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Executive Summary
This document presents revisions and additional improvements to the cryptographic primitives, relevant for dis-
tributed ledger technologies, that were presented earlier in the deliverable D2.3. The document contains both
direct revisions of works presented earlier, such as improvements and small extensions, as well as more novel,
standalone contributions, that nevertheless continue the previous line of work. The research that led to the tech-
nical contributions of the PRIViLEDGE partners has been motivated by D2.3, but also by other work packages,
including toolkits. Concretely, this document contains analysis of blockchain protocols with hasty smart contract
players, a new construction of non-interactive ZK argument without programming random oracles, a scheme to
implement finite groups as oblivious data structures using MPC, and an analysis of security for trusted setup
“ceremony” protocols for zk-SNARKs. All the mentioned contributions present or analyse basic cryptographic
blocks that are commonly used in DLTs.
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Chapter 1

Introduction

The research effort behind development of cryptographic primitives used in the DLT space shows a definite
acceleration trend in line with popularity of DLTs. One factor that contributes to this is the activity of the
blockchain industry, which is very sensitive to innovation, and incentivizes development of new cryptographic
products. Another factor is that, arguably, the area as a whole is becoming more mature and professional, and
thus the gap between academic experts and practitioners becomes more narrow. But paramount to all this is the
intrinsic nature of such cryptographic primitives and the role of trust in the distributed protocols – these two
main properties make these basic cryptographic blocks absolutely essential for most of the solutions in the area.
Especially in the protocols where privacy is already a standard, each new feature or solution must account for it,
and so it must rely on the developments and advances in the area of privacy-preserving cryptographic primitives.

In this document we revise the old primitives that were introduces in D2.3, but also introduce new solutions, that
nevertheless continue the narrative of the previous deliverables. The following list of topics describes the outline
of the document.

Hasty players in smart contracts. In Chapter 2 we revise our work on secure computation through smart
contracts in forking blockchains already described in D2.3. Here we discuss some improvements and takeaways.
A preliminary version of our work was included in D2.3, since then, we made some adjustments/improvements
and the final version of the paper appeared in the proceedings of Financial Cryptography and Data Security 2021.
This work influenced the design of the toolkit on ledger-oriented secure two/multi-party computation.

In this final version of our work, we add a threat model to show more clearly in which adversarial settings the
protocols that we propose can be considered secure. Moreover, we informally propose an efficiency improvement
to the (fair with penalties) compiler proposed in D2.3. Indeed, we can show how to avoid delays due to slow
block confirmations by moving the deposit at the beginning of the protocol execution and adding some additional
checks that the smart contract must perform. However, this requires a relaxation of the power of the assumed
power of the adversary.

NIZKs without programming ROs. One of the limitations of non-interactive zero-knowledge protocols is
that they require a setup to be generated honestly. In the blockchain setting, or in general, in a setting where there
is not a central entity of trust, it might become tricky to generate such a setup. One common way to eliminate the
setup is proving the security of the scheme in the programmable random oracle model. Unfortunately, exploiting
the programmability of the random oracle in the security proof makes it difficult to prove the composability of
the argument system in a setting where multiple instantiations of it are run in concurrency. The work of Canetti et
al. [CJS14], for example, considers the natural scenario where multiple instantiations of different cryptographic
protocols use the same random oracle. In such a scenario the requirement of programming the random oracle is
unacceptable.

1
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In Chapter 3, we show how to instantiate a non-interactive zero-knowledge protocol in the non-programmable
random oracle, for the case where the simulator can run in quasi-polynomial time. This result extends the
contribution related to the zero-knowledge toolkits.

Secure groups scheme and extended GCD protocol. In Chapter 4 we propose a scheme to implement finite
groups as oblivious data structures. The oblivious operations are defined by a set of secure multiparty computa-
tion (MPC) protocols. Practical protocols are presented for the group of quadratic residues, elliptic curves groups
and class groups of imaginary quadratic orders.

We introduce a practical protocol to calculate the extended gcd (xgcd) of two secret-shared integers adapting
recent work by Bernstein and Yang [BY19a] from the p-adic setting to the finite field setting. This xgcd MPC
protocol is a first and of independent interest. We apply it to implement the class group operation in MPC.

To demonstrate an application of secure groups, we extend a classical threshold cryptosystem to enable in- and
output to a multiparty computation by communicating one ciphertext over an insecure channel. This is relevant
in the context of PRIViLEDGE, because it permits parties to post to a bulletin board or blockchain an encrypted
input, which can later be threshold decrypted by MPC parties for use in an MPC protocol.

Snarky ceremonies In Chapter 5 we present a framework and an analysis of so-called “SNARKy ceremonies”.
Most zk-SNARKs require a trusted setup procedure, that is commonly done in practice using an MPC protocol,
since trusting a single party for a setup is not a viable alternative in most applications. While in D2.3 we pre-
sented Sonic, an updatable and universal zk-SNARK, which tries to solve this trusted setup issue by significantly
simplifying the SRS update procedure, here we focus on the more classical solution of running a distributed
protocol before the SNARK is deployed.

The contribution analyses security of the Groth16 zk-SNARK [Gro16] in the framework that is less restrictive
than the previous approaches to the problem. By doing this, we show that one such most commonly used proto-
col [BGM17] is indeed secure in our model. Additionally, we simplify the protocol by removing its dependence
on the so-called random beacon – a sub-protocol that is usually very expensive in practice, as it is implemented
using verifiable delay functions, which are by design hard to evaluate. The contribution provides a valuable
insight into the modelling and practical security of the most commonly used ceremony protocol.

Additionally, implementation of the generic proof creation and proof verification that we specify in the contribu-
tions, have been implemented as part of the zero-knowledge toolkit, by the PRIViLEDGE partner GRNET. The
intention is to provide an independent verification that will help to verify other ceremonies. While in theory every
such MPC protocol must be verifiable post-execution, in practice this is still a task that takes certain non-trivial
mental resources, since all ceremony implementations are different, and provide different verification methods.
As a result, the trust in the ceremony correctness is slow to propagate, since not many users have enough moti-
vation to validate a ceremony. Our intention is to simplify this process by providing and independent validator,
thus simplifying the process of making sure a particular zk-SNARK setup is correct.

2



Chapter 2

Takeaways From Hasty Players in Smart
Contracts with Forking Blockchains

In the previous version of our work, described in D2.3, we propose a general purpose compiler from any MPC
protocol relying on point-to-point channels to an MPC protocol in which the ledger is used as a communication
channel. The main feature of our protocol is that it retains efficiency even on forking blockchains, i.e. blockchains
in which the last k blocks (k is also called ’chain consistency’ parameter) can be different depending on the view
of the miners. All those different views are branches of the chain. One of such branches will be then confirmed
upon consensus (for example, by considering only the longest one). When a user issues transaction to a forking
blockchain like Bitcoin or Ethereum, he has to wait that an additional number of blocks (matching with k) appears
to the ledger to be sure that such transaction is indeed confirmed. This is usually done to avoid double-spending
attacks.

In our work we have shown that even when the data field of such transactions contain only MPC messages,
security of the underlying protocol can be compromised if the parties involved in such a protocol do not wait for
message confirmation before issuing a new MPC message into the network. Instead, when a protocol is compiled
with our construction, it retains security without such a constraint. More formally, we say that the compiled
protocol is secure w.r.t. (ρ, σ)-hasty players1, where ρ is the number of rounds of the compiled protocol and σ
the number of messages that should be confirmed (in our case σ = 0). As an additional result, we proposed a fair
with penalties extension. In this setting fairness guarantees are obtained by assuming the existence of a rational
adversary whose choices are guided by monetary incentives. This extension is based on the work of [BK14]. As
we will also recall in the section below, our extension requires confirmation of at least one block (σ = 1). As an
important improvement, we show that we can obtain a fair with penalties blockchain-aided protocol without any
message confirmation with little tweaks to the smart contract and the protocol. This holds under a reasonable
relaxation of the adversarial power.

To describe more clearly the power of the adversary when running our protocols, we summarized the adversarial
constraints in a separate section called “Threat model" which we describe below.

2.1 Threat Model

We assume that the blockchain adversary is computationally bounded, and when there is a fork in the blockchain,
we pragmatically assume that the adversary has negligible impact on deciding which branch will be confirmed.
Our generic compiler can be secure in the presence of hasty players w.r.t. dishonest majority when the protocol
to be compiled is secure w.r.t. dishonest majority. We point out that if one would like to consider a very strong

1Note that now we are using the term “hasty" instead of “quick" , used in D2.3.

3
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adversary with even 49% of the computational power of the network, then clearly our assumption does not hold.
However, we stress that with such an adversary even the 6-block rule in Bitcoin does not make much sense. To
guarantee that a delicate transaction (i.e., the coinbase transaction) is confirmed with a strong enough adversary,
up to 144 blocks are necessary in Bitcoin [BW], meaning 1 day to communicate even a single protocol message.
Therefore if one would like to consider such strong adversaries even a protocol requiring one confirmation might
be impractical.

We will also consider adversaries mounting DoS attacks through aborts. In our context the adversary can mount
this attack by causing an abort to the protocol by e.g. not playing anymore and, in our generic compiler, also by
sending different messages on different branches, making honest players abort the execution. Such adversaries
have the only purpose of penalizing honest players that will therefore waste time and transaction fees and perhaps
restarting the protocol from scratch.

2.2 Improvements of the Generic Compiler with Fairness with Penalties

Firstly, let’s informally recall how the generic compiler for blockchain-aided MPC without fairness guarantees
works. The communication from Pi to Pj performed through point-to-point channels of the original MPC pro-
tocol is now emulated by making each player Pi post any message m(r)

i,j directed to Pj (for a specific round r)
directly to the blockchain. To keep the message private for Pj , Pi will encrypt such message with Pj’s public key.
Now, Pj listens to the blockchain to receive the message m(r)

i,j (without waiting for the confirmation of the pre-

viously sent message m(r−1)
j,i ), and answers back with m(r+1)

j,i . Now, if at any point of the execution Pi receives

a message m′(r)i,j that is different from m
(r)
i,j received before, Pi aborts the protocol execution. To add fairness

with penalties, let’s consider now a protocol π′ running with parties P1, . . . ,Pn for a functionality f ′ that, given
the output y ← f(x1, . . . , xn), where xi is the input of player Pi, secret shares y into (σ1, . . . , σn) (for a full
threshold sharing scheme), generates a set of commitments C = (γ1, . . . , γn) such that γi is the commitment of
σi. Each player Pi obtains as an output the pair (C, σi)

2. The fair protocol with penalties in the presence of hasty
players can be obtained as follows: (i) We compile π′ with our generic compiler, obtaining π′bc. (ii) In our fair
with penalties protocol πfair, parties P1, . . . ,Pn first engage in π′bc. After π′bc ends, each Pi obtains the output
(C, σi). Now, each Pi has a limited time t1 to send his tuple C to a smart contract together with a payment of
some deposit (committing phase). (iii) If everyone sent the same tuple C, each player Pi has another time shift
t2 to send their share σi of γi to receive back their deposit. Else, if after t2, (σ1, . . . , σn) are posted to the smart
contract3each Pi can reconstruct the output by using all collected shares. Else, players that have not opened their
shares within t2, will be penalized since their coins will remain frozen forever into the smart contract (opening
phase).

The construction described above is secure against hasty players only when honest parties playing πfair wait for
confirmation of step (ii). The reason for requiring the confirmation of step (ii) is that otherwise the adversary
can try to generate an abort during the execution of π′bc after learning the output of the entire protocol πfair on a
different branch.

Efficiency improvement. We informally discuss how the construction described above can be modified to
achieve security in the presence of (ρ, 0)-hasty players.

At the beginning, as in the original construction, P1 publishes to the blockchain a smart contract containing the
same functions needed to store the commitment C of the output shares needed during the committing phase and
to check then their openings (σ1, . . . , σn)(the opening phase) . Moreover, we require that messages related to
the MPC executions must be sent through this smart contract from all the participating players.

2Pi implicitly receives also a decommitment information of γi.
3the smart contract is published by a specific player, say P1, before starting the protocol execution.

4
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Moreover, the smart contract performs the following checks:

• Opening check: When a player does not open (or opens incorrectly) his committed value, he gets penal-
ized by burning his deposit. This is inherited from the previous construction.

• Fork attack check: Whenever any player (say Pj) handles to the smart contract a message m′(r)i,j for a
specific MPC execution and round r ∈ [ρ], extracted from a transaction signed by Pi, that is different
from the message m(r)

i,j stored into the smart contract, the latter burns Pi’s deposit. This check is needed to
discourage a corrupted player Pi to provoke an abort of π′bc because of a fork attack.

• Missed message check: When an honest player notices a message m(r)
i,j of a specific MPC execution

and round r that is present in a branch but missing in another, he handles the transaction containing Pi’s
message m(r)

i,j to the smart contract in the branch where the message is missing. The smart contract will
now store it as an MPC message for that execution. This check is needed when a corrupted player Pi
double-spends the transaction containing an MPC message, therefore invalidating its appearance in some
branch.

In our new construction, we require that each player send his deposit to the smart contract before starting the
protocol execution and not during the committing phase as in the original construction. Recall that, in the
original construction,if messages sent during the committing phase are not confirmed, a player can exploit forks
to learn the output of the computation in one branch and abort the execution in another branch before handling his
committed value (i.e. he aborts during π′bc) without being penalized. This clearly violates fairness with penalties.
We solve this issue with the missing message and fork attack checks. In fact, when a message is not appearing at
all on a specific branch, honest parties will send to the smart contract all the messages of the cheating players that
are missing in such a branch. With this tweak, there is no way for the adversary to learn the output in one branch
and abort in another one by double spending the transaction containing the MPC message since this transaction
will be sent by the honest players in any case. Now, The only way for the adversary to generate a protocol abort
is by sending different messages in different branches, but this case is captured by the fork attack check.

Indeed, if there exists at least a branch where the protocol is not even started, the adversary, after learning the
output in one branch, can still decide not to participate at all to the protocol in another branch by invalidating
his deposit transaction. Our threat model does not capture this case. However we can reasonably relax it by
assuming that it is very uncommon that an adversary can generate or find a branch where the protocol is not even
started4.

This argument applies especially to protocols with a number of rounds greater than the chain consistency param-
eter (e.g., In Ethereum, if a protocol requires 14 rounds, we can be sure that the first round of such a protocol is
finalized by the time the committing phase starts).

DoS attacks. Note that in the original construction, deposits must be made at the end of step (ii) since adver-
saries trying to violate fairness can be spotted only during step (iii). Therefore an adversary can freely abort
the execution before step (ii)5. This argument still holds when the deposit is moved at the beginning of the
protocol. Even in this new construction, an adversary can still abort the protocol without compromising fairness
with penalties by making an honest party abort by sending an incorrect message. Unfortunately, this event can-
not be easily spotted by the smart contract itself, but only by taking as input a protocol achieving identifiable
abort [IOZ14] that is publicly verifiable6. In this type of protocols a player cheating at any point of the execution

4In our first construction the need for confirming the committing phase is indeed more restrictive since it is always performed almost
at the end of the protocol execution.

5Recall that before step (i), players run an un-fair MPC protocol π′bc. At the end of such a protocol they do not learn the output, but
only a share of the output that will be then committed and opened through the aid of a smart contract.

6An efficient construction can be found at [BOSS20].
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can be successfully spotted. A modification exploiting the public verifiability of the underlying protocol can
penalize aborting players even when the abort does not compromise fairness.

6



Chapter 3

Efficient NIZK Without Programming
Random Oracles

Non-interactive zero-knowledge (NIZK) allows to prove the validity of an NP-statement by sending just one
message. In the real world, in order to obtain an efficient NIZK, the Fiat-Shamir (FS) transform is often used to
convert an efficient constant-round public-coin honest-verifier zero-knowledge (public-coin HVZK) proof system
into an efficient NIZK argument system. This approach is provable secure in the programmable random oracle
and crucially require its programmability. The recent works of Lindell [TCC 2015] and Ciampi et al. [TCC
2016] proposed efficient NIZK with non-programmable random oracles along with a programmable common
reference string. The last assumption, alone, is already sufficient to construct a NIZK.

In this work we show an efficient NIZK that relies on two assumptions that alone are insufficient to achieve
NIZK (regardless of efficiency). More specifically we consider the notion of quasi-polynomial time simulation
proposed by Pass in [EUROCRYPT 2003] and combine it with non-programmable random oracles. In particular,
our construction combines non-interactive witness indistinguishable proofs with the concept of dense puzzles
constructed by Baldimtsi et al. [ASIACRYPT 2016]. We then consider the Fischlin’s transform [CRYPTO 2005]
that yeld to a NIZK in the programmable random oracle with communication complexity lower compared to
other works in the same setting. We prove that the Fischlin’s transform retains its witness indistinguishability
property in the non-programmable random oracle model, and that therefore can be used in our compiler to obtain
a more efficient NIZK.

3.1 Introduction

A proof system allows an entity, called prover, to convince another entity, called verifier, about knowledge of
some secret. Informally, a proof1 system is zero-knowledge (ZK) if the prover successfully convinces the verifier
without disclosing information about his secret. The notion of zero-knowledge, introduced by Goldwasser,
Micali and Rackoff [GMR89], is also considered in the non-interactive scenario, where only the prover can
speak and send just one message. This kind of proofs, introduced in [DMP87,BFM88,BDMP91], are called Non-
Interactive Zero-Knowledge (NIZK) proofs. Unfortunately it is impossible to obtain a NIZK proof without setup
assumptions and in order to overcome this impossibility result, Blum et al. [BDMP91] proposed the Common
Reference String (CRS) Model. In this model it is assumed the existence of an honestly generated string (the
exact shape of the CRS depends on the specific NIZK proof instantiation) that is given as input to both the prover
and the verifier. Another setup that has been proposed in literature is the existence of registered public keys

1When discussing informally we will use the word proof to mean both an unconditionally sound proof and a computationally sound
proof (i.e., an argument). Only in the more formal part of the contribution we will make a distinction between arguments and proofs.
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in [BCNP04, DFN06, VV09, CG15].

In [FLS90, FLS99] it is showed how to obtain NIZK in the CRS model for any NP-language in a setting
where the same CRS can be reused to generate a polynomial number of proofs. Even though NIZK exists for
all NP , the candidate constructions are rather inefficient due to the NP-reduction that needs to be computed
before running the actual NIZK proof. One of the most popular approach used to obtain efficient NIZK proofs
consists in taking an efficient interactive constant-round public-coin honest-verifier zero-knowledge (HVZK)
proof system and making it non-interactive by replacing the role of the verifier with an hash function modelled
as a random oracle [BR93] that takes as input the transcript computed so far and returns the message on the
behalf of a verifier. This approach is the so called Fiat-Shamir (FS) transform [FS86]. To prove the security
of such a transform, the ZK simulator needs to program the random oracle (i.e., the simulator decides how the
RO answers to a query), in order to provide an accepting proof even though he does not know the witness (the
secret) for the statement to be proved. Exploiting the programmability of the random oracle in the security proof
makes difficult to prove the composability of the argument system in a setting where multiple instantiations of
it are run in concurrency. The work of Canetti et al. [CJS14], for example, considers the natural scenario where
multiple instantiations of different cryptographic protocols use the same random oracle. In such a scenario the
requirement of programming the random oracle is clearly unacceptable.

Lindell in [Lin15] makes a step forward in order to avoid the programmability of the RO. More precisely, he
provides a NIZK argument that can be proved secure assuming a non-programmable random oracle and a pro-
grammable CRS. In more details, the ZK of Lindell’s protocol is proved without relying on the RO at all (though,
the CRS needs to be programmed), and the soundness is proved without programming the RO. In a follow up
work [CPSV16], the authors improve the construction of Lindell in terms of efficiency and generality under the
same setup considered in [Lin15].

Another approach to go below the 3-round barrier for zero-knowledge showed in [GO94] is to allow the ZK sim-
ulator to run in quasi-polynomial time instead of expected polynomial time [Pas04b,Pas03b]. This notion, infor-
mally, implies that a malicious verifier can learn from the prover anything that can be learn by a quasi-polynomial
time algorithm. As observed in [BP04] the simulator is never run by the applications that use the NIZK, therefore
the notion of quasi-polynomial simulation can be sufficient for most applications of zero-knowledge, provided
one is willing to make quantitatively stronger hardness assumptions. Moreover, in [Pas04b] it is showed that two
rounds are necessary and sufficient for quasi-polynomial time simulatable arguments. Therefore, even tough the
notion of ZK with quasi-polynomial time simulation allows to overcome some of the impossibility results with
respect to standard ZK, the impossibility of obtaining NIZK argument holds also in this particular model.

Given the impossibility showed in [Pas04b] of obtaining NIZK with quasi-polynomial simulation, and the obvi-
ous impossibility of obtaining NIZK without setup assumptions in the NPRO model, one of the main question to
answer is:

Is it possible to obtain an efficient NIZK argument with quasi-polynomial simulation in the non-
programmable random oracle model?

As a first contribution we answer affirmatively to this question providing a non-interactive zero-knowledge
NIZK argument of knowledge that is secure in the non-programmable random oracle under the sole assump-
tion that dense cryptographic puzzles exist. In more details, our protocol is proven to be perfect concurrent
zero-knowledge (ZK) via quasi-polynomial simulation and argument of knowledge (AoK) with online extrac-
tion. Interestingly, even though we prove the ZK using quasi-polynomial simulation, the security of our NIZK
argument does not rely on complexity-leveraging-type assumptions.

Our techniques. We start from any non-interactive witness-indistinguishable (WI) AoK in the NPRO model,
and then we use it as a main building block together with dense cryptographic puzzles. Roughly speaking, a
cryptographic puzzle is defined together with an hardness parameter g. So, if a randomly sampled puzzle is
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given to an adversary then she should not be able to find a solution with non-negligible probability in less than g
steps. In this work we consider the notion of puzzle system of [BKZZ16] where the hardness of a puzzle holds
as long as the puzzle is taken from a uniformly random distribution. In the work of Baldimtsi et al. [BKZZ16]
it is also showed how to instantiate such a puzzle form standard number-theoretic assumptions such as discrete
logarithm problem, and from NPROs.

In a nutshell, our NIZK combines a dense puzzle system PuzSys with a non-interactive WI argument of knowl-
edge ΠWI as follows. The prover queries the random oracle with the statements x that he wants to prove thus
obtaining a puzzle puz. Then the prover computes a non-interactive WI (NIWI) proof where he proves knowl-
edge of either the witness for x or the solution of the puzzle. We observe that a malicious prover could fool the
verifier by finding a solution of the puzzle and using it as a witness for the WI proof. To avoid this we just need
to carefully choose the hardness factor of the puzzle in such a way that a malicious probabilistic polynomial time
prover cannot solve it, but a quasi-polynomial time simulator can.

Theorem (informal). Let Π be a sigma-protocol for the NP relation Rel, if dense cryptographic puzzles exist
then there exists and efficient NIZK AoK with online extraction and straight-line quasi-polynomial time simula-
tion in the NPRO model for Rel.

We stress that our construction has a ZK straight-line simulator and an online AoK simulator. This yields to a
protocol that can be easily composed concurrently with other cryptographic protocols 2.

To instantiate our construction we need to specify what NIWI AoK we could use. In [Pas03a] the authors propose
a construction that, in combination with the OR-composition of Σ-protocol of [CDS94], would yield exactly to
the tool we need.

However, in the work of Fischlin [Fis05] the authors construct a NIZK AoK with online extractor in the pro-
grammable random oracle that has has better efficiency compared to the protocol proposed in [Pas03a]. As
an additional contribution of this work we prove that the Fischlin construction is a WIAoK with straight-line
extraction in the non-programmable random oracle.

We also argue that our final construction is almost as efficient as Fischlin’s construction and that can be instantiate
from a large class of sigma-protocols (even larger than the class considered in [Fis05]). Indeed, in [Fis05] in
order to prove the zero-knowledge property it is required that the first round of the sigma-protocol input has min-
entropy superlogarithmic in the security parameter. In our approach we do not need to rely on this additional
requirement.

3.2 Definitions and Tools

Preliminaries. We denote the security parameter by λ and for a finite set Q, x ← Q the sampling of x from Q
with uniform distribution. We use the abbreviation PPT that stays for probabilistic polynomial time. We use N to
denote the set of all natural numbers and poly(λ)(·) to indicate a generic polynomial function. A polynomial-time
NP-relation Rel (orNP-relation, in short) is a subset of {0, 1}∗×{0, 1}∗ such that membership of (x,w) in Rel
can be decided in time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness for x. For a
polynomial-time relation Rel, we define theNP-language LRel as LRel = {x|∃ w : (x,w) ∈ Rel}. Analogously,
unless otherwise specified, for anNP-languageLwe denote by RelL the corresponding polynomial-time relation
(that is, RelL is such that L = LRelL). We also use L̂ to denote the language that includes L and all well
formed instances that are not in L. Let A and B be two interactive probabilistic algorithms. We denote by
〈A(α), B(β)〉(γ) the distribution of B’s output after running on private input β with A using private input α,
both running on common input γ. A transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during

2Since our simulator does not run in expected polynomial time, it is not possible to prove results related to the Universal Composable
(UC) setting [Can01]. We observe that the property of our protocol of being concurrently composable is still meaningful as showed
in [BS05] where general concurrent composition with superpolynomial-time computation is considered.
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an execution whereA receives a private input α,B receives a private input β and bothA andB receive a common
input γ. Moreover, we will refer to the view of A (resp. B) as the messages it received during the execution of
〈A(α), B(β)〉(γ), along with its randomness and its input. A function ν(·) from non-negative integers to reals is
called negligible, if for every constant c > 0 and all sufficiently large λ ∈ N we have ν(λ) < λ−c.

3.2.1 Argument Systems

Here we recall the notions of completeness and online extraction provided in [Fis05]. A pair Π = (P,V) of
probabilistic polynomial-time algorithms is called a non-interactive argument of knowledge for theNP-relation
RelL with an online extractor (in the non-programmable random oracle model) if the following holds.

Completeness. For any non-programmable random oracle O, any (x,w) ∈ RelL and any π ← PO(x,w) we
have

Pr
[
VO(x, π) = 1

]
= 1− ν(|x|).

Argument of Knowledge with Online Extractor. There exists a probabilistic polynomial-time algorithm Ext,
the AoK online extractor, such that the following holds for any PPT algorithmA. LetO be a non-programmable
random oracle, (x, π) ← AO(λ) and QO(A) be the sequence of queries of A to O and O’s answers. Let
w ← Ext(x, π,QO(A)). Then there exists a negligible function ν such that

Pr
[
(x,w) /∈ Rel and VO(x, π) = 1

]
≤ ν(λ).

Not to overburden the descriptions of protocols and simulators, we omit to specify that the parties have access to
the non-programmable random oracle O when it is clear from the context.

Quasi-Polynomial Time Simulation. Since the verifier in an interactive argument is often modeled as a PPT
machine, the classical zero-knowledge definition requires that the simulator runs also in (expected) polynomial
time. In [Pas03b], the simulator is allowed to run in time λpoly(log(λ)). Loosely speaking, we say that an
interactive argument is λpoly(log(λ))-perfectly simulatable if for any adversarial verifier there exists a simulator
running in time λpoly(log(λ)), where λ is the size of the statement being proved, whose output is identically
distributed to the output of the adversarial verifier.

Definition 1 (straight-line T (λ) simulatability, Def. 31 of [Pas04a]). Let T (λ) be a class of functions that
is closed under composition with any polynomial. We say that an interactive argument (proof) (P,V) for the
language L ∈ NP , with the witness relation RelL, is straight-line T (λ)-simulatable if for every PPT machine
V? there exists a probabilistic simulator S with running time bounded by T (λ) such that the following two
ensembles are computationally indistinguishable (when the distinguish gap is a function in λ = |x|)

• {(〈P(w),V?(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary w s.t. (x,w) ∈ RelL

• {(〈S,V?(z)〉(x))}z∈{0,1}∗,x∈L

The following theorem shows the importance of straight-line λpoly(log(λ))-perfect simulatability by connecting
it to concurrent composition of arguments.

Theorem 1 ( [Pas04a]). If the argument system Π = (P,V) is straight-line λpoly(log(λ))-simulatable then it is
also straight-line concurrent λpoly(log(λ))-simulatable.

We also consider the notion of perfect straight-line simulation. This is equal to the Definition 1 with the dif-
ference that the malicious adversary can be unbounded instead of being PPT and that the two ensembles (the
simulated execution and the real execution) are identically distributed (See Definition 30 of [Pas04a]).
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3.2.2 Cryptographic Puzzles

In [BKZZ16] the authors introduce a new class of prover verifier protocol called Proof of Work or Knowledge
(PoWorK). Moreover, in order to formalize PoWorK, the authors give the notion of puzzle system. A puzzle
system PuzSys is a tuple of algorithms PuzSys = (←$ , Solve,Verify) that are defined in the following way.
←$ on input the security parameter 1λ and the hardness factor h outputs a puzzle puz; Solve on input the
security parameter 1λ, a hardness factor h and a puzzle instance puz outputs a potential solution sol; Verify on
input the security parameter 1λ, a hardness factor h a puzzle instance puz, and a potential solution sol outputs
0 or 1.

Moreover, while the algorithms ←$ and Verify are efficient, it is difficult to compute a solution for a sampled
puzzle. More precisely, a puzzle system is g-hard if the Solve algorithm can not take less of g steps of com-
putation. The authors of [BKZZ16] propose also a stronger notion of puzzle that enjoys the property of dense
samplability. That is, the puzzles can be sampled by just generating random strings (i.e. the puzzle instances
should be dense over {0, 1}`(h,λ)). In our work we consider the same notion of puzzle system with dense sampla-
bility of [BKZZ16]. We remark that the notion of dense samplable puzzles considered in [BKZZ16] is equipped
with an additional efficient algorithm that generates a puzzle together with its solution, but we do not need this
additional requirement in our work.

We denote the puzzle space as PSλ, the solution space as SSλ, and the hardness space asHSλ.

Definition 2. A Dense Samplable Puzzle (DSP) system PuzSys = (←$ ,Solve,Verify) enjoys the following
properties.

Completeness. A puzzle system PuzSys is complete, if for every h in the hardness spaceHSλ:

Pr
[
puz← ←$ (1λ, h), sol← Solve(1λ, h, puz) : Verify(1λ, h, puz, sol) = 0

]
≤ ν(λ)

The number of steps that Solve takes to run is monotonically decreasing in the hardness factor h and may
exponentially depend on λ, while Verify and Solve run in time polynomial in λ.

g-Hardness. Let StepsB(·) be the number of steps (i.e. machine/operation cycles) executed by algorithm B. We
say that a puzzle system PuzSys is g-hard for some function g, if for every adversary A, for every auxiliary tape
z ∈ {0, 1}? and for every h ∈ HSλ then there exists a negligible function ν such that:

Prob[puz← ←$ (1λ, h), sol← A(1λ, z, puz) :

Verify(1λ, h, puz, sol) = 1 ∧
StepsA(z, 1λ, h, puz) ≤ g(StepsSolve(1

λ, h, puz))] ≤ ν(λ)

Dense Puzzles. Given function ` of λ and h, there exists a negligible function ν such that

∆[←$ (1λ, h),U`(λ,h))] ≤ ν(λ)

where U`(λ,h) stands for the uniform distribution over {0, 1}`(λ,h).

We observe that the properties of density and g-hardness imply that for every adversary A, for every auxiliary
tape z ∈ {0, 1}? and for every h ∈ HSλ there exists a negligible function ν such that

Prob[sol← A(z, 1λ, η) : η ← {0, 1}`(λ,h) ∧ Verify(1λ, h, η, sol) = 1 ∧
StepsA(z, 1λ, h, η) ≤ g(StepsSolve(1

λ, h, η))] ≤ ν(λ).
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3.2.3 Witness Indistinguishability.

To formalize the notion of WI we consider a game ExpAWIbΠ,A between a challenger C and an adversary A
in which the instance x and two witnesses w0 and w1 for x are chosen by A. The challenger, upon receiving
(x,w0, w1) starts interacting with A accordingly to the prover procedure of Π using wb as a witness. The
adversary wins the game if she can guess which of the two witnesses was used by the challenger.

We now formally define the WI experiment ExpAWIbΠ,A(λ, ζ). This experiment is parameterized by a protocol
Π = (P,V) for an NP-relation Rel and by a PPT adversary A. The experiment has as input the security
parameter λ and auxiliary information ζ for A.

ExpAWIbΠ,A(λ, ζ):
1. A picks an instance x, witnesses w0 and w1 such that (x,w0), (x,w1) ∈

Rel, and sends (x,w0, w1) to C.
2. C interacts with A as P would do using the witness wb.
3. In the end of the interaction with the challenger C, A outputs b′ ∈ {0, 1}.

Definition 3 (Witness Indistinguishability). A protocol Π is WI if for every PPT adversary A there exists a
negligible function ν such that for any ζ ∈ {0, 1}∗ it holds that∣∣Pr

[
ExpAWI0Π,A(λ, ζ) = 1

]
− Pr

[
ExpAWI1Π,A(λ, ζ) = 1

]∣∣ ≤ ν(λ).

We also consider the notion of statistical and perfect WI. In the case of statistical WI the definition is equal to
the one proposed above with the difference that A it is not restricted to be PPT. The perfect WI notion is like
the statistical one but with ν(λ) = 0.

3.2.4 Sigma-Protocols

A Sigma-Protocol Π = (P,V) is a 3-round public-coin protocol. An execution of Π proceeds with the following
3 moves:

1. The prover P computes the first message using as input the instance to be proved x with the corresponding
witness w, and outputs the first message a with an auxiliary information aux (we denote this action with
(a, aux)← P(x,w)).

2. The verifier V upon receiving a, compute and sends a random string c← {0, 1}l with l ∈ N.

3. P on input c and aux computes and sends z to V (we denote this action with z ← P(aux, c)).

4. V , on input (x, a, c, z) outputs 1 to accept, 0 to reject (we denote this action with V(x, a, c, z) = b where
b ∈ {0, 1} denotes whether V accepts or not).

Definition 4 (Sigma-protocol [CDS94]). A 3-move protocol Π with challenge length l ∈ N is a sigma-protocol
for a relation Rel if it enjoys the following properties:

1. Completeness. If (x,w) ∈ Rel then all honest 3-move transcripts for (x,w) are accepting.

2. Special Soundness. There exists an efficient algorithm Extract that, on input two accepting transcripts for
x (a, c, z) and (a, c′, z′) with c′ 6= c outputs a witness w such that (x,w) ∈ Rel.

3. Special Honest-Verifier Zero Knowledge (SHVZK). There exists a PPT simulator algorithm Sim that
takes as input x ∈ LRel, security parameter 1λ and c ∈ {0, 1}l and outputs an accepting transcript for x
where c is the challenge (we denote this action with (a, z)← Sim(x, c)). Moreover, for all l-bit strings c,
the distribution of the output of the simulator on input (x, c) is computationally indistinguishable from the
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distribution of the 3-move honest transcript obtained when V sends c as challenge and P runs on common
input x and any private input w such that (x,w) ∈ Rel.

We say that Π is statistical when the two distributions are statistically close and perfect when the two
distributions are identical.

Following [Fis05] we require an additional property with respect to the classical notion of sigma-protocol. That
is, we require that the prover’s third round is quasi-unique, i.e., it should be infeasible to find another valid third
round to a proof (a, c, z), even if one knows the witness. As noted in [Fis05], this property holds for example if
the third round z is uniquely determined by x, a, and c as for the protocols by Guillou-Quisquater [GQ88] and
Schnorr [Sch89]. More in general, this property holds for the class of sigma-protocol for proving the knowledge
of a preimage of a group homomorphism defined in [CD98, Mau15]. A formalisation of this property follows.

Definition 5. A (perfect/statistical) sigma-protocol Π = (P,V) has quasi-unique third round if for any proba-
bilistic polynomial-time algorithm A, for parameter λ and (x, a, c, z, z′) we have that there exists a negligible
function ν such that

Prob
[
V(x, a, c, z) = V(x, a, c, z′) = 1 and z 6= z′

]
≤ ν(λ).

3.2.5 Or-Composition of Sigma-Protocols

In this section we recall the or-composition of sigma-protocols proposed in [CDS94]. Let Π0 = (P0,V0) be
a sigma-protocol for the NP-relation Rel0 and Π1 = (P1,V1) be a sigma-protocol for the NP-relation Rel1.
Moreover, let Sim0 be the Special HVZK simulator for Π0 and Sim1 be the Special HVZK simulator for Π1.

We consider the following 3-round public coin protocol ΠOR = (POR,VOR) where POR and VOR has a common
input (x0, x1) where x0 ∈ L̂0 and x1 ∈ L̂1. POR has a private input wb with b ∈ {0, 1} and (xb, wb) ∈ Relb.

1. The prover POR picks c1−b ← {0, 1}l and computes (a1−b, z1−b)← Sim1−b(x1−b, c1−b) with l ∈ N. Then
POR computes (aux, ab)← Pb(xb, wb) and send (a0, a1) to VOR.

2. The verifier VOR upon receiving (a0, a1), computes and sends a random string c← {0, 1}l.

3. POR, upon receiving c computes cb = c ⊕ c1−b and and (zb) ← Pb(aux, cb) and sends (c0, z0, c1, z1) to
VOR.

4. VOR, upon receiving (z0, z1) checks if V0(x0, a0, c0, z0) = 1 and V1(x1, a1, c1, z1) = 1 and c = c0 ⊕ c1.
If it is, then VOR outputs 1, 0 otherwise.

Theorem 2 ( [CDS94, GMY06]). Let Π0 be a (perfect/statistical) sigma-protocol for the NP-relation Rel0 and
Π1 be a (perfect) sigma-protocol for the NP-relation Rel1 then ΠOR is a sigma-protocol that is WI for relation

RelOR =
{

((x0, x1), w) :
(
(x0, w) ∈ RelL0 ∧ x1 ∈ L1

)
∨
(
(x1, w) ∈ RelL1 ∧ x0 ∈ L0

)}
.

We recall the above theorem just for completeness even though in this chapter we use ΠOR in a non-blackbox way
and we do not rely on its WI property directly. We just find convenient to use the prover and the verifier of ΠOR to
shorten and make more clear the description of the protocols proposed in this chapter. Only in the security proof
we make non-black box use of ΠOR in order to rely on the security of the underling sigma-protocols Π0 and Π1.
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3.3 Fischlin’s NIZK

In [Fis05] the authors provide a NIZK AoK ΠFishlin where the AoK extractor relies only on the observability
of the RO3. The main advantage of Fischlin’s construction is that the AoK extractor does not need to rewind
the malicious prover in order to extract the witness. Following [Fis05], we refer to such an extractor as online
extractor. As remarked in [Fis05], the arguments of knowledge with online extractors are especially suitable
for settings with concurrent executions. Indeed, Fischlin shows an example in which the NIZK with standard
knowledge extractors cannot be used due to the rewinds that has to be done, and shows how overcome this
limitation using online extractor. Also, Fischlin shows how to enhance the security of the Boneh et al. group
signature scheme [BBS04] using a NIZK argument of knowledge with online extraction.

Our construction revisits ΠFishlin by maintaining the AoK online extractor and completeness of ΠFishlin but pro-
vides ZK with qualsi-polynomial time simulation. That is, we prove the ZK of our construction relying on quasi-
polynomial time simulation whereas ΠFishlin is proved to be ZK in the PRO. In this section we recall the NIZK
construction proposed [Fis05] and then we show how to bootstrap ΠFishlin to a NIZK with qualsi-polynomial
time simulation. We refer the reader to Fig. 3.1 for the formal description of ΠFishlin.

Let Π = (P,V) be a sigma-protocol with quasi-unique third round and
challenge length ` = O(log λ) for the NP-relation RelL. Define the pa-
rameters b, r, S, t (as functions of λ) such that br = ω(log λ), 2t−b =
ω(log λ), b, r, t = O(log λ), S = O(r) and b ≤ t ≤ `. Define the fol-
lowing non-interactive argument system ΠFishlin = (PFischlin,VFischlin)
for relation RelL in the random oracle model, where the random oracle
O maps to b bits.
Common input: security parameter λ, NP-statement x ∈ L, the pa-
rameters b, r, S, t as defined above.
Input to PWI: w s.t. (x,w) ∈ RelL.
Proof. The prover PFischlin executes the following steps.

1. On input (x,w) runs r times P (each time using
fresh randomness) on input (x,w) thus obtaining
((aux1, a1), (aux2, a2), . . . , (auxr, . . . , ar)) Let A =
(a1, a2, . . . , ar).

2. For i = 1, . . . , r
Pick ci ∈ {0, 1}t such that O(x,A, i, ci, zi) = 0b where zi is
the output of P on input (auxi, ci).
If such a ci does not exist, then pick the first one for which
the output of the evaluation of O is minimal among all 2t

hash values.
3. Output π = ({ai, ci, zi}i=1,...,r).

Verification. The verifier VFischlin on input x and π =
({ai, ci, zi}i=1,...,r) accepts if and only if for i = 1, . . . , r,
V(x, ai, ci, zi) = 1 and Σr

i=1O(x,A, i, ci, zi) ≤ S.

Figure 3.1: Fischlin’s Straight-line NIZK AoK

As remarked in [Fis05], this protocol has a small completeness error. For deterministic verifiers this error can be
3We observe that even though the authors of [Fis05] talks about Proof of Knowledge, they still need to polynomially bound the

number of queries that an adversary can make to the random oracle. To avoid any ambiguity, in this work we consider only the notion of
AoK since the malicious prover is implicitly bounded by the number of queries that can be made to the RO.
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removed in principle by standard techniques, namely, by letting the prover check on behalf of the verifier that the
proof is valid before outputting it; if not the prover simply sends the witness to the verifier. In practice, in case of
this very unlikely event, the prover may just compute a proof from scratch. Here we recall Theorem 2 of [Fis05].

Theorem 2 of [Fis05]. Let Π be a sigma-protocol for the NP-relation Rel with quasi-unique third round and
where the first round of Π has min-entropy superlogarithmic in the security parameter λ, then ΠFishlin is a non-
interactive zero-knowledge proof of knowledge for the NP-relation Rel (in the programmable random oracle
model) with online extractor.

3.3.1 Efficiency

Following the analysis given in [Fis05], we set b = 9, t = 12, r = 10 and S = 10 thus obtaining an online-
extractor that fails with probability at mostQ2−72 whereQ is the maximal number of hash queries (assuming that
finding distinct responses is beyond feasibility). Then the total number of hash function evaluations is roughly
29r and the number of executions of the underlying sigma-protocol Π is 10.

3.4 Our Results

3.4.1 Our NIZK AoK

In order to construct our NIZK with quasi-polynomial simulation for theNP relation RelL ΠNIZK = (PNIZK,VNIZK),
we make use of the following tools.

- A dense samplable puzzle system PuzSys = (←$ , Solve,Verify) such that for every hardness factor h ∈
HSλ there exists a negligible function ν such that the following holds:

1. Pr
[
puz← ←$ (1λ, h) : g(StepsSolve(1

λ, h, puz)) ≤ λlog λ
]
≤ ν(λ);

2. the worst-case running time of Solve(1λ, h, ·) is λpoly(λ)(log λ).4

- ΠWI = (PWI ,VWI): a non-interactive perfect/statistical WI AoK with online extractor for the NP-
relation RelWI = {((x, puz), w) : (x,w) ∈ RelL or Verify(1λ, h, puz, w) = 1}.

PNIZK and VNIZK have also access to a NPRO O : {0, 1}∗ → {0, 1}`(λ,h) where `(λ, h) is a function of the
security and the hardness parameters of PuzSys. We need to relate the output length of the random oracle to the
parameters of PuzSys because O is used to generate a puzzle in our construction. More details are given in the
security proof.

Theorem 3. If ΠWI = (PWI ,VWI) is a non-interactive perfect/statistical WI AoK with online extractor for
the NP-relation RelWI that is secure in the NPRO model and PuzSys is a dense samplable puzzle system ac-
cording to Definition 2, then ΠNIZK is a straight-line concurrent perfectly/statistically λpoly(λ)(log λ)-simulatable
argument of knowledge with online extraction in the NPRO model.

Proof. Completeness. The completeness follows immediately from the completeness of ΠWI and PuzSys.

Quasi-polynomial time perfect/statistical simulation. Let VNIZK be an arbitrary verifier. We construct a
simulator Sim that runs in λpoly(λ)(log λ) time, such that the distributions{

(〈PNIZK(w),VNIZK?(z)〉(x))
}
z∈{0,1}∗,x∈L

for arbitrary w s.t. (x,w) ∈ RelL and{
(〈Sim,VNIZK?(z)〉(x))

}
z∈{0,1}∗,x∈L

4This is the same puzzle used in Theorem 7 of [BKZZ16].
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Common input: security parameter λ, NP-statement x ∈ L.
Input to PNIZK: w s.t. (x,w) ∈ RelL.

Proof. PNIZK computes the puzzle puz for PuzSys by querying the ran-
dom oracleO on input x: puz← O(x). PNIZK defines xWI = (x, puz),
wWI = w and runs PWI on input (xWI , wWI) thus obtaining πWI
which is sent to VNIZK.
Verification. VNIZK queries O with x thus obtaining puz and defines
xWI = (x, puz). VNIZK now runs VWI on input (xWI , πWI) and out-
puts what VWI outputs.

Figure 3.2: Our NIZK AoK protocol

are perfectly/statistical indistinguishable.

The simulator Sim is described in Fig. 3.3. The only observations that are required to complete this part of the
proof are that Sim can compute the solution of the puzzle puz in time λpoly(λ)(log λ) and that ΠWI is perfect/sta-
tistical witness-indistinguishable.

Sim(1λ, x)
- Compute the puzzle puz for PuzSys by querying the random

oracle O on input x: puz ← O(x) and compute sol ←
Solve(1λ, h, puz).

- Define xWI = (x, puz), wWI = sol and run PWI on input
(xWI , wWI) thus obtaining πWI .

- Send πWI to VNIZK? and output what VNIZK? outputs.

Figure 3.3: Quasi-polynomial time simulator Sim.

Argument of knowledge. By assumption there exist a PPT AoK online extractor Ext for ΠWI such that the
following holds for any PPT algorithm PWI?. Let O be a random oracle, (xWI , πWI) ← PWI?(λ) and
QO(PWI?) be the sequence of queries of PWI? to O and O’s answers. Let wWI ← Ext(x, π,QO(PWI?)).
Then there exists a negligible function ν such that

Pr
[
(xWI , wWI) /∈ RelWI and VWI(xWI , πWI) = 1

]
≤ ν(λ).

The AoK PPT extractor ENIZK for ΠNIZK simply internally runs Ext and outputs what Ext would output.
We now observe that ENIZK could fail only because the output of the internal extractor Ext is a solution sol

for puz = O(x).5 Let us assume by contradiction that this happens. That is, let O be a random oracle,
(x, πNIZK) ← PNIZK?(λ), QO(PNIZK?) be the sequence of queries of PNIZK? to O and O’s answers and let
η ← Ext(x, π,QO(PNIZK?)), then

Pr
[
Verify(1λ, h,O(x), η) = 1 and VNIZK(x, πNIZK) = 1

]
= δ(λ).

But this would contradict the g-hardness of PuzSys. Indeed the extractor ENIZK outputs in PPT a solution to a
puzzle sampled from an uniform distribution (since O is modelled as a random oracle).

5ENIZK could also output ⊥, but in this case a reduction that contradicts the AoK online-extractor of ΠWI can be done.
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We observe that even tough the in the above proof the ZK simulators needs to run in quasi-polynomial time we
can still rely on the WI property of ΠWI since the WI of ΠWI holds against all powerful adversary. To prove the
security of our NIZK in the case that ΠWI is not statistically/perfect WI we need to use complexity leveraging.
That is, we need to assume that the security of ΠWI holds against an adversary that runs in time λpoly(λ)(log λ).
Beside that, the overall proof stay the same.

3.4.2 On the WI of the Fischlin Protocol

We show how to use the Fischlin protocol to obtain an efficient non-interactive witness-indistinguishable (NIWI)
argument of knowledge with straight-line extraction. The first attempt to obtain a NIWI AoK would be to
construct a sigma-protocol ΠOR for a relation Rel0 OR Rel1 using the compiler of Sec. 3.2.5 by combining a
sigma-protocol Π0 for Rel0 with a sigma-protocol Π1 for Rel1 where both Π0 and Π1 have unique third round.
Then one might hope to use ΠOR as input of Fischlin’s construction thus obtaining a NIWI AoK. Unfortunately
this approach seems to not work because, even though Π0 and Π1 have unique third rounds, the resulting ΠOR

does not have this properties anymore and therefore the Theorem 2 of Fischlin cannot be used. Indeed, it is easy
to see that fixed the first and the second round (a, c) of ΠOR there are many possible third rounds since there are
many possible ways to split the challenge c (see Sec. 3.2.5 for more details on the or-composition of [CDS94]).
Therefore, as a first result of this section we prove that the Fischlin protocol is still an AoK with online extraction
even though ΠOR does not have a quasi-unique third round. At high level the straight-line AoK property works
also in this case because when the challenge messages c0 and c1 for the two first round messages a0 and a1 are
fixed, then there exists a unique pair of messages (z0, z1) that makes the verifier V0 to accept (a0, c0, z0) for the
statement x0 and V1 to accept (a1, c1, z1) for the statement x1. Therefore, even though ΠOR does not enjoys the
unique third round property, it is sufficient that the values (z0, z1) are unique once that the first rounds and the
challenges (c0, c1) are fixed.

The crucial technical point is that in the security proof both c0 and c1 are considered as being part of the second
round of the sigma-protocol input to the Fischlin construction, instead of being part of the third round.

We also prove that in the case that the sigma-protocols Π0 and Π1 that composes ΠOR are not perfect, it is still
possible to obtain a NIWI that is secure against PPT malicious verifier. In the WI proof, unfortunately, it is not
clear how to reduce directly the security of the NIWI to the WI property of ΠOR and thereofre we rely on the
Special HVZK property of the underling Π0 and Π1. For more details on this proof approach we refer the reader
to the proof of Theorem 4.

We denote the instantiation of the Fischlin protocol that uses ΠOR as input with ΠWI = (PWI ,VWI) and
propose it in Fig. 3.4. ΠWI is similar to the protocol proposed in Fig. 3.1, with the exception that it takes as
input two sigma-protocols Π0 and Π1 and combines them using the [CDS94] compiler.

In this section we prove that the argument ΠWI proposed in Fig. 3.4 is WI and is an AoK with online extraction.
More formally, we prove the following theorem.

Theorem 4. Let Π0 be a (perfect/statistical) sigma-protocol for the NP-relation Rel0 and Π1 be a sigma-
protocol for the NP-relation Rel1 such that both Π0 and Π1 have a quasi-unique third round, then ΠWI is
(perfect/statistical) WI for the NP-relation RelOR and is an AoK with online extraction in the NPRO model.

Proof. Completeness. The proof of completeness follows exactly the proof of Theorem 2 of [Fis05].

Witness-Indistinguishability. We prove that if the transform of [CDS94] showed in Sec. 3.2.5 on input Π0 and
Π1 outputs a new sigma-protocol that is WI for the NP-relation RelOR then ΠWI is WI for RelOR as well. We
propose the proof for the case where Π0 and Π1 are sigma-protocols, the proof where Π0 and Π1 are perfect/sta-
tistical sigma-protocols follows by using the same arguments.
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Let Π0 = (P0,V0) and Π1 = (P1,V1) be the sigma-protocols described
above with challenge length ` = O(log λ). Define the parameters b, r,
S, t (as functions of λ) such that br = ω(log λ), 2t−b = ω(log λ), b,
r, t = O(log λ), S = O(r) and b ≤ t ≤ `. Define the following non-
interactive argument system ΠWI = (PWI ,VWI) for relation RelOR in
the random oracle model, where the random oracle O maps to b bits.
Common input: security parameter λ, NP-statement x0 ∈ L0 ∨ x1 ∈
L1, the parameters b, r, S, t as defined above.
Input to PWI: wb s.t. (xb, wb) ∈ Relb.
Proof. The prover PWI executes the following steps.

1. On input (xb, wb) run r times Pb (each time using
fresh randomness) on input (xb, wb) thus obtaining
((auxb1, a

b
1), (auxb2, a

b
2), . . . , (auxbr, . . . , a

b
r)).

2. For i = 1, . . . , r, pick c1−b
i ← {0, 1}t and compute

(a1−b
i , z1−b

i )← Sim(x1−b, c
1−b
i ).

Let A = ((a0
1, a

1
1), (a0

2, a
1
2), . . . , (a0

r , a
1
r).

3. For i = 1, . . . , r
Pick ci ∈ {0, 1}t such that
O(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ) = 0b where ci = c0

i ⊕ c1
i

and zbi ← Pb(auxi, cbi).
If such a ci does not exist, then pick the first one for which
the hash value is minimal among all 2t hash values.

4. Output π = ({a0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r).

Verification. The verifier VWI accepts if and only if for i = 1, . . . , r:
V0(x0, a

0
i , c

0
i , z

0
i ) = 1, V1(x1, a

1
i , c

1
i , z

1
i ) = 1, ci = c0

i ⊕ c1
i and

Σr
i=1O(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ) ≤ S.

Figure 3.4: ΠWI : a NIWI AoK

We assume by contradiction that ΠWI is not WI and then we construct an adversary ASHVZK that breaks the
Special HVZK of either Π0 or Π1. More formally, by contradiction we have that

∣∣∣Pr
[
ExpAWI0ΠWI ,A(λ, ζ) = 1

]
− Pr

[
ExpAWI1ΠWI ,A(λ, ζ) = 1

]∣∣∣ = δ(λ)

for a non-negligible function δ.

Let b, r, S, t be the parameters defined in the description of ΠWI in Fig. 3.4, we now define the hybrid experiment
Hi with i ∈ {1, . . . , r}. The hybrid experimentHi is formally described in Fig. 3.5 and takes as input the security
parameter λ, the auxiliary information ζ for A and contains b, r, S and t.

We observe that ExpAWI0ΠWI ,A(λ, ζ) = H0(λ, ζ) and that ExpAWI1ΠWI ,A(λ, ζ) = Hr(λ, ζ). Therefore, by
contradiction, there must be a value i ∈ {1, . . . r} such that

|Pr[Hi−1(λ, ζ) = 1] − Pr[Hi(λ, ζ) = 1]| = δ(λ). In order to reach a contradiction we consider the additional
intermediate hybrid experimentHint of Fig. 3.6. Informally, the difference betweenHi−1 andHint is that honest
prover procedure P1 is used to compute (a1

i , z
1
i ) instead of the simulated one. Instead, the difference between

Hint and Hi is that in Hi the messages (a0
i , z

0
i ) are computed using the Special HVZK simulator of Π0 instead

of the honest prover procedure. We now prove the following lemma in order to complete the overall WI proof.
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Upon receiving (x,w0, w1) from A execute the following steps.
1. Run i times POR (each time using fresh randomness) on in-

put (x0, x1, w1) thus obtaining ((aux1
1, a

1
1), . . . , (aux1

i , a
1
i )) and

((a0
1, z

0
1), . . . , (a0

i , z
0
i )).

2. Run r − i times POR (each time using fresh randomness) on input
(x0, x1, w0) thus obtaining ((aux0

i+1, a
0
i+1), . . . , (aux0

r , a
0
r)) and

((a1
i+1, z

1
i+1), . . . , (a1

r , z
1
r )). Let A = ((a0

1, a
1
1), . . . , (a0

r , a
1
r).

3. For j = 1, . . . , i
Pick cj ∈ {0, 1}t such that
O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0b where cj = c0

j ⊕ c1
j

and z1
j ← P1(aux1

j , c
1
j ).

If such a cj does not exist, then pick the first one for which
the hash value is minimal among all 2t hash values.

4. For j = i+ 1, . . . , r
Pick cj ∈ {0, 1}t such that
O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0b where cj = c0

j ⊕ c1
j

and z0
j ← P0(aux0

j , c
0
j ).

If such a cj does not exist, then pick the first one for which
the hash value is minimal among all 2t hash values.

5. Send π = ({a0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r) to A.

6. The adversary outputs b′ ∈ {0, 1}.

Figure 3.5: Hybrid experimentHi, with i ∈ {1, . . . , r}.

Lemma 1. There exists a negligible function ν such that

|Pr[Hi−1(λ, ζ) = 1]− Pr[Hint(λ, ζ) = 1]| ≤ ν(λ)

and
|Pr[Hint(λ, ζ) = 1]− Pr[Hi(λ, ζ) = 1]| ≤ ν(λ)

Proof. By contradiction one of the above two conditions does not hold. Therefore we assume that there exists a
non-negligible function δ such that6

|Pr[Hi−1(λ, ζ) = 1]− Pr[Hint(λ, ζ) = 1]| = δ(λ).

In this case we can construct an adversary ASHVZK that breaks the Special HVZK of Π1. Let CSHVZK be the
challenger of the Special HVZK security game, ASHVZK internally runs A and execute the following steps.

1. Upon receiving (x0, x1, w0, w1) from A, pick c← {0, 1}t and send (x1, w1, c) to CSHVZK.

2. Upon receiving (a, z) from CSHVZK, run i − 1 times P1 (each time using fresh randomness) on input
(x1, w1) thus obtaining ((aux1

1, a
1
1), . . . , (aux1

i−1, a
1
i−1)). For j = 1, . . . , i − 1 pick c0

j ← {0, 1}t and
compute (a0

j , z
0
j )← Sim0(x0, c

0
j ).

3. Run P0 in input (x0, w0) thus obtaining (a0
i , aux

0
i ), sets a1

i = a.

4. Run r−i timesP0 (each time using fresh randomness) on input (x0, w0) thus obtaining ((aux0
i+1, a

0
i+1), . . . , (aux0

r , a
0
r)).

6The proof for the other case follows using exactly the same arguments but in that case we break the Special HVZK of Π0 instead of
Π1.
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Upon receiving (x,w0, w1) from A execute the following steps.
1. Run i − 1 times P1 (each time using fresh randomness) on input

(x1, w1) thus obtaining ((aux1
1, a

1
1), . . . , (aux1

i−1, a
1
i−1)).

2. For j = 1, . . . , i − 1 pick c0
j ← {0, 1}t and compute (a0

j , z
0
j ) ←

Sim0(x0, c
0
j ).

3. Run P1 in input (x1, w1) thus obtaining (a1
i , aux

1
i ) and run P0 in

input (x0, w0) thus obtaining (a0
i , aux

0
i ).

4. Run r − i times P0 (each time using fresh randomness) on input
(x0, w0) thus obtaining ((aux0

i+1, a
0
i+1), . . . , (aux0

r , a
0
r)).

5. For j = i + 1, . . . , r pick c1
j ← {0, 1}t and compute (a1

j , z
1
j ) ←

Sim1(x1, c
1
j ).

Let A = ((a0
1, a

1
1), (a0

2, a
1
2), . . . , (a0

r , a
1
r).

6. For j = 1, . . . , i− 1
Pick cj ∈ {0, 1}t such that
O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0b where cj = c0

j ⊕ c1
j

and z1
j ← P1(aux1

j , c
1
j ).

If such a cj does not exist, then pick the first one for which
the hash value is minimal among all 2t hash values.

7. Pick ci ∈ {0, 1}t such that O(x0, x1, A, i, ci, c
0
i , c

1
i , z

0
i , z

1
i ) = 0b

where c0
i ← {0, 1}t, ci = c0

i ⊕ c1
i , z

1
i ← P1(aux1

i , c
1
i ) and z0

i ←
P0(aux0

i , c
0
i )

If such a ci does not exist, then pick the first one for which the hash
value is minimal among all 2t hash values.

8. For j = i+ 1, . . . , r
Pick cj ∈ {0, 1}t such that
O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0b where cj = c0

j ⊕ c1
j

and z0
j ← P0(aux0

j , c
0
j ).

If such a cj does not exist, then pick the first one for which
the hash value is minimal among all 2t hash values.

9. Send π = ({a0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r) to A.

10. The adversary outputs b′ ∈ {0, 1}.

Figure 3.6: Hybrid experimentHint.

5. For j = i+ 1, . . . , r pick c1
j ← {0, 1}t and compute (a1

j , z
1
j )← Sim1(x1, c

1
j ).

6. define A = ((a0
1, a

1
1), (a0

2, a
1
2), . . . , (a0

r , a
1
r)).

7. For j = 1, . . . , i− 1

Pick cj ∈ {0, 1}t such that O(x0, x1, A, j, cj , c
0
j , c

1
j , z

0
j , z

1
j ) = 0b where cj = c0

j ⊕ c1
j and z1

j ←
P1(aux1

j , c
1
j ).

If such a cj does not exist, then pick the first one for which the hash value is minimal among all 2t

hash values.

8. Pick ci ∈ {0, 1}t such that O(x0, x1, A, i, ci, c
0
i , c

1
i , z

0
i , z

1
i ) = 0b where ci = c ⊕ c0

i , z
0
i ← P0(aux0

i , c
0
i )

and z1
i = z.

If such a ci does not exist, then pick the first one for which the hash value is minimal among all 2t hash
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values7.

9. For j = i+ 1, . . . , r

Pick cj ∈ {0, 1}t such that O(x0, x1, A, j, cj , c
0
j , c

1
j , z

0
j , z

1
j ) = 0b where cj = c0

j ⊕ c1
j and z0

j ←
P0(aux0

j , c
0
j ).

If such a cj does not exist, then pick the first one for which the hash value is minimal among all 2t

hash values.

10. Send π = ({a0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r) to A.

11. Output what A outputs.

It should be easy to see that if the messages (a, z) have been computed by CSHVZK using the Special HVZK
simulator Sim1 then the output of ASHVZK corresponds to the output of A in Hi−1, and to the output of A in
Hint if (a, z) are computed using P1 on input the witness w1 for x1. Therefore we have obtained an adversary
ASHVZK such that breaks the security of the Special HVZK of Π1 thus reaching a contradiction.

Argument of Knowledge with Online Extraction. Here we follow in large part the proof of Theorem 2
of [Fis05]. In order to complete this proof, we need to show a knowledge extractor Ext(x, π,QO(A)) that
except with negligible probability over the choice of O, is able to output a witness wb such that (xb, wb) ∈ Relb
for an accepted proof π = ({a0

i , a
1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r) with respect to (x0, x1). Since ΠOR is special sound,

then the algorithm Ext just needs to look intoQO(A) for a queryO(x0, x1, A, i, ci, c
0
i , c

1
i , z

0
i , z

1
i ) and for another

query O(x0, x1, A, i, c̃i, c̃
0
i , c̃

1
i , z̃

0
i , z̃

1
i ) such that VOR(x0, x1, a

0
i , a

1
i , c̃

0
i , c̃

1
i , z̃

0
i , z̃

1
i ) = 1 and ci 6= c̃i. Indeed, from

the special soundness of ΠOR, this yields to an efficient extraction procedure of either the witness for x0 or x1. If
there are not such queries then Ext simply outputs⊥. We now need to bound the probability that such two queries
do not exist, but still VWI accepts π with probability. Consider the set of tuples (x0, x1, A) such that A queries
O about (x0, x1, A, i, c

0
i , c

1
i , z

0
i , z

1
i ) for some i, c0

i , c
1
i , z

0
i , z

1
i and such that VOR(x0, x1, a

0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i ) = 1

(we can neglect tuples with invalid proofs). Let Q = |QO(A)|, then there are at most Q + 1 of these tuples
(x0, x1, A). Fix one of the tuples for the moment, say, (x0, x1, A). By contradiction, for this tuple and any i
algorithm A never queries O about two values (x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ), (x0, x1, a

0
i , a

1
i , c̃

0
i , c̃

1
i , z̃

0
i , z̃

1
i ) with

ci 6= c̃i wich VOR would accept (we note that if ci 6= c̃i then either c0
i 6= c̃1

i or c1
i 6= c̃1

i ).

Similarly, we can assume thatA never queries about (x0, x1, A, i, ci, c
0
i , c

1
i , z

0
i , z

1
i ), (x0, x1, a

0
i , a

1
i , c̃

0
i , c̃

1
i , z̃

0
i , z̃

1
i )

with either z0
i 6= z̃0

i or z1
i 6= z̃1

i , else this would contradict the property of unique responses of either Π0 or Π1.
This allows us to assign a set of unique values s1, . . . , sr to (x0, x1, A) such that si equalsO(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i )

ifA queries about any such tuple8. Conclusively, the values s1, . . . , sr assigned to (x0, x1, A) are all random and
independent. Given such an assignment we calculate the probability that the sum does not exceed the threshold
value S. We consider

(
T+r−1
r−1

)
combinations to represent a sum T ≤ S with r values s1, . . . , sr ≥ 0. There are∑S

T=0

(
T+r−1
r−1

)
≤ (S+1)·

(
S+r−1
r−1

)
≤ (S+1)· e(S+r)

r−1

r−1
possibilities. Since S = O(r) we have S+r ≤ c(r−1)

for some constant c, and the number of combinations is bounded above by (S+1) ·2log (ec)r, which is polynomial
in λ. Since s1, . . . , sr are random, the probability of obtaining such a sum T ≤ S is this number of combinations
divided by 2br. By the choice of parameters this is negligible. Finally, we extend the analysis from a fixed query
to the set of the Q + 1 possibilities (x0, x1, A). Since Q is polynomial the probability of finding a valid proof
among this set for which the extractor also fails is bounded by (Q + 1)(S + 1) · 2(log(ec)−b)r. This remains
negligible.

7We observe that ASHVZK can iterate on all the possible cj since he has the freedom to pick any possible c0j .
8From this point forward the proof follows exactly the same steps proposed in [Fis05], but for completeness we propose the complete

proof.
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How to instantiate ΠWI .

Theorem 4 states that Π0 and Π1 can be instantiated with any (perfect/statistical) sigma-protocol with quasi-
unique third round. As observed in [Fis05], and also in this work, there are many perfect sigma-protocols with
quasi-unique third round such as Schnorr’s protocol for discrete logarithm, the protocol for Diffie-Hellman (DH)
tuples the protocol of [MP03] for proving knowledge of committed messages, and all sigma-protocols in the well
known class proposed by Cramer in [CD98] and Maurer in [Mau15].

If we consider just sigma-protocol, then for our construction we could use the protocol proposed by Blum
in [Blu86]. In this, the first round consists of a set of commitments, and in the third round only a subset of
these commitments are opened by the prover. When there is only one witness for the statement being proved, for
the binding of the underling commitment scheme, Blum’s protocols has a quasi-unique third round.

3.5 Complexity Analysis of ΠNIZK when Instantiated with the Fischlin’s Trans-
form

Our construction consists of one execution of ΠWI and one evaluation of O on input x. Therefore, to give a
concrete idea of the efficiency of our protocol we need to define the two sigma-protocols used as input of ΠWI

(see Fig 3.4).

Therefore, we need a sigma-protocol Πpuz for the NP-relation Relpuz = {(puz, sol) : Verify(1λ, h, puz, w) =
1)} and a sigma-protocol ΠL for theNP-relation RelL. This means that we need to use a dense samplable puzzle
system that admits a sigma-protocol. In [BKZZ16] the authors propose a dense samplable puzzle system where
the puzzle is an instance of the discrete logarithm problem. So we can use as Πpuz the well known Schnorr
protocol [Sch89]. Following the analysis of Sec. 3.3.1, we obtain an online-extractor that fails with probability at
mostQ2−72 where the total number of hash function evaluations is at most 29r+1 and the number of executions
of ΠOR is r = 10, where ΠOR denotes the output of the or-composition proposed in Sec. 3.2.5 using Πpuz and ΠL

as input.

To give a practical example, let us consider the complexity of ΠNIZK when RelL is the discrete log NP relation

{((G, q, g, Y ), y) : gy = Y }

where G is a group of prime-order q. We construct ΠWI using two instantiation of the Schnorr protocol thus
obtaining a sigma-protocol that requires 3 exponentiation to be executed (see [CPS+16] for a detailed analysis).
So our protocol ΠNIZK requires 30 exponentiation and 29r + 1 = 5121 hash evaluations.
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Chapter 4

Secure Groups and Their Applications in
MPC-based Threshold Cryptography

Recall that a finite group is defined as a finite set G of group elements (including the identity element) together
with an associative group operation ∗ and the corresponding inverse operation. We propose a scheme to imple-
ment finite groups as oblivious data structures, meaning that no information can be inferred about the values of
the group elements after a sequence of operations. For a given group, the scheme defines the oblivious repre-
sentation of, and oblivious operations on group elements. Operations include the group law, exponentiation and
inversion, random sampling and encoding/decoding.

The oblivious operations are defined by a set of secure multiparty computation (MPC) protocols. Practical
protocols are presented for the group of quadratic residues, elliptic curves groups and class groups of imaginary
quadratic orders. We demonstrate these protocols in a standard setting for information theoretically secure MPC,
tolerating a dishonest minority of passively corrupt parties.

We introduce a practical protocol to calculate the extended gcd (xgcd) of two secret-shared integers adapting
recent work by Bernstein and Yang [BY19b] from the p-adic setting to the finite field setting. This xgcd MPC
protocol is of independent interest. We apply it to implement the class group operation in MPC. To reduce
positive definite binary quadratic forms, we present a protocol based on the binary reduction algorithm from
[AF06].

To demonstrate an application of secure groups, we construct a protocol to convert ciphertexts to secret shares.
This protocol extends a classical threshold cryptosystem by enabling in- and output to a multiparty computation
by simply communicating one ciphertext.

The secure groups extension to the MPC-framework MPyC [Sch18] is available from https://github.
com/toonsegers/sec_groups under the MIT license. The secure groups includes the extended gcd pro-
tocol.

Roadmap. This contribution is organized as follows. Section 4.1 introduces preliminaries for secure multiparty
computation. Section 4.2 presents a secure protocol for the extended gcd. Section 4.3 introduces the definition
of a secure group. Section 4.4 presents generic constructions for secure groups. Section 4.5 presents generic pro-
tocols for the following tasks: conditional (if-else), random sampling, inversion and exponentiation. Section 4.6
presents specific constructions for groups used in cryptography, particularly quadratic residues, elliptic curve
groups and class groups. Section 4.7 presents a threshold cryptosystem built from secure groups. Section 4.8
concludes our work by introducing our Python package for secure groups.
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4.1 MPC Setting

Let len(x) = dlog2(|x|+ 1)e denote the bit length of integer x.

We consider an MPC setting with m parties tolerating a dishonest majority of up to t passively corrupt parties,
0 ≤ t < m/2. The basic protocols for secure addition and multiplication over a finite field rely on Shamir secret
sharing [BGW88, GRR98]. For our practical experiments we use the MPyC framework [Sch18].

Let [[a]] denote a Shamir secret sharing for any finite field element a ∈ F. If necessary to specify the field’s
modulus q, denote [[a]]q for a ∈ Fq. The bit length of an integer q is denoted by `q. In the context of class groups
and integer xgcd, [[a]] denotes a Shamir sharing of a bounded integer a ∈ Z with |a| ≤ Q, such that repeated
integer multiplication does not flow over the field modulus, q. We will refer to the bit length of q/Q as headroom.
A vector is denoted in bold, as well as a vector of shares, e.g., [[x]]. We typically suppress the modulus in the
notation of a secret share.

It is required that q > m. Otherwise, use the smallest extension Fgd such that qd > m. E.g., for F2 used in
permutation matrices, or for F7 in linear representation of the Rubik’s cube group.

To instantiate secure groups of non-prime order, we also need additive sharings over Z as well as additive sharings
over Zn for arbitrary n > 0. We use [[a]]+Z to denote an additive sharing of a ∈ Z and [[a]]+n to denote an additive
sharing of amodulo n. The shares will be random integers ai ∈R Zn satisfying

∑
i ai = a. We note that a Shamir

sharing [[a]] can be converted to an additive sharing [[a]]+p by letting each party in a quorum Q, |Q| ≥ t + 1, use
ai = λQ,ia

′
i as its additive share, where a′i is its Shamir share.

Let Pi for i ∈ {1, ...,m} denote MPC parties. Names of algorithms and protocols are in sans-serif. Let
a← open([[a]]) denote the protocol for opening a secret share, [[r]]← random(F) the computation of a random
Shamir share, [[x]] = ([[a0]], ..., [[a`−1]]) ← bd([[a]]) the bit-decomposition of one Shamir share into `a Shamir
shares, [[b]] ← ltz([[x]]) the less than zero comparison of an (integer) share and [[a]] ← norm([[x]]) the determi-
nation of the most (or least) significant bit equal to 1. See [Hoo12], [Tof07] and [DFK+06] for these and other
common MPC protocols, which we will use as black-boxes.

A protocol that generates a vector of j secure field elements in F∩{0, 1}, [[rrr]], is denoted by [[rrr]]← random bits(F, j).

Secure integer division ([[q]], [[r]]) ← div([[a]], [[b]]), such that a = bq + r, is also used as black box. Our imple-
mentations are based on the Newton-Raphson method [ACS02, CS10] and Taylor series [DNT12].

4.2 Safe and Secure Extended GCD

This section presents a new protocol for computing the extended gcd of secret-shared integers, which we will use
to implement secure class groups of imaginary quadratic fields. The protocol is also of independent interest, as it
is simple, quite practical, and its performance is superior to any of the known alternatives. Moreover, our result
can also be used as an alternative to the constant-time extended gcd algorithms of Bernstein and Yang [BY19b]
on which it is based, without the use of any 2-adic arithmetic.

As starting point we take the constant-time extended gcd algorithm divsteps2 by Bernstein and Yang [BY19b,
Figure 10.1]. Our protocol xgcd, see Protocol 1, retains the algorithmic flow of their divsteps2 algorithm, which
is controlled by the following step function [BY19b, Section 8]:

divstep(δ, f, g) =

{
(1− δ, g, (g − f)/2), if δ > 0 and g is odd,
(1 + δ, f, (g + (g mod 2)f)/2), otherwise.

(4.1)

Throughout, variable f is ensured to be an odd integer, and therefore the divisions by 2 are without remainder
in both cases of the step function. Bernstein and Yang argue that this step function compares favorably with
alternatives from the literature, e.g., the Brent–Kung step function [BK85] and the Stehlé–Zimmerman step
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Algorithm 1 xgcd(n, a, b) n, a, b ∈ N, a odd
1: δ, f, g, u, v, q, r ← 1, a, b, 1, 0, 0, 1 . f = ua+ vb, g = qa+ rb
2: for i = 1 to n do
3: g0 ← g mod 2
4: if δ > 0 and g0 = 1 then
5: δ, f, g, u, v, q, r ← −δ, g,−f, q, r,−u,−v
6: if g0 = 1 then
7: g, q, r ← g + f, q + u, r + v

8: if r mod 2 = 1 then
9: q, r ← q − b, r + a

10: δ, g, q, r ← δ + 1, g/2, q/2, r/2

11: if f < 0 then
12: f, u, v ← −f,−u,−v
13: return f, u, v

function [SZ04]. The computational overhead of function divstep is small, and the required number of iterations
n as a function of the bit lengths of the inputs a and b compares favorably with the alternatives. Concretely, with
(δn, fn, gn) = divstepn(1, a, b) for odd a, Bernstein and Yang prove that fn = gcd(a, b) and gn = 0 holds for
n = iterations(max(len(a), len(b))), where

iterations(d) =

{
b(49d+ 80)/17c, if d < 46,

b(49d+ 57)/17c, otherwise.
(4.2)

Hence, iterations(d) ≈ 3d.

The first major change compared to Bernstein and Yang’s divsteps2 algorithm is that we entirely drop the use
of truncation for f and g. In our MPC setting f and g are secret-shared values (over a prime field of large order)
and therefore limiting the sizes of f and g is not useful. The second major change is that we will avoid the use of
2-adic arithmetic entirely, by ensuring that the Bezout coefficients will remain integral throughout all iterations.
Concretely, this means that we will make sure that coefficients q and r are even before the division by 2 at the
end of each iteration: if q and r are odd, we use q − b and r + a instead, which will then be even, because a is
odd by assumption. We thus obtain Algorithm 1 as an alternative to Bernstein-Yang’s constant-time algorithm.

We turn Algorithm 1 into a secure protocol operating on secret-shared values as follows. We drop variables q and
u from the main loop, and instead set u = (f − vb)/a at the end. Overall, this saves 3 ∗ n secure multiplications
for q and n secure multiplications for u that are otherwise needed to implement the if-then statements obliviously.
See Protocol 1 for the result.

All operations on the remaining variables δ, g, f, v, r are done securely. The secure computations of [[g mod 2]]
and [[r mod 2]] are done by using a secure protocol for computing the least significant bit. The secure computation
of [[δ > 0]] is the most expensive part of each iteration. However, by taking into account that δ is bounded above
by i+ 1, we can reduce the cost of this secure comparison.

For inputs a and b of bit length `, the round complexity of Protocol 1 will be O(`). Per round, the computational
work is proportional to the work for O(log `) secure multiplications.

Theorem 5. The value v output by xgcd satisfies −3
2a ≤ v ≤

9
2a.

Proof. The for-loop in the xgcd algorithm can be divided into consecutive runs that start and end with a state in
which δ = 1 holds. The length of a run is defined as the number of loop-iterations. As explained in [BY19b,
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Protocol 1 xgcd(n, [[a]], [[b]]) n, a, b ∈ N, a odd
1: [[δ]], [[f ]], [[g]], [[v]], [[r]]← 1, [[a]], [[b]], 0, 1
2: for i = 1 to n do
3: [[g0]]← [[g mod 2]]
4: if [[δ]] > 0 and [[g0]] = 1 then
5: [[δ]], [[f ]], [[g]], [[v]], [[r]]← −[[δ]], [[g]],−[[f ]], [[r]],−[[v]]

6: if [[g0]] = 1 then
7: [[g]], [[r]]← [[g]] + [[f ]], [[r]] + [[v]]

8: if [[r mod 2]] = 1 then
9: [[r]]← [[r]] + [[a]]

10: [[δ]], [[g]], [[r]]← [[δ]] + 1, [[g]]/2, [[r]]/2

11: if [[f ]] < 0 then
12: [[f ]], [[v]]← −[[f ]],−[[v]]

13: [[u]]← ([[f ]]− [[v]] ∗ [[b]]/[[a]]
14: return [[f ]], [[u]], [[v]] . f = ua+ vb = gcd(a, b)

Appendix G], each run is of length 2e for some e ≥ 1. The last run ends in a state with δ = 1 and g = 0, after
which the value of v does not change anymore.

We claim that −3
2a ≤ v, r ≤

9
2a is an invariant that holds between these runs.

Clearly, the initial values v, r = 0, 1 satisfy these bounds.

Next, let v0, r0 denote the values of v, r at the start of a run of length 2e, satisfying the bounds −3
2a ≤ v0, r0 ≤

9
2a. Let v′, r′ denote the least possible values for v, r at the end of the run, and let v′′, r′′ denote the largest
possible values for v, r at the of the run.

Define φ(r, a,N) = 2−N (r + (−1 + 2N )a). Then we have:

v′ ≥ φ(r0, 0, e− 1) = r0/2
e−1 ≥ −3

2a/2
e−1 ≥ −3

2a,

and
r′ ≥ φ(φ(−v0, v

′, 1), 0, e) = (v′ − v0)/2e+1 ≥ (−3
2a−

9
2a)/2e+1 = 6a/2e+1 ≥ −3

2a.

Similarly, we have:
v′′ ≤ φ(r0, a, e− 1),

= (r0 + (2e−1 − 1)a)/2e−1

≤ (9
2 + 2e−1 − 1)a/2e−1

≤ (7
2 + 2e−1)a/2e−1

≤ (7
2 + 1)a

= 9
2a,

and
r′′ = φ(−v0, v

′′ + a, e+ 1)
≤ φ(−v0,

11
2 a, e+ 1)

= (−v0 + (2e+1 − 1)11
2 a)/2e+1

≤ (3
2a+ (2e+1 − 1)11

2 a)/2e+1

= ((11
2 2e+1 − 4)a)/2e+1

= (11
2 − 4/2e+1)a

≤ (11
2 − 1)a

= 9
2a.
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The extended gcd protocol can be easily adapted for computing the modular inverse of b modulo a, assuming
gcd(a, b) = 1. NOTE: common case a is an odd prime and 0 < b < a.

Also, the protocol can be stripped to obtain an efficient protocol for computing gcd(a, b) securely.

4.3 Definition of Secure Groups

Let (G, ∗) denote an arbitrary finite group, written multiplicatively. To define secure group schemes we will
use [[a]]G to denote a secure representation of a group element a ∈ G. In general, such a secure representation
[[a]]G will be constructed from one or more secret-shared finite field elements. Also, we may compose secure
representations, e.g., we may put [[a]]G = ([[a′]]G′ , [[a

′′]]G′′) as secure representation of a = (a′, a′′) ∈ G for a
direct product group G = G′ ×G′′.

A secure group scheme should allow us to apply the group operation ∗ to given [[a]]G and [[b]]G, and obtain [[a∗b]]G
as a result. We will refer to this as a secure application of the group operation, or as a secure group operation, for
short. Similarly, a secure group scheme may allow us to perform a secure inversion, which lets us obtain [[a−1]]G
for a given [[a]]G. Another common task is to generate a random sample [[a]]G with a ∈R G, hence to obtain a
secure representation of a group element a drawn from the uniform distribution on G.

To cover a representative set of tasks, we define secure groups as follows.

Definition 6. A secure group scheme for (G, ∗) comprises protocols for the following tasks, where a, b ∈ G.

Group operation. Given [[a]]G and [[b]]G, compute [[a ∗ b]]G.

Inversion. Given [[a]]G, compute [[a−1]]G.

Equality test. Given [[a]]G and [[b]]G, compute [[a = b]].

Conditional. Given [[a]]G, [[b]]G and [[x]] with x ∈ {0, 1}, compute [[axb1−x]]G.

Exponentiation. Given [[a]]G and [[x]] with x ∈ Z, compute [[ax]]G.

Random sampling. Compute [[a]]G with a ∈R G (or, close to uniform).

En/decoding. For a set S and an injective map σ : S → G:

• Encoding. Given [[s]], compute [[σ(s)]]G.

• Decoding. Given [[a]]G with a ∈ σ(S), compute [[σ−1(a)]].

By default, all inputs and outputs to these protocols are secret-shared. In addition, the scheme comprises proto-
cols for all these tasks where some of the inputs and outputs are public and/or private.

By definition, a secure group scheme thus includes an ordinary group scheme where all protocols operate on
public values. Also note that there may be multiple encoding/decodings for a group G, each defined on a specific
set S.

Examples of important variants of the default protocols of a secure group scheme are the following cases for
secure exponentiation, which will be covered in Section 4.5.4: (i) given public a and secret [[x]] compute secret
[[ax]]G, (ii) given secret [[a]]G and public x compute secret [[ax]]G. Similarly, variants of the trivial secure en-
coding/decoding protocols with S = G and σ the identity map on G will allow us to support private input and
output of group elements: (i) given private input a, compute secret [[a]]G, and (ii) given secret [[a]]G, compute
private output a. The private inputs and outputs may even belong to external parties, not taking part in the MPC
protocol.

We have included a representative range of tasks in our definition of secure groups. Even though some of the tasks
are redundant, they are included nevertheless because these tasks cannot necessarily be implemented without loss
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of efficiency in terms of the other tasks. For instance, secure random sampling can be implemented by letting
each party Pi generate a random group element ai ∈R G as private input, for i = 0, . . . , t, and then computing
the product [[a0]]G · · · [[at]]G securely. Depending on the implementation, this may be done much more efficiently
for particular groups.

A class of tasks that we have not (yet) incorporated in the definition of secure groups are higher-order versions of
basic tasks such exponentiation. An important example is multi-exponentiation [[

∏
i a
xi
i ]]G. Similarly, the n-ary

group operation [[
∏n
i=1 ai]]G may be included as a basic task, for which there may be more efficient solutions

compared to n− 1 applications of the secure group operation.

4.4 Generic Constructions of Secure Groups

4.4.1 Secure Groups From Table Lookup

For our first generic construction of secure group schemes for arbitrary groups G, we apply secure table lookup to
the multiplication table of G. This construction works best for relatively small groups because the performance
is polynomial in n = |G|.

Let σ0 : [0, n) → G be an arbitrary encoding for G such that σ0(0) = 1 is the identity element of G. The
multiplication table for G is then represented by a public matrix X ∈ [0, n)n×n with Xi,j = σ−1

0 (σ0(i) ∗σ0(j)),
for all i, j ∈ [0, n).

For the secure representation of any a ∈ G, we set [[a]]G = [[σ−1
0 (a)]]p for a fixed prime p ≥ n. Thus, each group

element is represented by a secret-shared integer in the range [0, n), and in particular, we have [[1]]G = [[0]]p. To
implement the group operation securely we take [[a ∗ b]]G = [[u]]TpX[[v]]p, where [[u]]p and [[v]]p are secret-shared
unit vectors of length n corresponding to [[a]]G and [[b]]G, respectively. A unit vector has one entry equal to 1, and
all its other entries equal to 0. There are efficient protocols for converting [[i]]p, 0 ≤ i < n, to the corresponding
unit vector [[ei]]p and back.

The secure equality test between [[a]]G = [[i]]p and [[b]]G = [[j]]p reduces to a secure equality test [[i = j]]p.

The secure conditional can also be implemented efficiently, given [[x]]p with x ∈ {0, 1}. Given [[a]]G = [[i]]p and
[[b]]G = [[j]]p, we have [[axb1−x]]G = [[x]]p([[i]]p − [[j]]p) + [[j]]p, hence the result is obtained with a single secure
multiplication modulo p.

To generate a random group element, we generate a uniform random integer [[r]]p with r ∈R [0, n). This requires
about log2 n secure random bits (modulo p).

For the remaining tasks we can use the generic protocols presented later in this contribution. If desired, these
protocols can also be optimized.

4.4.2 Secure Groups From Faithful Linear Representations

Our second generic construction of secure group schemes builds on the existence of faithful linear representations
for arbitrary groups G. A (faithful) linear representation of G is an (injective) homomorphism ρ : G →
GLd(Fq) for some finite field Fq. The general existence of such linear representations can be inferred from
Cayley’s theorem, which states that every group G is isomorphic to a subgroup of the symmetric group acting on
G; clearly, every permutation can be represented by a unique permutation matrix over F2.

The basic idea is to use encoding σρ(A) = ρ−1(A), defined for any A ∈ ρ(G) ⊆ GLd(Fq). Hence, we set
[[a]]G = [[ρ(a)]]q such that group element a is represented by a secret-shared d× d matrix A = ρ(a) with entries
in Fq. The secure group operation for [[a]]G and [[b]]G is implemented as a secure matrix product [[ρ(a)]]q[[ρ(b)]]q,
which can be computed efficiently by performing d2 secure dot products in parallel, using one round of communi-
cation. The secure inverse of [[a]]G can be computed efficiently by generating a matrix [[R]]q with R ∈R GLd(Fq)
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and opening [[ρ(a)]]q[[R]]q, inverting this matrix in the clear to obtain ρ(a−1)R−1, and multiplying this with [[R]]q
to obtain the result. Here, R can be any matrix in GLd(Fq), hence R does not have to lie in ρ(G).

The secure equality test reduces to securely testing if [[ρ(a)−ρ(b)]]q is the all-zero matrix. The secure conditional
is implemented efficiently, given [[x]]q with x ∈ {0, 1}, by setting [[axb1−x]]G = [[x]]q([[ρ(a)]]q−[[ρ(b)]]q)+[[ρ(b)]]q,
hence the result is obtained with a single secure multiplication of a scalar with a matrix over Fq.

The representation theory of finite groups [Ser77] helps us to find not just any linear representation, but rather
(faithful) linear representations ρ of low degree d, preferably over a small finite field Fq. As a simple example,
we consider the representation of an arbitrary cyclic group of prime order p. These groups are all isomorphic
to (Zp,+), the group of integers modulo p with addition. To obtain a linear representation of degree 2 for this
group, one takes

ρ : Zp → GL2(Fp), i 7→
(

1 i
0 1

)
.

The essential property is that ρ(i)ρ(j) = ρ(i+ j) for all i, j ∈ Zp. However, a linear representation of degree 1
is also possible: in fact, for a cyclic group of any order n, n ≥ 1, let g be an element of order n in F∗q for some
prime power q. Then we simply take ρ(i) = gi for i ∈ Zn.

As a more advanced example, we illustrate the use of a linear representation of minimum degree for the well-
known Rubik’s Cube group. The Rubik’s Cube group G is a subgroup of S48 generated by the six permutations
corresponding to a clockwise turn of each side (keeping the center pieces at rest). The smallest faithful linear
representation of the Rubik’s Cube group turns out to be of degree 20 [HM16].

Concretely, linear representation ρ : G → GL20(F7) can be used, where ρ(a) for a ∈ G corresponds with
a generalized permutation matrix that encodes all 20 movable cubies as positions (12 edge and 8 corner cu-
bies). Each position encodes an edge flip or a corner twist as elements in F7 of multiplicative order 2 and 3,
respectively. We can define ρ(a) as a block diagonal matrix over F7 with two blocks: a 12 × 12 generalized
permutation matrix with its nonzero entries in {−1, 1} and an 8 × 8 generalized permutation matrix with its
nonzero entries in {2, 4, 1}. Moreover, the following conditions should be satisfied: for each block, the product
of its nonzero entries is equal to 1 (modulo 7), and the permutations corresponding to the two blocks are of
equal parity (i.e., both permutations are even, or both are odd). This results in 12! 212 8! 38/2/3/2 = 210378!12!
possible representations, matching the order of the Rubik’s Cube group.

Using secure random sampling for the Rubik’s Cube group, we can thus replace the trusted shuffler in a Rubik’s
Cube competition.

4.5 Generic Protocols for Secure Groups

In Section 4.4 we have shown several representations for secure groups, and we have discussed protocols for
implementing the tasks listed in Definition 6. In general, the implementation of basic tasks such as the group
operation itself and en/decoding will strongly depend on the representation of the secure group. For other tasks,
however, we may look for generic implementations.

This section presents generic protocols for the following four tasks from Definition 6: conditional (if-else),
random sampling, inverse, and exponentiation.

4.5.1 Secure Conditional

It is usually best to implement the secure conditional directly in terms of the underlying representation for a
secure group, as we have shown in Sections 4.4.1 and 4.4.2. Alternatively, the secure conditional can be evaluated
in terms of secure exponentiation in either of these two generic ways, if applicable: as [[a]]

[[x]]
G ∗ [[b]]

1−[[x]]
G , or as

([[a]]G/[[b]]G)[[x]] ∗ [[b]]G, where x ∈ {0, 1}. This way it suffices to implement the basic operation [[a]]
[[x]]
G with
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x ∈ {0, 1}. And if base a is publicly known, it even suffices to implement a[[x]] (with Protocol 7 as a good option
to implement this operation).

In pseudocode, the secure conditional will be denoted as if-else([[x]], [[a]]G, [[b]]G), with the obvious variations if
a and/or b are publicly known. The condition [[x]] should always be secret.

4.5.2 Secure Random Sampling

The task of secure random sampling from a group G amounts to generating [[a]]G with a ∈R G (or, close to
uniform), see Definition 6. A generic protocol is obtained by letting party Pi generate a random group element
ai ∈R G privately, and then use the secure group operation to form [[a]]G =

∏
i[[ai]]G for a sufficiently large

subset of the parties. Alternatively, with knowledge of the structure of G, we may try to generate [[a]]G in a more
direct way. For example, if G = 〈g〉 is a cyclic group of order n, a generic solution is to let the parties generate
[[x]] with x ∈R Zn, and then set [[a]]G = g[[x]]. This approach can be extended directly to abelian groups, given a
generating set.

The problem of efficient sampling from nonabelian groups with a (close to) uniform distribution is much harder
and has been studied extensively in the literature. We will follow Dixon [Dix08] to present the state of the art.

Specifically, Dixon focuses on generating ε-uniformly distributed random elements, meaning that each group
element has probability (1 ± ε)/|G| to appear as output. The notion of a random cube is an important building
block:

Definition 7 (Random Cube [Dix08]). For a1, . . . , aj ∈ G, we define probability distribution Cube(a1, . . . , aj) =
{aε11 · · · a

εj
j : ε1, . . . , εj ∈R {0, 1}}.

Given a generating set G of G, the following theorem shows that we can construct a random cube of length
proportional to log |G| that is 1/4-uniform with a given probability. The type of algorithm for generating the
sequence of cubes is attributed to Cooperman.

Theorem 6 ( [Dix08, Theorem 1]). Let G = {g1, . . . , gd} be a generating set of G. LetWj = Cube(g−1
j , . . . , g−1

1 , g1, . . . , gj)
be a sequence of cubes, where for j > d, gj is chosen at random from Wj−1. Then for each δ > 0, there is a
constant Kδ, independent of d or G, such that with probability at least 1 − δ, distribution Wj is 1/4-uniform
when j ≥ d+Kδ log |G|.

The number of group operations to construct the random element generator from Theorem 6 is proportional to
log2 |G| and the average cost to produce successive random elements is proportional to log |G|.

Constant Kδ in Theorem 6 may still make the implementation impractical. However, the following theorem
states that we can reduce the cube length if we start from a distribution W that is close to the uniform dis-
tribution U on G w.r.t. to the statistical (or, variational) distance ∆[W ;U ] = 1

2

∑
a∈G|W (a)− U(a)| =

maxA⊂G|W (A)− U(A)|.

Theorem 7 ( [Dix08, Theorem 3(c)]). Let U be the uniform distribution on G and suppose W is a distribution
such that ∆[W ;U ] ≤ ε < 1. Let a0, . . . , aj−1 ∈ G be chosen independently according to distribution W . If
Zj = Cube(a0, . . . , aj−1), then with probability at least 1− 2−h, Zj is 2−k-uniform when

j ≥ h+ 2k + 2 log2 |G|
1− log2(1 + ε)

. (4.3)

If W is ε-uniform, we have ∆[W ;U ] ≤ ε/2 for the uniform distribution U .

As an example we apply these results to random sampling from the Rubik’s Cube group G. Assume that we have
generated a 1/4-uniform cube W using Theorem 6. In practice, this means that we apply a statistical test to see
if W is sufficiently large. Once this pre-processing step is completed we can apply Theorem 7 with ε = 1/8, to
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Protocol 2 random(G, x) random cube Zj(ggg) for G
1: [[r]]← random-bits(j)
2: [[gxrii ]]G ← if-else([[ri]], g

x
i , 1G), for i = 0, . . . , j − 1

3: [[ax]]G ←
∏
i[[g

xri
i ]]G

4: return [[ax]]G . random G-element to the power x, x ∈ Z

Protocol 3 inverse([[a]]G)

1: [[r]]G ← random(G)
2: a ∗ r ← [[a]]G ∗ [[r]]G
3: [[a−1]]G ← [[r]]G ∗ (a ∗ r)−1

4: return [[a−1]]G

generate, with probability at least 1− 2−10, a new 2−k-uniform cube Zj of length j ≈ 0.83(10 + 2k+ 2 · 65.23)
group elements. With k = 20, we then need a cube of 150 group elements.1

Protocol 2 is a general protocol for secure random sampling from a group G. The protocol uses a given random
cube Zj of length j, which is assumed to be sufficiently close to uniform random. The protocol thus requires
j secure random bits and j − 1 secure group operations. The result is raised to the power x, where x = 1 is
intended as the default case, and this can be extended to several powers.

4.5.3 Secure Inverse

The sampling protocols from Section 4.5.2 allow us to invert secure group elements for groups with known or
unknown order. Protocol 3 implements this functionality following the classical approach by [BIB89].

4.5.4 Secure Exponentiation

We start this section with a generally applicable protocol for secure exponentiation [[ax]]G based on the binary
representation of [[x]], see Protocol 4. The computational complexity is dominated by about 2` group operations
and ` calls to lsb. For the round complexity we see that the ` iterations of the loop are done sequentially. The
protocol can be optimized in lots of ways. For instance, it is more efficient to compute the bits of [[x]] all at once,
including the sign bit, using a standard solution.

For abelian groups the linear dependency on ` for the round complexity can be removed, as we show in Protocol 5.
The improvement is that the ` iterations of the loop can now be done in parallel. Using standard techniques for
constant rounds protocols (see, e.g., [BIB89, DFK+06]) the overall round complexity can be made independent
of `.

These protocols can be optimized if either a or x is public. For instance, if a is public, the list of powers
a, a2, a4, . . . can be computed locally, and if x is public, one can use techniques such as addition chains.

However, if one of the two inputs a or x is public, we can obtain efficient protocols by securely randomizing the
other input. Protocol 6 solves the case that x is public, assuming that the group is abelian. The protocol uses
secure random sampling from G to obtain both a random group element and its (−x)th power.

Protocol 7 solves the case that a is public. The protocol random-pair(a) outputs a random exponent [[r]] together
with [[a−r]]G for public input a ∈ G. For public output ax, we can also use public a−r in the first step of the

1The minimum number of operations to scramble the Rubik’s cube corresponds to the formal notion of the mixing time of the Rubik’s
cube group, which to our knowledge is an open problem. [CH19] proved that for the n-by-n puzzle, a generalization of the 15-puzzle, the
mixing time is bounded by n4 logn. This is asymptotically larger than the minimum number of moves to solve the puzzle, 5n3 [Par95].
Exact mixing time for the 3x3x3 Rubik’s cube is unknown. The number of quarter-turn operations to solve the Rubik’s cube is 26.
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Protocol 4 exponentiation([[a]]G, [[x]])

1: [[b]]G, [[y]]← if-else([[x < 0]], (inverse([[a]]G),−[[x]]), ([[a]]G, [[x]])) . skip if x ≥ 0 ensured
2: [[c]]G ← [[1]]G
3: for i = 0 to `− 1 do . len(x) ≤ ` assumed
4: [[ei]]← lsb([[y]])
5: [[c]]G ← if-else([[ei]], [[b]]G ∗ [[c]]G, [[c]]G)
6: [[y]]← ([[y]]− [[ei]])/2
7: [[b]]G ← [[b]]2G
8: return [[c]]G

Protocol 5 exponentiation([[a]]G, [[x]]) G abelian
1: [[x0]], . . . , [[x`−1]]← bits([[x]]) . len(x) + 1 ≤ ` assumed for two’s complement
2: [[r]]G, [[r

−1]]G, . . . , [[r
−2`−1

]]G ← random(G, 1,−1, . . . ,−2`−1)
3: b← [[a]]G ∗ [[r]]G . b = a ∗ r
4: for i = 0 to `− 1 do
5: [[ci]]G ← if-else([[xi]], b

2i ∗ [[r−2i ]]G, 1G) . in parallel
6: return [[c0]]G ∗ · · · ∗ [[c`−2]]G ∗ [[c`−1]]−1

G

protocol. Finally, in the special case that a is an element of large order, parties may directly use their Shamir
secret sharea, and perform Lagrange interpolation in the exponent to raise a to the power [[x]]. The security of
the protocol then relies on the discrete log assumption.

4.6 Specific Constructions of Secure Groups

4.6.1 Secure Quadratic Residue Groups

The first specific type of groups that we consider is QRp = (Z∗p)2, the group of quadratic residues modulo an
odd prime p. Quadratic residue groups, and more generally subgroups of F∗q , are used widely in cryptography,
where n = |QRp| = (p− 1)/2 is chosen sufficiently large to ensure that the discrete log problem is hard. Often,
n is assumed to be prime as well.

Secure group schemes for F∗q and all its subgroups are easily obtained using [[a]]G = [[a]]q as secure representation
for a ∈ F∗q . Protocols for all tasks listed in Definition 6 can be obtained with standard techniques, except for the
task of secure en/decoding. To enable integer-valued inputs and outputs for applications of secure groups, we
often need encoding functions σ : S → G with S ⊂ Z. Efficient en/decoding is hard for arbitrary subgroups of
F∗q , but for QRp efficient solutions are possible.

Many encodings (or, embeddings) for G = QRp have been proposed in the cryptographic literature. For our
purposes, we consider the following four encodings for G:

σ1 : {1, . . . , n} → G, s 7→ s2 mod p

σ2 : {1, . . . , n} → G, s 7→
{
s, if s ∈ G
p− s, if s 6∈ G

σ3 : {0, . . . , bp/kc − 1} → G, s 7→ min(G ∩ {ks+ i : 0 ≤ i < k})
σ4 : {1, . . . , n} → G, s 7→ H(s, arg mini{i ≥ 1: H(s, i) ∈ G}),

where 1 < k < p and H is a cryptographic hash function with codomain Z∗p.

Encoding σ1 is the natural encoding for G. Since squaring is a 2-to-1 mapping on Z∗p as s2 = (−s)2, it follows
that σ1 is a bijective encoding on {1, . . . , n}. Decoding of a ∈ G amounts to taking the unique modular square
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Protocol 6 exponentiation([[a]]G, x) public exponent x, G abelian
1: [[r]]G, [[r

−x]]G ← random(G, 1,−x)
2: a ∗ r ← [[a]]G ∗ [[r]]G
3: [[ax]]G ← (a ∗ r)x ∗ [[r−x]]G
4: return [[ax]]G

Protocol 7 exponentiation(a, [[x]]) public base a
1: [[r]], [[a−r]]G ← random-pair(a)
2: x+ r ← [[x]] + [[r]] . x+ r should be sufficiently random
3: [[ax]]G ← ax+r[[a−r]]G
4: return [[ax]]G

root of a ≤ n.

For p ≡ 3 (mod 4), σ2 is another bijective encoding for G, generalizing the encoding defined for safe primes p
in [CS03, Section 4.2, Example 2]. We see that σ2(s) = p− s for s 6∈ G is indeed a quadratic residue modulo p
because p − s ≡ (−1)s (mod p) is the product of two quadratic nonresidues. Decoding of a ∈ G amounts to
σ−1

2 (a) = a if a < p/2 and σ−1
2 (a) = p− a otherwise.

Encoding σ3 resembles an encoding introduced by Koblitz in the context of elliptic curve cryptosystems [Kob87,
Section 3.2]. The value of σ3(s) is well-defined as long as each interval {ks + i : 0 ≤ i < k} contains a
quadratic residue. This can be ensured by picking k sufficiently large as a function of p. The classical result by
Burgess [Bur63] implies that k = d√pe ensures successful encoding for sufficiently large p (see also [Hum03]).
Under the extended Riemann Hypothesis, Ankeny [Ank52] proved that the least quadratic nonresidue for prime
p equals O(log2 p).

In practice, however, we may set parameter k = dlog2 pe or a small multiple thereof.2 In general, encoding σ3 is
not bijective. Decoding of any a in the range of σ3 is simple as σ−1

3 (a) = ba/kc.

Finally, encoding σ4 corresponds to a hash function used in certain elliptic curve signature schemes [BLS04, Sec-
tion 3.2]. Since Pr[H(s, i) ∈ G] = 1

2 in the random oracle model, computing σ4(s) requires two hashes and two
Legendre symbols on average. The collision-resistance of H implies that the encoding will be “computationally
injective” in the sense that it is infeasible to find s 6= s′ for which σ4(s) = σ4(s′). Due the one-wayness of H ,
however, decoding of any a in the range σ4 amounts to an exhaustive search.

For our purposes, we are interested in secure computation of these encodings and decodings. We briefly compare
the performance for the four encodings. A secure encoding [[σ1(s)]] amounts to a secure squaring of [[s]], which is
very efficient. Secure decoding [[σ−1

1 (a)]] requires taking the modular square root of a quadratic residue [[a]]. This
can be done efficiently by multiplying [[a]] with a uniformly random square [[r]]2, opening the result ar2, taking
a square root a1/2r (in the clear) and dividing this by [[r]]. Finally, we need one secure comparison to make sure
that the result is in {1, . . . , n}.

Similarly, a secure encoding [[σ2(s)]] amounts to securely evaluating the Legendre symbol [[(s | p)]]. Since s is
known to be nonzero, we simply multiply [[s]] with a uniformly random square [[r]]2 and also with [[1 − 2b]] =
[[(−1)b]] for a uniformly random bit b, opening the result sr2(−1)b, for which we compute the Legendre symbol

2Probabilistic heuristics for small primes (< 20 bits), suggest that the greatest number of consecutive quadratic nonresidues in the
average-case is fit by log2(p). Buell and Hudson [BH84] computed the lengths of the longest sequences of consecutive residues and
nonresidues. By numerical analysis the authors find that the longest sequence of residues and nonresidues for a given prime p are fit very
closely by log2(p) + δ with δ slightly larger than 1, which suggests a choice of k for an average-case selection of modulus p. A small
data set from [Hum03] using smaller primes (http://www.math.caltech.edu/people/hummel.html) shows sequences of
length < 2(log(p) + δ) in worst-case. Heuristics for larger primes (say ≥ 256-bit) are computationally heavy and beyond the scope of
this work.
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Protocol 8 add([[P1]]G, [[P2]]G)
1: ([[x1]], [[y1]], [[t1]], [[z1]])← [[P1]]G
2: ([[x2]], [[y2]], [[t2]], [[z2]])← [[P2]]G
3: [[r1]], [[r2]], [[r3]], [[r4]]← [[y1]]− [[x1]], [[y2]] + [[x2]], [[y1]] + [[x1]], [[y2]]− [[x2]]
4: [[r1]], [[r2]], [[r3]], [[r4]]← [[r1]][[r2]], [[r3]][[r4]], 2[[z1]][[t2]], 2[[t1]][[z2]] . 4M
5: [[r1]], [[r2]], [[r3]], [[r4]]← [[r4]] + [[r3]], [[r2]]− [[r1]], [[r2]] + [[r1]], [[r4]]− [[r3]]
6: [[x3]], [[y3]], [[t3]], [[z3]]← [[r1]][[r2]], [[r3]][[r4]], [[r1]][[r4]], [[r2]][[r3]] . 4M
7: [[P3]]G ← ([[x3]], [[y3]], [[t3]], [[z3]])
8: return [[P3]]G

z = (sr2(−1)b | p) in the clear. Then [[(s | p)]] = z[[(−1)b]]. Secure decoding boils down to a secure comparison
with public (p− 1)/2, which is quite efficient.

A secure encoding [[σ3(s)]] amounts to the secure evaluation of k Legendre symbols [[(ks + i | p)]] and finding
the first +1 among these. With k of the order log2 p, this represents a considerable amount of work. However,
secure decoding [[σ−1

3 (a)]] = [[ba/kc]] is much more efficient, especially if k is a power of two.

Finally, σ4 is not practical to compute obliviously. To obliviously select the smallest i such that [[(H(s, i) |
p)]] = +1 requires computing [[H(s, i)]] for 0 ≤ i < |G|, which is not practical. Also, σ4 does not allow
efficient decoding due to the one-wayness of H . However, this encoding is still useful to map private inputs
s ∈ {1, . . . , n} to (unique) secret-shared group elements [[σ4(s)]]G.

4.6.2 Secure Elliptic Curve Groups

Let E(Fq) denote the finite group of points on an elliptic curve group E over Fq. For cryptographic purposes we
often use a subgroup G ⊆ E(Fq) of large prime order, such that the discrete log problem and the (decisional)
Diffie-Hellman problem are hard in G.

As secure representation of an affine point P = (x, y) ∈ G we take [[P ]]G = ([[x]], [[y]]), where it is left under-
stood that x and y are secret-shared over Fq. For efficient implementation of the secure group operation it is
advantageous to use complete formulas, that is, group law formulas without any exceptions. Complete formulas
are known for groups of prime order Weierstrass curves [RCB16] and Edwards curves [BL07, HWCD08].

As an example, the complete formula for the group operation P1 + P2 on a twisted Edwards curve is given by(
x1y2 + y1x2

1 + dx1y1x2y2
,
y1y2 − ax1x2

1− dx1y1x2y2

)
,

where P1 = (x1, y1) and P2 = (x2, y2) are arbitrary points on the curve. In particular, one can see that (0, 1)
acts as the identity element. This way, it is straightforward to compute [[P1 + P2]]G given [[P1]]G and [[P2]]G. The
number of secure operations over Fq is low, like at most 7 secure multiplications (and 2 secure inversions). The
multiplicative depth is however at least 3.

Using twisted Edwards curves with extended coordinates (and a = −1), the result from Hisil et al. [HWCD08,
Section 4.4] yields a multiplicative depth of 2 for secure point addition, performing four multiplications in
parallel. Protocol 8 is based on their complete formula.

We illustrate en/decoding for secure elliptic curve groups with an example similar to encoding σ3 of Section 4.6.1.

Consider a twisted Edwards curve E(Fp) with curve equation E : ax2 + y2 = 1 + dx2y2 for given a, d ∈ Fp.
For encoding input s given parameter k, we repeatedly set x = sk+ i for varying i and test if x corresponds to a
valid point (x, y) ∈ E(Fp), which amounts to testing if u = (1− ax2)/(1− dx2) is a quadratic residue modulo
p. Then we define σ(s) = (x, y), where y is a quare root of u modulo p.
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Algorithm 2 compose(f1, f2) f1, f2 primitive, positive definite
Input: f1 = (a1, b1, c1) and f2 = (a2, b2, c2) with a1 ≤ a2

1: s← (b1 + b2)/2
2: d′, x1, y1 ← xgcd(a1, a2) . x1a1 + y1a2 = d′ = gcd(a1, a2)
3: d, x2, y2 ← xgcd(s, d′) . x2s+ y2d

′ = gcd(s, d′)
4: v1, v2 ← a1/d, a2/d
5: r ← (y1y2(s− b2)− x2c2) mod v1 . integer division
6: a3 ← v1v2

7: b3 ← b2 + 2v2r
8: c3 ← (b23 −∆)/(4a3)
9: f3 = (a3, b3, c3)

10: return reduce(f3)

Algorithm 3 square(f ) f primitive, positive definite
Input: f = (a, b, c)

1: x2 ← b−1 mod a . modular inverse
2: r ← (x2c) mod a . integer division
3: a2 ← a2

4: b2 ← b− 2ar
5: c2 ← (b22 −∆)/(4a2)
6: f2 = (a2, b2, c2)
7: return reduce(f2)

Secure decoding amounts to recovering s = bx/kc. In general, secure decoding can be optimized if k is a power
of 2. Moreover, if increment i is also available as an auxiliary secret-shared input [[i]], secure decoding may be
implemented basically for free as [[s]] = ([[x]]− [[i]])/k.

4.6.3 Secure Class Groups

In this section we focus on class groups of (orders in) imaginary quadratic fields, as these have been used most for
applications in public key cryptography. We use Cl(∆) to denote the ideal class group of an imaginary quadratic
field with discriminant ∆ < 0. We also use Cl(∆) to denote the isomorphic form class group of integral binary
quadratic forms f(x, y) = ax2 + bxy + cy2 with discriminant ∆ = b2 − 4ac < 0. These forms are written as
f = (a, b, c) with a, b, c ∈ Z, where it is implied that f is primitive, that is, gcd(a, b, c) = 1, and f is positive
definite, that is a > 0.

Two forms f and g are equivalent if there exists a matrix ((α, β), (γ, δ)) ∈ SL2(Z) such that g(x, y) = f(αx+
βy, γx + δy). A primitive, positive definite form f is called reduced if |b| ≤ a ≤ c, where b ≥ 0 if |b| = a
or a = c. Any form is equivalent to a unique reduced form. For a reduced form f = (a, b, c) we have that a is
bounded above by

√
|∆|/3.

For the composition of two forms f1, f2 ∈ Cl(∆) we will use the algorithm due to Shanks [Sha71], as presented
by Cohen [Coh93, Algorithm 5.4.7]. We slightly adapt the algorithm, skipping some case distinctions that
were introduced for efficiency, see Algorithm 2. Apart from the computationally nontrivial reduction performed
in the final step of the algorithm, the resulting algorithm only requires two xgcd’s and one integer division.
This compares favorably with alternatives such as the classical composition algorithm by Dirichlet [LD63] (see
also [Cox11, Lemma 3.2] and [Lon19, Algorithm 6.1.1]).

For the special case that a form f is composed with itself, the algorithm can be simplified significantly, see
Algorithm 3. We will assume that ∆ is odd, which ensures that b 6= 0 for all forms, as ∆ ≡ b (mod 2).
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Algorithm 4 inverse(f ) f primitive, positive definite
Input: f = (a, b, c)

1: if b 6= a then
2: b← −b
3: return f

Algorithm 5 reduce(f ) f ∈ Cl(∆) primitive, positive definite
Input: f = (a, b, c)

1: for i = 1 to dlen(∆)/2e do . invariant a > 0 and c > 0
2: if b > 0 then sb ← 1 else sb ← −1
3: j ← len(b)− len(a)− 1 . explain: norm for len, using len(b) < len(∆)− i
4: m← −sb2j . compute 2j almost for free with norm
5: if sbb > 2a then . |b| > 2a
6: f ← fTm . fTm = (a, b+ 2ma,m2a+mb+ c)

7: if a > c then
8: f ← fS . fS = (c,−b, a)

9: m← ba−b2a c . integer division
10: f ← fTm
11: if a > c then
12: f ← fS

13: if (a+ b)(a− c) = 0 and b < 0 then . ensure b ≥ 0 if a = −b or a = c
14: b← −b . f ← fS = fT1

15: return f

The inverse of a form f can be obtained easily, without a costly reduction, see Algorithm 4.

As secure representation of a form f = (a, b, c) ∈ G we define [[f ]]G = ([[a]]p, [[b]]p, [[c]]p), for a sufficiently large
prime p. The prime p should be sufficiently large such that the intermediate forms computed by Algorithm 2 do
not cause any overflow modulo p (also accounting for the “headroom” needed for secure comparison and secure
integer division). Using Protocol 1 for secure xgcd and a protocol for secure integer division, Algorithm 2 is then
easily transformed into a protocol for the secure composition of forms. Similarly, Algorithm 3 is transformed
into a protocol for secure composition of a form with itself, noting that a secure modular inverse is done by
means a of secure xgcd (using only one of the Bezout coefficients). Algorithm 4 is transformed in a very simple
and efficient protocol, replacing the if-then statement by a secure conditional: [[b]]← if-else([[b 6= a]], [[−b]], [[b]]).

To reduce a form f = (a, b, c), the classical reduction algorithm by Lagrange (see [BV07, Algorithm 5.3]) runs
in at most 2 + dlog2(a/

√
∆)e steps [BV07, Theorem 5.5.4], each step requiring an integer division. Our main

goal in devising a protocol for secure reduction is to avoid the expensive integer divisions as much as possible.

To this end, we take the binary reduction algorithm by [AF06, Algorithm 3] as our starting point. We minimize
the number of comparisons by exploiting the invariant a > 0 and c > 0. The algorithm reduces forms by the
following transformations in SL2(Z):

S =

(
0 −1
1 0

)
Tm =

(
1 m
0 1

)
.

The total number of iterations of the main loop required to achieve |b| ≤ 2a is at most len(b), if f = (a, b, c) is
the given form. This follows from the fact that if |b| ≤ 2a does not hold yet, an iteration of the main loop will
reduce len(b) by at least 1. We will ensure that len(b) ≤ len(∆), such that it suffices to run the main loop for
len(∆) iterations, independent of the input. Note that we need to test a > c in each iteration as well.
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Algorithm 6 encode(s,Cl(∆)) s sufficiently small w.r.t. |∆|
1: n = s · gap`
2: a← n− 1− (n mod 4)
3: repeat
4: a← a+ 4 . a ≡ 3 (mod 4)

5: b← ∆
a+1
4 mod a

6: until b2 ≡ ∆ (mod a) and gcd(a, b) = 1
7: if ∆ 6≡ b (mod 2) then
8: b← a− b
9: f ← (a, b, b

2−∆
4a ) . ∆ ≡ b2 (mod 4)

10: d← n− a
11: return f , d

As an important optimization, we limit the number of iterations to len(∆)/2 by noting that it suffices to reduce
b until len(b) < len(∆)/2. This ensures that |b| ≤

√
|∆| after the main loop. If |b| ≤ 2a does not hold yet, then

it follows that a < |b|/2 ≤
√
|∆|/4, and we only need one “normalization” step to ensure |b| ≤ a.

The result is presented as Algorithm 5. This algorithm avoids the integer division and multiple comparisons
in the main loop of Lagrange’s reduction algorithm, at the cost of three secure comparisons and two secure bit
length computations in the main loop.

For secure encoding to class groups, a given integer s will be mapped to a form (a, b, c) by computing a as
a simple function of s and setting b as the square root of ∆ modulo 4a, see Algorithm 6. We note that this
encoding improves upon the encoding proposed by [Sch03] (compare to [Sch99] as well), which relies on using
prime numbers for a. Our algorithm avoids the need for primality tests, which are dominating the computational
cost for the encoding algorithm.

Let k be our parameter as above. Given a worst-case prime gap for an `-bit discriminant, gap`, we avoid the
need to return the distance by setting parameter k = gap` and mapping input a to a prime a′ = a ·k+ i for some
0 ≤ i < k. Algorithm 6 is similar to searching for candidates by incrementing i in encoding σ3 of Section 4.6.1.
After a successful encoding of a′ per Algorithm 6 to a so-called prime form fa′ = (a′, b, c), we can discard the
distance knowing that a = ba′/gap`c.

For |∆| an odd prime, the frequency of prime forms (a′, b, c) approximately corresponds to the quadratic residu-
osity of a′ modulo |∆|. We refer to [BV07, Proposition 3.4.5] for the exact frequency of prime forms.

We improve upon the encoding suggested by [Sch03]. We do not search for a prime a, which requires a costly
primality test. Instead we take a ≡ 3 (mod 4) and simply test whether b2 ≡ ∆ (mod a) for b = ∆

a+1
4 mod a.

This condition will certainly hold if a is prime and ∆ is a quadratic residue modulo a, because then we have
b2 ≡ ∆(a+1)/2 ≡ ∆(a−1)/2∆ ≡ ∆ (mod a). Hence, the success rate will be no worse than for [Sch03].

Finally, even though class groups are abelian, random sampling is quite hard, because it is already hard to
compute a generating set for Cl(∆). Given a (sufficiently complete) generating set G, without knowledge of the
order Cl(∆), the general idea is for gi ∈ G and random ei ∈ {1, . . . , |∆|}, for i ∈ {0, . . . , d− 1}, to compute a
random element

∏d−1
i=0 g

ei
i , e.g., using results from [LP92].

4.7 MPC-based Threshold Cryptosystems

In this section we present several applications of secure groups in the context of threshold cryptosystems, using
the well-known threshold ElGamal cryptosystem as a basic example [Ped91]. We focus on the case of security
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against passive adversaries, assuming an MPC setting with m parties and a corruption threshold of t, 0 ≤ t <
m/2, cf. Section 4.1.

Let G = 〈g〉 be a cyclic group of large prime order p. Given our protocols for secure groups, a simple (t+1,m)-
threshold ElGamal cryptosystem is obtained as follows:

Distributed key generation. The parties generate [[x]] with x ∈R Zp, and use secure exponentiation to compute
h = gx. The parties keep private key [[x]] in shares and output public key h.

Encryption. Given message M ∈ G, pick u ∈R Zn. The ciphertext for public key h is the pair (gu, huM).

Threshold decryption. Given ciphertext (A,B), the parties use [[x]] to compute Ax by secure exponentiation.
The parties output message M = B/Ax.

The complexity of the protocols for distributed key generation and threshold decryption is entirely hidden in the
underlying MPC framework supporting secure groups.

We now extend the threshold ElGamal cryptosystem noting that instead of using messageM ∈ G in the clear we
can also use [[M ]]G in shares, just as we keep the private key [[x]] in shares, using our protocols for secure groups:

Encryption of shared message. Given message [[M ]]G, the parties generate [[u]] with u ∈R Zp, and output the
pair (g[[u]], h[[u]][[M ]]G) as ciphertext for public key h. Here, secure exponentiation is used twice, either with
public output (A,B) or with secret output ([[A]]G, [[B]]G).

Threshold decryption to shared message. Given ciphertext (A,B), the parties compute [[Ax]]G = A[[x]] using
secure exponentiation. The parties compute and keep message [[M ]]G = B/[[Ax]]G in shares. Similarly,
the parties may decrypt a ciphertext ([[A]]G, [[B]]G).

Combining these protocols we can do things like reencryption for another public key h′: use threshold decryption
to a shared message and then encryption under the new public key. We can also do a reencryption as follows:

Proxy reencryption. Assume the parties hold shares for two private keys [[x1]] and [[x2]], then they may compute
[[x1/x2]] and use this with secure exponentiation to convert ciphertext (A,B) for public key h1 = gx1 into
ciphertext (A[[x1/x2]], B) for public key h2 = gx2 .

Proxy reencryption key. Assume the parties hold shares for two private keys [[x1]] and [[x2]], then they may
compute and open [[x1/x2]] as a proxy reencryption key.

4.8 Implementation

The secure groups scheme is implemented in Python using the MPyC package [Sch18]. This implementation
includes secure representations for various elliptic curve groups (Weierstrass, Edwards), the symmetric group,
the group of quadratic residues and class groups. To demonstrate its applicability, we include demos for the
threshold conversion protocol using quadratic residues and twisted Edwards curves, computations with class
groups using Protocol 1 for xgcd, random sampling in the Rubik’s cube group, the well-known Pinocchio ZK-
SNARK [PHGR13] and the Trinocchio multiparty zero knowledge proof [SVdV16] based on Pinocchio. The se-
cure groups extension to MPyC is available from https://github.com/toonsegers/sec_groups
under the MIT license. The zero knowledge proof examples are part of the verifiable MPC extension to
MPyC, which is available from https://github.com/toonsegers/verifiable_mpc under the MIT
license.

4.9 Conclusion

Secure groups are a convenient and powerful abstraction to use finite groups in the MPC setting. With the scheme
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presented in this contribution, a protocol engineer can use time-tested protocols to perform (cryptographic) group
operations in the MPC setting. We illustrate this by demonstrating how secure groups facilitate the extension of
a classical threshold cryptosystem. Furthermore, this work includes an xgcd protocol and a protocol to reduce
binary quadratic forms, which allow us to implement secure class groups.
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Chapter 5

Snarky Ceremonies

Succinct non-interactive arguments of knowledge (SNARKs) have found numerous applications in the blockchain
setting and elsewhere. The most efficient SNARKs require a distributed ceremony protocol to generate public
parameters, also known as a structured reference string (SRS). This ceremony protocol is the weakest element
in the whole setup procedure, and so a careful and systematic treatment of the procedure is necessary. The
contributions of this section are two-fold:

• We give a security framework for non-interactive zero-knowledge arguments with a ceremony protocol.

• We revisit the ceremony protocol of Groth’s SNARK [Bowe et al., 2017]. We show that the original con-
struction can be simplified and optimized, and then prove its security in our new framework. Importantly,
our construction avoids the random beacon model used in the original work.

5.1 Introduction

Zero-knowledge proofs of knowledge [GMR85, BG93] allow to prove knowledge of a witness for some NP
statement while not revealing any information besides the truth of the statement. The recent progress in zero-
knowledge (ZK) Succinct Non-interactive Arguments of Knowledge (SNARKs) [Gro10,Lip12,PHGR13,DFGK14,
Gro16] has enabled the use of zero-knowledge proofs in practical systems, especially in the context of blockchains [BCG+14,
KMS+16, SBG+19, BCG+20].

Groth16 [Gro16] is the SNARK with the smallest proof size and fastest verifier in the literature, and it is also
competitive in terms of prover time. Beyond efficiency, it has several other useful properties. Groth16 is reran-
domizable [LCKO19], which is a desirable property for achieving receipt-free voting [LCKO19]. Simultane-
ously, it also has a weak form of simulation extractability [BKSV20] which guarantees that even if the adversary
has seen some proofs before, it cannot prove a new statement without knowing the witness. The prover and
verifier use only algebraic operations and thus proofs can be aggregated [BMMV19]. Furthermore, Groth16 is
attractive to practitioners due to the vast quantity of implementation and code auditing attention it has already
received.

Every application using Groth16 must run a separate trusted setup ceremony in order to ensure security, and even
small errors in the setup could result a complete break of the system. Indeed, the paper of the original Zcash
SNARK [BCTV14] contained a small typo which resulted in a bug that would allow an attacker to print unlimited
funds in an undetectable manner [Gab19]. Some would use this example as a reason to avoid any SNARK with
a trusted setup ceremony at all costs. And yet people are still not only using Groth16, but actively designing new
protocols on top of it, potentially for the reasons listed above. Thus we believe that if this SNARK ceremony
is going to be used anyways, it is important to spend as much time and effort on simplifying its description and
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verifying its security as possible.

The primary purpose of this contribution is to take a formal approach to proving the security of the Groth16 setup
ceremony of Bowe, Gabizon, and Miers [BGM17] that is currently being used in practice. This setup ceremony
has already been used by Zcash, Aztec protocol, Filecoin, Semaphore, Loopring, and Tornado Cash. We simplify
the original protocol, specifically we remove the need for a random beacon. Our security proofs equally apply to
the version of the protocol with a beacon already used in practice.

A number of different works have analysed the setup security of zk-SNARKs. The works of [BCG+15,BGG17,
ABL+19] (see also [AFK+20]) propose specialized multi-party computation protocols for SRS generation cer-
emonies. A common feature of these protocols is that they are secure if at least one of the parties is honest.
However, these schemes are not robust in the sense that all parties must be fixed before the beginning of the pro-
tocol and be active throughout the whole execution. In other words if a single party goes offline between rounds
then the protocol will not terminate. Bowe, Gabizon, and Miers [BGM17] showed that the latter problem could be
solved if there is access to a random beacon — an oracle that periodically produces bitstrings of high entropy —
which can be used to rerandomize the SRS after each protocol phase. Unfortunately, obtaining a secure random
beacon is, by itself, an extremely challenging problem [KRDO17, CD17, BBBF18, HYL20, BDD+20]. Secure
solutions include unique threshold signatures [HMW18], which themselves require complex setup ceremonies
as well as verifiable delay functions [BBBF18,Pie19,Wes19] that require the design and use of specialized hard-
ware. Practical realizations have instead opted for using a hash function applied to a recent blockchain block as
a random beacon. This is not an ideal approach since the blockchain miners can bias the outcome.1

The work of Groth, Kohlweiss, Maller, Meiklejohn, and Miers [GKM+18] takes a different approach and directly
constructs a SNARK where the SRS is updatable, that is, anyone can update the SRS and knowledge soundness
and zero-knowledge are preserved if at least one of the updaters was honest.2 Subsequent updatable SNARKS
like Sonic [MBKM19], Marlin [CHM+20], and PLONK [GWC19] have improved the efficiency of updatable
SNARKs, but they are still less efficient than for example [Gro16]. Mirage [KPPS20] modifies the original
Groth16 by making the SRS universal, that is the SRS works for all relations up to some size bound. The latter
work can be seen as complementary to the results of this contribution as it amplifies the benefits of a successfully
conducted ceremony.

5.1.1 Our Contributions

Our key contributions are as follows:

Designing a security framework. We formalize the notion of non-interactive zero-knowledge (NIZK) argu-
ment with a multi-round SRS ceremony protocol, which extends the framework of updatable NIZKs
in [MBKM19]. Our definitions take a game-based approach and in particular are less rigid than multi-
party computation definitions. Our security notions say that an adversary cannot forge a SNARK proofs
even if they can participate in the setup ceremony. We call such a SNARK ceremonial. This notion is more
permissible for the setup ceremony than requiring simulatability and is therefore easier to achieve. In
particular, using our definitions we do not require the use of a random beacon, whereas it is not clear that
the random beacon could be easily avoided in the MPC setting. Our definitions are applicable to SNARKs
with a multiple round setup ceremony as long as they are ceremonial.

Proving security without a random beacon. We prove the security of the Groth16 SNARK with a setup cere-
mony of [BGM17] in our new security framework.3 We intentionally try not change the original ceremony
protocol too much so that our security proof would apply to protocols already used in practice. Security

1Also from a theoretical perspective it is desirable for a setup ceremony to avoid dependence on setups as much as possible—we
spurn random beacons but embrace random oracles.

2Note that one can independently prove subversion ZK [ABLZ17, Fuc18].
3In other words Groth16 is ceremonial for [BGM17].
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is proven with respect to algebraic adversaries [FKL18] in the random oracle model. We require a single
party to be honest in each phase of the protocol in order to guarantee knowledge soundness and subversion
zero-knowledge holds unconditionally. Unlike [BGM17], our security proof does not rely on the use of a
random beacon. However, our security proof does apply to protocols that have been implemented using
a (potentially insecure) random beacon because the beacon can just be treated as an additional malicious
party. We see this as an important security validation of real-life protocols that cryptocurrencies depend
on.

Revisiting the discrete logarithm argument. The original paper of [BGM17] used a novel discrete logarithm
argument to prove knowledge of update contributions. They showed that the argument has knowledge
soundness under the knowledge of exponent assumption in the random oracle model. While proving
the security of the ceremony protocol, we observe that even stronger security properties are necessary.
The discrete logarithm argument must be zero-knowledge and straight-line simulation extractable, i.e.,
knowledge sound in the presence of simulated proofs. Furthermore, simulation-extractability has to hold
even if the adversary obtains group elements as an auxiliary input for which he does not know the discrete
logarithm. We slightly modify the original argument to show that those stronger properties are satisfied if
we use the algebraic group model with random oracles.

Thus this work simplifies the widely used protocol of [BGM17] and puts it on firmer foundations.

5.1.2 Our Techniques

Security framework

Our security framework assumes that the SRS is split into ϕmax distinct components srs = (srs1, . . . , srsϕmax)
and in each phase of the ceremony protocol one of the components gets finalized. We formalize this by enhancing
the standard definition of NIZK with an Update and VerifySRS algorithms. Given srs and the phase number ϕ,
the Update algorithm updates srsϕ and produces a proof ρ that the update was correct. The verification algorithm
VerifySRS is used to check that srs and update proofs {ρi}i are valid.

We obtain the standard updatability model if ϕmax = 1. When modelling the Groth16 SNARK we set ϕmax = 2.
In that scenario, we split the SRS into a universal component srs1 = srsu that is independent of any relation and to
a specialized component srs2 = srss, which depends on a concrete relation R. Both srsu and srss are updatable;
however, the initial srss has to be derived from srsu and the relation R. Thus, parties need first to update srsu,
and only after a sufficient number of updates can they start to update srss. The universal srsu can be reused for
other relations.

In our definition of update knowledge soundness, we require that no adversary can convince an honest verifier of
a statement unless either (1) they know a valid witness; (2) the SRS does not pass the setup ceremony verification
VerifySRS; or (3) one of the phases did not include any honest updates. Completeness and zero-knowledge hold
for any SRS that passes the setup ceremony verification, even if there were no honest updates at all. The latter
notions are known as subversion completeness and subversion zero-knowledge [BFS16].

Security proof of setup ceremony

We must prove subversion zero-knowledge and update knowledge-soundness. Subversion zero-knowledge fol-
lows from the previous work in [ABLZ17, Fuc18], which already proved it for Groth16 under knowledge as-
sumptions. The only key difference is that we can extract the simulation trapdoor with a discrete logarithm proof
of knowledge argument Πdl used in the ceremony protocol.

Our security proof of update knowledge-soundness uses a combination of the algebraic group model and the
random oracle (RO) model. As was recently shown by Fuchsbauer, Plouviez, and Seurin [FPS20] the mixture of
those two models can be used to prove powerful results (tight reductions of Schnorr-based schemes in their case)
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but it also introduces new technical challenges. Recall that the algebraic group model (AGM) is a relaxation of
the generic group model proposed by Fuchsbauer, Kiltz, and Loss [FKL18]. They consider algebraic adversaries
Aalg that obtain some group elements G1, . . . , Gn during the execution of the protocol and whenever Aalg
outputs a new group element E, it also has to output a linear representation ~C = c1, . . . , cn such that E =
Gc11 G

c2
2 . . . Gcnn . Essentially, Aalg can only refer elements constructed using group-based operations. In contrast

to the generic group model, the representation of group elements is visible toAalg, and we must provide a formal
reduction to any assumptions used (e.g. discrete logarithm).

Already the original AGM paper [FKL18] proved knowledge soundness of the Groth16 SNARK in the AGM
model (assuming trusted SRS). They proved it under the q-discrete logarithm assumption, i.e., a discrete loga-
rithm assumption where the challenge is (Gz, Gz

2
, . . . , Gz

q
). The main idea for the reduction is that we can em-

bedGz in the SRS of the SNARK. Then when the algebraic adversaryAalg outputs a group-based proof π, all the
proof elements are in the span of the SRS elements, andAalg also outputs the respective algebraic representation.
We can view the verification equation as a polynomialQ that depends on the SRS and π such thatQ(SRS, π) = 0
when the verifier accepts. Moreover, since π and SRS depend on z, we can write Q(SRS, π) = Q′(z). Roughly,
the proof continues by looking at the formal polynomial Q′(Z), where Z is a variable corresponding to z, and
distinguishing two cases: (i) if Q′(Z) = 0, it is possible to argue based on the coefficient of Q′ that the statement
is valid and some of the coefficients are the witness, i.e., Aalg knows the witness, or (ii) if Q′(Z) 6= 0, then it is
possible to efficiently find the root z of Q′ and solve the discrete logarithm problem.

Our proof of update knowledge soundness follows a similar strategy, but it is much more challenging since the
SRS can be biased, and the Aalg has access to all the intermediate values related to the updates. Furthermore,
Aalg also has access to the random oracle, which is used by the discrete logarithm proof of knowledge Πdl.
Firstly, since the SRS of the Groth16 SNARK contains one trapdoor that is inverted (that is δ), we need to use a
novel extended discrete logarithm assumption where the challenge value is ({Gzi}q1i=0, {Hzi}q2i=0, r, s,G

1
rz+s , H

1
rz+s )

where G and H are generators of pairing groups and r, s, z are random values. We prove that this new assump-
tion is very closely related (equivalent for dynamic groups under small change of parameters) to the q-discrete
logarithm assumption. In the case with an honest SRS [FKL18] it was possible to argue that by multiplying all
SRS elements by δ we get an equivalent argument which does not contain division, but it is harder to use the
same reasoning when the adversary biases δ. The reduction still follows a similar high-level idea, but we need
to introduce intermediate games that create a simplified environment before we can use the polynomial Q. For
these games we rely on the zero-knowledge property and simulation extractability of Πdl. Moreover, we have
to consider that Aalg sees and adaptively affects intermediate states of the SRS on which the proof by π can de-
pend on. Therefore the polynomial Q′ takes a significantly more complicated form, but as we see, the simplified
environment reduces this complexity.

Revisiting the discrete logarithm argument

One of the key ingredients in the [BGM17] ceremony is the discrete logarithm proof of knowledge Πdl. Each
updater uses this to prove that it knows its contribution to the SRS. The original [BGM17] proved only knowledge
soundness of Πdl. While proving the security of the setup ceremony, we observe that much stronger properties are
needed. Firstly, Πdl needs to be zero-knowledge since it should not reveal the trapdoor contribution. Secondly,
Πdl should be knowledge sound, but in an environment where the adversary also sees simulated proofs and
obtains group elements (SRS elements) for which it does not know the discrete logarithm. For this, we define
a stronger notion simulation-extractability where the adversary can query oracle Ose for simulated proofs and
oracle Opoly on polynomials f(X1, . . . , Xn) that get evaluated at some random points x1, . . . , xn such that it
learn Gf(x1,...,xn).

We show that Πdl proofs can be trivially simulated when the simulator has access to the internals of the random
oracle and thus Πdl is zero-knowledge. We again use AGM to prove simulation-extractability. However, since in
this proof we can embed the discrete logarithm challenge in the random oracle responses, we do not need different
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powers of the challenge and can instead rely on the standard discrete logarithm assumption. We also slightly
simplify the original Πdl and remove the dependence on the public transcript TΠ of the ceremony protocol, that
is, the sequence of messages broadcasted by the parties so far. Namely, the original protocol hashes TΠ and the
statement to obtain a challenge value. This turns out to be a redundant feature, and removing it makes Πdl more
modular.

5.2 Preliminaries

PPT denotes probabilistic polynomial time, and DPT denotes deterministic polynomial time. The security pa-
rameter is denoted by λ. We write y r← A(x) when a PPT algorithm A outputs y on input x and uses random
coins r. Often we neglect r for simplicity. If A runs with specific random coins r, we write y ← A(x; r). A
view of an algorithmA is a list denoted by viewA which contains the data that fixesA’s execution trace: random
coins, its inputs (including ones from the oracles), and outputs4. We sometimes refer to the “transcript” implying
only the public part of the view: that is interactions of A with oracles and the challenger.

Let ~a and ~b be vectors of length n. We say that the vector ~c of length 2n − 1 is a convolution of ~a and ~b if

ck =

(n,n)∑
(i,j)=(1,1);i+j=k+1

aibj for k ∈ {1, . . . , 2n− 1}.

Bilinear Pairings. Let BGen be a bilinear group generator that takes as input a security parameter 1λ and
outputs a pairing description bp = (p,G1,G2,GT , ê, G,H) where G1,G2,GT are groups of prime order p, G
is a generator of G1, H is a generator of G2, and ê : G1 × G2 → GT is a non-degenerate and efficient bilinear
map. That is, ê(G,H) is a generator of GT and for any a, b ∈ Zp, ê(Ga, Hb) = ê(G,H)ab. We call a group
dynamic if BGen outputs uniformly distributed generators G,H

5.2.1 Algebraic Group Model with RO and Discrete Logarithm Assumptions

We will use the algebraic group model (AGM) [FKL18] to prove the security of Groth’s SNARK. In AGM,
we consider only algebraic algorithms that provide a linear explanation for each group element that they output.
More precisely, ifAalg has so far received group elementsG1, . . . , Gn ∈ G and outputs a group elementGn+1 ∈
G, then it has to also provide a vector of integer coefficients ~C = (c1, . . . , cn) such that Gn+1 =

∏n
i=1G

ci
i . We

will use it in a pairing-based setting where we distinguish between group elements of G1 and G2. Formally, the
set of algebraic coefficients ~C is obtained by calling the algebraic extractor ~C ← EagmA (viewA) that is guaranteed
to exist for any algebraic adversary A. This extractor is white-box and requires A’s view to run.

Random Oracle. Fuchsbauer et al. [FKL18] also show how to integrate the AGM with the random oracle
(RO) model. Group elements returned by RO(φ) are added to the set of received group elements. To simulate
update proofs we make use of a weakening of the programmable RO model that we refer to as a transparent
RO, presented on Fig. 5.1. For convenience we will denote RO(·) := RO0(·). The simulator has access to
RO1(·) and can learn the discrete logarithm r by querying RO1(x). It could query RO0(x) for Gr but can also
compute this value itself. Constructions and the A in all security definitions only have access to the restricted
oracle RO0(·).

One remarkable detail in using white-box access to the adversary A in the RO model is that viewA includes the
RO transcript (but not RO randomness), since it contains all requests and replies A exchanges with the oracles it
has access to, including RO. Thus access to viewA is sufficient for our proofs, even though we do not give any
explicit access to the RO history besides the view of the adversary to the extractor.

4The latter can be derived from the former elements of the list, and is added to viewA for convenience, following e.g. [GM17]
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ROt(φ) // Initially QRO = ∅
if QRO[φ] 6= ⊥
r ← QRO[φ];

else
r←$Zp;QRO[φ]← r

if t = 1 then return r else return Gr

Figure 5.1: The transparent random oracle RO0(·) : {0, 1}∗ → G1, RO1(·) : {0, 1}∗ → Zp. We write RO(φ) for
the interface RO0(φ) provided to protocols.

Assumptions. We recall the (q1, q2)-discrete logarithm assumption [FKL18].

Definition 8 ((q1, q2)-dlog). The (q1, q2)-discrete logarithm assumption holds for BGen if for any PPT A, the
following probability is negligible in λ,

Pr
[
bp← BGen(1λ); z←$Zp; z′ ← A(bp, {Gzi}q1i=1, {Hzi}q2i=1) : z = z′

]
.

In our main theorem it is more convenient to use a slight variation of the above assumption.

Definition 9 ((q1, q2)-edlog). The (q1, q2)-extended discrete logarithm assumption holds for BGen if for any
PPT A, the following probability is negligible in λ,

Pr

[
bp← BGen(1λ); z, r, s←$Zp s.t. rz + s 6= 0;

z′ ← A(bp, {Gzi}q1i=1, {Hzi}q2i=1, r, s,G
1

rz+s , H
1

rz+s ) : z = z′

]
.

The assumption is an extension of (q1, q2)-dlog, where we additionally give A the challenge z in denominator
(in both groups), blinded by s, r, which A is allowed to see. Later this helps to model fractional elements in
Groth16’s SRS. Notice that (q1, q2)-edlog trivially implies (q1, q2)-dlog, since A for the latter does not need
to use the extra elements of the former. The opposite implication is also true (except for a slight difference in
parameters) as we prove in the following theorem.

Theorem 8. If (q1 + 1, q2 + 1)-dlog assumption holds, then (q1, q2)-edlog assumption holds.

Proof. Suppose that a PPT adversaryA breaks (q1, q2)-edlog assumption with a probability ε. We will construct
an adversary B that breaks (q1 + 1, q2 + 1)-dlog assumption with the same probability.

The adversary B gets as an input a challenge (bp, {Gzi}q1+1
i=1 , {Hzi}q2+1

i=1 ). Firstly, B samples r, s←$Zp and
we implicitly define x such that z = rx + s; the value of x is unknown to B. After this B constructs a pairing
description bp∗ which is exactly like bp but the generator G is changed to Ĝ := Gz and H to Ĥ = Gz .5 Now,
let us observe that Ĝ

1
rx+s = Ĝ1/z = G and Ĝx

i
= Ĝ((z−s)/r)i = Gz((z−s)/r)

i
for i = 1, . . . , q1 are all values

that B either already knows or can compute from r, s and {Gzi}q1+1
i=0 . Considering that the same is true for G2

elements, B is able to run A on an input (bp, {Ĝxi}q1i=1, {Ĥxi}q2i=1, r, s, Ĝ
1

rx+s , Ĥ
1

rx+s ) and obtain some output
x′. Finally, B returns rx′ + s.

The adversary A will output x′ = x with a probability ε since the input to A is indistinguishable from an
honest (q1, q2)-edlog challenge. If this happens, then B will succeed in computing z. Thus, B will break the
(q1 + 1, q2 + 1)-dlog assumption with the same probability ε. Given the statement of our theorem, ε must be
negligible and it follows that (q1, q2)-edlog assumption holds.

We also state two lemmas that are often useful in conjunction with AGM proofs.
5We implicitly assume that generators in bp are uniformly random. This might not always be the case in a real-life pairing library.
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Lemma 2 ( [BFL20] ). Let Q be a non-zero polynomial in Zp[X1, . . . , Xn] of total degree d. Define Q′(Z) :=
Q(R1Z + S1, . . . , RnZ + Sn) in the ring (Zp[R1, . . . , Rn, S1, . . . , Sn])[Z]. Then the coefficient of the highest
degree monomial in Q′(Z) is a degree d polynomial in Zp[R1, . . . , Rn].

Lemma 3 (Schwartz-Zippel). Let P be a non-zero polynomial in Zp[X1, . . . , Xn] of total degree d. Then,
Pr[x1, . . . , xn←$Zp : P (x1, . . . , xn) = 0] ≤ d/p.

5.3 Ceremonial SNARKs

In this section, we put forward our definitions for NIZKs that are secure with respect to a setup ceremony. We
discuss the new notions of update completeness and update soundness that apply to ceremonies that take place
over many rounds. We also define subversion zero-knowledge.

Compared to standard MPC definitions, our definitions do not include a simulator that can manipulate the final
SRS to look uniformly random. We believe that the attempt to realise standard MPC definitions is what led prior
works to make significant practical sacrifices e.g. random beacons or players that cannot go offline. This is
because a rushing adversary that plays last can manipulate the bit-decomposition, for example to enforce that the
first bit of the SRS is always 0. We here choose to offer an alternative protection: we allow that the final SRS is
not distributed uniformly at random provided that the adversary does not gain any meaningful advantage when
attacking the soundness of the SNARK. This is in essence an extension of updatability definitions [GKM+18] to
ceremonies that require more than one round.

An argument system Ψ (with a ceremony protocol) for a relationR contains the following algorithms:

(i) A PPT parameter generator Pgen that takes the security parameter 1λ as input and outputs a parameter p
(e.g., a pairing description)6. We assume that p ← Pgen(1λ) and the security parameter is given as input
to all algorithms without explicitly writing it.

(ii) A PPT SRS update algorithm Update that takes as input a phase number ϕ ∈ {1, . . . , ϕmax}, the current
SRS srs, and proofs of previous updates {ρi}i, and outputs a new SRS srs′ and an update proof ρ′. It is
expected that Update itself forces a certain phase order, e.g. the sequential one.

(iii) A DPT SRS verification algorithm VerifySRS that takes as an input a SRS srs and update proofs {ρi}i, and
outputs 0 or 1.

(iv) A PPT prover algorithm Prove that takes as an input a SRS srs, a statement φ, and a witness w, and outputs
a proof π.

(v) A DPT verification algorithm Verify that takes as an input a SRS srs, a statement φ, and a proof π, and
outputs 0 or 1.

(vi) A PPT simulator algorithm Sim that takes as an input a SRS srs, a trapdoor τ , and a statement φ, and
outputs a simulated proof π.

The description of Ψ also fixes a default srsd = (srsd1, . . . , srs
d
ϕmax).

We require that a secure Ψ satisfies the following flavours of completeness, zero-knowledge, and knowledge
soundness. All our definitions are in the (implicit) random oracle model, since our final SRS update protocol
will be using RO-dependent proof of knowledge. Therefore, all the algorithms in this section have potential
access to RO, if some sub-components of Ψ require it.

Completeness of Ψ requires that Update and Prove always satisfy verification.

Definition 10 (Perfect Completeness). An argument Ψ forR is perfectly complete if for any adversary A, it has
the following properties:

6We do not allow to subvert p in the context of this contribution but in real life systems also this part of the setup should be scrutinized.
This is arguable easier since usually p is trapdoor free.
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1. Update completeness:

Pr

[
(ϕ, srs, {ρi}i)← A(1λ), (srs′, ρ′)← Update(ϕ, srs, {ρi}i) :
VerifySRS(srs, {ρi}i) = 1 ∧ VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 0

]
= 0.

2. Prover completeness:

Pr

[
(srs, {ρi}i, φ, w)← A(1λ), π ← Prove(srs, φ, w) :
VerifySRS(srs, {ρi}i) = 1 ∧ (φ,w) ∈ R ∧ Verify(srs, φ, π) 6= 1

]
= 0.

Our definition of subversion zero-knowledge follows [ABLZ17]. Intuitively it says that an adversary that outputs
a well-formed SRS knows the simulation trapdoor τ and thus could simulate a proof himself even without the
witness. Therefore, proofs do not reveal any additional information. On a more technical side, we divide the
adversary into an efficient SRS subverter Z that generates the SRS (showing knowledge of τ makes sense only
for an efficient adversary) and into an unbounded distinguisherA. We letZ communicate withAwith a message
st.

Definition 11 (Subversion Zero-Knowledge (sub-ZK)). An argument Ψ for R is subversion zero-knowledge if
for all PPT subverters Z , there exists a PPT extractor EZ , such that for all (unbounded)A, |ε0− ε1| is negligible
in λ, where

εb := Pr

[
(srs, {ρi}i, st)← Z(1λ), τ ← EZ(viewZ) :

VerifySRS(srs, {ρi}i) = 1 ∧ AOb(srs,τ,·)(st) = 1

]
.

Ob is a proof oracle that takes as input (srs, τ, (φ,w)) and only proceeds if (φ,w) ∈ R. If b = 0, Ob returns an
honest proof Prove(srs, φ, w) and when b = 1, it returns a simulated proof Sim(srs, τ, φ).

Bellare et al. [BFS16] showed that it is possible to achieve soundness and subversion zero-knowledge at the same
time, but also that subversion soundness is incompatible with (even non-subversion) zero-knowledge. Updatable
knowledge soundness from [GKM+18] can be seen as a relaxation of subversion soundness to overcome the
impossibility result.

We generalize the notion of update knowledge soundness to multiple phases. SRS is initially empty (or can be
thought to be set to a default value srsd). In each phase ϕ, the adversary has to fix a part of the SRS, denoted
by srsϕ, in such a way building the final srs. The adversary can ask honest updates for his own proposal of
srs∗ϕ, however, it has to pass the verification VerifySRS. The adversary can query honest updates using UPDATE

through a special oracle Osrs, described in Fig. 5.2. Eventually, adversary can propose some srs∗ϕ with update
proofs Q∗ to be finalized through FINALIZE. The oracle does it if Q∗ contains at least one honest update proof
obtained from the oracle for the current phase. If that is the case, then srsϕ cannot be changed anymore and the
phase ϕ+ 1 starts. Once the whole SRS has been fixed, A outputs a statements φ and a proof π. The adversary
wins if (srs, φ, π) passes verification, but there is no PPT extractor EA that could extract a witness even when
given the view of A.

Definition 12 (Update Knowledge Soundness). An argument Ψ for R is update knowledge-sound if for all
PPT adversaries A, there exists a PPT extractor EA such that Pr[GameA,EAuks (1λ) = 1] is negligible in λ, where
Gameuks is defined as:

GameA,EAuks (1λ) :=

[
(φ, π)← AOsrs(·)(1λ); get (srs, ϕ) from Osrs;w ← EA(viewA);
return Verify(srs, φ, π) = 1 ∧ (φ,w) 6∈ R ∧ ϕ > ϕmax

]
,

where SRS update oracle Osrs, constructing srs depending on interaction with A, is described in Fig. 5.2.

If ϕmax = 1, we obtain the standard notion of update knowledge soundness. In the rest of the contribution, we
only consider the case where ϕmax = 2. In particular, in the first phase we will generate a universal SRS srsu =
srs1 that is independent of the relation and in the second phase we generate a specialized SRS srss = srs2 that
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Osrs(intent, srs
∗, Q∗) // Initially Q1 = · · · = Qϕmax = ∅;ϕ = 1

if ϕ > ϕmax : return ⊥; // SRS already finalized for all phases
srsnew ← (srs1, . . . , srsϕ−1, srs

∗
ϕ, . . . , srs

∗
ϕmax);

if VerifySRS(srsnew, Q
∗) = 0 : return ⊥; // Invalid SRS

if intent = UPDATE :
(srs′, ρ′)← Update(ϕ, srsnew, Q

∗);Qϕ ← Qϕ ∪ {ρ′};
return (srs′, ρ′);

if intent = FINALIZE ∧Qϕ ∩Q∗ 6= ∅ :
Assign srsϕ ← srs∗ϕ;ϕ← ϕ+ 1;

Figure 5.2: SRS update oracle Osrs given to the adversary in Definition 12. UPDATE returns A an honest update
for ϕ, and FINALIZE finalizes the current phase. Current phase ϕ and current SRS srs (created in FINALIZE and
stored up to ϕ) are shared with the KS challenger. {Qϕi}i is a local set of proofs for honest updates, one for each
phase.

depends on the concrete relation. We leave it as an open question whether ceremony protocols with ϕmax > 2
can provide any additional benefits.

It is important to explain the role of the default SRS in the definition. Our definition allows A to start its chain
of SRS updates from any SRS, not just from the default one; the only condition that is necessary is the presence
of a single honest update in the chain. The default srs srsd is only used as a reference, for honest users. This has
positive real-world consequences: since the chain is not required to be connected to any “starting point”, clients
only need to verify the suffix of Q∗, if they are confident it contains an honest update. In particular, clients that
contribute to the SRS update can start from the corresponding proof of update.

Finally, we again note that when using the random oracle model in a sub-protocol (which we do), we assume
that all of the above algorithms in our security model have access to RO.

5.4 Proofs of Update Knowledge

One of the primary ingredients in the setup ceremony is a proof of update knowledge whose purpose is to ensure
that adversary knows which values they used for updating the SRS. In this section, we discuss the proof of
knowledge given by Bowe et al [BGM17]. Bowe et al. only proved this proof of knowledge secure under the
presence of an adversary that can make random oracle queries. This definition is not sufficient to guarantee
security, because the adversary might be able to manipulate other users proofs or update elements in order to
cheat.

We therefore define a significantly stronger property that suffices for proving security of our update ceremony.

5.4.1 White-box Simulation-Extraction with Oracles

In this section, we provide definitions for the central ingredient of the ceremony protocol — the update proof
of knowledge that ensures validity of each sequential SRS update. The proof of knowledge (PoK) protocol does
not rely on reference string but employs a random oracle as a setup. Hence we will extend the standard NIZK
definitions with ROt(·), defined in Fig. 5.1.

Because of how this NIZK proof of knowledge is used in our bigger ceremony protocol, we require it to satisfy
a stronger security property than knowledge soundness or even simulation extraction. Instead of the standard
white-box simulation-extractability (SE), we need a property that allows to compose the prove system more
freely with other protocols while still allowing the adversary to extract. This is somewhat similar to idea of
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Ose(φ)

// Initially Q = ∅
π ← SimRO1(·)(φ)
Q← Q ∪ {(φ, π)}
return π

OG1
poly(f(Z1, . . . , Zd(λ)))

if deg(f) > d(λ)
return ⊥

else return Gf(z1,...,zd(λ))

OG2
poly(g(Z1, . . . , Zd(λ)))

if deg(g) > d(λ)
return ⊥

else return Hg(z1,...,zd(λ))

Figure 5.3: Simulation-extraction oracle and two d−Poly oracles — for G1 and G2. All used in GamesSE.

universal composability (UC), however, contrary to the basic UC, our extractor is still white-box. Another way
would be to use an augmented UC model which allows white-box assumptions (see [KKK21]). In this work we
follow the more minimal and commonly used game-based approach.

We model influence of other protocols by considering a polynomial oracle Opoly in the SE game of the update
PoK.

The adversary can query the oracle Opoly on Laurent polynomials fi(Z1, . . . , Zn) and it will output Gfi(z1,...,zn)

for z1, . . . , zn pre-sampled from a uniform distribution, and unknown to A. We use Laurent polynomials since
SRS elements the access to which the oracle models may have negative trapdoor powers.7 With this in mind,
by deg(f) we will denote the maximum absolute degree of its monomials, where by absolute degree of the
monomial we mean the sum of all its degrees taken as absolute values. Formally, deg(

∏
i Z

ai
i ) :=

∑
i |ai|,

and deg(f(Z1, . . . , Zn)) = deg(
∑

i fiMi) := max{deg(Mi)}, where Mi are monomials of f . For example,
deg(x2αδ−2 + y) = 5. This notion is used to limit the degree of input to Opoly — we denote the corresponding
degree d(λ) (or d, interchangeably).

This empowered adversary still should not be able to output a proof of knowledge unless it knows a witness. Note
that Opoly is independent from the random oracle ROt and cannot provide the adversary any information about
the random oracle’s responses. In general, Opoly adds strictly more power to A. The intention of introducing
Opoly is, partially, to account for the SRS of the Groth’s SNARK later on.

In addition, our ceremony protocol for Groth’s SNARK requires NIZK to be straight-line simulation extractable.
This means that knowledge soundness holds even when the adversary sees simulated proofs and extraction works
without rewinding the adversary. It is important that the extractor’s running time does not blow up if the adversary
generates many different update proofs.

Below, we define such a NIZK in the random oracle model.

Let L be a language and R the corresponding relation. The argument Ψ for R in the random oracle model
consists of the following PPT algorithms: the parameter generator Pgen, the prover ProveRO(·), the verifier
VerifyRO(·), and the simulator SimRO1(·). We make an assumption that all algorithms get p ← Pgen(1λ) as an
input without explicitly writing it.

We assume that an argument Ψ in the random oracle model satisfies the following definitions.

Definition 13. An argument Ψ forR is perfectly complete in the random oracle model, if for any adversary A,

Pr
[
(φ,w)← ARO(·), π ← ProveRO(·)(φ,w) : (φ,w) ∈ R ∧ VerifyRO(·)(φ, π) 6= 1

]
= 0.

Definition 14. An argument Ψ for R is straight-line simulation extractable in the (RO, d−Poly)-model, if for
all PPT A, there exists a PPT extractor EA such that Pr[GameAsSE(1λ) = 1] = negl(λ), where GameAsSE(1λ) =Q← ∅; z1, . . . , zd(λ) ← Zp;

(φ, π)← AOse,RO,O
G1
poly,O

G2
poly(1λ);

w ← EA(viewA);

:
VerifyRO(·)(φ, π) = 1∧
(φ,w) 6∈ R ∧ (φ, π) 6∈ Q


7See the description of Groth16 SRS, which has 1/δ in some SRS elements.
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The oracles Ose,OG1
poly,O

G2
poly are defined on Fig. 5.3.

Roughly speaking, the adversary wins if it can output a verifying statement and proof for which it does not know
a witness, such that this proof has not been obtained from a simulation oracle. There are also up to d(λ) random
variables chosen at the start such that the adversary can query an oracle for arbitrary polynomial evaluations with
maximum degree d(λ) of these values in the group. With respect to the relation of this definition to more standard
one we note two things. First, our definition is white-box (since EA requires viewA), and strong (in the sense that
proofs are not randomizable). Second, our notion implies strong-SE in the presence of RO, which is the special
case of GamesSE with Opoly removed, and thus is very close to the standard non-RO strong-SE variant.

Definition 15. An argument Ψ for R is perfectly zero-knowledge in the random oracle model if for all PPT
adversaries A, ε0 = ε1, where εb := Pr

[
AOb(·),RO(·)(1λ) = 1

]
. Ob is a proof oracle that takes as an input

(φ,w) and only proceeds if (φ,w) ∈ R. If b = 0, Ob returns an honest proof ProveRO(·)(φ,w) and when b = 1,
it returns a simulated proof SimRO1(·)(φ).

Note that Sim is allowed to access RO in a transparent way, having access to the RO trapdoors, during simulation.

5.4.2 On the Security of BGM Update Proofs

We now prove that the proof system of [BGM17] satisfies this stronger property.

Bowe et al. [BGM17] proved that the proof system is secure under a Knowledge-of-Exponent assumption. Their
analysis does not capture the possibility that an attacker might use additional knowledge obtained from the
ceremony to attack the update proof. Our analysis is more thorough and assumes this additional knowledge.
This means that we cannot use a simple Knowledge-of-Exponent assumption. Instead we rely on the algebraic
group model; the AGM is to date the most secure model in which Groth16 has provable security and thus we do
not see this as being a theoretical drawback. The proof of knowledge is for the discrete logarithm relation

Rdl = {(φ = (m,Gy1 , Hy2), w) | y1 = y2 = w},

where m is an auxiliary input that was used in the original [BGM17] proof of knowledge. The auxiliary input is
redundant as we will see, but we still model it to have consistency with the original protocol.

The protocol is given formally in Fig. 5.4. First the prover queries the random oracle on the instance φ. The
oracle returns a fresh random group element Hr. The prover returns π = Hrw. The verifier checks that the
instance is well-formed (y1 = y2), and then checks that ê(π,H) = ê(RO(φ), Hy2) which ensures knowledge
of y2. Intuition for the last equation is that RO(φ) acts as a fresh random challenge for φ and the only way to
compute π = RO(φ)y2 and Hy2 is by knowing y2. The fact that in Rdl every φ with y1 = y2 belongs to Ldl
(the exponent w always exists) justifies that we will call the correspondent equation “well-formedness check”;
subsequently, we will refer to the other check as “the main verification equation”.

Prove
RO(·)
dl (φ,w)

Gr ← RO(φ);
return Grw;

Verify
RO(·)
dl (φ = (·, Gy1 , Hy2), π)

Gr ← RO(φ);
Verify that
ê(Gy1 , H) = (G,Hy2) ∧
ê(π,H) = ê(Gr, Hy2);

Sim
RO1(·)
dl (φ = (·, Gy1 , Hy2))

Assert ê(Gy1 , H) = (G,Hy2);
rφ ← RO1(φ);
return π ← (Gy1)rφ ;

Figure 5.4: A discrete logarithm proof of knowledge Πdl where ROt(·) denotes a random oracle.

Here we have moderately simplified the description from [BGM17] in the following ways:

• We allow the message m to be unconstrained. Thus if one were to hash the public protocol view, as
current implementations do, our security proof demonstrates that this approach is valid. However, we can
also allow m to be anything, including the empty string.
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• The original protocol has the proof element in G2. We switched it to G1 to have shorter proofs.

• Our protocol includes the pairing based equality check for y inGy andHy in the verifier rather than relying
on this being externally done in the ceremony protocol. The value Gy is needed by the simulator, and by
doing the check within Πdl the protocol is sound and zero-knowledge independently of its context.

We are now ready to prove the following theorem:

Theorem 9. The argument Πdl = (Prove
RO(·)
dl ,Verify

RO(·)
dl ,Sim

RO1(·)
dl ) is (i) complete, (ii) perfect zero-knowledge

in the random oracle model, and (iii) straight-line SE in the (RO,d−Poly)-model against algebraic adversaries
under the (1, 0)-dlog assumption in G1.

Proof. (i) Completeness: Holds straightforwardly.

(ii) Zero-Knowledge: It is easy to see that Πdl is perfect zero-knowledge with respect to Sim in Fig. 5.4. When
the simulator gets an input φ = (m,Gw, Hw) (note that φ ∈ L by definition, so the exponent w is equal in
Gw and Hw), it queries r for Gr = RO(φ) using RO1, and returns Gwr. No adversary can distinguish between
honest and simulated proofs since they are equal.

(iii) Strong Simulation Extractability: Let A be an algebraic adversary playing GamesSE, and let us denote
~z = (z1, . . . , zd(λ)). As A is algebraic, at the end of GamesSE it returns a statement and a proof (φ, π) such
that φ = (m,Gy

′
, Hy) for some unknown variables y, y′, and π ∈ G1. The fact that y′ = y immediately

follows from the instance well-formedness pairing equation in Verify, and implies φ ∈ L (although does not
affect the proof in any other way). For the elements Hy and π, A returns their representations (ρ, b1, . . . , bq2)
and (α, a1, . . . , aq1 , k1, . . . kq3 , p1, . . . pq4) that satisfy, correspondingly,

Hy = Hρ+b1g1(~z)+···+bq2gq2 (~z) (5.1)

and

π = Gα+a1f1(~z)+···+aq1fq1 (~z) ·
q3∏
j=1

K
kj
j ·

q4∏
j=1

P
pj
j (5.2)

In the former, ρ stands for the power of H , and bi are linear coefficients of the polynomial evaluations returned
by OG2

poly. Similarly, for π, the representation is split into powers of the generator G, and coefficients of OG1
poly,

but it also accounts for the answers to hash queries Kj , 1 ≤ j ≤ q3, and for the proof elements Pj , 1 ≤ j ≤ q4,
returned by the simulation oracle.

Let S ⊂ [1, . . . , q3], replacing [1, . . . , q4], be a set of indices denoting queries made by the simulator to the
random oracle; |S| = q4, and we know q3 ≥ q4 since every simulation query produces one RO query. Also in the
following, we let r∗ and rj be such that RO(φ) = Gr

∗
and RO(φj) = Grj for 1 ≤ j ≤ q3. RO responses {Grj}

, corresponding to the second set of elements {rj}, exist in viewA (in the list of queries and responses to RO),
since these values were generated by RO during the game. On the other hand, Gr

∗
may not exist in viewA, but

then the probability that π verifies is negligible, as freshGr
∗

will be generated during the verification. Therefore,
since we assume that A wins GamesSE, r∗ ∈ {rj}j∈[1,q3]\S . S is excluded from the set of indices, since A also
must not query Sim on φ.

Thus, Kkj
j in the previously mentioned linear representations is just Grjkj . In order to give algebraic represen-

tation of the simulated proofs Pj we must consider algebraic representations of inputs to Sim first. Because the
simulated proof is constructed as (Gy1)r where Gy1 is an input provided by A, Gy1 is the only input element that
must be viewed algebraically. Notice that since we have a ê(Gy1 , H) = ê(G,Hy2) check in the simulator too, the
algebraic representation of y1 must be consistent with the one of y2, i.e. whateverA uses to constructGy1 it must
also have in G2 to construct Hy2 . In particular, this means that A cannot include (previous) direct RO responses
and (previous) Sim responses into Gy1 , since these both contain ri which A does not have in G2. Therefore,
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Pj = Grjyj is algebraically represented as Pj = Grj(ρ̂j+
∑q1
i=1 âj,ifi(~z)). Note that if A has not yet performed all

the q1 queries to OG1
poly, then we can assume that âj,i = 0 for the subsequent queries. Finally, it is important to

emphasize that fi(~z) do not have any further algebraic decomposition: A specifies these polynomials toOpoly in
terms of fi,j ∈ Zp, so these elements are just assumed to be standard public variables in our reasoning.

Because of the verification equation we have RO(φ)y = π. We thus have the two equations describing challenge
values Gy and π, corresponding to Equations 5.1 and 5.2, in the exponent form: y = ρ+

∑q2
i=1 bigi(~z) and

yr∗ = α+

q1∑
j=1

ajfj(~z) +

q3∑
j=1

kjrj +
∑
j∈S

pjrj(ρ̂j +

q1∑
i=1

âj,ifi(~z))

where in the second we used algebraic representations of Kj and Pj .

Let EA be the SE extractor with the following logic. First it obtains the set S of (indices of) simulated queries; this
can be deduced from the interaction pattern with the oracles, which is a part of viewA. Then, in the adversarial
view viewA find such an RO query index j ∈ [1, q3] \ S that RO input is equal to φ; if successful, return kj , and
otherwise fail, returning 0. The intuition behind the extractor is the following. Since honest proofs are RO(φ)w

for direct RO queries A makes, we expect kj to be the witness. If j ∈ S, A re-used the simulation query and
does not win.8 When Gr

∗ 6= Grj (which implies r∗ 6= rj) for all j ∈ [1, q3] \ S, A did not query RO, and thus
cannot win except with negligible probability.

We emphasize two limitations that any EA has, which shape the algorithm that we have just presented. First, the
extractor does not have access to exponent values ri themselves, since they are embedded inside RO, but EA only
sees interaction with the oracle via viewA; therefore, it works only with Gri and S. Second, EA cannot compute
exponent y right away merely from the algebraic representation of Hy passed as a part of φ. Even though the
coefficients (ρ, b1, . . . , bq2) are available to EA in the SE game, it does not have access to the trapdoor ~z ofOG1

poly,
which is intended to model the external honest SRS setup procedure.

To prove that EA is a valid SE extractor for A, we shall describe the behaviour of an adversary C that succeeds
against the discrete logarithm assumption whenever EA fails to return a valid witness for A. Thus if A has non-
negligible advantage in the SE game with respect to EA, then C also succeeds with non-negligible probability.
As usual, C will simulate the SE game to A, and it will succeed when A succeeds in the simulated game.

The adversary C takes as input a challenge C and aims to return c such that C = Gc. To begin it samples
(z1, . . . , zd)←$Zp and then runs A on input bp. C simulates the oracles for A in the following way:

• When A queries OG
poly with G = G1 on f(~Z), C returns Gf(z1,...,zd); on G = G2 and g(~Z) it returns

Hg(z1,...,zd).

• WhenA queries RO on φj then C checks whether (φj , G
ctj+sj , (tj , sj)) ∈ QRO and if yes returnsGctj+sj .

Otherwise C samples tj , sj←$Zp, adds (φj , G
ctj+sj , (tj , sj)) toQRO and returnsGctj+sj , thus embedding

the challenge into the response.

• When A queries simulation oracle Ose on φj = (mj , G
yj , Hyj ) then its algebraic extractor outputs rep-

resentations (ρ̂j , âj,1, . . . , âj,q1) such that yj = ρ̂j +
∑q1

i=1 âj,ifi(~z) for fi(Z) being ith query to OG1
poly

(the representation is, as previously for y, due to the well-formedness verification equation). In this case C
obtains Kj = RO(φj) and returns K ρ̂j+

∑q1
i=1 âj,ifi(~z)

j (notice that C, unlike EA, knows ~z but not ctj + sj ,
thus the simulation strategy is different from Sim).

When, finally,A returns (φ = (·, ·, Hy), π), C obtains (ρ, {aj}, {bj}, {kj}, {pj}) such that y = (ρ+
∑q2

j=1 bjgj(~z))

8We exclude RO collision as they only happen with negligible probability.
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and

y(ct∗ + s∗) = α+

q1∑
j=1

ajfj(~z) +

q3∑
j=1

kj(ctj + sj) +
∑
j∈S

pj(ctj + sj)(ρ̂j +

q1∑
i=1

âj,ifi(~z)).

This is the same representation as EA obtains, with the previous randomness now depending on the challenge c.
Additionally we assume that Gr

∗
= RO(φ) is of form r∗ = ct∗ + s∗ and that it is determined by the j∗th RO

query of A (thus t∗ and s∗ are, too). This is, again, because A cannot succeed without querying φ to RO during
the game. Substituting y from the first equation into the second equation gives us a polynomial equation in c
which it is possible to solve. Note that c enters the last equation in three different places. Now C sets

ξ =

(ρ+

q2∑
j=1

bjgj(~z))t
∗ −

q3∑
j=1

kjtj −
∑
j∈S

pjtj(ρ̂j +

q1∑
i=1

âj,ifi(~z))


and returns

c = ξ−1

α+

q1∑
j=1

ajfj(~z) +

q3∑
j=1

kjsj +
∑
j∈S

pjsj(ρ̂j +

q1∑
i=1

âj,ifi(~z))− s∗(ρ+

q2∑
j=1

bjgj(~z))

 .

Observe that C succeeds (returns c) whenever ξ−1 exists i.e. whenever ξ 6= 0. Recall that since A succeeds,
t∗ 6= tj for any j ∈ S. Consider the coefficients of ξ that include t∗ in the monomials:

ξ = t∗
[
(ρ+

q2∑
j=1

bjgj(~z))− kj∗
]

+ . . .

If ξ = 0 then this expression is equal to zero with overwhelming probability bounded below by 1 − 1
p by the

Schwartz-Zippel Lemma. This is because the adversary learns no information about the secret values, including
tj , due to the presence of the sj randomizers, thus ξ must be zero as a polynomial in all tj , and in particular
in tj∗ = t∗. And for a zero polynomial, for all its monomial the related coefficients are zero. However, if
(ρ+

∑q2
j=1 bjgj(~z))−kj∗ = 0, then EA succeeds (since then kj∗ = y), which we assumed to be false. Therefore,

ξ 6= 0 and C succeeds.

Finally observe that if r∗ is not determined by any adversarial query (A passing φ that was not sent to RO before),
then (ρ+

∑q2
j=1 bjgj(~z)) = 0 except with negligible probability by the same Schwartz-Zippel argument sinceA

does not see RO exponents. Therefore y = 0 is the only possible valid witness, so EA succeeds.

5.5 Groth16 is Ceremonial

We show that Groth16 is ceremonial for a setup ceremony similar to the one proposed in [BGM17]. In this
section, we start by giving an intuitive overview of the [BGM17] ceremony protocol. After that, we recall the
Groth16 argument and carefully model the ceremony protocol in our security framework.

5.5.1 Ceremony Overview

We briefly remind the main idea of the [BGM17] ceremony protocol.

• The SRS contains elements of the form e.g. (A1, . . . , An, T ) = (Gx, Gx
2
, . . . , Gx

n
, Gδh(x)) where t(X)

is a public polynomial known to all parties, and x and δ are secret trapdoors.9

• Parties initialize the SRS to (A1, . . . , An, T ) = (G, . . . , G,G).
9The polynomial t(X) is introduced only in the scope of this example, and is not related to QAP.
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• In the first phase any party can update (A1, . . . , An) by picking a random x′ ∈ Zp and computing
(Ax

′
1 , . . . , A

(x′)n
n ). They must provide a proof of knowledge of x′.

• The value T is publicly updated to Gt(x) given A1, . . . , An.

• In the second phase any party can update T by picking a random δ′ ∈ Zp and computing T δ
′

1 . They must
provide a proof of knowledge of δ′.

In order to prove knowledge of x′ they assume access to a random oracle RO : {0, 1}∗ → G2 and proceed as
follows:

• The prover computes R← RO(TΠ‖Gx) as a challenge where TΠ is the public transcript of the protocol.

• Then prover outputs π ← Rx as a proof which can be verified by recomputing R and checking that
ê(G, π) = ê(Gx, R). The original protocol is knowledge sound under (a variation of) the knowledge of
exponent assumption, which states that if given a challenge R, the adversary outputs Gx, Rx, then the
adversary knows x.

Our protocol differs from the [BGM17] in a few aspects related to both performance and security. Additionally
to the RO switch to G1 and optionality of including TΠ in evaluation of RO, which we described in Section 5.4,
we remove the update with the random beacon in the end of each phase. That means that SRS can be slightly
biased, but we prove that it is not sufficient to break the argument’s security. We consider this to be the biggest
contribution of this work since obtaining random beacons is a significant challenge both in theory and practice.
Our approach completely side-steps this issue by directly proving the protocol without relying on the random
beacon model.

5.5.2 Formal Description

We present the version of Groth’s SNARK [Gro16] from [BGM17] and adjust the ceremony protocol to our
security framework by defining Update and VerifySRS algorithms which follow the intuition of the previous
section.

Firstly, let us recall the language of Groth’s SNARK. A Quadratic Arithmetic Program (QAP) is described by a
tuple

QAP =
(
Zp, {ui(X), vi(X), wi(X)}mi=0, t(X)

)
where ui(X), vi(X), wi(X) are degree n− 1 polynomials over Zp, and t(X) is a degree n polynomial over Zp.
Let the coefficients of the polynomials be respectively uij , vij , wij , and tj . We can define the following relation
for each QAP,

RQAP =

(φ,w)

0 φ = (a0 = 1, a1, . . . , a`) ∈ Z1+`
p ,

w = (a`+1, . . . , am) ∈ Zm−`p ,

∃h(X) ∈ Zp[X] of degree ≤ n− 2 such that
(
∑m

i=0 aiui(X)) (
∑m

i=0 aivi(X)) =
∑m

i=0 aiwi(X) + h(X)t(X)

 .

In particular, the satisfiability of any arithmetic circuit, with a mixture of public and private inputs, can be
encoded as a QAP relation (see [GGPR13] for details).

Groth [Gro16] proposed an efficient SNARK for the QAP relation, which is now widely used in practice. Bowe
et al. [BGM17] modified original argument’s SRS to make it consistent with their distributed SRS generation
protocol. The full description of the latter argument is in Fig. 5.5. For the intuition of the construction, we refer
the reader to the original paper by Groth.

We adjust the SRS in Fig. 5.5 to our model of NIZK with a ceremony protocol: the default SRS, update algorithm,
and a SRS specialization algorithm are described in Fig. 5.6. We obtain the default SRS from the trapdoor
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Setup(RQAP): Sample τ = (α, β, δ, x)←$ (Z∗p)4 and return (srs = (srsu, srss), τ) s.t.

srsu ←
(
{Gxi , Hxi}2n−2

i=0 , {Gαxi , Gβxi , Hαxi , Hβxi}n−1
i=0

)
,

srss ←
(
Gδ, Hδ, {G

βui(x)+αvi(x)+wi(x)

δ }mi=`+1, {G
xit(x)
δ }n−2

i=0

)
.

Prove(RQAP, srs, {ai}mi=0): Sample r, s←$Zp and return π = (GA, HB, GC), where

A = α+
∑m

i=0 aiui(x) + rδ, B = β +
∑m

i=0 aivi(x) + sδ,

C =
∑m
i=`+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ +As+Br − rsδ.

Verify(RQAP, srs, {ai}`i=1, π): Parse π as (GA, HB, GC) and verify that

ê(GA, HB) = ê(Gα, Hβ) · ê(
∏̀
i=0

Gai(βui(x)+αvi(x)+wi(x)), H) · ê(GC , Hδ).

Sim(RQAP, srs, τ, {ai}`i=1): Return (GA, HB, GC), where

A,B←$Zp, C =
AB−αβ−

(∑`
i=0 ai(βui(x)+αvi(x)+wi(x))

)
δ

Figure 5.5: Groth’s zk-SNARK description.

τ = (1, 1, 1, 1). The algorithm Update samples new trapdoors and includes them to the previous SRS by
exponentiation as was described in Section 5.5.1. For example, to update Gι, where ι is some trapdoor, the
updater will sample ι′ and computes (Gι)ι

′
. Depending on the phase number ϕ ∈ {1, 2}, the algorithm will

either update srsu or srss. However, when updating srsu, we also derive a consistent srss using the Specialize
algorithm which essentially computes srss with δ = 1. This fixes a sequential phase update scenario, since
updating srsu after srss overwrites the latter.

Each update is additionally accompanied with an update proof ρ, which allows us to verify update correctness.
For each trapdoor update ι′, ρ contains Gιι

′
(the element of the new SRS), Gι

′
, Hι′ , and a NIZK proof of

knowledge πι′ for ι′. SinceGι is part of the previous update proof, we can use pairings to assert well-formedness
of Gιι

′
, Gι

′
, and Hι′ . The first element of the update proof duplicates the element of the new SRS, but since we

do not store every updated SRS but only update proofs, we must keep these elements.

Finally, we have a SRS verification algorithm VerifySRS in Fig. 5.7, that takes as an input srs and a set of update
proofs Q, and then (i) uses pairing-equations to verify that srs is well-formed respect to some trapdoors, (ii)
checks that each update proof ρ ∈ Q contains a valid NIZK proof of discrete logarithm, and (iii) uses pairing-
equations to verify that update proofs in Q are consistent with srs.

5.6 Security

We prove the security of Groth’s SNARK from Section 5.5 in our NIZK with a ceremony framework of Sec-
tion 5.3.

55



D2.4 – Revision of Privacy-Enhancing Cryptographic Primitives for Ledgers

Default SRS: Run Setup in Fig. 5.5 with τ = (1, 1, 1, 1) to obtain srsd.

Update(RQAP, ϕ ∈ {1, 2}, (srs = (srsu, srss), Q)):
If ϕ = 1:

1. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
;

2. Sample α′, β′, x′←$Z∗p;
3. For ι ∈ {α, β, x}: πι′ ← Prove

RO(·)
dl (Gι

′
, Hι′ , ι′);

4. ρα′ ← (Gα
′
αx:0, G

α′ , Hα′ , πα′);
5. ρβ′ ← (Gβ

′

βx:0, G
β′ , Hβ′ , πβ′);

6. ρx′ ← (Gx
′
x:1, G

x′ , Hx′ , πx′);
7. ρ← (ρα′ , ρβ′ , ρx′);

8. srs′u ←
(
{G(x′)i

x:i , H
(x′)i

x:i }
2n−2
i=0 , {Gα

′(x′)i

αx:i , G
β(x′)i

βx:i , H
α(x′)i

αx:i , H
β(x′)i

βx:i }
n−1
i=0

)
;

9. srs′s ← Specialize(QAP, srs′u);
10. return ((srs′u, srs

′
s), ρ);

If ϕ = 2:
1. Parse srss ←

(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0

)
;

2. Sample δ′←$Z∗p;
3. πδ′ ← Prove

RO(·)
dl (Gδ

′
, Hδ′ , δ′);

4. ρ← (Gδ
′
δ , G

δ′ , Hδ′ , πδ′);

5. srs′s ←
(
Gδ
′
δ , H

δ′
δ , {G

1/δ′

sum:i}mi=`+1, {G
1/δ′

t(x):i}
n−2
i=0

)
;

6. return ((srsu, srs
′
s), ρ);

Specialize(RQAP, srsu): // Computes srss with δ = 1

1. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
;

2. srss ←
(
G,H, {

∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij
x:j }mi=`+1, {

∏n
j=0G

tj
x:(i+j)}

n−2
i=0

)
;

3. return srss;

Figure 5.6: Default SRS and update algorithm for Groth’s SNARK

Theorem 10 (Completeness). Groth’s SNARK has perfect completeness, i.e., it has update completeness and
prover completeness.

Proof. Let us first make a general observation that if some bitstring s = (srs, {ρi}i) satisfies VerifySRS(s) = 1,
then there exists a unique α, β, x, δ ∈ Z∗p that define a well-formed srs. See Lemma 8, Section 5.8.

Update completeness: Let A be an adversary that outputs s = (ϕ, srs, {ρi}i) such that VerifySRS(s) = 1. By
the observation above, there exists some α, β, x, δ ∈ Z∗p that map to a well-formed srs. It is easy to observe that
by construction Update(QAP, ϕ, (srs, {ρi}i)) picks a new α′, β′, x′ ∈ Z∗p (or δ′ if ϕ = 2) and rerandomizes srs
such that the new srs′ has a trapdoor αα′, ββ′, xx′ ∈ Z∗p (or δδ′ ∈ Z∗p). Since the srs′ is still well-formed and ρ
is computed independently, VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 1. See details in Lemma 9, Section 5.8.

Prover completeness: Suppose thatA output (srs, {ρi}i, φ, w) such that (φ,w) ∈ RQAP, and VerifySRS(srs, {ρi}i) =
1. It follows that srs is a well-formed SRS for Groth’s SNARK. From here, the prover completeness follows from
the completeness proof in [Gro16].

Subversion zero-knowledge of Groth’s SNARK was independently proven in [ABLZ17] and [Fuc18] under
slightly different knowledge assumptions. The main idea is that VerifySRS checks that srs from A is well-
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VerifySRSRO(·)(QAP, srs, Q):
1. Parse srs = (srsu, srss) and Q = (Qu, Qs) = {ρu,i}kui=1 ∪ {ρs,i}

ks
i=1;

2. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
and assert that elements be-

long to correct groups;
3. For i = 1, . . . , ku:

(a) Parse ρu,i = (ρ
(i)
α′ , ρ

(i)
β′ , ρ

(i)
x′ );

(b) For ι ∈ {α, β, x}:
i. Parse ρ(i)

ι′ = (G
(i)
ι , G

(i)
ι′ , H

(i)
ι′ , π

(i)
ι′ );

ii. Assert VerifyRO(·)
dl (G

(i)
ι′ , H

(i)
ι′ , π

(i)
ι′ ) = 1;

iii. If i 6= 1: Assert ê(G(i)
ι , H) = ê(G

(i−1)
ι , H

(i)
ι′ );

4. Assert Gx:1 = G
(ku)
x 6= 1; Gαx:0 = G

(ku)
α 6= 1; Gβx:0 = G

(ku)
β 6= 1;

5. For i = 1, . . . , 2n− 2: Assert ê(Gx:i, H) = ê(G,Hx:i) and ê(Gx:i, H) = ê(Gx:(i−1), Hx:1);
6. For i = 0, . . . , n − 1 and ι ∈ {α, β}: Assert ê(Gιx:i, H) = ê(G,Hιx:i) and ê(Gιx:i, H) =
ê(Gx:i, Hιx:0);

7. Parse srss ←
(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0 ,
)

and assert that elements belong to correct
groups;

8. For i = 1, . . . , ks:
(a) Parse ρs,i = (G

(i)
δ , G

(i)
δ′ , H

(i)
δ′ , πδ′);

(b) Assert VerifyRO(·)
dl (G

(i)
δ′ , H

(i)
δ′ , πδ′) = 1;

(c) if i 6= 1 assert ê(G(i)
δ , H) = ê(G

(i−1)
δ , H

(i)
δ′ );

9. Assert ê(Gδ, H) = ê(G,Hδ) and Gδ = G
(ks)
δ 6= 1;

10. For i = `+ 1, . . . ,m: Assert ê(Gsum:i, Hδ) = ê(
∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij
x:j , H);

11. For i = 0, . . . , n− 2: Assert ê(Gt(x):i, Hδ) = ê(Gt(x), Hx:i), where Gt(x) =
∏n
j=0G

tj
x:j ;

Figure 5.7: SRS verification algorithm for Groth’s SNARK

formed, and then one can use a knowledge assumption to recover the trapdoor fromA. If the trapdoor extraction
is successful, it can be used to simulate proofs similarly to [Gro16]. Our approach only differs in that we recover
the trapdoors fromRdl proofs of knowledge. We refer the reader to [ABLZ17, Fuc18] for details of the proof.

Theorem 11 (sub-ZK). If Πdl is a non-interactive proof of knowledge, then Groth’s SNARK is subversion zero-
knowledge.

5.6.1 Update Knowledge Soundness

The main result of this section is the following update knowledge-soundness theorem.

Theorem 12. Let us assume the (2n − 1, 2n − 2)-edlog assumption holds. Then Groth’s SNARK has update
knowledge soundness with respect to all PPT algebraic adversaries in the random oracle model.

Proof. Let A be an algebraic adversary against update knowledge soundness. We denote the original update
knowledge soundness game Gameuks by Game0. Given A, we construct an explicit white-box extractor EA and
prove that it succeeds with an overwhelming probability. The main theorem statement is thus AdvGame0

A,EA (λ) =
negl(λ).
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EA(viewA)

1. Extract the set of algebraic coefficients Tπ ← EagmA (viewA) and obtain {Ci:x:j}m1,m
i,j=(1,l+1) from it,

corresponding to the monomials {(βui(x) + αvi(x) + wi(x))/δ} in the second phase, where m1 is
the number of update queries made in the first phase, and m is the number of QAP polynomials.

2. From viewA deduce icrit2 — Osrs query index that corresponds to the last honest update in the final
SRS.

3. Return coefficients w = {Cicrit2 :x:j}mj=l+1.

Figure 5.8: The extractor EA for update knowledge soundness

Description of the extractor EA.

We present the extractor EA on Fig. 5.8. The extractor takes the adversarial view viewA as input and extracts the
AGM coefficients from an adversaryA that produces a verifying proof. The goal of the extractor is to reconstruct
the witness from this information (with an overwhelming probability, when verification succeeds).

The intuition behind its strategy is that, in Prove on Fig. 5.5, C is constructed as
∑

i ai(αui(x) + βvi(x) +
wi(x))/δ, and we would like to obtain precisely these ai as AGM coefficients corresponding to the (αui(x) +
. . .)/δ elements of the final SRS. When A submits the final response (φ, π = (A,B,C)), the proof element
C ∈ G1 has the algebraic representation, corresponding to following G1 elements: (1) SRS elements that the
update oracle outputs, (2) corresponding update proofs, and (3) direct RO replies. These sets include all the SRS
elements that were produced during the update KS game, not only those that were included in the final SRS. The
elements (αui(x) + . . .)/δ that the extractor needs belong to the the first category and in particular correspond
to the second phase updates, since δ is updated there.

We introduce the notion of the critical query — icritϕ corresponds to the last honest update A does in phase ϕ,
which is included into the final SRS. Technically, we define it in the following way. For every phase, the final
SRS comes with update proofs {ρs,i}

kφ
i=1 (included into Q∗) and at least one of them must be produced by honest

update query for finalization to go through in that phase. Since these honest update proofs are outputs of the
update oracle, on finalization of SRS, given Q∗, we can merely find the last such element ρs,i in Q∗ ∩Qϕ. Note
that icritϕ is defined only after ϕ is finalized.

The extractor EA, having access to viewA, can deduce icritϕ , since viewA includes Osrs responses and Q∗. When
EA obtains icrit2 , it merely returns the AGM coefficients (which it can obtains from viewA since A is algebraic)
corresponding to the (αui(x) + . . .)/δ elements of update oracle response number icrit2 . For now, there is no
guarantee that these elements are in any way connected to the final SRS, but later we will show that EA indeed
succeeds.

Description of Game1.

We introduce Game1, in Fig. 5.9, that differs from Game0 in that one of the honest updates in each phase is a
freshly generated SRS instead of being an update of the input SRS. This simplifies further reasoning: at a later
step we will build a reduction B that embeds the edlog challenge z into the trapdoors of the fresh SRS. For
convenience, we describe Game1 in terms of communication between the challenger C (top-level execution code
of Game1) and A.

C of Game1 maintains an update (current call) counter icall, which is reset to zero in the beginning of each
phase. Before the game starts, C uniformly samples two values iguess1 and iguess2 , ranging from 1 to q1 and
q2 correspondingly (polynomial upper bounds on number of queries for A), in such a way attempting to guess
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GameA,EA1 (1λ)

srs← srsd, ϕ = 1,
Q1, Q2 ← ∅; icall ← 0; iguess1 ←$ [0, q1]; iguess2 ←$ [0, q2]; {zι}ι∈{x,α,β,δ}←$Zp;
Initialize ROt(·)
(φ, π)← AOsrs,RO; w ← EA(viewA);
return Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R ∧ ϕ > ϕmax

Osrs(intent, srs
∗ = (srs∗u, srs

∗
s), Q

∗ = {ρ(i)
u }kui=1 ∪ {ρ

(i)
s }ksi=1)

// Update icall ← icall + 1 on each successful return
if ϕ > 2 : return ⊥;
srsnew ← if ϕ = 1 then srs∗else (srsu, srs

∗
s);

if VerifySRSRO(·)(srsnew, Q
∗) = 0 : return ⊥;

if intent = UPDATE ∧ ϕ = 1 ∧ icall = iguess1
srs′u ←

(
{Gz

i
x , Hzix}2n−2i=0 , {Gzαz

i
x , Gzβz

i
x , Hzαz

i
x , Hzβz

i
x}n−1i=0

)
;

srs′s ← Specialize(RQAP, srs
′
u);

for ι ∈ {x, α, β} do ρι′ ← SimUpdProof(zι, ϕ = u);
return (srs′, (ρα′ , ρβ′ , ρx′));

if intent = UPDATE ∧ ϕ = 2 ∧ icall = iguess2
Let {ẑι}ι∈x,α,β correspond to the trapdoors at the end of phase 1 ;

srs′s ←
(
Gzδ , Hzδ , {G

1
zδ

(ẑixt(ẑx))}n−2i=0 , {G
1
zδ

(ẑβui(ẑx)+ẑαvi(ẑx)+wi(ẑx))}mi=`+1

)
;

ρ′δ ← SimUpdProof(zδ, ϕ = 2);
return ((srs∗u, srs

′
s), ρ

′
δ);

if intent = UPDATE // A standard honest update
(srs′, ρ′)← Update(ϕ, srsnew, Q

∗); Qϕ ← Qϕ ∪ {ρ′}; return (srs′, ρ′);
if intent = FINALIZE ∧Qϕ ∩Q∗ 6= ∅

if ϕ = 1 then srsu ← srs∗u else srss ← srs∗s;
ϕ← ϕ+ 1; icall ← 0;
if ϕ > 2

Deduce {icritϕ}ϕ from Q∗ as last honest updates in phase ϕ ∈ {1, 2};
lucky :=

(
iguess1 = icrit1 ∧ iguess2 = icrit2

)
;

SimUpdProof(zι, ϕ)

// PoKs may correspond both to honest and adversarial updates

{ι̂j}
kϕ
j=1 ← extract trapdoors from {ρ(i)ϕ }

kϕ
i=1 PoKs using viewA; ι̂←

kϕ∏
ι̂j ;

Gι̂
′
← (Gzι)ι̂

−1

;H ι̂′ ← (Hzι)ι̂
−1

;

πι′ ← Sim
RO1(·)
dl (φ = (⊥, Gι̂

′
, H ι̂′));

ρι′ ← (Gzι , Gι̂
′
, H ι̂′ , πι′); return ρι′ ;

Figure 5.9: Description of Game1, a modified update KS game.

critical queries {icritϕ}ϕ. In case the actual number of queries mϕ in a particular execution of A is less than
iguessϕ , C will just execute as in Game0 for phase ϕ. C will generate fresh SRS for at most two (randomly picked)
update queries through Osrs, and it will respond to all the other update requests from A honestly. The successful
guess formally corresponds to the event lucky, set during SRS finalization in Game1 (see Fig. 5.9).

Now, it is not possible for C to generate a fresh PoK as in Game0 because it does not know the update trapdoors
ι̂′ for critical queries — these values do not exist explicitly, since instead of updating an SRS, C generated a new
one.
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Therefore, it uses a specific technique to simulate the update proof of knowledge using the procedure SimUpdProof
(see Fig. 5.9). The task of SimUpdProof is to create ρι̂′ = (Gι̂

′
ι̂ , G

ι̂′ , H ι̂′ , πι̂′), which is a valid update proof from
srs∗ to a freshly generated srs′. Since C does not actually update srs∗, but creates a completely new one with zι
trapdoors, we have Gzι = Gι̂ι̂

′
where ι̂ is the trapdoor value of srs∗ and ι̂′ is the new update trapdoor. Given

the value ι̂ in clear, we can reconstruct Gι̂
′

by computing (Gι̂ι̂
′
)ι̂
−1

. This is the strategy of C: it uses viewA
to extract the trapdoors ιj for all the ku proper updates that led to srs∗ϕ, and thus to obtain ι̂. Notice that these
updates can be both honest and adversarial, but, importantly, none of them are simulated (because we perform
this procedure once per phase only), which guarantees that extraction succeeds. Next, SimUpdProof computes
a product ι̂ of these extracted values, and using its inverse produces (Gι̂

′
, H ι̂′), which are the second and third

elements of the update proof. The first element of ρι̂′ is just an element of the new SRS (e.g. for ι = x, it is
Gι
′
x:1, and for ι ∈ {α, β} it is Gι

′
ιx:0), so we set the value to Gzι . The last element, proof-of-knowledge of ι̂′, we

create by black-box simulation, since PoK is perfectly ZK. Namely, since we already have φ = (⊥, Gι̂′ , H ι̂′),
we just pass it into Simdl, and attach the resulting πι′ to the update proof. Although we know zι in Game1 (and
therefore know φ exponent ι̂′), it is not necessary to perform the reverse computation in Game1 — technically,
the procedure only requires Gzι . This is critical for the last part of our theorem, reduction to edlog, since in
that case zι contains embedded edlog challenge, and we know only the corresponding group element, but not the
exponent. Once again we emphasize that PoK simulation is not necessary in Game1, since the discrete logarithm
of φ is known; nevertheless, it is a good place to introduce it.

We now argue that the game Game1 that we introduced is indistinguishable from Game0 for A. We recall that
(1, 0)-dlog assumption is implied by (2n− 1, 2n− 2)-edlog assumption.

Lemma 4. Assuming (1, 0)-dlog, the difference between advantage of A in winning Game0 and Game1 is neg-
ligible: AdvGame0

A,EA (λ) ≤ AdvGame1
A,EA (λ) + negl(λ).

Proof. We introduce the intermediate game Game1⁄2, and prove the lemma in two steps, corresponding to the
transitions between Game0 and Game1⁄2, and between Game1⁄2 and Game1, correspondingly. Both transitions are
using security properties of the underlying Πdl PoK (ZK and SE), which hold under (1, 0)-dlog.

Step 1. In Game1⁄2, we choose the critical queries, but we still update the SRS honestly. The only thing that
we change is the PoK: instead of producing honest PoKs on critical queries, we simulate them. That is, we
still have the update trapdoor ι̂′, but we use it to construct φ = (⊥, Gι̂′ , H ι̂′), and simulate for this φ. Game0

and Game1⁄2 are indistinguishable by perfect ZK of the PoK, thus AdvGame0
A,EA (λ) ≤ AdvGame1⁄2

A,EA (λ) + negl(λ). The
formal reduction breaking ZK uses Ob (the real prover, or the simulator) in the critical queries; every other part
of the game is the same.

Step 2. Next, we recall Game1 which, compared to Game1⁄2, generates a fresh SRS with trapdoors {zι}ι, and
reconstructs φ for PoKs in a different way. Because for critical queries we do not have the update trapdoor ι̂ in
the clear (since we do not do the update, but pretend our fresh SRS is the outcome of the update), we extract the
corresponding trapdoors ι̂i from honest and adversarial PoKs, and reconstruct ι̂′ from these and zι. Since fresh
and updated trapdoors are identically distributed, this part of the transition is perfect. Similarly, our reversed
computation outputs exactly the same value of the update trapdoor ι̂′ that the game was supposed to obtain by
honest update, so instance φ to PoK is the same in two games. Therefore, the only risk in the transition between
the two games is that PoK extraction can fail, and in this case we abort the execution, which is noticeable
by A. But the PoK is simulation-extractable — even though A sees simulated PoKs already in Game1⁄2, the
probability for PoK extractor to fail is negligible by SE. Therefore, Game1⁄2 is indistinguishable from Game1:
AdvGame1⁄2

A,EA (λ) ≤ AdvGame1
A,EA (λ) + negl(λ).

Technically, we need to explain two things: why we are allowed to use PoK SE here, and why it applies here,
guaranteeing us extraction. First, by Theorem 9 our PoK is SE. Second, we must show that our current setting
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does not give A more power than it is considered in the SE game. Concretely, in the SE game A is given access
to simulation oracle, RO, and two Poly oracles.

In our setting adversary also has access to RO, simulation oracle models update proofs, and other elements that
adversary sees (SRS elements and non-PoK update proof elements) only depend on update trapdoors and fresh
trapdoors, which are modelled with Opoly. The degree d(λ) of Opoly that we need is q1(2n − 2) + q2. Let us
recall that we defined the degree of a Laurent polynomial to be the degree of its highest degree monomial, where
the degree of a monomial is the sum of absolute values of variable degrees. Given this definition, the highest
degree element in the SRS is xn−2t(x)/δ, which has the degree 2n − 1, we obtain the degree q1(2n − 2) + q2,
if A updates a single SRS sequentially in all its queries.

Reconstructing the proof algebraically.

For the next steps of our proof we will need to be able to reconstruct the proof elements, and the verification
equation generically from the AGM coefficients we can extract from A. Almost all the elements that A sees
depend on certain variables ~Ψ that are considered secret for the adversary (update trapdoors, RO exponents,
critical query honest trapdoors). SinceA can describe proof elementsA,B,C as linear combinations of elements
it sees, that depend on ~Ψ, we are able to reconstruct the proof elements as functionsA(~Ψ), B(~Ψ), C(~Ψ) (Laurent
polynomials, as we will show later). That is, for the particular values ~ψ that we chose in some execution in
Game1, A(~ψ) = A (but we can also evaluate A(~Ψ) on a different set of trapdoors). From these functions
A(~Ψ), B(~Ψ), C(~Ψ) one can reconstruct a SNARK verification equation Q(~Ψ), such that Verify(ψ, π) = 1 ⇐⇒
Q(~ψ) = 0.

We note that it is not trivial to obtain the (general) form of these functions, because it depends on viewA —
different traces produce different elements that A sees, which affects with which functions these elements are
modelled. Therefore, we start by defining which variables are used to model elements that A sees.

We denote by ~Ψ this set of variables which are unknown to A. This includes, first and foremost, the set of trap-
doors that are used for the (critical) simulation update queries: Zx, Zα, Zβ, Zδ (these abstract the corresponding
trapdoors {zι}). To denote the expression that includes final adversarial trapdoors, we will use Ẑι that is equal to
the previously defined Zι(Z), but now as a function of Zι: Ẑι = Zι

∏
ιAj for ι ∈ {x, α, β}, and Ẑδ = Zδ/

∏
δAj .

The full list of variables that constitute ~Ψ is the following:

1. Critical honest trapdoor variables: Zα, Zβ, Zx, Zδ. The elements depending on them may be used by
A independently, e.g. having GZx in the first phase SRS A can set A = GkZx+..., but we expect that
since final SRS contains Ẑx as a trapdoor, k will contain adversarial trapdoor contribution too, that is
kZx = k′Ẑx.

2. Honest (non-critical) update trapdoors ~T = {Ti,ι}.

3. RO replies, which we, for convenience of indexing, split into three disjoint sets:

• RO values for the critical queries ~K = {Kι}x,α,β,δ: these RO replies are used in PoK simulation by
Game1.

• RO values for honest update proofs ~RT = {RT :i:ι}i,ι. First phase update number i corresponds to
three values RT :i:x, RT :i:α, RT :i:β , and second phase update number j corresponds to RT :j:δ.

• Direct RO values ~RA. These are used byA, in particular, but not only, to create PoKs for adversarial
SRS updates.

We denote by ~R = ~RA ∪ ~RT . Therefore, ~Ψ = ({Zι}ι, ~K, ~T , ~R). Since we will be often working only with the
first set of variables {Zι}, we will denote it as ~Ψ2, and all other variables from ~Ψ as ~Ψ1.
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Success in lucky executions.

In general, the set of possible variants of Q(~Ψ) is quite big, and it depends on many things, including the way
A interacts with the challenger. Each interaction can present a different set of coefficients in A that will be
modelled by different functions. Therefore, we would like to take advantage of the lucky event to simplify our
reasoning and reduce the space of possible interactions.

We claim that lucky is independent from A success in Game1. In other words, in order to win Game1 it suffices
to only show the existence of a witness extractor in the case where the lucky indices correspond to A’s critical
queries.

AdvGame1
A,EA (λ) = Pr[GameA,EA1 (1λ) = 1] = Pr[GameA,EA1 (1λ) = 1 | lucky]

where q1 and q2 are polynomially bounded. Indeed, A is blind to whether we simulate or not, and so we can
assume independence of events: Pr[GameA,EA1 (1λ) = 1 | simi] is the same for all simulation strategies simi,
including the lucky one.

AdvGame1
A,EA (λ) =

q1q2∑
i=0

Pr[GameA,EA1 (1λ) = 1 | simi]
1

q1q2

=
1

q1q2

∑
i

Pr[GameA,EA1 (1λ) = 1 | lucky] = Pr[GameA,EA1 (1λ) = 1 | lucky]

Our choice of {iguessϕ}ϕ, and thus the chosen simulation strategy simi is independent from the success of A.
Note that this does not imply that we ignore some traces of A, which would break the reduction. Instead, for
each possible trace of A, and thus each possible way it communicates with the challenger and the oracles, we
only consider those executions in which we guess the indices correctly.

Defining the function Q(~Ψ) for Game1.

Therefore, when in Game1 the challenger guesses critical queries correctly (lucky), and A returns a verifying
proof, the complexity is greatly simplified, and we can now define at least the high-level form of the function Q:

Q(~Ψ) :=

(
A(~Ψ)B(~Ψ)− ẐαẐβ −

∑̀
i=0

ai(Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx))− C(~Ψ)Ẑδ

)
(5.3)

such that GA(~ψ) = A and similarly for B and C, where ~ψ is the concrete set of secret values used for a particular
execution. The function Q(~Ψ) reconstructs verification equation of the proof in this particular game execution:
in particular, Q(~ψ) = 0 ⇐⇒ Verify(srs, φ, π) = 1.10

Note that the form of functions A(~Ψ), B(~Ψ), and C(~Ψ) still heavily depends on the interaction withA, and thus
on the particular execution trace. But the general form of Q we have just specified is enough to argue the critical
lemmas.

Lemma 5. The general form of Q(~Ψ) is as presented in Eq. (5.3). Moreover, A,B,C are Laurent polynomials
in Ψ2 when viewed over Zp[~C], where ~C are AGM coefficients, abstracted as variables. In another words,
A,B,C ∈ (Zp[~C, ~Ψ1])[~Ψ2] are Laurent. Therefore, Q also is Laurent when viewed as (Zp[~C, ~Ψ1])[~Ψ2].

Proof. We will first argue why the form of Q(~Ψ), and concretely its public elements that are included in it
(ẐαẐβ for instance), is as in Eq. (5.3). Consider the first phase for now. When A finalizes srsu we locate in Q∗u

10The form of the public equation parts (the second and the third terms, and 1/Zδ in the last term) is due to our critical-step-simulation
strategy, e.g. they only depend on the challenge variables plus last adversarial trapdoors. This is where guessing the last query really
helps: otherwise these terms would also depend on some ~T .
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GameA,EA2 (1λ)

srs← srsd, ϕ = 1,
Q1, Q2 ← ∅; icall ← 0; iguess1 ←$ [0, q1]; iguess2 ←$ [0, q2]; {zι}ι∈{x,α,β,δ}←$Zp;
ROt, Osrs and SimUpdProof are constructed as in Game1;
(φ, π)← AOsrs,RO;
w ← EA(viewA);

bad :=
(

lucky ∧Q(ψ1, {zι}) = 1 ∧Q(ψ1, {Zι}) 6≡ 0
)

return Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R ∧ ϕ > ϕmax ∧ lucky;

Figure 5.10: Description of Game2, an extension of Game1 with bad event introduced. Q(~Ψ1, ~Ψ2) is the function
(Laurent polynomial in ~Ψ2) that corresponds to the way to reconstruct π and verification equation, where Ψ2

corresponds to the trapdoor variables {Zι}.

(Q∗ = (Q∗u, Q
∗
s)) the critical update proofs for x, α, β — let their position be j ∈ [1, ku] (j is not equal to the

Osrs query index icrit1 since there can be many adversarial updates in Q∗u). These update proofs are followed by
(potentially non-empty) set of adversarial proofs with indices j + 1, . . . , ku — honest proofs are not included in
this suffix since critical proofs are the last honest ones in Q∗u. Now, let us argue that the element Gα:0 in the final
SRS corresponds to Zα

∏
αAi . In step 3.b of SRS verification we do a cascade verification: in particular, on the

j + 1 step we check ê(Gjα, H) = ê(G
(j−1)
α , Hj

α′). So, if the exponent of Hj
α′ is some αAj , then we know after

this loop ends that Gα = Gzα
∏
αAi . Same is applicable for Gx, Gβ . Then we can use other VerifySRS equations,

similarly to the style in Lemma 8, to show that every α related slot in the final SRS contains zα
∏
αAi (in other

words, srs is consistent w.r.t. this value of α). And we can argue similarly for the second phase and δ slot being
taken by zδ

∏
δAi , and srss being consistent w.r.t. this value. This argument explains the form of the public part

of Q(~Ψ): {
ẐαẐβ,

∑̀
i=0

ai(Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)), Ẑδ

}

To explain why Q(~Ψ) is a Laurent polynomial in ~Ψ2, it is enough to understand three things. First, the elements
E thatOsrs outputs on the critical queries are Laurent polynomials in ~Ψ2 — this can be verified by observing that
the form of honest SRS consists of Laurent polynomials in its trapdoors. Second, no new elements depending
on ~Ψ2 can be obtained by passing E into RO, since RO returns randomly sampled values that are independent
of ~Ψ2. Third, VerifySRS does not use any older trapdoors, and only introduces new ones: this means that for
any set of elements E′ (that are Laurent polynomials in ~Ψ2) being inputs of VerifySRS, VerifySRS will merely
produce linear combinations of E′, which will be again Laurent in ~Ψ2.

Description of Game2.

The following game, presented on Fig. 5.10 extends Game1 with two additions. Firstly, it introduces the event
bad. The condition that we are trying to capture is whether A uses the elements that depend on trapdoors zι
blindly or not. When bad does not happen, the adversary is constructing π in such a way that it works for any
value of z′ι. Otherwise, we can argue thatA used the specific value of zι, even though it is hidden in the exponent.

Secondly, we require that adversary wins only if the event lucky happens. Since lucky is an independent event,
then Pr[GameA,EA2 (1λ) = 1] = Pr[GameA,EA1 (1λ) = 1 ∧ lucky] = Pr[GameA,EA1 (1λ) = 1]/(q1q2). The last
transition is due to independence of winning Game1 and lucky explained earlier (Pr[GameA,EA1 (1λ) = 1] =

Pr[GameA,EA1 (1λ) = 1 | lucky]). We can use the total probability formula to condition winning in Game2 on the
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event bad.

Pr[GameA,EA2 (1λ) = 1] = Pr[GameA,EA2 (1λ) = 1 | ¬bad] · Pr[¬bad]

+ Pr[GameA,EA2 (1λ) = 1 | bad] · Pr[bad]

≤Pr[GameA,EA2 (1λ) = 1 | ¬bad] + Pr[bad].

The next two lemmas will upperbound this probability. The Lemma 6 will bound the the first term of the sum
and the Lemma 7 bounds the second term.

Extractor succeeds in good executions.

In this subsection we present a lemma, that states that whenever C guesses the critical indices correctly, and event
bad does not happen, the output of the extractor EA is a QAP witness.

Lemma 6. In Game2 when ¬bad, if A produces a verifying proof, EA succeeds:

Pr[GameA,EA2 (1λ) = 1 | ¬bad] = negl(λ)

Proof. Assume Verify(srs, φ, π) = 1, the event lucky happens since otherwise A cannot win Game2. Because
bad did not happen, we deduce that Q(ψ1, ~Ψ2) ≡ 0 w.o.p., where Q(~Ψ) is as in the equation Eq. (5.3).

The problem is that we do not know the form ofQ; we want to argue that ifQ(ψ1, ~Ψ2) ≡ 0 then AGM coefficients
that A returns have some specific form, and contain witness wires. But we also do not know what is the most
general form of Q — with AGM coefficients being treated as variables, and not as concrete values. For our proof
to proceed in such generality, we will only care about those AGM base elements that depend on ~Ψ2 — all the
other elements are considered constants in Q(ψ1, ~Ψ2). Now, we must determine which elements depend on ~Ψ2.

Observation 13. Let E1, E2 be elements depending on ~Ψ2 that A sees as an output of critical queries in the first
and second round correspondingly. Then, the proof elements A,B,C can only include these elements and linear
coefficients of E1 ∪ E2 with constant values potentially unknown to A.

1. In the first phase, {Zx, Zα, Zβ} ⊂ ~Ψ2 appear in the update query number icrit1 : in SRS elements and in
the corresponding update proof, let us call these elements E1. Now, since icrit1 does not have to be the
last query of the first round, nothing stops A from passing E1 into other RO queries or update oracle
queries (and not using them for final SRS). Passing these values into RO is generally useful both here
and in the second phase: on any request A will receive an unrelated constant value, so no elements
that depend on E1 can be produced in such a way. Passing E1 into SRS update oracle only mixes E1

with some other values that are considered constants over ~Ψ2. This is easy to see: Update procedure is
designed in such a way that no knowledge of internal SRS trapdoors in needed to perform the update.
As a result, all output elements of Update are of form [k0 +

∑
kie], where e ∈ E1, and ki are constants

(e.g. update trapdoors). This is equivalent to A producing the linear combination of E1 elements on its
own, but in this case ki may not be known to A. Therefore, in the first round, until A finalizes, it only
sees E1 and linear combinations of E1 elements (with unknown coefficients potentially).

2. The same logic applies to the adversarial queries w.r.t. E1 in the second round before the second round
critical queries.

3. In the second round query icrit2 adversary obtains elements that depend on E2 = {Zδ} ⊂ ~Ψ2: second
phase SRS elements and corresponding update proofs. Now, similarly, A cannot mix E1 with E2 (and
within these sets) using update oracle, producing conceptually new elements that depend on E2 and
cannot be represented as linear combinations of E1 and E2 elements.
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4. The second round ends and A submits the final SRS. It then can query RO (since update oracle is
disabled after the second round finalization), and finally A submits the instance and the proof.

Then we can assume A,B,C to only contain linear combinations of both Ei, and some other constant values.
The form of this constant value may be complex, since it is a linear (AGM) combination of constants, the form
of which depends on the particular execution, interaction pattern and other things. Nevertheless, these values are
constant factor in Q(ψ1, ~Ψ2). As we just argued, elements that depend on Ei and that are not direct outputs of
update oracle on two critical queries are linear combinations [

∑
kiei]ι. So since these are in the span of E1∪E2,

we will only consider A,B,C to consist of linear elements E1 ∪ E2 and constant values.

We now formally state the list of elements that can be used in the algebraic base of A,B,C. We use a custom
enumeration to simplify our notation.

A(~Ψ2) = A0 +

2n−2∑
i=1

A1:iZ
i
x +

n−1∑
i=0

(A2:iZαZ
i
x +A3:iZβZ

i
x) +A4Zδ

+
m∑

i=l+1

A5:i
Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)

Zδ
+
n−2∑
i=0

A6:i
Ẑixt(Ẑx)

Zδ

+
∑
ι

(A7:ι
Zι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i )

+A8:ι
KιZι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i )

)

B(~Ψ2) = B0 +
2n−2∑
i=1

B1:iZ
i
x +

n−1∑
i=0

(B2:iZαZ
i
x +B3:iZβZ

i
x) +B4Zδ

+
∑
i,ι

(B7:ι
Zι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i )

)

C is constructed as A. The constant value G sometimes corresponds to x0 and could be referred to as A1:0,
but we will give the coefficient a separate index 0 for clarity. Indices 1 to 6 correspond to outputs of critical
queries. Elements number 7 are second and third elements of proof of update: they contain update trapdoors as
exponents. Elements number 8 are corresponding PoKs. In both these last two types of elements the denominator
contains some honest and adversarial trapdoors corresponding to the prefix of the update procedure before the
critical query: these are the elements that are extracted in SimUpdProof of Game1. Essentially, we divide the
new trapdoor by the old one to reconstruct the update trapdoor (for the update the challenger did not do).

We can immediately simplify the representation even further: observe that elements number 10 and 11 already
exist in the span of elements they are included into. For example,A10:ιZι/(

∏
I1 Ti,ι

∏
I2 ι
A
i ) is just Zι multiplied

by a very specific constant that A knows only partially (because Ti is hidden from it). For ι = x, there exists
A1:1, for ι = α, β there exist, correspondingly, A2:0 and A3:0. Therefore, the coefficient of Zx is now A1:1 +
A10:ι/(

∏
I1 Ti,ι

∏
I2 ι
A
i ). It is more restrictive for A to use constants which it knows only partially, therefore

without loss of generality we can assume that A10:ι = 0, and if adversary wants to include Zx it will set A1:1 to
a nonzero value. Similarly, A11:ι = B10:ι = 0.

Which leads to the general form similar to the one we have in the original proof of Groth16 in [BGM17], except
our elements have extra adversarial trapdoors (hidden inside some variables with hats):

A(~Ψ2) = A0 +

2n−2∑
i=1

A1:iZ
i
x +

n−1∑
i=0

(A2:iZαZ
i
x +A3:iZβZ

i
x) +A4Zδ

+
m∑

i=l+1

A5:i
Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)

Zδ
+

n−2∑
i=0

A6:i
Ẑixt(Ẑx)

Zδ
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B(~Ψ2) = B0 +
2n−2∑
i=1

B1:iZ
i
x +

n−1∑
i=0

(B2:iZαZ
i
x +B3:iZβZ

i
x) +B4Zδ

We follow a proof strategy similar to the one in [BGM17]. One structural difference is that we will not try to
deduce first which elements can be included into A,B,C and which can not — since we do not know whether
this will be necessary for the result. Instead, we will start from the end, immediately locating the three critical
equations from which we expect to extract — these are equations that correspond to the monomials of public
verification equation elements. The corresponding monomials are: ZiX , ZαZ

i
x, ZβZ

i
x. For ZαZix:

(
∑

A2,iZαZ
i
x)(B0 +

∑
B1,iZ

i
x) + (

∑
A5,iẐαvi(Ẑx))B4+

(
∑

B2,iZαZ
i
x)(A0 +

∑
A1,iZ

i
x)−

∑
aiẐαvi(Ẑx)− (

∑
C5,iẐαvi(Ẑx)) = 0

For ZβZix:

(
∑

A3,iZβZ
i
x)(B0 +

∑
B1,iZ

i
x) + (

∑
A5,iẐβui(Ẑx))B4+

(
∑

B3,iZβZ
i
x)(A0 +

∑
A1,iZ

i
x)−

∑
aiẐβui(Ẑx)− (

∑
C5,iẐβui(Ẑx)) = 0

And for Zix:

(B0 +
∑

B1,iZ
i
x)(A0 +

∑
A1,iZ

i
x) + (

∑
A5,iwi(Ẑx) +

∑
A6,iẐ

i
xt(Ẑx))B4−∑

aiwi(Ẑx)−
∑

C5,iwi(Ẑx)−
∑

C6,iẐ
i
xt(Ẑx) = 0

Our strategy now is to attempt to remove the elements which clutter these equations and prevent us from sub-
stituting the first two into the third one to obtain a QAP. Let us write out equations on monomials that include
Zα, Zβ, Zx and see whether we can deduce any simplifying relations on the AGM coefficients involved.

Z2
αZ

i
x : (

n−1∑
i=0

A2:iZαZ
i
x)(

n−1∑
i=0

B2:iZαZ
i
x) = 0 =⇒ ∀i ∈ [0, 2n− 2] :

(n−1,n−1)∑
j,k:(0,0);j+k=i

A2:jB2:k = 0

Z2
βZ

i
x : (

n−1∑
i=0

A3:iZβZ
i
x)(

n−1∑
i=0

B3:iZβZ
i
x) = 0 =⇒ ∀i ∈ [0, 2n− 2] :

(n−1,n−1)∑
j,k:(0,0);j+k=i

A3:jB3:k = 0

ZαZβZ
i
x : (

n−1∑
i=0

A2:iZαZ
i
x)(

n−1∑
i=0

B3:iZβZ
i
x) + (

n−1∑
i=0

A3:iZβZ
i
x)(

n−1∑
i=0

B2:iZαZ
i
x) = αAβA(6= 0)

Z2
αZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(

n−1∑
i=0

B2,iZαZ
i
x) = 0

Z2
βZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(

n−1∑
i=0

B3,iZβZ
i
x) = 0

ZαZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(

n−1∑
i=0

B3,iZβZ
i
x) + (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(

n−1∑
i=0

B2,iZαZ
i
x) = 0

ZαZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(

2n−2∑
i=0

B1,iZ
i
x)+
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(
m∑

i=l+1

A5,iwi(Ẑx)/Zδ +
n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)(

n−1∑
i=0

B2,iZαZ
i
x) = 0

ZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(
2n−2∑
i=0

B1,iZ
i
x)+

(

m∑
i=l+1

A5,iwi(Ẑx)/Zδ +

n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)(

n−1∑
i=0

B3,iZβZ
i
x) = 0

From the first equation, Z2
αZ

i
x, we have A2 ∗ B2 = 0, where ∗ denotes convolution product. From Z2

βZ
i
x,

A3 ∗B3 = 0. From ZαZβZ
i
x, A2 ∗B3 +A3 ∗B2 = (αAβA, 0, . . . , 0)T .

Convolution products have a property useful in this context which we explain now. Assume a ∗ b = 0, then
a0b0 = 0, a1b0 + a0b1 = 0, a2b0 + a1b1 + a0b2 = 0 and so on (the longest equation is for degree n, and then
the number of elements decreases one-by-one until degree 2n). It is easy to see that the product is symmetric:
a ∗ b = b ∗ a. Importantly, if a0 6= 0, then all bi = 0: from the first equation b0 = 0, from the second equation
a0b1 = 0, so b1 = 0 too, from the third equation similarly a0b2 = 0 (the other two terms cancel because
of b0 = b1 = 0), and thus b2 = 0. This process is continued until the degree n (middle, longest) equation.
Therefore, if a ∗ b = 0, then a0 6= 0 =⇒ b = 0, or b0 6= 0 =⇒ a = 0.

In our case, theZαZβZix givesA2:0B3:0+A3:0B2:0 = αAβA. But at the same time, at least one from {A2:0, B2:0}
and {A3:0, B3:0} must be zero. If both zero values are in both terms, it is impossible for their sum to be zero,
therefore both zero values must be in one term. This leads us to the two options:

(a) A2:0 = B3:0 = 0 and both A3:0 and B2:0 are nonzero. From this, by the convolution property above, we
immediately conclude ∀i. A2:i = B3:i = 0.

(b) Symmetrically, A3:i = B2:i = 0 for all i, but A2:0 and B3:0 are nonzero.

In the honest proof generation, β ∈ B, as in option (b), so let us assume option (a) first. We will later see that
one can indeed construct a proof with B swapped with A; we will succeed with (a), so this choice is performed
without loss of generality.

Now, the equation ZαZβZ
i
x becomes (

∑n−1
i=0 A3:iZβZ

i
x)(
∑n−1

i=0 B2:iZαZ
i
x) = αAβA 6= 0 or A3 ∗ B2 =

(αAβA, 0 . . . 0)T . By an argument similar to above we can argue that A3,i = B2,i = 0 for all i > 0. We
examine the highest degree coefficient A3,nB2,n = 0, and assume A3,n 6= 0 wlog, then B2,n = 0. Then, from
the previous equation A3,n−1B2,n + A3,nB2,n−1 = 0 we derive B2,n−1 = 0. This process goes on until on the
degree n equation A3,0B2,n + . . .+A3,n−1B2,1 +A3,nB2,0 = 0 where we reach a contradiction since B2,0 = 0
but we assumed it is not. By a symmetric argument, B2,n 6= 0 lead to A3,0 = 0 and contradiction too. So
B2,n = A3,n = 0. The equation 2n − 1 is now immediately satisfied, but the equation for 2n − 2 becomes
A3,n−1B2,n−1 = 0. Here the proof idea repeats, but we reach contradiction on degree n − 1 equation instead.
Using this process we conclude that A3,i = B2,i = 0 for i > 0.

If ∀i. A2:i = B3:i = 0, A3:0B2:0 = αAβA, and A3:i = B2:i = 0 for i > 0, our system of equation becomes:

ZαZβZ
i
x : A3:0B2:0 = 1

Z2
αZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)B2,0Zα = 0

ZαZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)B2,0Zα = 0
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ZαZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(
2n−2∑
i=0

B1,iZ
i
x)+

(
m∑

i=l+1

A5,iwi(Ẑx)/Zδ +
n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)B2,0Zα = 0

ZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(

2n−2∑
i=0

B1,iZ
i
x) = 0

The equations Z2
αZ

i
x, Z2

βZ
i
x, Z2

βZ
i
x/Zδ are now satisfied, so are not considered anymore. From Z2

αZ
i
x/Zδ we

conclude that
∑m

i=l+1A5,ivi(Ẑx) = 0 as a polynomial in Zx, and same for (
∑m

i=l+1A5,iui(Ẑx) = 0. ZαZix/Zδ
reduces to

(

m∑
i=l+1

A5,iwi(Ẑx)/Zδ +

n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)B2,0Zα = 0

from which, since these two sets are of different powers, we conclude

m∑
i=l+1

A5,iwi(Ẑx) = 0 and
n−2∑
i=0

A6,iẐx
i
t(Ẑx) = 0

both as polynomials in Zx.

We now return to the three critical equations which are now significantly simplified:

ZαZ
i
x : B2,0(A0 +

∑
A1,iZ

i
x) =

∑
aiα
Avi(Ẑx) + (

∑
C5,iα

Avi(Ẑx))

ZβZ
i
x : A3,0(B0 +

∑
B1,iZ

i
x) =

∑
aiβ
Aui(Ẑx) + (

∑
C5,iβ

Aui(Ẑx))

Zix : (B0 +
∑

B1,iZ
i
x)(A0 +

∑
A1,iZ

i
x) =

∑
aiwi(Ẑx) +

∑
C5,iwi(Ẑx) +

∑
C6,iẐ

i
xt(Ẑx)

Express 1 and 2 and substitute into 3:

βAαA

A3,0B2,0
(

l∑
i=0

aiui(Ẑx) +

m∑
i=l+1

C5,iui(Ẑx))(

l∑
i=0

aivi(Ẑx) +

m∑
i=l+1

C5,ivi(Ẑx)) =

l∑
i=0

aiwi(Ẑx) +
m∑

i=l+1

C5,iwi(Ẑx) +
n−2∑
i=0

C6,iẐ
i
xt(Ẑx)

A3,0B2,0 = βAαA, so the first term is equal to 1. Our result is a QAP in Ẑx: C5,i elements are witness wires,
and C6,i are coefficients of h(Ẑx) (such that h(Ẑx)t(Ẑx) is equal to QAP left hand side). Therefore the extractor
targeting C5,i succeeds in extracting the witness.

Description of the EDLOG reduction.

We show that the event bad can only happen with a negligible probability by making a reduction to the edlog
assumption. The intuition behind this is that if A triggers bad, then it could construct a proof in a manner that
is specific to the SRS ~ψ2 and does not generalize to any other ~ψ′2. And this means that A has knowledge of the
exponent element, which is impossible assuming edlog.

Lemma 7. The probability of bad in Game2 is negligible under the (2n− 1, 2n− 2)-edlog assumption.
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B({Gzi}2n−1
i=1 , {Hzi}2n−2

i=1 , rδ, sδ, G
1

rδz+sδ , H
1

rδz+sδ )

Initialize ROt(·)
{rι, sι}ι∈{x,α,β}←$Zp;
Set implicitly zι ← rιz + sι for critical query embeddings for ι ∈ {α, β, x};
Similarly set zδ ←

1

rδz + sδ
Run A and E as in Game1 using dlog challenge elements to embed zι

into critical SRS updates, and modified SimUpdProofB
assert Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R;

Reconstruct Q(~ψ1, ~Ψ2) using AGM matrix T and extracted trapdoors from srs PoKs;
Reinterpret it as Q′(Z); factor Q′(Z), find z among the roots and return it;

SimUpdProofB(ι, ϕ)

We compute Gι̂
′
, H ι̂′ , as before, except now we do not know exponent of Gzι , Hzι ;

Notice: for δ, Gι̂
′

= (G
1

rδz+sδ )ι̂
−1

due to inverted embedding.
As in SimUpdProof, create φ and call SimRO1(·)

dl on it to obtain πι′ .
return (Gzι , Gι̂

′
, H ι̂′ , πι′)

Figure 5.11: Adversary B against (2n−1, 2n−2)-extended dlog assumption in Theorem 12. It is parameterized
by a full update knowledge soundness algebraic adversaryA, and the extractor EA as in Fig. 5.8. Its main task is
to simulate Game1 to A, embedding the edlog instance z into SRS on critical queries.

Proof. Recall that we denote ~Ψ2 = {Zι}ι; similarly, let us say ~ψ2 = {zι}ι. Let us define Q2(~Ψ2) :=
Q(ψ1, ~Ψ2) 6≡ 0. Also recall that bad implies lucky, so we are implicitly considering lucky traces in this lemma.

Let A be a PPT adversary in Game2. We want to show that it is computationally hard for A to come up with a
non-zero polynomial Q2 such that the verifier accepts, i.e. Q2(~ψ2) = 0. The idea of the proof is to construct
an adversary B that simulates Game2 for A and embeds (2n − 1, 2n − 2)-edlog challenge z into the update
trapdoors zι (~ψ2) at critical queries icrit1 and icrit2 . We show Q2(~Ψ) 6≡ 0 implies that a closely related univariate
polynomial Q′(Z) 6≡ 0 where (2n − 1, 2n − 2)-edlog challenge value z is one of the roots of Q′. Since Q′ is a
univariate polynomial, B can efficiently factor it and output z. It follows that Q2(~ψ2) = 0 and Q2(~Ψ) 6≡ 0 can
only hold with negligible probability, thus event bad is negligibly rare.

We now explain in detail the embedding strategy ofB in Fig. 5.11. Firstly, B obtains as a challenge (bp, {Gzi}2n−1
i=1 ,

{Hzi}2n−2
i=1 , r, s,G

1
rz+s , H

1
rz+s ). Instead of sampling critical trapdoor values zι randomly, we implicitly define

zι := rιz + sι for ι ∈ {x, α, β} and let B sample sι, rι randomly.

WhenA requests an update number icrit1 in the first phase, B uses the challenge input and (rx, rα, rβ, sx, sα, sβ)
to set

srs′u =

(
{G(rxz+sx)i , H(rxz+sx)i}2n−2

i=0 , {G(rαz+sα)(rxz+sx)i , G(rβz+sβ)(rxz+sx)i ,

H(rαz+sα)(rxz+sx)i , H(rβz+sβ)(rxz+sx)i}n−1
i=0

)
.

Similarly SimUpdProof is computed exactly as in Game2 except that B knows Gzι and Hzι instead of zι =
rιz + sι itself.

When A finalizes the first phase 1, B sees the verifying proofs (πA1:1, . . . , π
A
1:t1

) for all updates after the last
update query that A made. More precisely, B also receives other verifying proofs, corresponding to the previous
honest updates and adversarial updates between them, but B can just discard them after verifying their validity,
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keeping only the last t1 of them. Then B can extract ( ~αA, ~βA, ~xA) such that

srsu =

{G
((rxz+sx)

∏
j x
A
j )

i

, H((rxz+sx)
∏
j x
A
j )

i

}2n−2
i=0 ,

{G((rαz+sα)
∏
j α
A
j )((rxz+sx)

∏
j x
A
j )

i

, G((rβz+sβ)
∏
j β
A
j )((rxz+sx)

∏
j x
A
j )

i

,

H((rαz+sα)
∏
j α
A
j )((rxz+sx)

∏
j x
A
j )

i

, H((rβz+sβ)
∏
j β
A
j )((rxz+sx)

∏
j x
A
j )

i

}n−1
i=0

 .

where j = 1, . . . , t1. The reasoning of why the form of srsu is that is similar to Lemma 5: because the critical
queries are guessed correctly,A can only add its own adversarial trapdoors, but not to change the general form of
the last honest SRS elements. To simplify the notation, we, as before, us polynomialsZx(Z) = (rxZ+sx)

∏
j x
A
j

andZα(Z) = (rαZ+sα)
∏
j α
A
j andZβ(Z) = (rβZ+sβ)

∏
j β
A
j . The variableZ stands for the edlog challenge

exponent z. We note that extraction of ( ~αA, ~βA, ~xA) above is possible only due to the strong form of simulation
extractability that we proved for Πdl (under (1, 0)-dlog, which is clearly implied by (2n − 1, 2n − 2)-edlog).
Namely, in our scenario, A sees both honest and simulated proofs from B and also gets group-based auxiliary
inputs that the strong simulation extractability modelled byOG1

poly,O
G2
poly oracles (the extraction success is argued

similarly to how it is done in Lemma 4).

When A requests an honest update number icrit2 in the second phase, B uses rδ, sδ from the challenge to set

srss =

(
G

1
rδz+sδ , H

1
rδz+sδ , {G(rδz+sδ)(Zβ(z)ui(Zx(z))+Zα(z)vi(Zx(z))+wi(Zx(z)))}mi=`+1,

{G(rδz+sδ)(Zx(z))it(Zx(z))}n−2
i=0

)
.

Notice that B embeds rδz + sδ in an inverted way. This is due to the fact that we only have G1/(rδz+sδ) and
H1/(rδz+sδ) in the dlog challenge, but when we do the second phase update we must construct the G(αui(x)+...)/δ

and Gt(x)xi/δ elements which we cannot do if δ is in the denominator. The reason is that these elements are
constructed from Gx

i/δ, Gαx
i/δ, Gβx

i/δ monomials, and since B does not know δ, it cannot exponentiate the
elements A provided as an input to the update query, so B must construct these problematic SRS parts from
scratch using the edlog challenge. For example, xi/δ would be represented as (rxz + sx)i/(rδz + sδ), which is
not a Laurent polynomial but a rational function in z. So we cannot build Gx

i/δ from our dlog challenge with
the direct δ embedding strategy. At the same time, embedding rδz + sδ in an inverted way can be done: now
xi/δ is G(rxz+sx)i(rδz+sδ) which is a positive-power polynomial in z, so we can build it from {Gzj} which are
available. Simpler SRS elements Gδ and Hδ can also be constructed: they are just G1/(rδz+sδ), H1/(rδz+sδ).
Since if rδz + sδ is uniform, 1/(rδz + sδ) is also uniform, and A cannot notice the inverted embedding.

The maximum degree polynomial here is in the fourth set of srss elements, G(rδz+sδ)(Zx(z))n−2t(Zx(z)), equal to
2n− 1, which explains the G1 degree of edlog. As for G2, its maximum degree is in H(rxz+sx)2n−2

in srsu, and
thus equal to 2n− 2. Therefore, (2n− 1, 2n− 2)-edlog is enough for the embedding to succeed.

Then B simulates a proof of correctness by using SimUpdProof as in ϕ = 1 case, which again uses the PoK
simulator in a black-box way after constructing an instance φ. In this case, with the inverted embedding, we must

set Gι̂
′

= (G
1

rδz+sδ )ι̂
−1

and similarly for H , but we can still do it from the edlog challenge.

When A finalises in phase 2, B sees the verifying proofs (πA2:1, . . . , π
A
2:t2

) for all updates after the last (critical)
update query that A made. Again, the actual number of proofs in the SRS is higher, but B discards the prefix
corresponding to the pre-critical execution. Then B can extract ~δA such that

srss =


G

∏
j δ
A
j

rδz+sδ , H

∏
j δ
A
j

rδz+sδ ,

{
G

(rδz+sδ)(Ẑβ(z)ui(Ẑx(z))+Ẑα(z)vi(Ẑx(z))+wi(Ẑx(z)))∏
j δ
A
j

}m
i=`+1

,{
G

(rδz+sδ)(Ẑx(z))
it(Ẑx(z))∏

j δ
A
j

}n−2

i=0


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where j = 1, . . . , t2. We, as before, set Zδ(Z) = rδZ+sδ∏
j δ
A
j

.

We first define Q3(Zx, Zα, Zβ, Zδ) = Q2(Zx, Zα, Zβ, 1/Zδ), which inverts the last coefficient, to account for
the inverted embedding of δ trapdoor. From bad we know Q2 6≡ 0, and Q2(~ψ2) = 0; Q3 has similar proper-
ties. First, if Q2 6≡ 0, then Q3 6≡ 0, since if Q2 includes some nonzero monomial MZiδ for M monomial in
Zx, Zα, Zβ , and some i, then in Q3 there will be a nonzero coefficient of MZ−iδ . Second, if Q2(~ψ2) = 0, then
Q3(zx, zα, zβ, 1/zδ) = Q2(~ψ) = 0. We will denote ~ψ3 := (zx, zα, zβ, 1/zδ), so Q3(~ψ3) = 0.

Let us transform the Laurent polynomial Q3 to a standard positive-power polynomial. We do this by defining
Q4({Zι}ι) := Q3({Zι}ι) · Z2

δ , where Zδ is a formal variable. Q4 is a positive power polynomial since Q3 can
only have at most Z−2

δ as a negative degree monomial: e.g. Z−1
δ in both A and B, which is true even after Q3

inversion on the previous step, since δ has powers 1 and −1 in the SRS. Moreover, since Q3({Zι}ι) 6≡ 0 and
Q3(~ψ3) = 0, it follows that Q4({Zι}ι) 6≡ 0 and Q4(~ψ3) = 0.

Next we introduceQ′(Z) := Q4(rxZ+sx, rαZ+sα, rβZ+sβ, rδZ+sδ), which reinterpretsQ4 as a polynomial
over Z instead of {Zι}. Here, the last element rδZ + sδ is passed into Q4 directly, since rδZ + sδ = 1/zδ. From
this it follows that (rxz + sx, rαz + sα, rβz + sβ, rδz + sδ) = ~ψ3(z), and z is one of the roots of Q′ since
Q′(z) = Q4(~ψ3(z)) = 0.

If we can show thatQ′(Z) 6= 0, then B can factor it to find z. To show this, let us first define an intermediate poly-
nomialQ′3(Z) = Q4({RιZ+Sι}ι) in variableZ over the ring of polynomials Zp[Rα, Rβ, Rx, Rδ, Sα, Sβ, Sx, Sδ].
According to Lemma 2, the leading coefficient of Q′3(Z) is a polynomial C(Rα, Rβ, Rx, Rδ) with the same
degree d as is the total degree of Q4({Zι}ι). Since the total degree of Q4({Zι}ι) is non-zero, then C is a
non-zero polynomial. Values rι are information-theoretically hidden from A since B set critical trapdoors to be
zι = rιz+sι (and for δ it is inverted). Therefore, rα, rβ, rx, rδ are chosen uniformly randomly and independently
fromC. According to the Schwartz-Zippel lemma (see Lemma 3), the probability that c := C(rα, rβ, rx, rδ) = 0
is bounded by d/p. Hence, with an overwhelming probability Q′(Z) 6≡ 0 since it has a non-zero leading coeffi-
cient c. This is sufficient for B to factor Q′ and to find z.

It follows that the event bad can only happen with negligible probability.

Now, combining the results of the last two lemmas with the previous game transitions:

Pr[GameA,EA0 (1λ) = 1] ≤ Pr[GameA,EA1 (1λ) = 1] + negl(λ)

= (q1q2) Pr[GameA,EA2 (1λ) = 1] + negl(λ)

≤ (q1q2)
(

Pr[GameA,EA2 (1λ) = 1 | ¬bad] + Pr[bad]
)

+ negl(λ)

= (q1q2)(negl(λ) + negl(λ)) + negl(λ) = negl(λ)

This concludes the proof of the update knowledge soundness theorem.

5.7 Batched VerifySRS

We provide an optimized VerifySRS algorithm for Groth’s SNARK. It follows closely the batching techniques
used in [ALSZ20] for verifying the SRS for subversion zero-knowledge Groth’s SNARK. Our approach only
differs in that we also consider update proofs.

We briefly remind the main idea behind the batching technique. Suppose the verifier has to verify a set of pairing
equations of the form ê(Gi, H) = ê(G,Hi) for i = 1, . . . , n. The naive way of checking those equations
would require 2n pairings. Batching technique can be used substitute most of those pairings with small exponent
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multi-exponentiations which is much cheaper. Idea is to sample s1, . . . , sn←$Zp and instead verify a single
equation

n∏
i=1

ê(Gi, H)si =
n∏
i=1

ê(G,Hi)
si .

By using bilinear properties, the latter equation can be simplified to

ê(
n∏
i=1

Gsii , H) = ê(G,
n∏
i=1

Hsi
i ).

This equation requires only 2 n-wise multi-exponentiations and 2 pairings. It can be shown using the Schwartz-
Zippel lemma that the probability that one of the initial equations does not hold and ê(

∏n
i=1G

si
i , H) = ê(G,

∏n
i=1H

si
i )

holds is bounded by 1/p. Since this is a very low probability, we can even sample si from a much smaller set to
further speed up the exponentiation. For example, we may sample si ∈ {0, 1}40, which will give an error 1/240.

We apply this technique to VerifySRS in figure 5.12 to construct a batched batchVerifySRS.

Theorem 14. Take any (possibly malformed) srs and Q and any valid QAP. Then,

Pr[VerifySRS(QAP, srs, Q) 6= batchVerifySRS(QAP, srs, Q)] ≤ 12/2κ,

where the probability is taken over random coin-tosses of batchVerifySRS.

Proof. Let us consider a set of equations in a general form ê(Gai , Hbi) = ê(Gci , Hdi) for i ∈ {1, . . . , t} and
let
∏t
i=1 ê(G

ai , Hbi)si =
∏t
i=1 ê(G

ci , Hdi)si be the respective batched equation, where si←$ {0, 1}κ. All of
the batched equations in batchVerifySRS follow this form. It is clear that if the initial equations are satisfied, then
also the batched equation is satisfied. Thus, VerifySRS(QAP, srs, Q) = 1 implies batchVerifySRS(QAP, srs, Q) =
1.

We can rewrite the batched equation as ê(G,H)
∑t
i=1(aibi−cidi)si = ê(G,H)0. Let us now consider the polyno-

mial p(X1, . . . , Xn) =
∑t

i=1(aibi − cidi)Xi. If one of the initial equations is not satisfied then p is a non-zero
polynomial and the probability p(s1, . . . , st) = 0 is bounded by 1/2κ. Given that we batch 12 sets of equations,
Pr[VerifySRS(QAP, srs, Q) = 0 ∧ batchVerifySRS(QAP, srs, Q) = 1] ≤ 12/2κ.

5.8 Lemmas for Groth16 Completeness

This section presents the additional lemmas for the completeness proof of Theorem 10.

Lemma 8. If SRS passes VerifySRS, then it forms a valid Groth’s SNARK SRS.

Proof. We prove the statement following VerifySRS line by line.

• Line 4 certifies that Gx:1 6= [0]1, Gαx:0 6= [0]1, Gβx:0 6= [0]1. Assume then then their values are x, α, β
correspondingly.

• Line 5 ensures that (1) Gx:i has the same exponent as Hx:i (thus exponent of Hx:1 is x too), and that (2)
exponent of Gx:i is exponent of Gx:i−1 multiplied by x. Thus, Gx:i = [xi]1, and Hx:i = [xi]2.

• Similarly, line 6 ensures that (1) Gιx:i has the same exponent as Hιx:i (thus exponent of Hιx:0 is ι), and
that (2) exponent of Gιx:i is ιxi. Therefore, the exponent of Hιx:i is ιxi too.

• Line 9 certifies that Gδ 6= [0] (thus let us assume that its exponent is δ), and that exponent of Hδ is the
same.
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batchVerifySRSRO(·)(QAP, srs, Q):
1. Parse srs = (srsu, srss) and Q = (Qu, Qs) = {ρu,i}kui=1 ∪ {ρs,i}

ks
i=1;

2. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0

)
and assert that elements be-

long to correct groups;
3. Sample s0, . . . , smax←$ {0, 1}κ where max = max{2n− 2,m, ku, ks};
4. For i = 1, . . . , ku:

(a) Parse ρu,i = (ρ
(i)
α′ , ρ

(i)
β′ , ρ

(i)
x′ );

(b) For ι ∈ {α, β, x}: Parse ρ(i)
ι′ = (G

(i)
ι , G

(i)
ι′ , H

(i)
ι′ , π

(i)
ι′ ); R(i)

ι′ ← RO(G
(i)
ι′ , H

(i)
ι′ );

5. For ι ∈ {α, β, x}:
(a) Assert ê(

∏ku
i=2(G

(i)
ι )si , H) =

∏ku
i=2 ê((G

(i−1)
ι )si , H

(i)
ι′ );

(b) Assert ê(
∏ku
i=1(G

(i)
ι′ )si , H) = ê(G,

∏ku
i=1(H

(i)
ι′ )si);

(c) Assert ê(
∏ku
i=1(π

(i)
ι′ )si , H) =

∏ku
i=1 ê((R

(i)
ι′ )si , H

(i)
ι′ );

6. Assert Gx:1 = G
(ku)
x 6= 1; Gαx:0 = G

(ku)
α 6= 1; Gβx:0 = G

(ku)
β 6= 1;

7. Assert ê(
∏2n−2
i=1 Gsix:i, H) = ê(G,

∏2n−2
i=1 Hsi

x:i) and ê(
∏2n−2
i=1 Gsix:i, H) =

ê(
∏2n−2
i=1 Gsix:(i−1), Hx:1);

8. For ι ∈ {α, β}: Assert ê(
∏n−1
i=0 G

si
ιx:i, H) = ê(G,

∏n−1
i=0 H

si
ιx:i) and ê(

∏n−1
i=0 G

si
ιx:i, H) =

ê(
∏n−1
i=0 G

si
x:i, Hιx:0);

9. Parse srss ←
(
Gδ, Hδ, {Gsum:i}mi=`+1, {Gt(x):i}n−2

i=0 ,
)

and assert that elements belong to correct
groups;

10. For i = 1, . . . , ks: Parse ρs,i = (G
(i)
δ , G

(i)
δ′ , H

(i)
δ′ , πδ′); R(i)

δ′ ← RO(G
(i)
δ′ , H

(i)
δ′ );

11. (a) Assert ê(
∏ks
i=2(G

(i)
δ )si , H) =

∏ks
i=2 ê((G

(i−1)
δ )si , H

(i)
δ′ );

(b) Assert ê(
∏ks
i=1(G

(i)
δ′ )si , H) = ê(G,

∏ks
i=1(H

(i)
δ′ )si);

(c) Assert ê(
∏ks
i=1(π

(i)
δ′ )si , H) =

∏ks
i=1 ê((R

(i)
δ′ )si , H

(i)
δ′ );

12. Assert ê(Gδ, H) = ê(G,Hδ) and Gδ = G
(ks)
δ 6= 1;

13. Assert ê(
∏m
i=`+1G

si
sum:i, Hδ) = ê(

∏m
i=`+1

(∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij
x:j

)si , H);

14. Assert ê(
∏n−2
i=0 G

si
t(x):i, Hδ) = ê(Gt(x),

∏n−2
i=0 H

si
x:i), where Gt(x) =

∏n
j=0G

tj
x:j ;

Figure 5.12: Batched SRS verification algorithm for Groth’s SNARK where κ ≈ 240

• Line 10 certifies that Gsum:i is the ith x-power of
∑n−1

0 (βu(x) + αv(x) + w(x))/δ.

• Line 11 ensures that each Gt(x):i is equal to t(x)xi/δ.

Therefore, SRS is in exactly the same form as in Groth’s SNARK Setup.

Lemma 9. Groth’s SNARK has update completeness.

Proof. Again, we are analysing Update together with VerifySRS:

ϕ = 1 First, we will ensure that new SRS is well-formed. Line 8 first multiplies every Gx
i

and Hxi by x′i

replacing x with xx′. Next it updates each ιxi to ιι′(xx′)i inGιx
i

andHιxi for ι ∈ α, β. Specialize merely
recomputes srss from srsu and its correctness is easy to verify. Thus, the new srs is well-formed. Second,
the update proof is correct because for each ι: (1) on step 3.b.ii of VerifySRS the proof of knowledge
created on line 3 will be correct, since it is applied to the same instance; and (2) for i > 1, assuming the
previous update was correct, the verification equation will check that the exponent of G(i)

ι (expected to be
ιι′) is equal to the exponent of G(i−1)

ι (ι) multiplied by the exponent of H(i)
ι′ (ι′).
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ϕ = 2 Similarly. The SRS itself updates δ to δδ′, and proofs are verified exactly in the same manner, but for δ
instead of α, β, x.
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Chapter 6

Conclusion

This document presented recent advances of PRIViLEDGE partners in designing privacy-preserving crypto-
graphic primitives for distributed ledgers. While the deliverable D2.2 illustrates some security notions for cryp-
tographic primitives, and D2.3 presents concrete protocols that implement these notions, the current document
extends, and builds on D2.3, providing improvements to the cryptographic primitives presented earlier, as well as
new standalone contributions in line with the work done previously. All the presented contributions — working
with smart contracts, NIZK and their setup ceremonies, and secure groups — are closely related to the relevant
issues and advances in the area of distributed ledger protocols.
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