci| · n
(usually the maximum transaction size, and so Ci in our case, is around 44 Kbytes in Ethereum).

7.2.3 Subtleties in the Wild

In 7.2.1 we gave a high-level overview of how TEKs uploads can be sold safely via blockchains. However,
there are some subtleties we overlooked for the sake of simplicity. We first analyze the advantages for
adversaries when using automated trade compared to already known attacks. Then, we consider certain
problems that arise while trying to concretely mount our attack against deployed GAEN-based contact

12Code available at https://github.com/danielefriolo/TEnK-U.
13The one we used for signature verification is available at https://github.com/tdrerup/elliptic-curve-solidity.
14The cost of 45000 of gas includes TEK extraction, hashing of the export file for signature verification, checking if the

stored TEKs are in the extracted ones. To simplify the gas evaluation, we assume that B stores only one TEK in the
contract.

15During the chunk splitting, some TEKs may be cut in half. The smart contract should take care of the first and the
last bits of each chunk and reconstruct the missing information.

137

https://github.com/danielefriolo/TEnK-U
https://github.com/tdrerup/elliptic-curve-solidity

D3.3 – Revision of Extended Core Protocols

tracing systems. We also show how these difficulties are easily tackled if very small modifications to
our attack are made.

Advantages of automated trade (for an adversary). One might think that malicious injection
of fake TEKs is inherent in decentralized contact tracing systems since there is no control over the
smartphone used by infected individuals and thus, when the time of the upload comes, the infected
person can always use a smartphone belonging to someone else.

While it is true that such simple attacks are very hard to tackle, they have limited impact for at least
two main reasons: 1) the buyer must handover his smartphone to the seller, and this requires physical
proximity; 2) sellers and buyers must trust each other since an illegal payment must be performed
without being able to rely on justice in case of missing payment or aborted upload of keys. Indeed,
even if in need of money, people are generally afraid of dealing with criminals since they may get
scammed or threatened. Additionally, the buyer might expose the sellers’ identities to the authorities
in case he gets arrested or legally persecuted. Equally, the buyer may share the same concern with
respect to an unreliable seller. It goes without saying that some citizens are prone to violate the rules16
when they believe that risks are low compared to the advantages.
As such, attacks involving the exchange of smartphones, or the usage of a malicious app uploading
TEKs sent by a criminal contacted directly by the infected citizen, do not scale and their damage may
be considered tolerable. Having a mechanism which allows this trade to happen remotely, in anonymity
and ensuring no party is cheated, solves all the above problems for parties willing to abuse contact
tracing systems. In fact, it provides a framework for large-scale black markets of TEKs. The seller
would not feel threatened in any way and could easily earn money, on the other hand, the buyers would
benefit from a larger set of users to be in business with, therefore succeeding in many possible attack
scenarios. Other systems for black markets based on reputations could also be used, but they are clearly
less appealing than the transparency and usability of mediator-free smart contracts.

A worry-free seller. The effectiveness of a digital contact tracing system is strictly related to various
factors among which the percentage of active population using them. Appropriate measures should
be taken to earn citizens’ trust since it is the only way to guarantee broad adoption. With this in
mind, the European Commission released a series of recommendations in relation to data protection
stating the need of identifying solutions that are the least intrusive and comply with the principle
of data minimization [Eur20]. A similar recommendation has been given by the Chaos Computer
Club (CCC) [Cha20] , the Europe’s largest ethical hackers association, which explicitly states that
“data which is no longer needed must be deleted". Corona-Warn, the German contact-tracing system,
declares to be fully compliant with CCC’s guidelines [Cor20] Many other systems are inspired by similar
principles. For example, the Italian system Immuni also declares that data is deleted when no longer
needed17 as well as the Swiss system SwissCovid which also specifies a retention period for the TEKs and
the upload authorization codes 18. In its recommendation to build a verification server authenticating
the uploaded TEKs, Google states that identifiable information should not be associated with uploaded
data19. The adoption of the above measures ensures that uploaded data do not link to, nor identify
a particular individual. This is very important considering that GAEN systems are vulnerable to the
Paparazzi attack20 [Vau20a].

16The infected person also commits a violation by allowing the injection of fake TEKs.
17https://github.com/immuni-app/immuni-documentation.
18Corona-Warn-App Solution Architecture https://github.com/corona-warn-app/cwa-documentation/blob/master/

solution_architecture.md.
19Google: Exposure Notification Verification Server https://developers.google.com/android/exposure-notifications/

verification-system.
20In Paparazzi attack, through passive antennas one can link pseudonyms used by an infected user tracing him over the

duration of a TEK or for more days if the TEKs are linked. Therefore leaving open the possibility to link such data to a

138

https://github.com/immuni-app/immuni-documentation
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md
https://github.com/corona-warn-app/cwa-documentation/blob/master/solution_architecture.md
https://developers.google.com/android/exposure-notifications/verification-system
https://developers.google.com/android/exposure-notifications/verification-system

D3.3 – Revision of Extended Core Protocols

Evaluation of seller’s risks. Considering the above data minimization principles, are the seller and
the buyer at risk of being legally persecuted for a trade that may be deemed as illegal? The answer
seems to be no. If data is handled as specified above, there would be no way to associate the seller to its
uploaded TEKs at a later time. Data exchanged during the attack would also not directly compromise
neither the buyer nor the seller21.

However, there is a problem for a seller who really wants to minimize the chance of getting caught.
In fact, since the TEKs proposed by the buyer are posted in clear on the blockchain, authorities may
become aware of them and activate ad-hoc procedures monitoring the incriminated TEKs and exploiting
the upload authorization process to identify the guilty seller. This, in fact, does not seem to directly
contradict the data minimization principle when national security is at stake. If the server getting
the TEKs upload monitors the requests (e.g., by storing connection logs) without colluding with the
health authority, the seller could be easily incriminated after the TEKs have been detected in the smart
contract by just looking at her IP stored together with such request. However, in this case, the usage of
an anonymity service like Tor [DMS04] can easily reduce the chance of getting caught. If the authorities
are colluding, the upload authorization codes (e.g., the covidcode) may be associated with the identities
of infected users, and TEKs could be in turn mapped to a precise individual via such codes. However,
by slightly increasing the complexity of the smart contract, such risk may be completely avoided. It
suffices for the buyer to encrypt his TEKs with a public key provided by the seller, who then will use
a non-interactive zero-knowledge (NIZK) proof system to prove that the TEKs encrypted under the
specified public key are indeed contained in the list signed with the server’s public key. This requires an
additional interaction with the buyer, who has to publish the encrypted TEKs (see the next paragraph
for more details). Once again, the seller is protected by a timer which assigns her all the deposits if the
buyer does not reply. Efficient Ethereum implementations of NIZK proofs are known in literature, like
NIZKs for Σ-protocols [Wil18] or zk-SNARKs [Sem20,ZoK20,ZkD20].

Even if the buyer decides to claim the authorship of the attack at a later point in time (e.g., as it
usually happens for terrorist attacks) by opening the encrypted values on the blockchain to published
TEKs, the seller would not be at risk if data was handled according to the principles of data economy
and anonymity. Any evidence based on contact tracing data would be a clear indicator that those
principles have been violated. This could result in a big disincentive in using the app, since citizens
may think (probably rightfully) that data could also be abused for other reasons, perhaps for mass
surveillance purposes. Finally, we want to point out that even if several researchers raised the concern
about the possible birth of black markets [Vau20b,RGK20], we did not find any document related to
any contact-tracing system, either issued by governments or national security agencies, which deeply
evaluates these risks. To the best of our knowledge, no risk analysis ever mentions to monitor the dark
web and blockchains looking for suspicious smart contracts. It goes by itself that if blockchains are not
monitored, all extra measures taken in this paragraph to protect the seller are not necessary.

Adding seller’s privacy. Using publicly posted TEKs is dangerous for the seller due to possible
risks of incrimination. This could disincentivize the seller to utilize such smart contract mechanism. To
guarantee seller’s privacy, in all of our attacks we can enrich our playground by assuming the existence
of a CPA-Secure PKE encryption scheme (Gen, Enc,VrfyOpen) and a NIZK proof system. The proposed
protocols can be modified as follows:

• When the buyer creates the smart contract, he waits that a seller P is elected before providing
his TEKs. When P is elected, B posts his TEKs encrypted with P’s public key pkP , by triggering

person’s real identity would be extremely incautious.
21In this analysis, we refer only to contact tracing system data and messages exchanged via the blockchain during the

execution of the attack. We do not take into account border-line situations as, for example, the case where there is only
a single infected individual. We also ignore additional information that may help investigators figuring out who the seller
is, for example how the money are spent after the trade.

139

D3.3 – Revision of Extended Core Protocols

an algorithm SendBuyerTeks(CB) where CB = (c1, . . . , cn), with ci←$ Enc(ti) for each ti ∈ TB.
TEKs are pairs ti = (teki, datei).

• When the signed TEKs list is available, the seller triggers SendTeks(T, σT ,Π, T̃), where T =
(t̃1, . . . , t̃N) are the published TEKs, σT the corresponding signature, and Π = (π1, . . . , πn) is a
sequence of proofs in which πi is a NIZK proof that the prover knows ti ← VrfyOpen(ci; skP) and
that at least one element t̃j in a subset T̃ ⊆ T such that |T̃| > |TB| is equal to ti. The smart
contract checks all the proofs, and if all of them verify, transfers the prize to the seller.

Now the only information that an external observer can deduce by looking at the proofs is that all the
encrypted buyer’s TEKs are indeed inside the list (or in a subset of them). Depending on how the
date field is handled it may be also necessary to encrypt it and to prove a slightly more complicated
statement. To be sure that an observer cannot pinpoint the buyer’s TEKs precisely, it is sufficient that
the proofs use as a statement a subset of the published TEKs that contains at least one more TEK
w.r.t. the buyer’s TEKs (proving on a subset and not on the entire list can be beneficial in terms of
proof size and efficiency). The only harmful case is when the number of published keys matches with
the number of the buyer’s keys. We can argue that this condition happens quite rarely, considering
that one more external key is sufficient to guarantee buyer’s safety, and if GAEN recommendations are
followed, a decent amount of keys should be present in the list.

Other subtleties. Let’s take an example of an export.bin file for Immuni, the Italian contact tracing
app is reported below. The meaning of the main fields is commented on the side. The start_timestamp
and end_timestamp are expressed in UTC seconds, the rolling_start_interval_number is expressed
in 10 minutes increments from UNIX epoch. The export.sig contains the digital signature of the
export.bin file, along with the field signature_infos. The content description of the export.bin file
follows.

start_timestamp: 1591254000 //start of the time window of included keys
end_timestamp: 1591268399 //end of the time window of included keys.
region: "222" batch_num: 1 batch_size: 1
signature_infos {
verification_key_version: "v1" //version of used verification key
verification_key_id: "222"
signature_algorithm: "1.2.840.10045.4.3.2"
1: "it.ministerodellasalute.immuni"}
keys {
key_data: ".." //base64 encoded TEK
transmission_risk_level: 8
rolling_start_interval_number: 2651616 //date of usage of TEK
rolling_period: 144}...

The following two other subtleties with limited impact shall be considered for the actual realization
of the attack.

• Extracting Public Keys from Signatures: Take-TEK (cfr., Section 7.2.1) requires that the
server’s public key is known to both the involved parties. This guarantees that the buyer is
sure the reward is paid only to sellers who actually upload data to the contact tracing system,
and that honest sellers are sure they will be able to satisfy the conditions to be paid, namely
obtaining a valid digital signature for reward redemption. A Github issue asking for the public
key of the Italian contact tracing app was opened on the 7th of June 2020 and it has still not been

140

D3.3 – Revision of Extended Core Protocols

addressed at the time of writing. SwissCovid Android app contains a configuration file specifying
the production version of the bucket public key (the value BUCKET_PUBLIC_KEY can be found in
https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle) that
is used to perform signature verification outside GAEN. Anyway, as we can notice with Immuni,
this is not a requirement.
One might think that keeping the verification keys secret may prevent attacks as the one of Section
7.2.1. However, it turns out that it is actually not the case. In fact, since GAEN uses ECDSA,
starting from a signature and the related message we can recover two candidate public keys, one
of which will match the actual one with overwhelming probability. A practical example showing
this procedure can be found in [Yan19].
Such message/signature pairs are generally made publicly available and are easily accessible by
appropriately querying the server of the specific contact tracing system. Multiple pairs per day
may be released. A comprehensive description on how to get this data has been provided by
the Testing Apps for COVID-19 Tracing (TACT) project, along with scripts to automate the
downloading process [LF20a]. We also practically performed the extraction procedure, successfully
extracting the keys for both SwissCovid and Immuni.

• Updates of Public Keys: There is a subtle technical problem with the attack described in
Section 7.2.1. The digital signature keys that the server uses may change over time. In fact, the
export.bin file includes a field indicating a version for the verification key. This field follows a
progressive numeration, that is, the first version is termed v1, the second one v2 and so on. This
means that the server may change the verification key it uses, perhaps within a set of keys that
have been pre-shared with Google and Apple. Therefore, it might happen that, after the seller
makes the deposit and accepts to upload the buyer’s TEK, the server, by coincidence, decides
to use a new key which was never used before, thus producing a signature that is not verifiable
under the public key posted on the smart contract.
However, by making a slight modification to the smart contract, it is possible to handle also this
unfortunate event. Having realized that she would be unable to redeem the reward, the seller
might activate a special recovery condition. After this, the buyer will be able to collect both
deposits if and only if he manages to provide a pair of export files which have an end_timestamp
subsequent to the time of the recovery request and verify under the public key originally posted
on the smart contract; otherwise, the deposits are returned to the original owners. Obviously,
enough time should be given to the buyer to provide the export files, similarly to what happens
to the seller after her deposit.
This event is certainly very annoying for the seller and might play as disincentive to join the
trade, but taking a look at real-world data one realizes that this is a relatively rare event. We
considered several countries which are currently using a digital contact tracing system, namely:
Italy, Switzerland, Austria, Germany, Ireland, Northern Ireland, Denmark, Latvia, Canada and
US Virginia. Until January 13th 2021 (last time we checked), only US Virginia and Italy have
switched to the second version of the verification key. In particular, the change to the Italian
system dates back to the 15th of June 202022 and no modifications have been made since then.
Notably, some countries’ systems, like Switzerland and Germany’s ones, are active from several
months now and the verification key has not changed at all. To the best of our knowledge, the
criteria by which the verification key should change is not documented anywhere.

22This change occurred in the 4th export file.

141

https://github.com/DP-3T/dp3t-app-android-ch/blob/master/app/backend_certs.gradle

D3.3 – Revision of Extended Core Protocols

7.3 Connecting Smart Contracts to TLS Sessions
The Take-TEK attack relies on the fact that a digital signature is used to authorize uploads. Additionally,
the ability to extract the public key from signed messages may also play a key role. Therefore, one
might think that to protect GAEN systems, the public key should remain hidden and the signature
scheme should be such that extracting the public key from message-signature pairs is hard. In this way,
due to the inability of allowing a smart contract to verify that a TEK is officially in a list of infected
TEKs, the attack would fail. However, things are not so easy. The previous smart contract exploited
the public verifiability of the signatures because this is what is used in GAEN systems. If a different
method is used, it might be abused again. Indeed, we show that TLS oracles can be used to prove to a
smart contract that an upload was successfully performed, without relying on signatures of TEKs.

7.3.1 Decentralized Oracles

Recently, Zhang et al. [ZMM+20], introduced the concept of Decentralized Oracles. Roughly, an oracle
is an entity that can be queried by a client to interact with a TLS server and help the client proving state-
ments about the connection transcript. Previously known oracle constructions rely on trusted/semi-
trusted execution environments [ZCC+16], thus not giving any help in our case. DECO [ZMM+20]
is the first work where a fully-decentralized construction is proposed for specific ciphersuites such as
CBC-HMAC and AES-GCM coupled with DH key exchange with ephemeral secrets. We recall that
a TLS connection is divided in two parts: a handshake phase where key exchange is performed, and
a phase during which the transferred data is encrypted/decrypted by the client/server using the key
exchanged in the previous phase. GAEN servers usually accept Elliptic-Curve Diffie-Hellman key Ex-
change (ECDHE) for the first phase, while for the second phase some servers accept only AES-GCM
(e.g., Immuni), whereas others, like SwissCovid’s one, accept also CBC-HMAC as a ciphersuite. To
guarantee the integrity of data, the plaintext is usually compressed and a MAC on the compressed
string is calculated using a key derived from the DH exchanged key.

Decentralized Key-Exchange. We provide below an informal description of the key-exchange in
DECO for ECDHE that is called Three Party Handshake (3PHS).

We assume three entities: a prover P, a verifier V and a server S. P and V jointly act as a TLS
client. The overall idea of DECO is that the prover and verifier, after performing some two-party
computations, compute shares of the exchanged key, while the server computes the entire key without
even noticing that P and V are two distinct interacting entities.

When using CBC-HMAC, the keys kMAC
P , kMAC

V (such that kMAC
P + kMAC

V = kMAC) are learned by P and
V respectively, while kEnc is only known to P. When using AES-GCM, the same key is used for both
encryption and MAC, therefore both P and V just get a share of it. While P and V only learn their
secret shares of the key, the server S gets to know both kEnc and kMAC. Let G be an EC group generator.
The key exchange phase works as follows:

• P establishes a TLS connection with the server S.

• When receiving the DH share YS = sS ·G from S, P forwards it to V.

• V samples a DH secret sV and sends his DH share YV = sV ·G to P.

• P samples her DH secret sP , calculates her DH share YP = sP · G, calculates the combined DH
share Y = YP + YV , and sends Y to S.

Finally, S computes the DH exchanged key as Z = sS · Y . P and V will compute their secret shares
of Z as ZP = sP · YS and ZV = sV · YS. Note that ZP + ZS = Z, where + is the EC group operation.
Now that P and V have secret shares of EC points, they use secure two-party computation (2PC) to

142

D3.3 – Revision of Extended Core Protocols

evaluate a PRF (that we call TLS-PRF) to derive the keys kMAC
P and kMAC

V . The authors face and solve
several challenges in order to derive keys efficiently via 2PC. We do not cover this part, a more detailed
description can be found in [ZMM+20].

Encrypted communication. At the end of the 3PHS, P and V have to engage in a 2PC protocol
to correctly calculate the MAC and the encryption on the plaintext to be sent to the server, without
revealing the shares to each other. Privacy of the plaintext is also ensured with respect to V. For
CBC-HMAC, the encryption of such plaintext is computed exclusively by P who holds the encryption
key. The authors [ZMM+20] provide hand-optimized protocols which are much more efficient than the
ones obtained by directly applying 2PC techniques. The 2PC protocol for AES-GCM is a lot slower
than the one for CBC-HMAC since for AES-GCM P and V must cooperate also for the encryption.

Proving statements. An important feature of DECO is that P, when the communication with S
ends, can prove, in zero knowledge, statements on the communication transcript in a clever and efficient
way. However, to make their protocol practical for our goal, we do not try to maintain the transcript
private. As a result, we will not discuss this part of DECO which can be found in [ZMM+20]. In the
following, we describe how to adapt DECO to our scenario.

7.3.2 A Smart Contract Oracle

Our goal is to make the smart contract play the role of the DECO verifier. In this way, the smart
contract would be able to verify that the intended communication between the seller and the server
took place and to reward the seller accordingly. Unfortunately we can not just plug DECO into a smart
contract for several reasons. For example, DECO requires to run intensive 2PC related tasks, to sample
random values and to maintain a private state23.

Therefore, we keep running the DECO protocol off-chain but we find a way to connect the DECO
run between the prover and the verifier to the state of the smart contract, so that the smart contract
will eventually be able to act as an impartial judge punishing the malicious party when a deviation from
the prescribed honest behavior is detected. In particular, the seller acts as a prover and the buyer as a
verifier, and we guarantee no party is able to cheat (i.e., the seller is paid if and only if she performs
the upload of the requested TEKs) by binding the off-chain execution to the state of the smart contract
itself. Furthermore, we guarantee privacy of the messages exchanged between the server and the prover
only until their TLS connection is open. After the communication ends, the seller proves that she
acted honestly by providing the application-level messages exchanged with the server, along with the
corresponding MAC tags w.r.t. the MAC key which is bound to the smart contract. To be more specific,
the smart contract freezes a share of the MAC key and the seller has to show a communication transcript
(i.e., the messages exchanged with the server and corresponding MAC tags) which is consistent with
such share. Privacy of the upload request message to be sent to the server is crucial while the TLS
session is open because the verifier may abort the protocol and use the authorization token of the prover
to upload data by himself without paying out the promised reward. On the other hand, making the
communication public after it took place does not endanger the prover, apart from the considerations
made in Section 7.2.3 , and makes the verification procedure much more practical. What we need is
that the shares of the prover and the verifier are kept private until the end of the protocol, and then
revealed to the smart contract, along with other information, for verification and reward paying. In
addition, the TLS session timeout should be big enough to allow for the 2PC execution. To this regard,
Zhang et. al already verified the practical feasibility of their protocol [ZMM+20]. Obviously, P must
know how to reach V to carry out the protocol. To address concerns regarding anonymity, V may set

23Keeping a private state inside a smart contract is not possible and computationally intensive operations generate high
costs.

143

D3.3 – Revision of Extended Core Protocols

up a Tor hidden service24. Using hidden services may significantly slow down the process, however,s we
found both Immuni and SwissCovid servers to give a generous time out window of two hours25. Another
point to consider is that upload authorization tokens may have a limited duration. For example, in
SwissCovid, the smartphone, by interacting with an appropriate server (different from the TEKs upload
server, called CovidCode-Service), exchanges the covid code for a signed JWT token that is valid for 5
minutes26. Then, this token is sent by the smartphone to the server along with the TEKs to complete
the upload. Thus, the upload message, containing the TEKs and the authorization token, must be
computed and sent to the server within 5 minutes from the reception of the JWT token. Given the
high efficiency of DECO when CBC-HMAC is used, even when bandwidth is limited [MMZ+20], it is
reasonable to think that the attack is feasible in SwissCovid. In Immuni instead, no signed token is used.
In fact, the upload must be completed within 2 minutes after the infected user has communicated the
code to the health operator. Therefore, in Immuni the attack would less likely be operative, especially
with Tor, given that the slower AES-GCM ciphersuite is required.

Protocol description. From now on, we refer to the seller and the buyer as prover P and verifier
V respectively; we denote the server as S. In the following, we explain the detailed attack for the
CBC-HMAC ciphersuite. When creating the smart contract, V also posts the DH share YV = sV ·G he
is willing to use during the 3PHS, along with requested TEKs (and dates).

First, P transacts on the smart contract to reserve a time slot of duration t1 by which a DECO
protocol run must be performed together with V and S, and the data needed to redeem the reward must
be posted on the smart contract by P. If time t1 elapses, P loses her slot. This reservation mechanism
is needed to prevent V from getting back the reward while an honest P performs the upload of the
requested TEKs. In fact, the verifier could also act as a prover and simulate a reward-paying interaction
with the server to the smart contract, which would have no mean to distinguish it from a fake one.
By adding a reservation mechanism, we are sure a malicious V cannot play a simulated transcript in
the smart contract while honest P is performing with him the DECO protocol run. Furthermore, since
the communication for the upload between the server and the prover consists of just a single query
followed by a single response, it is not possible for a cheating verifier to make the timer expire avoiding
to pay the prover while at the same time the upload of the TEKs successfully completes. In fact, once
V cooperates with P to build a valid request, S will reply to P independently of what V does, thus
giving V all she needs to redeem the reward.

When executing the 3PHS, P checks that the value Y ′V sent by V during the handshake corresponds
to the value YV posted on the smart contract. This prevents V from providing an erroneous DH share
and blaming P for it. If this is not the case, P aborts. Since no upload message has been sent to the
server yet, no party gains advantage from this operation. If V’s share is correct (i.e., YV = Y ′V), parties
engage in the communication with S and jointly compute the MAC (via 2PC as in [ZMM+20]) on the
upload request mc generated by P . If the connection ends successfully27, the elected P posts (only
who reserved this slot is allowed to post this message) on the smart contract the following:

• The entire communication transcript, that is (mc,ms) together with the MACs (θc, θs), calculated
by the client(s) P ↔ V and the server S.

• The prover’s secret sP .
24More on Tor hidden services can be found at https://2019.www.torproject.org/docs/onion-services.
25Interestingly, in June the timeout of a TLS session with both Immuni and SwissCovid upload servers was limited to

5 minutes, but it has been then extended to two hours.
26See CovidCode-Service configuration https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/

resources/application-prod.yml.
27This can be inferred from the communication. For example, as in SwissCovid (see SwissCovid Server Controller:

https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/
dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java), S may reply P with
either a success message such as "200 OK" or an error message.

144

https://2019.www.torproject.org/docs/onion-services
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml
https://github.com/admin-ch/CovidCode-Service/blob/develop/src/main/resources/application-prod.yml
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)
https://github.com/DP-3T/dp3t-sdk-backend/blob/a730a5b276591e5cc8b6c609e2b0ba29c6069eb6/dpppt-backend-sdk/dpppt-backend-sdk-ws/src/main/java/org/dpppt/backend/sdk/ws/controller/GaenController.java)

D3.3 – Revision of Extended Core Protocols

• The DH share of the server YS received during the 3PHS.

Then, the smart contract starts a timer t2 indicating the maximum time V has to reveal his secret sV .
In case V does not do that, the prize is automatically transferred to the seller P. If V reveals sV , the
smart contract does the following:

• Check that YV = sV ·G and if not, transfer the prize to P.

• If the check passes, reconstruct the secret Z from sV , sP , Ys, and apply TLS-PRF to derive the
MAC key kMAC.

Now the smart contract has everything it needs to check that the fields inside message mc (from the
prover to the server) are correct (i.e., the buyer’s TEK are present), the response message (from the
server to the prover) is positive, and that the MACs (θc, θs) verify w.r.t. kMAC. If all the checks pass,
the prize is transferred to P, otherwise P gains no prize and the deposit is returned back to V.

As mentioned before, V is not encouraged to provide a different public key w.r.t. the one he used
in DECO execution, otherwise P will just abort. On the other hand, the prover is not able to earn
a reward without uploading the promised TEKs. In fact, the probability for the prover to come up
with a pair (m′c, θ′c) (resp. (m′s, θ′s)) that verifies under the key k′MAC derived from Z ′ = Z ′P + Z ′V with
Z ′P := s′P · Y ′S and ZV := sV · Y ′S is negligible due to the fact that sP is fixed and honestly generated,
thus randomizing Z ′, hence k′MAC.

A note on DoS attacks. It is important to prevent DoS attacks run by sellers who actually do not
have the right to upload TEKs and end up by just wasting the buyer’s precious time. In the previous
discussion this protection is not provided: before sending the jointly computed message (mc, θc), the
seller can decide to not forward the message to the server. Now, the buyer has to open his commitment
to show his secret sV in order to not lose the prize. As a result, the committed value cannot be used
in other runs. To address this issue, the smart contract can be modified to handle multiple sessions.
Instead of storing YV as a single DH contribute, the buyer stores the root of a Merkle tree. Now, when
the seller interacts with the contract to reserve a session, a session id (a simple counter j suffices) is
assigned to her: the DH contribute used in the 3HPS will correspond now to the j-th leaf of the Merkle
tree. Now, when the buyer has to open his secret sV , he also reveals the path of the Merkle tree from
the root to the leaf j. The smart contract will now verify that the contribute is correctly derived from
the root by following a path with correct openings. Let us consider a Merkle root committing to 2k
elements, thus allowing the buyer to open as many sessions. For a k large enough, a malicious seller
should spend a considerable amount of money in order to reserve all the sessions.

AES-GCM. Carrying out the attack when AES-GCM ciphersuite is required is more involved. Dif-
ferently from CBC-HMAC, AES-GCM relies on the same key for both encryption and MACs. The
impact of AES-GCM is twofold: 1) more computation is needed to perform the required 2PC to cal-
culate messages from/to the server, due to the AES algorithm itself, 2) the prover does not learn the
encryption key after 3PHS, meaning that both encryption and decryption must be done via 2PC as
well. On the smart contract side, this difference boils down to a lack of fairness. After V and P have
calculated together the upload message and sent it then to S, V could decide not to help the prover
to decrypt the server’s response. Now, P has no witness in her hands to give to the smart contract in
order to prove that she has correctly performed the TEKs upload. As a result, she cannot redeem the
prize. The problem can be easily solved by giving to the smart contract the burden of decrypting the
server’s ciphertext. In our approach, V must commit to his key and open it later. When this happens,
the server reconstructs the MAC/encryption key, decrypts the ciphertext, does the necessary checks,
and pay the prize to P. The CBC-HMAC version of DECO is way faster then the AES-GCM one.
However, looking at practical evaluations made by the authors [ZMM+20,MMZ+20] it is reasonable to

145

D3.3 – Revision of Extended Core Protocols

think that all their solutions may fit in the time window given by contact tracing servers (e.g., 2 hours
in Immuni and SwissCovid) for the TLS connection, even when hiding V through Tor hidden services.
What is less likely is that, in the case of Immuni which uses AES-GCM and requires the upload to be
completed within two minutes, the upload request message (mc, θc) is computed and sent to the server
in time; especially when the prover and the verifier communicate via Tor.

7.4 Conclusion
We showed that the terrorist attack, previously envisioned by Vaudenay, is concretely realizable against
GAEN systems with the aid of cryptographic tools and a blockchain capable of executing smart contracts
(e.g., Ethereum). In particular, the Take-TEK attack exploits the fact that the list of infected TEKs,
published by the server daily, has always a digital signature attached to it. Such a signature allows the
smart contract to easily verify that the upload was performed as requested by the terrorist. Even beyond
the use of signatures, we have shown a different instantiation of the terrorist attack using DECO. In
conclusion, we advise protocol designers not to look at the effects of a specific realization, but to prove
the protocol secure against any automated instantiation of a terrorist attack. Our work shows that the
power of blockchain technology to trade digital assets is still overlooked even when critical features, like
contact tracing of infected individuals, are digitized.

146

Chapter 8

Practical Verifiable MPC using
Bulletproofs/AC20

8.1 Introduction
Electronic voting protocols are prime examples of secure multi-party computation (MPC) that separate
input and compute parties. In this setting, there are many input parties that outsource the tallying
operation to a set of compute parties. This setting introduces new requirements versus classical MPC
protocols where parties are considered both input and compute party.1 A necessary requirement for
voting protocols is public verifiability [CF85,BY86,Ben87,CGS97]. While voting protocols specialize in
the linear operation of tallying votes, the focus of this chapter is a scheme that defines publicly verifiable
MPC for general arithmetic circuits.

We present a practical scheme in which the task of the input party is reduced to a minimum: The
input party posts a single encrypted message to a bulletin board. The compute parties then apply
a threshold cryptosystem to transform the encryption to secret shares, to be used as input for the
secure computation. The compute parties also produce a zero-knowledge proof of correctness of the
computation that allows anyone, particularly someone external to the secure computation, to check the
correctness of the output, while preserving the privacy properties of the MPC protocol.

The structure of our scheme has the following similarities with the voting scheme of Cramer et
al. [CGS97]. The scheme separates active parties into input parties and computation parties. To
achieve public verifiability all parties have access to a bulletin board, which can receive encryptions
from the input parties. Due to the homomorphic properties of the encryption method, the computation
is publicly verifiable. The use of a matching fault-tolerant threshold decryption technique ensures that
the inputs remain private and failure of compute parties can be tolerated up to a given threshold.

Our scheme addresses the challenge of general arithmetic circuits using recent results in zero-
knowledge proof systems, particularly compressed Σ-protocols [AC20] and Bulletproofs [BBB+18a].
This chapter introduces a practical construction based on [AC20], which reconciles Bulletproofs with
Σ-protocol theory. The construction yields proofs of logarithmic size and does not require a trusted
setup, i.e., the setup does not require knowledge of a trapdoor.

8.1.1 Active Security versus Public Verifiability

Goldreich et al. [GMW87] made the observation that any MPC protocol that is secure against passive
adversaries can be made secure against active adversaries by requiring all parties to prove correctness for
each message sent. However, correctness cannot be guaranteed in general. For example, if interactive
zero-knowledge (ZK) proofs are used, an adversary controlling all parties is able to falsify proofs.

1Think of Yao’s Millionaires’ Problem [Yao82] for example.

147

D3.3 – Revision of Extended Core Protocols

Cramer et al. [CDN01] introduced a new approach to MPC basing it on homomorphic threshold
cryptosystems, secure against an active adversary that corrupts any minority of compute parties. Build-
ing on [CDN01], [Hoo12] introduced the notion of universally verifiable secure computation by requiring
that all parties send non-interactive zero-knowledge proofs. We will refer to the notion of universally
verifiable MPC as publicly verifiable MPC, or verifiable MPC for short.

Breakthroughs in non-interactive proof systems led to the first practical constructions for verifiable
MPC. Particularly, the Pinocchio proof system [GGPR13,PHGR13] introduced a practical zk-SNARK
that allowed a prover to perform cryptographically verifiable computations with verification effort less
than performing the computation itself. Building on Pinocchio, Schoenmakers et al. [SVdV16] intro-
duced the publicly verifiable MPC protocol Trinocchio [SVdV16]. The zk-SNARK required a trusted
setup that was specific to the computation, however.

8.1.2 Properties of the Practical Construction

Following [Ben87,CGS97], we require the verifiable MPC construction to be practical, publicly verifiable
with reusable and non-trusted setup, and private.

Practical means that for input length n and circuit length m, the secure computation has com-
munication complexity O(log(m + n)) and computation complexity O(m + n), expressed in secure
multiplications.

Publicly verifiable means that anyone with access to the bulletin board can verify the correctness
of the computation. To further enhance practicality versus prior constructions, we require that the
cryptographic setup for the proof system is reusable for circuits up to a given size and that the setup
does not need to be performed by a trusted party.

Private means that no action can be taken by any minority of active parties which will leak infor-
mation about the inputs other than what can be inferred from the result of the computation.

8.1.3 LIBOR as a Motivating Example

To illustrate the usefulness of verifiable MPC, we describe its application to setting the LIBOR bench-
mark interest rates without a trusted party.

The London Interbank Offered Rate (LIBOR) is a set of benchmarks that reflect the average interest
rate at which large global banks can borrow from each other. It is an important metric to price loans
and is produced once a day by the Intercontinental Exchange (ICE) asking a panel of contributing
banks “At what rate could you borrow funds [..] just prior to 11 a.m. London time?” The banks then
confidentially send their answers to ICE, who calculates the mean of the inputs in the second and third
quartile.

The Libor scandal arose when it was discovered that banks were falsely inflating or deflating their
rates to profit from trades, or to give the impression that they were more creditworthy than they were.2

Our construction could replace ICE as a trusted party, while ensuring confidentiality for the con-
tributing banks and public verifiability. Particularly, public verifiability is achieved by asking the
auditor of each participating bank to verify, cryptographically sign and then publish the bank’s en-
crypted input to the daily computation. By verifying the signatures on the encrypted inputs and the
cryptographic proof of computation, the general public receives strong guarantees that the secure com-
putation is correctly performed on verified inputs, i.e. that no tampering happened on the input or the
computation.

2See https://en.wikipedia.org/wiki/Libor_scandal.

148

https://en.wikipedia.org/wiki/Libor_scandal

D3.3 – Revision of Extended Core Protocols

8.1.4 Our contribution

The main result of this chapter is a conceptual verifiable MPC scheme and practical construction that
takes as inputs encryptions on a bulletin board, has a reusable and non-trusted setup based on standard
cryptographic assumptions, and permits encrypted outputs.

The conceptual scheme requires a bulletin board, a public key cryptosystem and a non-interactive
proof system that can refer to encryptions from this cryptosystem in its statement.

Our practical construction uses the [AC20] proof system based on Bulletproofs [BBB+18a], requir-
ing intractability of the discrete logarithm problem and the Diffie-Hellman problem. The compressed
Σ-protocol for circuit satisfiability [AC20, Protocol 8] refers to Pedersen vector commitments of the
circuit’s inputs in its statements. We use the homomorphic properties of ElGamal to implement a
threshold cryptosystem that ensures the inputs remain private and to refer the proof of correct compu-
tation to the encrypted inputs on the bulletin board.

We present the first implementation of [AC20] as a Python library. To simplify compilation of arith-
metic circuits required for the proof system, the Python library automatically constructs an arithmetic
circuit for a given snippet of Python code. Consistent with the design philosophy of MPyC [Sch18]
it uses operator overloading to construct a datastructure that represents the arithmetic circuit with
addition, scalar multiplication and regular multiplication gates.3

Our Python library exploits the property that for many functions, verification can be done more
efficiently once the result has been computed, possibly requiring a little extra computation. This
resembles the fact that an NP-statement can be verified in polynomial time given a witness, whereas
finding such a witness need not be possible in polynomial time. The circuit compiler will replace the
computational circuit by a more efficient verification circuit for this purpose. I.e., during evaluation of
an operator at runtime, the compiler records the arithmetic gates and inputs that correspond to the
verification of the application of that operator.

8.2 Building Blocks
Our scheme combines several primitives, namely a bulletin board, a threshold cryptosystem and a ver-
ifiable MPC protocol, using a non-interactive proof system. The bulletin board hosts the (encrypted)
inputs and outputs of the computation, including cryptographic proofs. The threshold cryptosystem
enables encrypted inputs and outputs to the verifiable MPC protocol. Supporting our threshold cryp-
tosystem is the notion of secure groups, a scheme to implement finite groups as oblivious data structures
presented in [pri20,pri21]. Throughout, let p be a prime, Zp be shorthand for Z/pZ, Fp denote a field
of prime order p, and boldface aaa ∈ Fnp denote an input vector of length n.

8.2.1 MPC Setting

We consider an MPC setting withM parties tolerating a dishonest majority of up to t passively corrupt
parties, 0 ≤ t ≤ (M − 1)/2. The basic protocols for secure addition and multiplication over a finite
field rely on Shamir secret sharing [BGW88]. Let [[a]] denote a Shamir secret sharing for any finite field
element a ∈ F. If necessary to specify the field’s modulus q, denote [[a]]q for a ∈ Fq.

In the context of exponentiation and integer division, [[a]]Z denotes a Shamir sharing of a bounded
integer a ∈ Z with |a| ≤ Q, such that repeated integer multiplication does not flow over the field
modulus, q. When it is directly clear from the context, we typically suppress Z or the modulus in the
notation of a secret share.

3Each gate has fan-in two and unbounded fan-out.

149

D3.3 – Revision of Extended Core Protocols

8.2.2 Bulletin Board

The communication model required for our scheme is a public broadcast channel with memory, which
we will refer to as a bulletin board. All communication through the bulletin board is public and can be
read by any party (including passive observers). No party can erase any information from the bulletin
board, but each active participant can append messages to its own designated section. For a recent
example of a security framework and construction of a bulletin board protocol, we refer to [KKL+18].

8.2.3 Secure Groups

For a finite group G, a secure groups scheme defines the secure representation of group elements and
secure implementation of group operations, including doubling, exponentiation and inversion, random
sampling and encoding to/from secure group elements.

Definition 6 ([pri20,pri21]). Let G be a finite group. A secure group scheme comprises protocols
for the following tasks, where a, b ∈ G.

Secure group operation. Given [[a]]G and [[b]]G, compute [[a ∗ b]]G.

Secure inversion. Given [[a]]G, compute [[a−1]]G.

Secure exponentiation. Given [[a]]G and [[x]] with x ∈ Z, compute [[ax]]G.

Secure random element. Compute [[a]]G with a ∈R G.

Secure encoding/decoding. For a set S and an injective map σ : S → G:

• Encoding. Given [[s]], compute [[σ(s)]]G.
• Decoding. Given [[a]]G with a ∈ σ(S), compute [[σ−1(a)]].

Note that there may be multiple encoding/decodings for a group G, each defined on a specific set
S. The trivial encoding/decoding is obtained when S = G, which is still interesting in the special cases
mentioned above. For example, an encoding (or decoding) with a private input of a group element
(held by one of the parties, or an external party) yields a way to perform a private input.

To construct secure group elements, one could proceed as follows. Let a map % permit a represen-
tation of a group element a ∈ G to a tuple or matrix of finite field elements. Given a ∈ G, define [[a]]G
as the coordinate-wise application of [[]] to %(a).

8.2.4 Threshold Cryptosystem

We define the following threshold cryptosystem: Let G be a cyclic group with generator g of large
prime order p. Given protocols for secure groups, extend a classical (t + 1,M)-threshold ElGamal
cryptosystem [Ped91] with the following protocols:

Encryption of shared message. Given message [[a]]G, the parties generate [[u]] with u ∈R Zp, and
output ciphertext for public key h as the pair (A,B)← (g[[u]], h[[u]][[a]]G).

Threshold decryption to shared message. Given ciphertext (A,B), compute [[Ax]]G = A[[x]]. The
parties compute and keep message [[a]]G = [[B]]G/[[Ax]]G in shares.

150

D3.3 – Revision of Extended Core Protocols

8.2.5 Circuit Satisfiability Proof System

A verifiable MPC protocol requires a zero-knowledge proof system for the circuit satisfiability problem,
i.e., for a given arithmetic circuit C a prover shows that it knows an input aaa ∈ Fnp for which C(aaa)
evaluates to 0.4 In a verifiable MPC protocol, MPC parties compute a non-interactive zero-knowledge
proof for the circuit satisfiability relation:

Rcs = {(C;aaa) : C(aaa) = 0}. (8.1)

The proof system consists of the following protocols:

Setup. Given a cyclic group G of prime order, compute a set G of generators such that it is hard for
provers (compute parties) to find nontrivial linear relations between the generators in G. In our
construction |G| is dependent on and linear in the number of input gates, n, and multiplication
gates, m, of the largest circuit to be used.5

Prove. Given secret-shared input [[aaa]], encryption Enc(aaa) and circuit C, compute zero-knowledge proof
π for relation {(C,Enc(aaa);aaa) : C(aaa) = 0}.

Verify. Given proof π and statement (C,Enc(aaa)), verify in zero-knowledge the correctness of C([[aaa]]) =
0.

Generally, a proof system requires a cryptographic setup, which can be trusted or untrusted and
support specific or general circuits. For simplicity, the setup in the above scheme corresponds to the
setup step of [AC20], which is reusable for circuits up to a given size and does not require a trusted
party with knowledge of a trapdoor. The setup for the Pinocchio zk-SNARK [PHGR13] would require
a trusted party to generate computation-specific evaluation and verification keys using secret random
elements.

8.3 Practical Construction

8.3.1 Verifiable MPC using the AC20 Proof System

[AC20] reconciles Bulletproofs [BBB+18a] with Σ-Protocol theory. The main construction of [AC20],
based on the discrete log assumption, has communication complexity and proof size that are both
logarithmic in the circuit size. We outline the components of this proof system and recall the main
theorem underpinning the circuit satisfiability protocol.

Components of the AC20 Proof System.

The protocol combines two essential components. The first component is a Σ-protocol that yields zero-
knowledge proofs for arbitrary linear statements and uses an adaptation of the compression technique of
Bulletproofs to reduce communication complexity. This protocol is referred to as compressed Σ-protocol
Πc in [AC20, Protocol 5].

Second, to enable ZK proofs of non-linear statements, the authors apply an adaptation of [CDP12]
to construct a Σ-protocol proving the correctness of one compact commitment to m multiplication
triples (αi, βi, γi ← αiβi), corresponding to the left input, right input and output wires of the circuit’s
multiplication gates, with low amortized complexity for large m. This technique is presented in circuit
satisfiability protocol Πcs, [AC20, Protocol 8].

4Note that this directly generalizes to relations where C′(a) = b, by defining C(a, b)← C′(a)− b.
5For simplicity, we assume a setup as in [AC20]. A setup for Pinocchio [PHGR13] would require a trusted party to

generate evaluation and verification keys based on secret random elements.

151

D3.3 – Revision of Extended Core Protocols

Finally, the complete Σ-protocol for circuit satisfiability, [AC20, Protocol 8], combines the above
two components and performs an amortized nullity check on the three linear forms corresponding to
the multiplication gates’ left input, right input and output wires, plus the linear forms corresponding
to the circuit’s outputs.

Σ-protocol for Circuit Satisfiability.

We briefly elaborate on these last two steps. Given a circuit C with m multiplication gates, define αi,
βi, γi, for i ∈ {1, . . . ,m}, as above, i.e., the values of the left input, right input and output wires of
the circuit’s mul-gates. Define ui, vi as the affine forms in input vector (aaa, γ1, . . . , γm) that correspond
to the αi, βi for i ∈ {1, . . . ,m} and given input aaa. Let ααα denote (α1, . . . , αm), and define βββ and γγγ
simillarly.

The Σ-protocol for showing correctness of the multiplication triples follows these steps6:

• Select two random polynomials f(X), g(X) ∈ Zp[X]≤m that define a packed secret sharing of the
vectors ααα and βββ respectively. Compute h(X)← f(X)g(X).

• The prover commits to zzz = (aaa, f(0), g(0), h(0), ..., h(2m)) ∈ Zn+2m+3
p and sends it to the verifier.

• The verifier selects a random challenge c ∈ Zp\{1, . . . ,m} and sends it to the prover.

• The prover sends y1 ← f(c), y2 ← g(c), y3 ← h(c) to the verifier who checks y3 = y1y2.

The final step of Πcs is to perform an amortized nullity check on the three affine forms corresponding
to all multiplication gates’ left input, right input and output wires, plus the set of affine forms corre-
sponding to the circuit’s outputs. The amortized nullity check uses the compressed Σ-protocol Πc as a
black box for opening linear forms and then applies a polynomial amortization technique to do many
nullity checks at once, on the committed vector aaa, with low amortized complexity (see [AC20, Protocol
7]).

Using Lagrange interpolation, the affine forms in the coefficients of zzz corresponding to the multipli-
cation triples evaluated in c, denoted by fc, gc and hc, are constructed as follows:

fc ←
m∑
j=0

uj(aaa, f(0), γ1, . . . , γm)
∏
i 6=j

c− i
j − i

(8.2)

gc ←
m∑
j=0

vj(aaa, g(0), γ1, . . . , γm)
∏
i 6=j

c− i
j − i

(8.3)

hc ←
2m∑
j=0

h(j)
∏
i 6=j

c− i
j − i

. (8.4)

Given input aaa and the values of the output wires of the multiplication gates, γγγ, the circuit’s output
gates can also be directly expressed as affine forms in coefficients of zzz. Our circuit compiler, using
Python’s operator overloading feature, directly performs the construction of these required forms for
Πcs.

Theorem 5 ([AC20]). Πcs is a (2µ+5)-move protocol for relation Rcs. It is perfectly complete, special
honest-verifier zero-knowledge and computationally knowledge sound, under the discrete log assumption,
with knowledge error

κ ≤ 2µ+ 2m+ 5
p−m

, (8.5)

where µ = dlog2(n+ 2m+ 4)e − 1 and given one compact commitment to a vector of inputs in Zp.
6We refer to [AC20, Section 6.1] for the validity of this protocol.

152

D3.3 – Revision of Extended Core Protocols

Performing Secure Group Operations in MPC.

Let n be the maximum number of inputs and m be the the maximum number of multiplication gates
of the circuits used. Given a finite cyclic group G of prime order p and computation inputs in Fp,
constructing a verifiable MPC protocol from Πcs requires the following secure group operations from
Definition 6:

• Creating a set of n+ 2m+ 3 independent generators G of G can be implemented using a function
to encode a pseudo-random number to a group element.

• Computing the Pedersen vector commitments and announcements (elements A and B in com-
pressed Σ-protocol Πc) requires secure exponentiation of a public group element by a secret-shared
exponent.

Final Remarks on the Circuit Satisfiability Protocol.

The Fiat-Shamir heuristic is applied to make the circuit satisfiability protocol Πcs and its sub-protocols,
most importantly (2µ + 3)-move Πc, non-interactive: Every next challenge is computed as a hash of
the statement, together with all previous messages of the protocol. Unfortunately, for a (2µ+ 3)-move
public coin protocol the security loss of the reduction equals Qµ+1, where Q is the number of random
oracle queries by the adversary. In [ACK21a, Section 5.5] hypothesize that the actual security loss is
in the order of Q.

For input length n and circuit length m, the secure computation has communication complexity
O(log(m+ n)) and computation complexity O(m+ n), expressed in secure multiplications.

A program with constant-sized proofs based on the Knowledge-of-Exponent assumption is also
presented in [AC20, Section 9]. To implement Πcs for constant-sized proofs our implementation also
supports finite groups based on the pairing-friendly BN256 curve with homogeneous projective coordi-
nates.

8.3.2 ElGamal Ciphertexts as Inputs

We will use ElGamal ciphertexts to provide secret inputs to a secure computation, focusing on the basic
case that the input value is a bit b ∈ {0, 1}. Concretely, we consider ElGamal ciphertexts of the form
(gu, hugb), where the private key x = logg h is shared by the MPC parties. The ciphertexts may be
posted to a bulletin board.

The MPC parties apply threshold decryption to convert the encrypted bit b into a secret-shared
bit [[b]], using the following threshold Elgamal cryptosystem. Let G be a cyclic group with generator g
of large prime order p. Given our protocols for secure groups, a simple (t + 1,M)-threshold ElGamal
cryptosystem is obtained as follows:

Distributed key generation. The parties generate [[x]] with x ∈R Zp and compute gx. The parties
keep private key [[x]] in shares and output public key h = gx.

Encryption. Given message b ∈ {0, 1}, pick u ∈R Zp. The ciphertext for public key h is the pair
(gu, hugb).

Threshold decryption. Given ciphertext (A,B), the parties use [[x]] and the secure group exponenti-
ation protocol with secret output to compute [[Ax]]G. The parties then compute [[gb]]G = B/[[Ax]]G
and perform a secure decoding to obtain [[b]].

The MPC parties also need to compute a Pedersen commitment P = hr2g
b, and prove consistency with

the given ciphertext (A,B). This amounts to providing a Σ-proof for the following relation:

{(A,B, P ;x, b, r) : B = Axgb, P = hr2g
b} (8.6)

153

D3.3 – Revision of Extended Core Protocols

Extension to vector commitments:

{(AAA,BBB,P ;x,bbb, r) : ∀ni=1Bi = Axi g
bi , P = hr2

n∏
i=1

gbi
i } (8.7)

Efficient Σ-protocols for these relations are easily obtained by standard techniques.
The MPC parties then perform the secure computation of C(bbb), along with the computation of a

compressed Σ-proof for relation {(C,P ;bbb) : P = hr2ggg
bbb, C(bbb) = 0}.

8.3.3 One-Time Pads as Outputs

We provide a trivial solution to enable secret outputs for the verifiable MPC scheme: MPC parties
first compute C([[aaa]]) = [[b]] and then add a random one-time pad [[r]] to the output. The circuit
satisfiability proof is now applied to secret input vector (aaa, b, r) and slightly adapted circuit C ′ defined
as C ′(xxx, y, z)← C(xxx)− (y + z), which should evaluate to 0 for input vector (aaa, b, r).

8.4 Software
The verifiable MPC Python package supporting the construction of Section 8.3 is available from https:
//github.com/toonsegers/verifiable_mpc under the MIT license. It requires the secure groups extension,
which is available from https://github.com/toonsegers/sec_groups under the MIT license. The verifiable
MPC package includes a convenient circuit compiler as well as several so-called gadgets to construct
verification circuits for operators (problem statements) that are more efficient than the associated
computation circuits.

The Python package extends the MPyC framework [Sch18] to enable multiple MPC parties to ex-
press a verifiable MPC computation in Python code. The package implements the [AC20] proof system,
particularly the circuit satisfiability protocol Πcs. It offers the option to use the compressed pivot pro-
tocol Πc, which is based on the discrete log assumption, and yields proofs that are of size O(log(m+n)).
The second option is to use the program based on the Knowledge-of-Exponent assumption, yielding con-
stant sized proofs. This second option includes a KEA-based vector commitment scheme together with
a ZK protocol for opening of linear forms. This ZK protocol replaces the compressed Σ-(sub)protocol
Πc in Πcs.

8.4.1 Abstraction for Secure Group Operations

To expedite the development of verifiable MPC we designed and implemented an extensive secure group
scheme. The secure group scheme lets us operate easily and efficiently on secret-shared group elements.
In principle, any finite group can be made secure this way. We have included simple examples like small
permutation groups, but we mostly focus on groups that are used for cryptographic purposes such as
elliptic curves.

The secure groups Python package7 simplifies the implementation of the Πcs protocol and directly
yields two scenarios in one go: single prover and multiple MPC parties acting as one prover. The
overhead is very modest, both in terms of cognitive load for the engineer and computational efficiency
versus a direct implementation of Πcs in Python. Implementing Πcs via the secure group abstraction,
on top of the MPyC framework [Sch18], abstracts away most of the implementation details of necessary
MPC sub-protocols in the setting for information theoretically secure MPC, tolerating a dishonest
minority of passively corrupt parties.

7Available from https://github.com/toonsegers/sec_groups under the MIT license.

154

https://github.com/toonsegers/verifiable_mpc
https://github.com/toonsegers/verifiable_mpc
https://github.com/toonsegers/sec_groups
https://github.com/toonsegers/sec_groups

D3.3 – Revision of Extended Core Protocols

8.4.2 Circuit Compiler

To simplify compilation of arithmetic circuits required for the proof system, we include the option to
automatically construct an arithmetic circuit for a given snippet of Python code. Consistent with the
design philosophy of MPyC [Sch18], it uses operator overloading to construct a data structure that
represents the arithmetic circuit with addition, scalar multiplication and regular multiplication gates.

8.4.3 Gadgets

Our Python library exploits the property that for many functions, verification can be done more effi-
ciently once the result has been computed, possibly requiring a little extra computation. This resembles
the fact that an NP-statement can be verified in polynomial time given a witness, whereas finding such
a witness need not be possible in polynomial time. The circuit compiler will replace the computational
circuit by a more efficient verification circuit for this purpose. That is, during evaluation of an operator
at runtime, the compiler records the arithmetic gates and inputs that correspond to the verification of
the application of that operator.

Some problems for which verification is more efficient than solving the problem:

• b = k
√
a can be verified by ak = b;

• b = a−1 can be verified by ab = 1;

• Integer division (q, r) = (ba/bc, a mod b) can be verified by a = bq + r and 0 ≤ r < b;

• Extended gcd (g, α, β) of a and b can be verified by g = aα+ bβ, g|a, g|b, and g > 0;

• Bit decomposition (a0, . . . , a`−1) of a can be verified by ∀`−1
i=0ai ∈ {0, 1} and a = ∑`−1

i=0 2iai;

• Zero-test b = (a 6= 0) ? 1 : 0 can be verified by calculating witness c = (a+(1−b))−1 and checking
that ac = b and a(1− b) = 0.

Gadgets can be directly implemented in the CircuitVar class of the library by specifying the verifi-
cation equations and inputs for the given operator.

8.5 Conclusion
This chapter presents a conceptual scheme and practical construction for verifiable MPC, a crypto-
graphic scheme that can be viewed as a natural extension of electronic voting to general arithmetic
circuits. The practical construction is based on standard cryptographic assumptions and has a trans-
parent setup. A proof-of-concept implementation in Python is included with this deliverable (see
previous section).

The main ingredient for verifiability is the generation of zero-knowledge proofs in MPC. As our
implementation can also be run with a single party, it constitutes a true generalization of zero-knowledge
proofs. The generalization comprises the replacement of a single prover by a set of m ≥ 1 provers where
at most t < m/2 provers may be corrupt.

Acknowledgements. We would like to thank Thomas Attema for his valuable suggestions.

155

Chapter 9

Verifiable Multi-Party Business
Processes

Business process automation (BPA) is the use of technology to execute recurring tasks or processes
with the goal of replacing manual effort. Most BPA deployments aim to automate a firm’s internal
operations. However, many business processes are composed of a series of steps taken by different firms.
Single-party business processes such as invoice production and processing, which might be handled
using a corporate enterprise resource planning (ERP) system, can be viewed as steps in the overarching
multi-party business process. Thus, if BPA aims to improve performance of a firm’s internal business
activities, we may define multi-party business process automation (MPBPA) as the use of technology
to optimize and automate firms’ interactions with each other.

The challenges in realizing MPBPA differ from those solved by existing BPA technology. The most
important difference is the inherent lack of trust between firms on matters of value. A firm would
be naturally hesitant to allow a computer program to automatically pay invoices; instead, review and
approval by a trusted employee in accounts payable is typically required. If it were possible to automate
such interactions in a trusted way, many of the same benefits that BPA has yielded within the scope of
individual firms could be realized at an inter-company or even systemic level. The existence of current
manual reconciliation processes shows that firms are willing to pay a substantial premium to ensure
that business rules, designed to protect against fraud or error, are applied correctly.

Distributed ledger technology (DLT) can be described as the process of replicating and synchronizing
shared data between several mutually distrusting parties. Byzantine fault tolerant (BFT) consensus
protocols are typically used for the replication and synchronization, and are often seen as the underlying
technological basis for DLT. These consensus algorithms, however, present a number of challenges.
First, BFT consensus has high network overhead. This has caused many practical implementations to
appoint a small subset of nodes in the network as designated validators who receive all transactions.
The validators then apply the business rules, which are encoded in the ledger itself as so-called smart
contracts, to determine which transactions are valid, and follow the consensus protocol to agree on how
the ledger state should be updated.

Second, clients might not want to share their confidential business data. In such cases, only the
parties to a contract would receive the transaction details and know the code to be executed. Thus,
the parties execute the code independently and only post attestations about the current state of the
contract to the ledger. The validators follow the consensus protocol to ensure that the attestations are
reliably recorded. In this case, the validators do not know the transaction data or the contract code
nor whether the contract has been executed correctly. The attestation of state is still useful, however,
since all parties can be assured of having a common, non-repudiable view of the state. We refer to this
arrangement as using “privacy limited validation.”

We propose an approach that is more scalable and can be used as the basis for many of the multiparty

156

D3.3 – Revision of Extended Core Protocols

process enforcement use cases that others address through DLT. Our solution is based on committing
process states into an authenticated data structure (ADS) operated by a server whose actions can be
independently verified.

9.1 Related work
Several DLT-based business process management (BPM) systems have been proposed to support exe-
cution of multi-party processes.

Caterpillar [LPGBD+19] is a BPM system that runs on top of the Ethereum blockchain. It keeps
all process related data on the blockchain, in order to ensure its reliability. On one hand, no off-chain
data is required to read or execute a process. On the other hand, potentially sensitive data must be
posted to the blockchain. Lorikeet [TLW18] is a model-driven engineering tool. It generates smart
contract code (in the Solidity language of the Ethereum blockchain) from a Business Process Model
and Notation (BPMN) representation. It uses DLT for communication between parties, but sensitive
data is not posted to the blockchain. There are other solutions outside of academic research, such as
the Proof of Process by Stratumn.1 All of these suffer from the inherent limitations of DLT design,
namely the overhead required to reach consensus between parties. This limits the throughput of these
systems. A comparative overview of these systems is given in [DCCD+19].

The Laava platform [WLT+19] focuses on multi-tenant aspects of BPM and proposes to solve these
by creating a private blockchain instance for each tenant and periodically aggregating the states of these
private chains into a commitment posted to a public blockchain as an external anchor. A drawback of
this approach is that a user would still have to scan a whole private blockchain to extract, prove, or
verify the history of one process.

Mendling et al. [MWA+18] discuss different directions in business processes and blockchain interac-
tion. According to their taxonomy, our approach is based on monitoring. It does not put restrictions
on execution of business processes, but provides a secure, performant, and scalable way to monitor the
execution of multi-party processes. Breu et al. [BDE+13] introduced the distinction between process
orchestration, where the process instance is managed by a central service provider, and process chore-
ography, where the ownership of the instance is transferred from one participant to another. We note
that our monitoring-based approach is applicable in both cases and perhaps even more valuable in the
context of choreographies where it is easier for the parties to get confused over the current state of the
process [PSHW20].

9.2 Our approach
Verifiable Business Processes (VBP) is a transaction-based server-centric solution for adding trust to
a registry or a service in order to achieve verifiable multi-party business process automation. In a
distributed ledger, new transactions are approved by majority agreement; VBP instead is based on
single trust domain where it generates proofs of correct operation, which would make incorrect behavior
immediately evident.

We use an authenticated map of key-value pairs maintained in a sparse Merkle tree (SMT) [DPP16].
A VBP server maintains one such tree and populates it incrementally, starting from an empty tree.
For better performance, the server operates in rounds, collecting updates within a time period and
committing them as a batch at the end of the round. All modifications are public for the participants
of the process, which enables them to audit the operation of the server if they wish to do so. The root
of the SMT is the trust anchor for the proof holder. It is critical for a verifier to know that only one
root value is produced at the end of each round. This guarantees there exists only one version of the

1https://www.proofofprocess.org

157

https://www.proofofprocess.org

D3.3 – Revision of Extended Core Protocols

tree for all participants. Our solution uses a set of external auditors who digitally sign the roots of the
SMT for that purpose.

The SMT, by itself, cannot be used to describe a business process. We assume that the allowed
states and transitions of each process are defined in some formalism. This could be based on a general
standard, such as BPMN, or some custom formalism. VBP tracks the state of each process instance as
a key-value pair where the key is a permanent and unique process identifier and the value represents
the current state of the process instance. The hash of the process identifier determines the leaf of the
SMT for tracking the evolution of the state of that process instance and the hash of the current state
is stored in the designated leaf of the SMT.

As a process is executed, participants send hashes of the updated process states to the VBP server.
The server records each update in the corresponding leaf of the SMT. This enables extraction of a
proof of state for that process instance relative to the root hash of the SMT. When a process instance
is altered to a new state, the hash value for this process will change. Anyone might see that this has
occurred, but without having access to the underlying process instance data that is hashed, it reveals
nothing. Thus, the VBP server functions as an independent witness of the process state, but without
having to know anything about the transactions or the business rules, in the manner described as the
“privacy limited validation” above.

How the process instance moves from one party to another is beyond the scope of VBP. This could
be done by any means of transport agreed upon by the participants. In all cases, the integrity of the
process instance is guaranteed by the VBP server. Note that the VBP server does not receive any
sensitive data to provide that service. Only meta-data on when processes are started and modified is
required.

Our current implementation uses a JavaScript based process definition library to describe the process
verification rules. Process definitions are modeled as finite state machines (FSM). The same library
generates representations of process instances. These are not based on BPMN, although it would be
possible to generate these artifacts from a BPMN tool.

The evolution of process instances can be modeled as a new SMT being constructed by the VBP
server for each round. To ensure that all participants have a consistent view of the evolution of a
process, we need to prove that the server is not maintaining parallel histories for a process instance and
showing different histories to different participants.

Eijdenberg et al. discuss the properties of verifiable log backed maps (VLBM) where the history of
changes to a simple SMT is recorded in a verifiable log for auditing purposes.2 However, full audit is
required to prove correct operation of a VLBM. Since a full audit would be impractical in large trees,
it could allow a malicious operator to perform flip-flop attacks with low probability of detection.

The data structure used in VBP improves upon the VLBM in this respect. Instead of just the hash
of the state of a process instance, each leaf of the SMT in VBP stores a record (H,C, T) where H is
the hash of the current state, C is the counter of state changes since the process instance was created,
and T is the time of the last state change (expressed as the number of the round when that change was
recorded in the SMT).

This data structure enables efficient auditing of the VBP server in a manner similar to the server
auditing process described in [BLT18]. For efficiency, the VBP server applies updates to the SMT in
batches. An auditor keeps the current value of the root hash of the SMT as its internal state and uses
that to verify the correctness of the updates submitted by the server. The correctness of the batch of
updates that transforms the SMT with the root hash R in round N to the SMT with the root hash R′
in round N + 1 is checked as follows:

1. The auditor sets R∗ to R, to start from the SMT state as of round N .

2. For each process state update, the server presents
2https://www.continusec.com/static/VerifiableDataStructures.pdf

158

https://www.continusec.com/static/VerifiableDataStructures.pdf

D3.3 – Revision of Extended Core Protocols

• the record X = (H,C, T) of the process instance state as of round N ;
• the hash chain A linking X to R∗;
• the updated record X ′ = (H ′, C ′, T ′).

3. The auditor processes each of those updates by

• checking that A indeed links X to R∗; this establishes the correctness of the initial state of
the record;

• checking that C ′ = C + 1 and T ′ = N + 1; this establishes the correctness of the update of
the metadata in the record; note that the auditor does not check the state change, because
it is auditing the behavior of the VBP server and not of the business process participants;

• updating R∗ to the output value of the hash chain A when the record X is replaced with X ′;
note that the hash chain A is the same as in the first check, which ensures that the server
could not have changed any other records with this update.

4. After processing all updates, the auditor checks that R∗ = R′; this ensures that the server has
presented exactly the set of updates that transformed the SMT from the state with the root R to
the state with the root R′.

5. If all the checks pass, the auditor signs the new root hash value R′ as approved and the server can
use it as a reference relative to which proofs can be delivered to clients and also as the starting
state for the next batch of updates.

Crucially, the audit protocol allows multiple auditors to work in parallel and independently sign their
approvals, thus avoiding the need for a distributed consensus protocol, which would reintroduce some
of the limitations of DLT.

For clients, the VBP server provides an interface for querying the (H,C, T) records, together with
the associated hash chain proofs. This enables efficient traversal of records relating to a particular
process. The client can query the latest state of the process, then use the time T of the last change
to query the previous state at time T − 1, and so on until the history of the process instance has been
traced back to its creation. The client can then verify that all the state transitions are indeed valid
according to the agreed process model. The client can also verify that the counter of state changes
increases by one with each change, which ensures that there are no other changes to the process state
outside this reported history.

This mode of operation prevents the possibility that processes could be altered briefly, in collusion
with the VBP server operator, for the purpose of producing a fake “proof” of an incorrect state, after
which the process would be put back to the correct, unaltered state. This type of fraud mainly affects
parties who are not participating in the process, but have some outside interest in it, and rely upon its
accuracy for some reason. Without a mechanism to prevent it proactively, this type of fraud can only
be detected by full audit.

9.3 Performance
Keeping the SMT with full modification history takes storage space. Each internal node of the SMT
contains a hash value of k bits. In the leaf nodes, the size of the hash value dominates over the two
integers, so for simplicity we can assume equal-sized nodes. As only the hashes of the process states
are kept in the SMT, the space requirement depends only on the number of process instances and their
modification rates, not on the size of process states.

When a full SMT would be naively stored for each round, each process instance would fill one leaf
node and cause at most k internal nodes to be populated with non-empty values, for a total of about

159

D3.3 – Revision of Extended Core Protocols

N ·M ·k nodes for M processes maintained over N rounds. However, if only a minority of the processes
change in each round, most nodes of the SMT remain the same from one round to the next and those
nodes can be shared between the two trees, thus reducing the storage to N · C · k, where C is the
average number of process instances that change per round. Since the tree is a sparse one, most paths
from a non-empty leaf to the root have many empty siblings. Neither these siblings nor the parents
computed from them need to be stored, as each such parent can be re-computed on demand from the
only non-empty child. With this optimization, only log2M nodes need to be kept on an average path,
for a total of N · C · log2M nodes, each containing k bits, or k/8 bytes of data.

The process count is not a constant, however. The append-only nature of the SMT means it is
always growing. We can assume constant rate of new process instances to get some useful estimates.
For example, with 1 000 clients and 1 000 new process instances per client per year, and an average of
10 state modifications per process instance, we get the rate of about 10 million updates per year and
the tree with 1 million leaves by the end of the first year, 2 million leaves by the end of the second year,
etc. It is up to the application to decide how long historical state should be stored. A rolling window
approach (e.g., store only last year’s worth of full proof history) could be applicable in many cases.

9.4 Conclusions and Outlook
We have proposed an alternative to distributed ledgers for adding integrity to multi-party business
process automation. This solution uses a “trust, but verify” model, which allows us to create a highly
scalable solution. In addition, our solution does not require each participant to install new infrastruc-
ture. The central piece—the VBP server—could be shared between many participants in a software-
as-a-service (SaaS) model.

Our main contribution is adding efficient auditability of modification history to the sparse Merkle
tree (SMT) based authenticated data structure, which protects clients against malicious behavior by
the service provider, including advanced threats, such as the “flip-flop” attack (cf. Sec. 9.2). The other
contribution is showing how such an authenticated data structure could be used in multi-party business
process automation use cases.

A limitation of VBP is that it can handle only linear processes. Extending the model to support
branching, parallel execution, and merging is an interesting avenue of future research.

Currently, a previous version of VBP is used in one production system for monitoring the business
process execution and easing the auditing process of the Certus service.3 However, the solution is
not yet integrated into any established BPM systems. This is a possible direction of future practical
development effort. As the VBP server is agnostic to what data it contains, multiple such integrations
could be supported even by a single instance of the VBP service.

3https://www.certusdoc.com

160

https://www.certusdoc.com

Chapter 10

Conclusions

This document contains new protocols and results for distributed ledgers. In the deliverable, we have
presented the revisions made to the core protocols presented in D3.2 and new results based on the
feedback and experience with the WP1 use cases.

We have also included results that despite not being strictly related to Use Cases and the Toolkits
are of great interest for the distributed ledger technology landscape. As such, we recall that most of the
results presented in the document have already been published in well-known security and cryptography
conferences.

In the deliverable we have discussed how to securely update existing blockchain protocols, how
to enhance the privacy of a blockchain system without introducing additional trusted assumptions,
proposed a new Byzantine fault-tolerant (BFT) total order broadcast protocol aimed at maximizing
throughput on wide-area networks, and discussed how to use the blockchain to improve the efficiency
and the verifiability aspects of a specific class of multi-party computation protocols.

We also considered the important problem of understanding to what extent is possible to remove
data from blockchains like Bitcoin, and we focused the remaining part of the document on discussing
how the distributed ledger technology could play a role in the problem of contact tracing.

161

Bibliography

[a8x] a8x9. a8x9. https://github.com/a8x9.

[a8x20a] a8x9. DP-3T. https://github.com/DP-3T/documents/issues/66, 2020.

[a8x20b] a8x9. DP-3T. https://github.com/DP-3T/documents/issues/210, 2020.

[AAC+08] Yair Amir, Yair Amir, Brian Coan, Jonathan Kirsch, and John" Lane. Byzantine replica-
tion under attack. In Proceedings of the Conference on Dependable Systems and Networks
(DSN), 2008.

[ABB+18a] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic,
Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: a distributed operating sys-
tem for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018, pages 30:1–30:15, 2018.

[ABB+18b] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic,
Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Rui Oliveira, Pascal Felber, and Y. Charlie
Hu, editors, Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto,
Portugal, April 23-26, 2018, pages 30:1–30:15. ACM, 2018.

[AC20] Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical appli-
cation to plug & play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, Part III, volume 12172 of Lecture
Notes in Computer Science, pages 513–543, Santa Barbara, CA, USA, August 17–21,
2020. Springer, Heidelberg, Germany.

[ACK21a] Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for
lattices. IACR Cryptol. ePrint Arch., 2021:307, 2021.

[ACK+21b] Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak., Michael Walter, and Michelle Yeo. Inverse-sybil attacks in auto-
mated contact tracing. In Proc. of CT-RSA, volume To appear, 2021.

[AFV21] Gennaro Avitabile, Daniele Friolo, and Ivan Visconti. Tenk-u: Terrorist attacks for fake
exposure notifications in contact tracing systems. In Proceedings of 19th International
Conference on Applied Cryptography and Network Security ’21, volume To appear, 2021.

162

https://github.com/a8x9
https://github.com/DP-3T/documents/issues/66
https://github.com/DP-3T/documents/issues/210

D3.3 – Revision of Extended Core Protocols

[AGK+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko
Vukolić. The next 700 BFT protocols. ACM Trans. Comput. Syst., 32(4):12:1–12:45,
January 2015.

[AGM+17] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Ramakrishna Kotla, and
Jean-Philippe Martin. Revisiting fast practical byzantine fault tolerance. CoRR,
abs/1712.01367, 2017.

[AKWW19] Georgia Avarikioti, Lukas Käppeli, Yuyi Wang, and Roger Wattenhofer. Bitcoin security
under temporary dishonest majority. In Ian Goldberg and Tyler Moore, editors, FC 2019:
23rd International Conference on Financial Cryptography and Data Security, volume
11598 of Lecture Notes in Computer Science, pages 466–483, Frigate Bay, St. Kitts and
Nevis, February 18–22, 2019. Springer, Heidelberg, Germany.

[AMQ13] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. RBFT: redundant Byzan-
tine fault tolerance. In IEEE 33rd International Conference on Distributed Computing
Systems, ICDCS 2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA, pages 297–
306, 2013.

[AMVA17] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton Andrade. Redactable
blockchain–or–rewriting history in bitcoin and friends. In 2017 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 111–126. IEEE, 2017.

[App20a] Apple. Setting up an Exposure Notification server. https://developer.apple.com/
documentation/exposurenotification/setting_up_an_exposure_notification_server,
2020. Accessed: 2020-08-23.

[App20b] Apple and Google. Apple and Google’s exposure notification system. https://www.apple.
com/covid19/contacttracing, 2020.

[Bai20] Leemon Baird. Personal communication, 2020.

[BAL20] Francesco Buccafurri, Vincenzo De Angelis, and Cecilia Labrini. A privacy-preserving
solution for proximity tracing avoiding identifier exchanging. CoRR, abs/2005.10309,
2020.

[BBB+18a] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018
IEEE Symposium on Security and Privacy, pages 315–334, San Francisco, CA, USA,
May 21–23, 2018. IEEE Computer Society Press.

[BBB+18b] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gre-
gory Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA, pages 315–334. IEEE Computer Society, 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent,
and post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046, 2018. https://eprint.iacr.org/2018/046.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.
In 2014 IEEE Symposium on Security and Privacy, pages 459–474, Berkeley, CA, USA,
May 18–21, 2014. IEEE Computer Society Press.

163

https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://developer.apple.com/documentation/exposurenotification/setting_up_an_exposure_notification_server
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://eprint.iacr.org/2018/046

D3.3 – Revision of Extended Core Protocols

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public randomness
source. Cryptology ePrint Archive, Report 2015/1015, 2015. https://eprint.iacr.org/
2015/1015.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography
Conference, Part II, volume 9986 of Lecture Notes in Computer Science, pages 31–60,
Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[BDE+13] R. Breu, S. Dustdar, J. Eder, C. Huemer, G. Kappel, J. Köpke, P. Langer, J. Mangler,
J. Mendling, G. Neumann, S. Rinderle-Ma, S. Schulte, S. Sobernig, and B. Weber. To-
wards living inter-organizational processes. In 2013 IEEE 15th Conference on Business
Informatics, pages 363–366. IEEE, 2013.

[BDF+20] Lars Baumgärtner, Alexandra Dmitrienko, Bernd Freisleben, Jonas Höchst, Mira Mezini,
Markus Miettinen, Thien Duc Nguyen, Alvar Penning, Filipp Roos, Ahmad-Reza
Sadeghi, Michael Schwarz, and Christian Uhl. Mind the gap: Security & privacy risks of
contact tracing apps. In TrustCom 2020, Security Track, September 2020.

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Recursive zk-
snarks from any additive polynomial commitment scheme. Cryptology ePrint Archive,
Report 2020/1536, 2020. https://eprint.iacr.org/2020/1536.

[BDK15] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Consensus-oriented parallelization:
How to earn your first million. In Proceedings of the 16th Annual Middleware Conference,
Vancouver, BC, Canada, December 07 - 11, 2015, pages 173–184, 2015.

[Ben87] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, September 1987.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EU-
ROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Science, pages
677–706, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,
abs/1710.09437, 2017.

[BGG19] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for con-
structing the public parameters of the pinocchio zk-SNARK. In Aviv Zohar, Ittay Eyal,
Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano
Sala, editors, FC 2018 Workshops, volume 10958 of Lecture Notes in Computer Science,
pages 64–77, Nieuwpoort, Curaçao, March 2, 2019. Springer, Heidelberg, Germany.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018: 25th Conference on Computer and Communications Security, pages 913–930,
Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-
SNARK parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050, 2017. https://eprint.iacr.org/2017/1050.

164

https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2017/1050

D3.3 – Revision of Extended Core Protocols

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th Annual
ACM Symposium on Theory of Computing, pages 1–10, Chicago, IL, USA, May 2–4, 1988.
ACM Press.

[Bit] Bitcoin. http://bitcoin.org.

[Bit19] Bitcoin visuals: Transaction sizes. https://bitcoinvisuals.com/chain-tx-size, 2019.

[BLS19] Johannes K Becker, David Li, and David Starobinski. Tracking anonymized bluetooth
devices. Proceedings on Privacy Enhancing Technologies, 2019(3):50–65, 2019.

[BLT18] Ahto Buldas, Risto Laanoja, and Ahto Truu. A blockchain-assisted hash-based signature
scheme. In NordSec 2018, Proceedings, volume 11252 of LNCS, pages 138–153. Springer,
2018.

[BMS19] Stefano Bistarelli, Ivan Mercanti, and Francesco Santini. An analysis of non-standard
transactions. Frontiers in Blockchain, 2:7, 2019.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a
transaction ledger: A composable treatment. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes
in Computer Science, pages 324–356, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The
one-more-rsa-inversion problems and the security of chaum’s blind signature scheme. J.
Cryptol., 16(3):185–215, 2003.

[BSA14] Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson Alchieri. State machine
replication for the masses with BFT-SMART. In International Conference on Dependable
Systems and Networks (DSN), pages 355–362, 2014.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J.
ACM, 32:824–840, October 1985.

[Buc16] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.
M.Sc. Thesis, University of Guelph, Canada, June 2016.

[But] Vitalik Buterin. On-chain scaling to potentially 500
tx/sec through mass tx validation. https://ethresear.ch/t/
on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477.

[BY86] Josh Cohen Benaloh and Moti Yung. Distributing the power of a government to enhance
the privacy of voters (extended abstract). In Joseph Y. Halpern, editor, 5th ACM Sym-
posium Annual on Principles of Distributed Computing, pages 52–62, Calgary, Alberta,
Canada, August 11–13, 1986. Association for Computing Machinery.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42nd Annual Symposium on Foundations of Computer Science, pages 136–145,
Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer Society Press.

[Cap18] Daily hodl: Cryptocurrency transaction speeds: The complete review. https://dailyhodl.
com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/, 2018.

165

http://bitcoin.org
https://bitcoinvisuals.com/chain-tx-size
 https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
 https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://dailyhodl.com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/
https://dailyhodl.com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/

D3.3 – Revision of Extended Core Protocols

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and
Roger Wattenhofer. On scaling decentralized blockchains - (A position paper). In Fi-
nancial Cryptography and Data Security - FC 2016 International Workshops, BITCOIN,
VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected
Papers, pages 106–125, 2016.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from
threshold homomorphic encryption. In Birgit Pfitzmann, editor, Advances in Cryptology
– EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 280–
299, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[CDP12] Ronald Cramer, Ivan Damgård, and Valerio Pastro. On the amortized complexity of
zero knowledge protocols for multiplicative relations. In Adam Smith, editor, ICITS 12:
6th International Conference on Information Theoretic Security, volume 7412 of Lecture
Notes in Computer Science, pages 62–79, Montreal, QC, Canada, August 15–17, 2012.
Springer, Heidelberg, Germany.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryp-
tography Conference, volume 4392 of Lecture Notes in Computer Science, pages 61–85,
Amsterdam, The Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure
election scheme (extended abstract). In 26th Annual Symposium on Foundations of Com-
puter Science, pages 372–382, Portland, Oregon, October 21–23, 1985. IEEE Computer
Society Press.

[CFG+20a] Alessandro De Carli, Muriel Figueredo Franco, A. Gassmann, Christian Killer, Bruno
Rodrigues, Eder J. Scheid, D. Schoenbaechler, and Burkhard Stiller. Wetrace - A privacy-
preserving mobile COVID-19 tracing approach and application. CoRR, abs/2004.08812,
2020.

[CFG+20b] Justin Chan, Dean P. Foster, Shyam Gollakota, Eric Horvitz, Joseph Jaeger, Sham M.
Kakade, Tadayoshi Kohno, John Langford, Jonathan Larson, Sudheesh Singanamalla,
Jacob E. Sunshine, and Stefano Tessaro. PACT: privacy sensitive protocols and mecha-
nisms for mobile contact tracing. CoRR, abs/2004.03544, 2020.

[CGHZ16] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round asyn-
chronous multi-party computation based on one-way functions. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part II, volume
10032 of Lecture Notes in Computer Science, pages 998–1021, Hanoi, Vietnam, Decem-
ber 4–8, 2016. Springer, Heidelberg, Germany.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable
and Secure Distributed Programming (2. ed.). Springer, 2011.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Walter Fumy, editor, Advances in Cryptology
– EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 103–118,
Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg, Germany.

166

D3.3 – Revision of Extended Core Protocols

[Cha83] David Chaum. Blind signature system. In David Chaum, editor, Advances in Cryptology
– CRYPTO’83, page 153, Santa Barbara, CA, USA, 1983. Plenum Press, New York,
USA.

[Cha88] David Chaum. Blind signature systems. U.S. Patent #4,759,063, July 1988.

[Cha20] Chaos Computer Club. 10 requirements for the evaluation of "contact tracing" apps.
https://www.ccc.de/en/updates/2020/contact-tracing-requirements, 2020. Accessed:
2020-08-23.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zksnarks with universal and updatable SRS. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 -
39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 738–768. Springer, 2020.

[CHRT20] Andrew Clement, Jilian Harkness, George Rain, and Laura Tribe. Snowden surveillance
archive. https://snowdenarchive.cjfe.org/greenstone/cgi-bin/ library.cgi, 2020.

[CKKZ20] Michele Ciampi, Nikos Karayannidis, Aggelos Kiayias, and Dionysis Zindros. Updatable
blockchains. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors,
ESORICS 2020: 25th European Symposium on Research in Computer Security, Part II,
volume 12309 of Lecture Notes in Computer Science, pages 590–609, Guildford, UK,
September 14–18, 2020. Springer, Heidelberg, Germany.

[CKL+20] Ran Canetti, Yael Tauman Kalai, Anna Lysyanskaya, Ronald L. Rivest, Adi Shamir,
Emily Shen, Ari Trachtenberg, Mayank Varia, and Daniel J. Weitzner. Privacy-preserving
automated exposure notification. IACR Cryptol. ePrint Arch., 2020:863, 2020.

[CL99a] Miguel Castro and Barbara Liskov. Authenticated Byzantine fault tolerance without
public-key cryptography. Technical Report MIT/LCS/TM-589, MIT Laboratory for
Computer Science, 1999.

[CL99b] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99,
pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.

[CL02] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, November 2002.

[CNG18] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Evaluating the Red Belly
blockchain. CoRR, abs/1812.11747, 2018.

[Cor] The Corda Platform. https://www.r3.com/corda-platform/.

[Cor20] Corona-Warn Team. Criteria for the evaluation of contact trac-
ing apps. https://github.com/corona-warn-app/cwa-documentation/blob/
ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md, 2020. Accessed: 2020-08-
23.

[CWA+09] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. Mak-
ing Byzantine fault tolerant systems tolerate Byzantine faults. In NSDI, 2009.

[D’A83] Nino D’Angelo. Pronto si tu. https://www.youtube.com/watch?v=8DP3UyDS0Ts, 1983.

167

https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://snowdenarchive.cjfe.org/greenstone/cgi-bin/library.cgi
https://www.r3.com/corda-platform/
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://github.com/corona-warn-app/cwa-documentation/blob/ec703906c109bd7c3cc84bc361b7e703b20650ea/pruefsteine.md
https://www.youtube.com/watch?v=8DP3UyDS0Ts

D3.3 – Revision of Extended Core Protocols

[DCCD+19] Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano García-Bañuelos, Orlenys
López-Pintado, Qinghua Lu, Jan Mendling, Alexander Ponomarev, An Binh Tran, and
Ingo Weber. Blockchain support for collaborative business processes. Informatik Spek-
trum, 42:182–190, May 2019.

[DD18] Evan Duffield and Daniel Diaz. Dash: A payments-focused cryptocurrency, 2018. https:
//github.com/dashpay/dash/wiki/Whitepaper.

[Dec19] Decred. Decred white paper, 2019. https://docs.decred.org/.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, vol-
ume 10821 of Lecture Notes in Computer Science, pages 66–98, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Heidelberg, Germany.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, April 1988.

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge
proof systems. In Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87, vol-
ume 293 of Lecture Notes in Computer Science, pages 52–72, Santa Barbara, CA, USA,
August 16–20, 1988. Springer, Heidelberg, Germany.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation
onion router. In USENIX, pages 303–320, 2004.

[DMT19] Dominic Deuber, Bernardo Magri, and Sri Aravinda Krishnan Thyagarajan. Redactable
blockchain in the permissionless setting. In 2019 IEEE Symposium on Security and
Privacy, pages 124–138, San Francisco, CA, USA, May 19–23, 2019. IEEE Computer
Society Press.

[DP-20] DP-3T Team. Decentralized privacy-preserving proximity tracing. https://github.com/
DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf , 2020.

[DPP16] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse Merkle trees. In
NordSec 2016, volume 10014 of LNCS, pages 199–215. Springer, 2016.

[DR20a] Paul-Olivier Dehaye and Joel Reardon. Proximity tracing in an ecosystem of surveillance
capitalism. CoRR, abs/2009.06077, 2020.

[DR20b] Paul-Olivier Dehaye and Joel Reardon. Swisscovid: a critical analysis of risk assessment
by swiss authorities. CoRR, abs/2006.10719, 2020.

[DRZ18] Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: asynchronous BFT made practi-
cal. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 2028–2041,
2018.

[DT20a] DP-3T’s Team. DESIRE: A Practical Assessment. https://github.com/DP-3T/
documents/blob/master/Security%20analysis/DESIRE%20-%20A%20Practical%
20Assessment.pdf, 2020. Accessed: 2020-06-01.

168

https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper
https://docs.decred.org/
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/DESIRE%20-%20A%20Practical%20Assessment.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/DESIRE%20-%20A%20Practical%20Assessment.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/DESIRE%20-%20A%20Practical%20Assessment.pdf

D3.3 – Revision of Extended Core Protocols

[DT20b] DP-3T’s Team. Privacy and Security Risk Evaluation of Digital Proximity Tracing
Systems. https://github.com/DP-3T/documents/blob/master/Security%20analysis/
Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%
20Systems.pdf, 2020. Accessed: 2020-04-21.

[DT20c] DP-3T’s Team. Response to ’Analysis of DP3T: Between Scylla and Charybdis’.
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Response%
20to%20’Analysis%20of%20DP3T’.pdf, 2020. Accessed: 2020-04-23.

[DT20d] DP-3T’s Team. Secure upload authorisation for digital proximity tracing.
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Upload%
20Authorisation%20Analysis%20and%20Guidelines.pdf, 2020. Accessed: 2020-05-
03.

[EGSR16] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert Van Renesse. Bitcoin-ng: A
scalable blockchain protocol. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 45–59, Santa Clara, CA, 2016.

[EOS19] EOS Canada: What is the role of a block producer? https://www.eoscanada.com/en/
what-is-the-role-of-a-block-producer, 2019.

[Eth] Ethereum. http://ethereum.org.

[Eur20] European Commission. Guidance on apps supporting the fight against COVID 19 pan-
demic in relation to data protection. Official Journal of the European Union, 2020.

[FHBS19] Martin Florian, Sebastian Henningsen, Sophie Beaucamp, and Björn Scheuermann. Eras-
ing data from blockchain nodes. In 2019 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), pages 367–376. IEEE, 2019.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 152–168, Santa Barbara, CA, USA,
August 14–18, 2005. Springer, Heidelberg, Germany.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[Fra20] Fraunhofer AISEC. Pandemic contact tracing apps: Dp-3t, pepp-pt ntk, and robert
from a privacy perspective. Cryptology ePrint Archive, Report 2020/489, 2020. https:
//eprint.iacr.org/2020/489.

[GAG+19] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT:
A scalable and decentralized trust infrastructure. In 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2019, Portland, OR, USA,
June 24-27, 2019, pages 568–580, 2019.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture

169

https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Response%20to%20'Analysis%20of%20DP3T'.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Response%20to%20'Analysis%20of%20DP3T'.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Upload%20Authorisation%20Analysis%20and%20Guidelines.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20-%20Upload%20Authorisation%20Analysis%20and%20Guidelines.pdf
https://www.eoscanada.com/en/what-is-the-role-of-a-block-producer
https://www.eoscanada.com/en/what-is-the-role-of-a-block-producer
http://ethereum.org
https://eprint.iacr.org/2020/489
https://eprint.iacr.org/2020/489

D3.3 – Revision of Extended Core Protocols

Notes in Computer Science, pages 626–645, Athens, Greece, May 26–30, 2013. Springer,
Heidelberg, Germany.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling Byzantine agreements for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 51–68. ACM, 2017.

[GK20] Juan A. Garay and Aggelos Kiayias. SoK: A consensus taxonomy in the blockchain era. In
Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, volume 12006 of Lecture
Notes in Computer Science, pages 284–318, San Francisco, CA, USA, February 24–28,
2020. Springer, Heidelberg, Germany.

[GKL15a] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 281–310. Springer, 2015.

[GKL15b] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Com-
puter Science, pages 281–310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol
with chains of variable difficulty. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Com-
puter Science, pages 291–323, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.

[GKLP18] Juan A. Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Boot-
strapping the blockchain, with applications to consensus and fast PKI setup. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International Conference on The-
ory and Practice of Public Key Cryptography, Part II, volume 10770 of Lecture Notes in
Computer Science, pages 465–495, Rio de Janeiro, Brazil, March 25–29, 2018. Springer,
Heidelberg, Germany.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updat-
able and universal common reference strings with applications to zk-SNARKs. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part III, volume 10993 of Lecture Notes in Computer Science, pages 698–728, Santa
Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[GKR18] Peter Gaži, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on proof-of-
stake blockchains. Cryptology ePrint Archive, Report 2018/248, 2018. https://eprint.
iacr.org/2018/248.

[GKW+16] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,
and Srdjan Capkun. On the security and performance of proof of work blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 3–16, 2016.

[GKZ19] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In 2019
IEEE Symposium on Security and Privacy, pages 139–156, San Francisco, CA, USA,
May 19–23, 2019. IEEE Computer Society Press.

170

https://eprint.iacr.org/2018/248
https://eprint.iacr.org/2018/248

D3.3 – Revision of Extended Core Protocols

[GL20] Mattew Green and Yehuda Lindell. Privacy & tracking to mitigate pandemics: pol-
itics and technological solutions. https://www.brighttalk.com/webcast/17700/392003/
privacy-tracking-to-mitigate-pandemics-politics-and-technological-solutions, 2020.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Com-
puter Science, pages 581–612, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City, NY,
USA, May 25–27, 1987. ACM Press.

[Goo14] L.M Goodman. Tezos —a self-amending crypto-ledger white paper, 2014. https://tezos.
com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf.

[Goo20a] Google. Exposure Key export file format and verification. https://developers.google.com/
android/exposure-notifications/exposure-key-file-format, 2020. Accessed: 2020-08-23.

[Goo20b] Google. Exposure Notification Cryptography Specification. https://blog.google/
documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf,
2020. Accessed: 2020-08-23.

[Gre19] Andy Greenberg. The clever cryptography behind apple’s ’find my’ feature. https://
www.wired.com/story/apple-find-my-cryptography-bluetooth/ , 2019.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 305–326, Vienna, Austria,
May 8–12, 2016. Springer, Heidelberg, Germany.

[gRP] gRPC. http://grpc.io.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

[Hoo12] S.J.A. Hoogh, de. Design of large scale applications of secure multiparty computation
: secure linear programming. PhD thesis, Department of Mathematics and Computer
Science, 2012.

[Imm20] Immuni Team. Immuni’s high-level description. https://github.com/immuni-app/
immuni-documentation, 2020. Accessed: 2020-08-23.

[IPT20a] Inria PRIVATICS Team. DESIRE: A Third Way for a European Exposure Notification
System. https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE/
blob/master/DESIRE-specification-EN-v1_0.pdf, 2020. Accessed: 2020-06-03.

[IPT20b] Inria PRIVATICS Team. ROBERT: ROBust and privacy-presERving proxim-
ity Tracing. https://github.com/ROBERT-proximity-tracing/documents/blob/master/
ROBERT-specification-EN-v1_0.pdf, 2020. Accessed: 2020-05-02.

171

https://www.brighttalk.com/webcast/17700/392003/privacy-tracking-to-mitigate-pandemics-politics-and-technological-solutions
https://www.brighttalk.com/webcast/17700/392003/privacy-tracking-to-mitigate-pandemics-politics-and-technological-solutions
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://developers.google.com/android/exposure-notifications/exposure-key-file-format
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
http://grpc.io
https://eprint.iacr.org/2019/953
https://github.com/immuni-app/immuni-documentation
https://github.com/immuni-app/immuni-documentation
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE/blob/master/DESIRE-specification-EN-v1_0.pdf
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE/blob/master/DESIRE-specification-EN-v1_0.pdf
https://github.com/ROBERT-proximity-tracing/documents/blob/master/ROBERT-specification-EN-v1_0.pdf
https://github.com/ROBERT-proximity-tracing/documents/blob/master/ROBERT-specification-EN-v1_0.pdf

D3.3 – Revision of Extended Core Protocols

[IVV21] Vincenzo Iovino, Serge Vaudenay, and Martin Vuagnoux. On the effectiveness of time
travel to inject covid-19 alerts. In Proc. of CT-RSA, volume To appear, 2021.

[JKS16] Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investigating the future of
criminal smart contracts. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Com-
puter and Communications Security, pages 283–295, Vienna, Austria, October 24–28,
2016. ACM Press.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: speculative Byzantine fault tolerance. In Proceedings of the Symposium on
Operating Systems Principles (SOSP). ACM, 2007.

[Ker20] Thomas Kerber. Implementations to accompany "mining for privacy". GitHub, 2020.
https://github.com/tkerber/pistis-impl.

[Kil95] Joe Kilian. Improved efficient arguments (preliminary version). In Don Coppersmith,
editor, Advances in Cryptology – CRYPTO’95, volume 963 of Lecture Notes in Com-
puter Science, pages 311–324, Santa Barbara, CA, USA, August 27–31, 1995. Springer,
Heidelberg, Germany.

[KJG+16] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via
collective signing. In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages 279–296.
USENIX Association, 2016.

[KJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta,
and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In
2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 583–598, 2018.

[KKK19] M. Kim, Y. Kwon, and Y. Kim. Is stellar as secure as you think? In 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), pages 377–385, 2019.

[KKK21] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Mining for privacy: How to
bootstrap a snarky blockchain. Financial Cryptography and Data Security 2021, 2021.

[KKL+18] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas Zacharias.
On the security properties of e-voting bulletin boards. In Dario Catalano and Roberto De
Prisco, editors, SCN 18: 11th International Conference on Security in Communication
Networks, volume 11035 of Lecture Notes in Computer Science, pages 505–523, Amalfi,
Italy, September 5–7, 2018. Springer, Heidelberg, Germany.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages 654–663, 1997.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.
In 2016 IEEE Symposium on Security and Privacy, pages 839–858, San Jose, CA, USA,
May 22–26, 2016. IEEE Computer Society Press.

172

https://github.com/tkerber/pistis-impl

D3.3 – Revision of Extended Core Protocols

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally compos-
able synchronous computation. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryp-
tography Conference, volume 7785 of Lecture Notes in Computer Science, pages 477–498,
Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Germany.

[KRDO17a] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lec-
ture Notes in Computer Science, pages 357–388, Santa Barbara, CA, USA, August 20–24,
2017. Springer, Heidelberg, Germany.

[KRDO17b] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 357–388, Cham, 2017.
Springer International Publishing.

[KZM+15] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Charalampos Pa-
pamanthou, Rafael Pass, abhi shelat, and Elaine Shi. C∅c∅: A framework for building
composable zero-knowledge proofs. Cryptology ePrint Archive, Report 2015/1093, 2015.
https://eprint.iacr.org/2015/1093.

[L. 16] L. Baird. The Swirlds Hashgraph consensus algorithm: Fair, fast, Byzantine fault toler-
ance. https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf, 2016.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16:133–169, May
1998.

[Lau83] Mariano Laurenti. La Discoteca. https://www.youtube.com/watch?v=t9kwU27FG7U,
1983.

[LF20a] Dough Leith and Stephen Farrell. Testing apps for COVID-19 tracing (TACT). https:
//down.dsg.cs.tcd.ie/tact/, 2020. Accessed: 2020-08-23.

[LF20b] Douglas J. Leith and Stephen Farrell. Coronavirus contact tracing: evaluating the po-
tential of using bluetooth received signal strength for proximity detection. Comput.
Commun. Rev., 50(4):66–74, 2020.

[LHML20] Franck Legendre, Mathias Humbert, Alain Mermoud, and Vincent Lenders. Contact
tracing: An overview of technologies and cyber risks. CoRR, abs/2007.02806, 2020.

[LK17] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale transactions. In
Financial Cryptography, pages 264–279, 2017.

[LLM+19] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. Fast and secure global payments
with stellar. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 80–96, New York, NY, USA, 2019. Association for Computing Machinery.

[LNZ+16] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 17–30, 2016.

173

https://eprint.iacr.org/2015/1093
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.youtube.com/watch?v=t9kwU27FG7U
https://down.dsg.cs.tcd.ie/tact/
https://down.dsg.cs.tcd.ie/tact/

D3.3 – Revision of Extended Core Protocols

[LPGBD+19] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo Weber, and
Alexander Ponomarev. Caterpillar: A business process execution engine on the Ethereum
blockchain. Software: Practice and Experience, 47(7):1162–1193, Jul 2019.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4:382–401, July 1982.

[MAK13] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus
in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 358–372, New York, NY, USA, 2013.
ACM.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference strings.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019: 26th Conference on Computer and Communications Security, pages
2111–2128. ACM Press, November 11–15, 2019.

[MBS13] Zarko Milosevic, Martin Biely, and André Schiper. Bounded delay in byzantine-tolerant
state machine replication. In IEEE 32nd Symposium on Reliable Distributed Systems,
SRDS 2013, Braga, Portugal, 1-3 October 2013, pages 61–70, 2013.

[MHH+18] Roman Matzutt, Jens Hiller, Martin Henze, Jan Henrik Ziegeldorf, Dirk Müllmann,
Oliver Hohlfeld, and Klaus Wehrle. A quantitative analysis of the impact of arbitrary
blockchain content on bitcoin. In Sarah Meiklejohn and Kazue Sako, editors, FC 2018:
22nd International Conference on Financial Cryptography and Data Security, volume
10957 of Lecture Notes in Computer Science, pages 420–438, Nieuwpoort, Curaçao,
February 26 – March 2, 2018. Springer, Heidelberg, Germany.

[MHM18] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for bribing
miners. In Financial Cryptography, pages 3–18, 2018.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000.

[MJM08] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building efficient
replicated state machines for wans. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, pages 369–384, Berkeley, CA,
USA, 2008. USENIX Association.

[MMZ+20] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov,
Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller. CanDID: Can-
do decentralized identity with legacy compatibility, sybil-resistance, and accountability.
Cryptology ePrint Archive, Report 2020/934, 2020. https://eprint.iacr.org/2020/934.

[MWA+18] Jan Mendling, Ingo Weber, Wil Aalst, Jan vom Brocke, Cristina Cabanillas, Florian
Daniel, Søren Debois, Claudio Di Ciccio, Marlon Dumas, Schahram Dustdar, Avigdor
Gal, Luciano García-Bañuelos, Guido Governatori, Richard Hull, Marcello La Rosa,
Henrik Leopold, Frank Leymann, Jan Recker, Manfred Reichert, and Liming Zhu.
Blockchains for business process management—challenges and opportunities. ACM
Transactions on Management Information Systems, 9(1), Feb 2018.

174

https://eprint.iacr.org/2020/934

D3.3 – Revision of Extended Core Protocols

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of
BFT protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 31–42, 2016.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[NIS02] NIST. Secure hash standard. https://csrc.nist.gov/csrc/media/publications/fips/180/
2/archive/2002-08-01/documents/fips180-2withchangenotice.pdf, 2002. Accessed: 2020-
08-13.

[NKW21] Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. Timelocked bribing. In
Financial Cryptography, volume To appear, 2021.

[PAC20] PACT’s Team. Decentralized privacy-preserving proximity tracing. https://pact.mit.
edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf , 2020.

[PDC17] Ivan Puddu, Alexandra Dmitrienko, and Srdjan Capkun. µchain: How to forget without
hard forks. Cryptology ePrint Archive, Report 2017/106, 2017. https://eprint.iacr.org/
2017/106.

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended ab-
stract) (rump session). In Donald W. Davies, editor, Advances in Cryptology – EURO-
CRYPT’91, volume 547 of Lecture Notes in Computer Science, pages 522–526, Brighton,
UK, April 8–11, 1991. Springer, Heidelberg, Germany.

[PEP20] PEPP-T’s Team. Pan-european privacy-preserving proximity tracing. https://www.
pepp-pt.org/ , 2020.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly prac-
tical verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages
238–252, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer Society Press.

[Pie20a] Krzysztof Pietrzak. Delayed authentication: Preventing replay and relay attacks in pri-
vate contact tracing. IACR Cryptology ePrint Archive, 2020:418, 2020.

[Pie20b] Krzysztof Pietrzak. Delayed authentication: Preventing replay and relay attacks in pri-
vate contact tracing. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prab-
hakaran, editors, Progress in Cryptology - INDOCRYPT 2020: 21st International Con-
ference in Cryptology in India, volume 12578 of Lecture Notes in Computer Science, pages
3–15, Bangalore, India, December 13–16, 2020. Springer, Heidelberg, Germany.

[PL20] Protocol Labs. Ipfs. https://ipfs.io/, 2020. Accessed: 2020-05-05.

[PR20] Benny Pinkas and Eyal Ronen. Hashomer - a proposal for a privacy-preserving
bluetooth based contact tracing scheme for hamagen. https://github.com/eyalr0/
HashomerCryptoRef/blob/master/documents/hashomer.pdf, 2020. Accessed: 2020-04-
27.

[pri20] Report on privacy-enhancing cryptographic protocols for ledgers. PRIViLEDGE project
funded by the European Commission within the EU Framework Programme for Re-
search and Innovation HORIZON 2020, 2020. http://priviledge-project.eu/publications/
deliverables.

175

https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2withchangenotice.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2withchangenotice.pdf
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://eprint.iacr.org/2017/106
https://eprint.iacr.org/2017/106
https://www.pepp-pt.org/
https://www.pepp-pt.org/
https://ipfs.io/
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
http://priviledge-project.eu/publications/deliverables
http://priviledge-project.eu/publications/deliverables

D3.3 – Revision of Extended Core Protocols

[pri21] Revision of privacy-enhancing cryptographic primitives for ledgers. PRIViLEDGE project
funded by the European Commission within the EU Framework Programme for Re-
search and Innovation HORIZON 2020, 2021. http://priviledge-project.eu/publications/
deliverables.

[PSHW20] Christoph Prybila, Stefan Schulte, Christoph Hochreiner, and Ingo Weber. Runtime
verification for business processes utilizing the Bitcoin blockchain. Future Generation
Computer Systems, 107:816–831, Jun 2020.

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asyn-
chronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in Com-
puter Science, pages 643–673, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg,
Germany.

[RGK20] Adam Krellenstein Rosario Gennaro and James Krellenstein. Exposure notification sys-
tem may allow for large-scale voter suppression. https://static1.squarespace.com/static/
5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_
Notification.pdf, 2020. Accessed: 2020-08-23.

[SBG+19] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, and
Martin T. Vechev. zkay: Specifying and enforcing data privacy in smart contracts. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019: 26th Conference on Computer and Communications Security, pages 1759–
1776. ACM Press, November 11–15, 2019.

[Sch90a] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[Sch90b] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes
in Computer Science, pages 239–252, Santa Barbara, CA, USA, August 20–24, 1990.
Springer, Heidelberg, Germany.

[Sch18] Berry Schoenmakers. MPyC secure multiparty computation in Python. GitHub https:
//github.com/lschoe/mpyc, 2018.

[Sei20] Otto Seiskari. Contact Tracing BLE sniffer PoC. https://github.com/oseiskar/
corona-sniffer, 2020. Accessed: 2020-06-02.

[Sem20] Semaphore Team. Semaphore. https://semaphore.appliedzkp.org/, 2020. Accessed: 2020-
09-15.

[SSL20] TU DARMSTADT SYSTEM SECURITY LAB, CYSEC. TraceCORONA: Anonymous
distributed contact tracing for pandemic response. https://tracecorona.net/, 2020. Ac-
cessed: 2020-09-05.

[SST20] Joosep Simm, Jamie Steiner, and Ahto Truu. Verifiable multi-party business process au-
tomation. In BPM 2020: Business Process Management Workshops, Proceedings, volume
397 of LNBIP, pages 30–41. Springer, 2020.

[STV+16] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities "honest or
bust" with decentralized witness cosigning. In IEEE Symposium on Security and Privacy,

176

http://priviledge-project.eu/publications/deliverables
http://priviledge-project.eu/publications/deliverables
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://github.com/lschoe/mpyc
https://github.com/lschoe/mpyc
https://github.com/oseiskar/corona-sniffer
https://github.com/oseiskar/corona-sniffer
https://semaphore.appliedzkp.org/
https://tracecorona.net/

D3.3 – Revision of Extended Core Protocols

SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 526–545. IEEE Computer Society,
2016.

[SVdV16] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-
preserving outsourcing by distributed verifiable computation. In Mark Manulis, Ahmad-
Reza Sadeghi, and Steve Schneider, editors, ACNS 16: 14th International Conference
on Applied Cryptography and Network Security, volume 9696 of Lecture Notes in Com-
puter Science, pages 346–366, Guildford, UK, June 19–22, 2016. Springer, Heidelberg,
Germany.

[SWB19] Josh Swihart, Benjamin Winston, and Sean Bowe. Zcash counterfeiting vulnerabil-
ity successfully remediated. ECC Blog, February 2019. https://electriccoin.co/blog/
zcash-counterfeiting-vulnerability-successfully-remediated/.

[Swi20a] Swiss Federal Office of Public Health. New coronavirus: Swisscovid app
and contact tracing. https://www.bag.admin.ch/bag/en/home/krankheiten/
ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/
swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.
html#-11360452, 2020. Accessed: 2020-08-23.

[Swi20b] Swiss National Cyber Security Center. Security issue submission [inr-4434]. detailed
analysis. https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_
NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf,
2020. Accessed: 2020-08-23.

[Swi20c] Swiss National Cyber Security Center. Swisscovid proximity tracing system - pub-
lic security test. https://www.melani.admin.ch/dam/melani/de/dokumente/2020/
SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_
Public_Security_Test_Current_Findings.pdf, 2020. Accessed: 2020-08-23.

[Tan20a] Qiang Tang. Privacy-preserving contact tracing: current solutions and open questions.
CoRR, abs/2004.06818, 2020.

[Tan20b] Qiang Tang. Privacy-preserving contact tracing: current solutions and open questions.
Cryptology ePrint Archive, Report 2020/426, 2020. https://eprint.iacr.org/2020/426.

[TBM+20] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Bernardo Magri, Daniel Tschudi,
and Aniket Kate. Reparo: Publicly verifiable layer to repair blockchains. arXiv preprint
arXiv:2001.00486, 2020.

[TCN20] TCNCoalition. TCN Protocol. https://github.com/TCNCoalition/TCN#
the-tcn-protocol, 2020. Accessed: 2020-05-03.

[Ten] Tendermint. http://tendermint.com.

[TJS16] Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine their own
business. In Financial Cryptography, pages 499–514, 2016.

[TLW18] An Binh Tran, Qinghua Lu, and Ingo Weber. Lorikeet: A model-driven engineering tool
for blockchain-based business process execution and asset management. In BPM 2018,
volume 2196 of CEUR Workshop Proceedings, pages 56–60. CEUR-WS.org, 2018.

[Tra] TraceTogether - behind the scenes look at its devel-
opment process. https://www.tech.gov.sg/media/technews/

177

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/swisscovid-app-und-contact-tracing/datenschutzerklaerung-nutzungsbedingungen.html#-11360452
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/INR-4434_NCSC_Risk_assessment.pdf.download.pdf/INR-4434_NCSC_Risk_assessment.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.melani.admin.ch/dam/melani/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://eprint.iacr.org/2020/426
https://github.com/TCNCoalition/TCN#the-tcn-protocol
https://github.com/TCNCoalition/TCN#the-tcn-protocol
http://tendermint.com
https://www.tech.gov.sg/media/technews/tracetogether-behind-the-scenes-look-at-its-development-process
https://www.tech.gov.sg/media/technews/tracetogether-behind-the-scenes-look-at-its-development-process

D3.3 – Revision of Extended Core Protocols

tracetogether-behind-the-scenes-look-at-its-development-process. Accessed: 2020-
05-02.

[Vau20a] Serge Vaudenay. Analysis of DP3T. IACR Cryptol. ePrint Arch., 2020:399, 2020.

[Vau20b] Serge Vaudenay. Centralized or decentralized? the contact tracing dilemma. IACR
Cryptol. ePrint Arch., 2020:531, 2020.

[VCBL09] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? Byzantine Fault Tolerance with a spinning primary. In Proceedings
of International Symposium on Reliable Distributed Systems (SRDS). IEEE Computer
Society, 2009.

[vRS04] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high
throughput and availability. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 2004.

[VTL17] Yaron Velner, Jason Teutsch, and Loi Luu. Smart contracts make bitcoin mining pools
vulnerable. In Financial Cryptography, pages 298–316, 2017.

[Vuk15] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replica-
tion. In International Workshop on Open Problems in Network Security (iNetSec), pages
112–125, 2015.

[VV20] Serge Vaudenay and Martin Vuagnoux. Analysis of swisscovid. https://lasec.epfl.ch/
people/vaudenay/swisscovid/swisscovid-ana.pdf, 2020. Accessed: 2020-08-23.

[Wik] Wikipedia. Bullrun (decryption program). https://en.wikipedia.org/wiki/Bullrun_
(decryption_program).

[Wil18] Zachary J. Williamson. Aztec. https://github.com/AztecProtocol/AZTEC/blob/
master/AZTEC.pdf, 2018. Accessed: 2020-09-15.

[WLT+19] I. Weber, Q. Lu, A. B. Tran, A. Deshmukh, M. Gorski, and M. Strazds. A platform
architecture for multi-tenant blockchain-based systems. In ICSA 2019, pages 101–110.
IEEE, 2019.

[Woo16] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. http:
//gavwood.com/paper.pdf, 2016.

[WW19] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchronous
consensus zones. In 16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 95–112, Boston, MA, February 2019. USENIX Association.

[Yan19] H. Yang. EC Cryptography Tutorials - Herong’s Tutorial Examples. Herong’s Tutorial
Examples. Herong Yang, 2019.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illi-
nois, November 3–5, 1982. IEEE Computer Society Press.

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham.
Hotstuff: BFT consensus with linearity and responsiveness. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019., pages 347–356, 2019.

178

https://www.tech.gov.sg/media/technews/tracetogether-behind-the-scenes-look-at-its-development-process
https://www.tech.gov.sg/media/technews/tracetogether-behind-the-scenes-look-at-its-development-process
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://en.wikipedia.org/wiki/Bullrun_(decryption_program)
https://en.wikipedia.org/wiki/Bullrun_(decryption_program)
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

D3.3 – Revision of Extended Core Protocols

[zca] Zcash. https://z.cash/.

[Zca18] Zcash. Parameter generation. https://z.cash/technology/paramgen/, 2018.

[Zca19] Zcash. Address and value pools in Zcash. https://zcash.readthedocs.io/en/latest/rtd_
pages/addresses.html#turnstiles, 2019.

[ZCC+16] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An
authenticated data feed for smart contracts. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd
Conference on Computer and Communications Security, pages 270–282, Vienna, Austria,
October 24–28, 2016. ACM Press.

[ZkD20] ZkDAI Team. Zkdai. https://github.com/atvanguard/ethsingapore-zk-dai, 2020. Ac-
cessed: 2020-09-15.

[ZMM+20] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels. DECO:
Liberating web data using decentralized oracles for TLS. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 20: 27th Conference on Com-
puter and Communications Security, pages 1919–1938, Virtual Event, USA, November 9–
13, 2020. ACM Press.

[ZOB19] Bingsheng Zhang, Roman Oliynykov, and Hamed Balogun. A treasury system for cryp-
tocurrencies: Enabling better collaborative intelligence. In ISOC Network and Distributed
System Security Symposium – NDSS 2019, San Diego, CA, USA, February 24-27, 2019.
The Internet Society.

[ZoK20] ZoKrates Team. Zokrates. https://zokrates.github.io/, 2020. Accessed: 2020-09-15.

179

https://z.cash/
https://z.cash/technology/paramgen/
https://zcash.readthedocs.io/en/latest/rtd_pages/addresses.html##turnstiles
https://zcash.readthedocs.io/en/latest/rtd_pages/addresses.html##turnstiles
https://github.com/atvanguard/ethsingapore-zk-dai
https://zokrates.github.io/

	Executive Summary
	Updatable Blockchains
	Introduction
	Our Contributions
	Our Techniques

	The Model
	Ledger Consensus: Model
	Genesis Block Functionality

	Secure Updatable Ledgers
	Defining Secure Updatable Ledgers

	Our Constructions
	First Approach
	Second Approach

	Mining for Privacy
	Introduction
	Our Contributions
	Related Work

	Updateable Structured Reference Strings
	Standard Requirements
	Simulation Requirements

	Building uSRS from Chain Quality
	High-Level Overview
	Our Ledger Abstraction
	The Ideal World
	The Hybrid World
	Alternative Usage of Gclock
	UC Emulation

	Implementation and Parameter Selection
	Execution Time of uSRS Operations
	Simulating the Optimal Attack Strategy
	Storage and Network Usage
	Conclusion

	Low-Entropy Update Mitigation
	Proposed Construction
	Security Intuition

	Discussion
	Upgrading Reference Strings
	The Root of Trust
	Applications to Non-Updateable SNARKs

	The Sonic uSRS
	Specification of Sonic Updates
	Satisfaction of Security Properties
	Instantiating FNIZK

	The Nakamoto Ledger
	Functionality Definition
	Relation to Existing Protocols

	The Adaptor Protocol
	The Simulator
	Minor UC Functionalities
	The Global Clock
	Non-Interactive Zero-Knowledge
	Random Oracle
	Delay Wrapper

	Security Analysis

	Mir-BFT: High-Throughput Robust BFT for Decentralized Networks
	Introduction
	System Model
	PBFT and its Bottlenecks
	Mir Overview
	Mir Implementation Details
	The Client
	Sequence Numbers and Buckets
	Common Case Operation
	Epoch Change
	Checkpointing (Garbage Collection)
	Signature Verification Sharding (SVS)
	State Transfer
	Membership Reconfiguration
	Durability (Persisting State)
	Implementation Architecture

	Pseudocode
	Mir Correctness
	Validity (P1)
	Agreement (Total Order) (P2)
	No Duplication (P3)
	Totality (P4)
	Liveness (P5)

	LTO: Optimization for large requests
	Evaluation
	Scalability on a WAN
	Scalability in a Cluster/Datacenter
	Impact of optimizations and bucket rotation.
	Benefits of Duplication Prevention
	Performance Under Faults

	Related Work
	Conclusions

	Removing Data from Bitcoin Transactions
	The Limitations of Previous Solutions and Our Scenario
	Our Contributions
	Can data be removed from Bitcoin in general?

	Related Work and Comparison
	Preliminaries
	Bitcoin in a nutshell
	SNARKs/STARKs
	Isekai

	Our Bitcoin Sanitizer
	Our Implementation

	Contact Tracing and Blockchains as Shared Memory
	Introduction
	Our Contribution
	High-Level Overview of Pronto-C2
	Blockchain as Shared Memory
	Tracing

	Related Work
	Threat Model
	Privacy Attacks for Mass Surveillance
	Paparazzi Attack: Tracing Infected Users with Trusted Server
	Orwell Attack: Tracing Infected Users with Colluding Server
	Matrix Attack: Shameless Tracing of Infected Users with Colluding Server
	Brutus Attack: Creation of Mappings Between Real Identities and Pseudonyms

	Other Attacks
	Bombolo Attack: Leakage of Contacts of Infected Users
	Gossip Attack: Proving Contact With an Infected User
	Matteotti Attack: Putting Opponents in Quarantine
	Replay Attack

	Brief Description of DP-3T
	Security Analysis of the DP-3T Systems

	Pronto-C2: Design and Analysis
	Pronto-C2
	Analysis of Pronto-C2

	Suggestions for a Practical Realization of Pronto-C2
	Pronto-C2 Practical Implementation
	Performance Analysis
	Performance Analysis of Pronto-C2

	Smart Contracts Realizing the Terrorist Attack to GAEN
	Introduction
	Our Contribution
	Related Work

	Trading TEKs in GAEN Systems
	 Take-TEK Smart Contract: Buying/Selling TEK Uploads
	On the Practicality of Take-TEK Attack
	Subtleties in the Wild

	Connecting Smart Contracts to TLS Sessions
	Decentralized Oracles
	A Smart Contract Oracle

	Conclusion

	Practical Verifiable MPC using Bulletproofs/AC20
	Introduction
	Active Security versus Public Verifiability
	Properties of the Practical Construction
	LIBOR as a Motivating Example
	Our contribution

	Building Blocks
	MPC Setting
	Bulletin Board
	Secure Groups
	Threshold Cryptosystem
	Circuit Satisfiability Proof System

	Practical Construction
	Verifiable MPC using the AC20 Proof System
	ElGamal Ciphertexts as Inputs
	One-Time Pads as Outputs

	Software
	Abstraction for Secure Group Operations
	Circuit Compiler
	Gadgets

	Conclusion

	Verifiable Multi-Party Business Processes
	Related work
	Our approach
	Performance
	Conclusions and Outlook

	Conclusions

