
DS-06-2017: Cybersecurity PPP: Cryptography

PRIViLEDGE
Privacy-Enhancing Cryptography in Distributed Ledgers

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic
Primitives for Ledgers

Due date of deliverable: 31 December 2020
Actual submission date: 31 December 2020

Grant agreement number: 780477 Lead contractor: Guardtime AS
Start date of project: 1 January 2018 Duration: 42 months
Revision 1.0

Project funded by the European Commission within the EU Framework Programme for

Research and Innovation HORIZON 2020

Dissemination Level

PU = Public, fully open X

CO = Confidential, restricted under conditions set out in the Grant Agreement

CI = Classified, information as referred to in Commission Decision 2001/844/EC

D2.3

Improved Constructions of Privacy-Enhancing Cryptographic
Primitives for Ledgers

Editor
Vincenzo Iovino, Ivan Visconti (UNISA)

Contributors
Angelo De Caro (IBM)

Michele Ciampi (UEDIN)
Berry Schoenmakers, Toon Segers (TUE)

Mikhail Volkhov, Markulf Kohlweiss (UEDIN)
Ahto Truu, Henri Lakk (GT)

Reviewers
Sven Heiberg (SCCEIV)

Michele Ciampi, Markful Kohlweiss (UEDIN)

31 December 2020
Revision 1.0

The work described in this document has been conducted within the project PRIViLEDGE, started in January 2018.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No. 780477.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of the European
Commission.

©Copyright by the PRIViLEDGE Consortium

Executive Summary
This document focuses on improved constructions of cryptographic primitives that are relevant to distributed

ledger technologies (DLTs). The document consists of several technical contributions of partners of PRIV-
iLEDGE that in the first 3 years of the project have conducted research stimulated also by inputs received from
other work packages and from deliverable D2.2. In particular, the document introduces a transform to preserve
security of smart contracts in the presence of forks in blockchains, privacy-preserving auditable token pay-
ment systems designed for permissioned blockchains, a new zero-knowledge proof systems using blockchains as
setup, timed cryptographic primitives, secure groups, and a family of signature schemes. All such constructions
are relevant building blocks for distributed ledger technologies and their applications.

Contents

1 Introduction 1

2 Publicly Verifiable Zero Knowledge from Blockchains 3
2.1 Introduction . 3

2.1.1 Publicly Verifiable Zero Knowledge from Blockchains 4
2.1.2 Related Work . 6

2.2 Definitions . 6
2.2.1 Blockchain Protocols . 6
2.2.2 Execution of ΓV in an Environment . 8
2.2.3 Publicly Verifiable ZK Proof System from Blockchains 8

2.3 Publicly Verifiable ZK Proof System . 10
2.3.1 Delayed-Input Completeness (Definition 6) . 11
2.3.2 Soundness (Definition 5) . 13
2.3.3 Zero Knowledge w.r.t. Blockchain Failure (Definition 8) 13

2.4 On Public Verifiability in [CGJ19] . 17
2.5 Publicly Verifiable WI of [SSV19] . 17

3 Quick Computations on Blockchains 20
3.1 Running MPC on Forking Blockchains . 20

3.1.1 Blockchain-Aided MPC . 20
3.1.2 Security in the Presence of Quick Players . 21
3.1.3 Preliminaries . 23
3.1.4 Multi-Party Computation . 23

3.2 Compiler Description . 24
3.2.1 Compiler Description . 25
3.2.2 Security Analysis . 26
3.2.3 On Fairness with Penalties . 30

4 Privacy-Preserving Auditable Token Payments in a Permissioned Blockchain System 33
4.1 Introduction . 33

4.1.1 Motivation . 33
4.1.2 Related Work . 34
4.1.3 Results . 35

4.2 Background . 35
4.2.1 Decentralized token systems . 35
4.2.2 Privacy-preserving token systems . 36
4.2.3 Permissioned token systems . 36
4.2.4 Signature-based membership proofs . 36
4.2.5 Encryption-based auditability . 36

i

D2.3 –

4.3 Overview . 36
4.3.1 Design Approach . 36
4.3.2 Architectural Model . 37

Participants . 37
Interactions . 38

4.3.3 Trust Model . 38
4.4 Cryptographic Schemes . 40

4.4.1 Commitment Schemes . 40
4.4.2 Digital Signature Schemes . 41
4.4.3 Threshold Signature Schemes . 41
4.4.4 Public-Key Encryption . 41
4.4.5 Verifiable Random Functions . 41
4.4.6 Non-Interactive Zero-Knowledge Proofs of Knowledge 42

4.5 Security Formalization . 43
4.5.1 Notation . 43
4.5.2 Universal Composition and MUC . 43
4.5.3 The Privacy-Preserving Token Functionality . 44
4.5.4 Set-Up Functionalities . 44

4.6 Privacy-Preserving Auditable UTXO . 48
4.6.1 Core Protocol Ideas . 48
4.6.2 Certification via Blind Signatures . 49
4.6.3 Serial Numbers Prevent Double-Spending . 50
4.6.4 Multi-Input Multi-Output Transactions . 51
4.6.5 The Protocol . 51
4.6.6 Auditing . 53
4.6.7 Security Analysis . 54

4.7 Instantiation . 57
4.7.1 Pedersen Commitments . 57
4.7.2 Pointcheval-Sanders (PS) Signatures . 57
4.7.3 Certification through Blind Signatures . 58
4.7.4 Groth Signatures . 59

Dodis-Yampolskiy VRF . 59
4.7.5 Groth-Sahai NIZK . 59
4.7.6 ElGamal Public-Key Encryption . 59
4.7.7 Range Proofs . 59

Distributing certification . 59
4.8 Implementation and Performance . 60

4.8.1 Hyperledger Fabric . 60
4.8.2 Integration Architecture . 61
4.8.3 Performance Numbers . 62

5 Timed Cryptographic Primitives 63
5.1 Technical Overview . 63

5.1.1 Beacon functionality and enhanced ledger . 63
5.1.2 Timed digital signature . 64
5.1.3 Timed Zero-Knowledge PoK (TPoK) and Signature of Knowledge (TSoK) 65

5.2 Weak Block Unpredictability (WBU) . 66
5.3 The (Weak) Beacon functionality . 68

5.3.1 Our weak beacon protocol . 68
5.3.2 Discussion on alternative constructions . 70

ii

D2.3 –

5.4 Timed Signatures . 70
5.5 Timed Zero Knowledge . 74

5.5.1 Signature of Knowledge . 75

6 Zero-Knowledge SNARKs from Linear-Size Universal and Updateable Structured Reference Strings 76
6.1 Introduction . 76

6.1.1 Results . 77
6.1.2 Techniques . 78

6.2 Definitions for Updatable Reference Strings . 78
6.2.1 Notation . 79
6.2.2 The Subvertible SRS Model . 79

6.3 Building Blocks . 81
6.3.1 Bilinear Groups . 81
6.3.2 The Algebraic Group Model . 81
6.3.3 Structured Reference String . 82
6.3.4 Polynomial Commitment Scheme . 82
6.3.5 Signature of Correct Computation . 83

6.4 System of Constraints . 83
6.5 The Basic Sonic Protocol . 85

6.5.1 Efficiency . 87
6.5.2 Polynomial Commitment Scheme . 87

6.6 Succinct Signatures of Correct Computation . 90
6.6.1 Polynomial Permutation Argument . 91
6.6.2 Grand-Product Argument . 92

6.7 Signatures of Correct Computation with Efficient Helped Verification 93
6.8 Implementation . 94
6.9 Relation to Distributed Ledgers . 95

7 Secure Groups and Their Applications in MPC-based Threshold Cryptography 98
7.1 Summary . 98
7.2 Introduction . 98

7.2.1 Contributions . 99
7.2.2 Roadmap . 100

7.3 Preliminaries . 100
7.3.1 Finite Groups . 100
7.3.2 Prime-Order Subgroups of F∗q . 100
7.3.3 Elliptic Curve Groups . 100
7.3.4 Class Groups . 100
7.3.5 MPC Setting . 101

7.4 Defining Secure Groups . 101
7.4.1 Finite Groups in General . 102

General Linear Representations of Finite Groups. 102
7.4.2 Secure Cryptographic Groups . 103

Prime Order Subgroups of F∗q . 103
Elliptic Curve Groups. 103
Efficient Group Law for Secure Edwards Curve Group. 103
Class Groups. 104

7.5 Secure Group Protocols . 105
7.5.1 Encoding and Decoding . 105

Encodings for Quadratic Residues. 105

iii

D2.3 –

Generic Encodings . 106
Encoding to Class Groups. 107

7.5.2 Generating Random Elements in Secure Groups . 108
7.5.3 Secure if-else . 109
7.5.4 Secure Inverse . 109
7.5.5 Secure Exponentiation for Finite Groups . 109

Case 1: [[ax]]← a[[x]]. 109
Case 2: [[ax]]← [[a]]x. 110
Case 3: [[ax]]← [[a]][[x]]. 110

7.5.6 Secure Exponentiation for Groups of Unknown Order 111
7.5.7 Privacy and Correctness of the Secure Group Protocols 111

7.6 MPC-blended Threshold Cryptosystems . 111
7.7 Implementation . 112
7.8 Appendix . 112

7.8.1 Exponentiation Protocols for Non-abelian Groups . 112

8 Server-Assisted Hash-Based Signature Schemes 114
8.1 Motivation and Related Work . 114
8.2 Summary . 115
8.3 Preliminaries . 115

8.3.1 Hash Functions . 115
8.3.2 Hash Trees and Hash Chains . 116
8.3.3 Hash-Then-Publish Time-Stamping . 116

8.4 Time-Stamped Scheme with Time-Bound Keys . 117
8.4.1 Description of the Scheme . 117
8.4.2 Implementation Considerations . 118
8.4.3 Discussion . 119

8.5 Blockchain-Backed Scheme with One-Time Keys . 120
8.5.1 Design of the Scheme . 120
8.5.2 Description of the Scheme . 121
8.5.3 Implementation Considerations . 124
8.5.4 Discussion . 125

8.6 Time-Stamped Scheme with One-Time Keys . 125
8.6.1 Forward-Resistant Tags . 126
8.6.2 Description of the Scheme . 127
8.6.3 Discussion . 128

8.7 Conclusions and Outlook . 130

9 Conclusion 132

iv

Chapter 1

Introduction

The rise of distributed ledger technologies (DLTs) introduces new challenges for preserving data privacy and in-
tegrity and motivates the need of new security notions and corresponding cryptographic building blocks. Indeed,
classical privacy-preserving cryptographic primitives do not exploit distributed ledgers, often rely on centralized
components and in some cases are not optimized for DLT applications. This document, through several chapters
briefly described below, presents new cryptographic primitives that are useful for DLTs and their applications.

Publicly verifiable zero knowledge. Chapter 2 provides a publicly verifiable zero-knowledge proof system
based on any blockchain that, very roughly, satisfies the following unpredictability property. Sufficiently many
future honest blocks added to the blockchain contain a high min-entropy string in a specific location. This new
proof system is secure against a verifier/prover that can corrupt blockchain players adaptively. In particular, it
remains zero knowledge even if the blockchain eventually collapses and all blockchain players are controlled by
the zero-knowledge adversary.

Quick execution on blockchain. Chapter 3 shows a general transform to design smart contracts that retain
security in the presence of forks. The security notion used for modeling executions of smart contracts is secure
multi-party computation (MPC). The transform satisfies fairness with penalties, therefore a player that aborts the
execution of a smart contract can be financially penalized. A consequence of this result is that blockchain players
do not need to wait for many confirmations and therefore using this transform one can design protocols that are
significantly faster than previous constructions.

Privacy-preserving auditable token payments in a permissioned blockchain system. Token management
systems (e.g., distributed payment systems) were the first application of blockchain technology and are typically
implemented in permissionless blockchains like Monero and Zerocash and without a satisfying level of privacy
in Bitcoin. Chapter 4 presents a privacy-preserving token management system that is designed for permissioned
blockchain systems and supports fine-grained auditing. The scheme is secure under computational assumptions
in bilinear groups, in the random-oracle model.

Timed primitives and secure timestamping. Chapter 5 shows how to realize in the Universal Composabil-
ity (UC) model the zero-knowledge and signature functionalities proposed in Chapter 5 of deliverable D2.2. The
first part of the chapter provides a high-level overview of the functionalities and of their UC-realization. The
remaining part of the chapter formally shows how to realize these functionalities.

Succinct Non-Interactive Arguments of Knowledge (SNARKs) from linear-Size universal and update-
able structured reference strings. Chapter 6 presents Sonic, a new zk-SNARK for general arithmetic circuit
satisfiability. Sonic requires a trusted setup, but unlike conventional SNARKs the structured reference string sup-
ports all circuits (up to a given size bound) and is also updatable, so that it can be continually strengthened. This
addresses many of the practical challenges and risks surrounding such setups. The structured reference string in
Sonic also does not need to be specialized or pre-processed for a given circuit. This makes a large, distributed
and never-ending setup process a practical reality.

Secure groups. Chapter 7 introduces a scheme to implement finite groups as oblivious data structures, mean-
ing that no information can be inferred about the values of the group elements after a sequence of operations.

1

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

For a given group, the scheme defines the oblivious representation of group elements and oblivious operations
on group elements. Operations include the group law, exponentiation and inversion, random sampling and en-
coding/decoding. The goal of the chapter is to show that secure groups are a convenient and powerful abstraction
to develop finite group-based applications on top of MPC, in particular cryptographic applications. To illus-
trate how to construct cryptosystems with secure groups, the chapter includes an implementation of a threshold
cryptosystem using groups of prime order with the MPyC framework [Sch18] that is relevant for private compu-
tations with impacts on smart contracts. Two practical applications of this threshold cryptosystem are a protocol
to convert ciphertexts to Shamir shares, and a protocol to convert Shamir shares to ciphertexts.

Server-Assisted Hash-Based Signatures. Chapter 8 introduces a new family of hash-based signature
schemes. A novel design element of such schemes is the reliance on a time-stamping service as an inherent
component. The performance of the new schemes is very competitive, but the reliance on a time-stamping ser-
vice adds dependence on a security-critical external component. To reduce the need to trust the time-stamping
service provider, the chapter suggests the use of hash-then-publish time-stamping schemes, which in many ways
could be considered ancestors of modern blockchain systems.

2

Chapter 2

Publicly Verifiable Zero Knowledge from
Blockchains

In TCC 2017 Goyal and Goyal proposed the first – and currently only– construction of a publicly verifiable
zero-knowledge (pvZK) proof system that leverages a blockchain as setup assumption. Such construction can
be instantiated only through proof-of-stake blockchains and presents a few more limitations and assumptions:
(1) the adversary can only perform static corruption of the stakeholders, (2) keys of the stakeholders must also
allow for encryption and (3) honest stakeholders must never leak their secret keys (even when no stake is left
with respect to those keys).

In this chapter we provide a publicly verifiable zero-knowledge proof system, based on any blockchain (not
only proof-of-stake) that, very roughly, satisfies the following unpredictability property. Sufficiently many future
honest blocks added to the blockchain contain a high min-entropy string in a specific location (e.g., a new wallet
for cashing the mining reward). Our proof system is secure against a verifier/prover that can corrupt blockchain
players adaptively. In particular, it remains zero knowledge even if the blockchain eventually collapses and all
blockchain players are controlled by the zero-knowledge adversary.

The full version of the results presented in this chapter can be found here [SSV20].

2.1 Introduction

Following the success of Bitcoin many other cryptocurrencies based on blockchain technology have been pro-
posed and, despite a few security issues, they are still expanding their networks with gigantic market capitaliza-
tions. What is so appealing in decentralized blockchains?

Public verifiability. One of the most supported answers is the paradigm shift from trust in some entity to
“public verifiability”. This property allows every one to check that the system works consistently with the pre-
specified rules of the game. This makes users willing to be involved in transactions recorded in a blockchain
therefore investing their real-world money. In many blockchain applications both anonymity and public veri-
fiability are required, calling for advanced cryptographic primitives such as publicly verifiable zero-knowledge
proofs. For example, when the blockchain is used to record payments, confidential transactions are indeed
implemented using publicly verifiable zero-knowledge proofs called zk-SNARKs [BCGV16, GGPR13] (e.g.,
ZCash [ZCa]).

Publicly verifiable zero-knowledge proofs. Known constructions of publicly verifiable zero-knowledge (pvZK)
proofs are instantiated with non-interactive zero-knowledge proofs (NIZK) and, as such, require setup assump-
tions. Indeed, despite a significant effort of the research community, constructions of NIZK proofs either rely on
the existence of a trusted common reference string (CRS) computed by a trusted entity or are based on heuristic

3

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

assumptions (e.g., random oracles). Recent exiting work has shown mechanism to relax the trust assumptions
required to generate the CRS [BGG18] or to mitigate the effect of a malicious CRS [GKM+18a, MBKM19].
While this line of work is very promising, it still requires the employment of third entities that help computing
the CRS.

Publicly verifiable zero-knowledge proofs from a “Blockchain Assumption”. Since its introduction in 2008
with Nakamoto’s protocol [Nak08a], blockchain protocols have been scrutinized by many communities, and
currently, we have a good understanding of the security properties they provide and the class of adversaries
they withstand. In particular, several work from the cryptographic community provided a formalization of the
Bitcoin security guarantees [GKL15,PSS17], a formalization of the ideal functionality it implements [BMTZ17]
as well as game-theoretic analysis [BGM+18]. Furthermore, new blockchain designs have been proposed, based
on different assumptions on the collective power of the adversary. Some prominent examples that are also
implemented in practice are Ouroboros [BGK+18] and Algorand [GHM+17].

Given that blockchains have been formally analyzed and are up and running in practice, a natural question
to ask is whether we can use blockchain as a setup assumption to replace trusted setups required for certain
cryptographic tasks, particularly, for publicly verifiable zero-knowledge proof systems that are needed the most
in blockchain applications.

This question was first investigated by Goyal and Goyal in [GG17], where they aimed to construct NIZK
using as setup the existence of a proof-of-stake (PoS) blockchain. The security of the NIZK proof provided
in [GG17] – that we will denote by GG-NIZK– however is analyzed in a threat model that does not faithfully
match the threat model of PoS blockchains, since it considers only static adversaries, and additionally it poses
restrictions on honest stakeholder, that are not necessarily contemplated by a general PoS blockchain. Specif-
ically, the zero-knowledge property of GG-NIZK is proved in presence of a static adversary who decides in
advance which stakeholder will corrupt in its entire attack. This does not match the threat model for proof-of-
stake blockchain where an adversary is allowed to corrupt stakeholders at any time, and the only restriction is
that, at any point, the total amount of stake held by the adversary is a minority of the total stake of the system.
Moreover, in the GG-NIZK security analysis, the zero-knowledge property holds under the additional assump-
tion that honest stakeholders will never leak their stakeholder keys, not even when such keys become irrelevant
for the blockchain protocol (for example, because there is zero stake associated to it).

2.1.1 Publicly Verifiable Zero Knowledge from Blockchains

A recent work by Choudhuri et al. [CGJ19] shows that using a blockchain as a black-box object that provides
only a global ledger does not allow to overcome some impossibility results in the plain model and in particular it
does not allow to construct pvZK proofs. Therefore, in order to build a publicly verifiable zero-knowledge proof
system from a blockchain, it seems that one needs to leverage some “structure” of the blockchain and/or provide
more power to the simulator besides black-box access to a global ledger. Following [GG17] we will assume
that the simulator has the power of controlling the honest parties. However, unlike [GG17] we assume that
the adversary can adaptively corrupt players and moreover we want our pvZK proof to remain zero knowledge
even in case of blockchain failure, in the sense that in the future the adversary might take full control over the
blockchain.

To leverage this power, we assume a blockchain that has a mild structure. Very informally (a formal definition
is provided in Assumption 1) we assume the following. First, every block contains a distinguished field v. For
concreteness, the reader can assume that this field is the same as the “coinbase” value of any Bitcoin block, and
to ease the discussion, in the text that follows, we will call this field wallet. Our blockchain assumption, very
roughly, is that there exist a parameter t, such that, for any sequence of t blocks, considering the new wallets1

observed in the sequence, we have that a majority of those wallets has been generated by honest players using
independent randomnesses. Essentially our blockchain assumption builds on top of the standard chain quality

1Here we refer to wallets identifying the block leader cashing the reward and not to wallets involved in transactions.

4

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

assumption, requiring that the adversary will be the “winning” node that decides the next block less often than
honest players, without taking into account blocks that reuse a known wallet. We remark that our blockchain
assumption is not implied by chain quality but still consists of considering bounds on the power of the adversary
in deciding what happens on the blockchain.

Note that because of forks, a j-th block B generated by a honest player that becomes permanently added to
the blockchain (i.e., a stable block) might not be the only j-th block that has been generated by a honest player.
We assume that for every block index j there is a known bound u ∈ N that limits the number of blocks B
proposed by honest players satisfying the predicate and that can be legitimately added as j-th blocks.

We will leverage this blockchain assumption and the simulator’s control of the honest majority to build a
pvZK proof as follows. The high-level idea is to follow the celebrated FLS approach [FLS90] and prove the OR
of two statements: either “x in L” or “Previously I have predicted the majority of fresh wallets appeared in the
last t blocks”. In particular our idea reminds the implementation of the FLS approach proposed by Barak [Bar01]
where the trapdoor theorem consists of some unpredictable information that will be decided by honest players
in the future. Indeed the soundness of our construction will follow from similar arguments and will actually be
simpler. The reason is that we implement the prediction step with statistically binding commitments and thus,
unlike Barak, we will not have to worry about a prover breaking binding or finding collisions in a collision-
resistant hash function.

To implement this approach we need two ingredients: a non-interactive statistically binding commitment
scheme (that can be constructed from one-way permutations) and a publicly verifiable witness indistinguishable
proof system pvWI. We use the pvWI proof system recently constructed in [SSV19] which is the first pvWI
proof system from a blockchain assumption. Our blockchain assumption implies the one of [SSV19]. Such
proof system leverages the underlying blockchain assumption by providing an interactive prover and a non-
interactive verification function. Concretely, the pvWI proof of [SSV19] builds on a 3-round WI proof system
where the first two rounds are played between the prover and blockchain: the prover posts the first round of the
WI proof on the blockchain, then she waits for a few blocks extending the block containing the first message
and from those extracts a challenge. The third round of the WI proof is then sent to the actual verifier, who can
use the blockchain to validate all 3 rounds, non-interactively. We need the following 3 properties from the pvWI
proof: (1) delayed-input completeness, which means that the prover will use the theorem only for computing
the last message of the protocol, (2) adaptive security (assuming secure-erasure) even in presence of blockchain
failure, that is, even if the adversary corrupts all blockchain players (and even the prover), the WI property
is preserved (assuming the prover has deleted the relevant randomness) and (3) unconditional soundness2 in
presence of Assumption 1. Since such properties were not explicitly claimed in [SSV19] we also make a minor
update to their protocol and make explicit these extra features that will be crucial to instantiate the pvWI proof
(i.e., a subprotocol) and therefore to realize our main construction.

With the above ingredients in hands, our pvZK proof system works as follows. First, the prover commits to
u·t strings com1, . . . , comu·t (where u, t are parameters of our blockchain assumption) and posts the commitments
and the first round of the pvWI proof on the blockchain. Then, she waits until the blockchain is extended by a
sequence of t blocks B1, . . . , Bt, that include n blocks B1, . . . , Bn with fresh field values (that is, with values
that were not observed before). Let vi, . . . , vn be such fresh values observed on the blockchain. In the final
step, the prover computes the last round of the pvWI proof, for the theorem:“x ∈ L or (com1, . . . , comu·t) are
commitments of at least n/2 + 1 of the values (v1, . . . , vn)”.

The simulator SNIZK uses the same power of the simulator of [GG17] controlling the honest players in the
simulated experiment (in particular, the simulator adds the blocks in the blockchain on behalf of honest players).
Therefore SNIZK can predict the majority of the unpredictable new wallets associated with a sequence of t future
blocks, and use this knowledge as a trapdoor theorem when computing the messages of the pvWI proof. Notice
that the simulator can not tightly predict the future wallets that will be permanently added to the blockchain
since there will be several other honest blocks to simulate that will circulate in the network, might even appear
in some forks but eventually will not be part of the blockchain. Since the simulator has no direct power to decide

2See the paragraph below about the power of the adversary.

5

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

which branch of a fork will remain in the blockchain, we require way more than just t commitments. Indeed we
consider the parameter u that measures the upper bound on the amount of valid blocks with fresh wallets that
honest players propose for each index of the sequence of blocks of the blockchain.

Clearly even an unbounded malicious prover that does not violate our blockchain assumption can not predict
a majority of the future fresh wallets and this argument will guarantee the soundness. Moreover our pvZK
proof can be run computing all but the last message before even knowing the statement to prove (i.e., it enjoys
delayed-input completeness and adaptive-input zero knowledge and soundness).

On the power of the adversary. In a publicly verifiable proof assuming that an adversarial prover is PPT does
not really say much about his limits with respect to the security of the blockchain. Indeed in case of proof-of-
work blockchains the limitation of the adversary should be compared to the overall computational capabilities
of the network rather than compared to a generic polynomial on input the security parameter. In our definition
of soundness we will therefore consider an unbounded adversary. When proving the security of our construction
we will state explicitly our blockchain assumption and implicitly we will assume that the constraints on the
adversary (see Section 2.2.2) required by the underlying blockchain are maintained.

2.1.2 Related Work

The idea of replacing trusted setup with a blockchain assumption has been explored already for other cryp-
tographic properties that we know how to achieve only using trusted parties. Examples are, fair multi-party
computation [BK14a] and random beacon generation [BGZ16a]. A recent work [CGJ19] investigated using the
blockchain as a global setup assumptions to construct concurrent self-composable secure computation protocol,
which is impossible in the standard model. We stress that [CGJ19] does not provide public verifiability.

2.2 Definitions

Preliminary. We denote the security parameter by λ and use “||” as concatenation operator (i.e., if a and b
are two strings then by a||b we denote the concatenation of a and b). We use the abbreviation PPT that stays
for probabilistic polynomial time. We use poly to indicate a generic polynomial function. A polynomial-time
relation R (or polynomial relation, in short) is a subset of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in
R can be decided in time polynomial in |x|. For (x,w) ∈ R, we call x the instance and w a witness for x. For a
polynomial-time relationR, we define the NP-language LR as LR = {x s.t. ∃ w : (x,w) ∈ R}. Analogously,
unless otherwise specified, for an NP-language L we denote by R the corresponding polynomial-time relation
(that is, R is such that L = LR). We will denote by Pst a stateful algorithm P with state st. We will use
the notation r ∈R {0, 1}λ to indicate that r is sampled at random from {0, 1}λ. When we want to specify the
randomness r used by an algorithm Al we use the following notation Al(·; r).

2.2.1 Blockchain Protocols

In the next two sections we borrow the description of a blockchain protocol of [PSS17, GG17], moreover we
explicitly define the procedure executed by an honest player in order to add a block. A blockchain protocol Γ is
parameterized by a validity predicate V that captures the semantics and rules of the blockchain. Γ consists of 4
polynomial-time algorithms (UpdateState, GetRecords, Broadcast,GenBlock) with the following syntax.
- UpdateState(1λ, st): It takes as input the security parameter λ, state st and outputs the updated state st.
- GetRecords(1λ, st): It takes as input the security parameter λ and state st. It outputs the longest ordered

sequence of valid blocks B (or simply blockchain) contained in the state variable, where each block in the
chain itself contains an unordered sequence of records messages.

- Broadcast(1λ,m): It takes as input the security parameter λ and a message m, and broadcasts the message
over the network to all nodes executing the blockchain protocol. It does not give any output.

6

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

- GenBlock(st,B, x): It takes as input a state st, a blockchain B3, x ∈ {0, 1}∗ and outputs a candidate block B
that contains a string v computed running a function fID that is defined as follows. The function fID(1λ; r)
takes as input the security parameter λ and running with poly(λ) bits of randomness r outputs a q bit string
v, where q = poly(λ). Moreover every time that fID runs on input a freshly generated randomness it holds
that H∞(fID(1λ; ·)) ≥ λ4. The generated block B could satisfy or not the validity predicate V.
We will denote by Bv a block B that contains the string v computed using fID.

Blockchain notation. With the notation B ≤ B′ we will denote that the blockchain B is a prefix of the
blockchain B′. We denote by Bdn the chain resulting from “pruning” the last n blocks in B. We will denote by
ΓV a blockchain protocol Γ that has validate predicate V. A blockchain B generated by the execution of ΓV is the
blockchain obtained by an honest player after calling GetRecords during an execution of ΓV. An honest execution
of GenBlock is an execution of GenBlock computed by an honest player. The blockchain protocol ΓV satisfies
the property of chain-consistency property, chain-growth and chain-quality defined in previous works [GKL15,
PSS17]. In the rest of the chapter we will denote by η(·) the chain consistency parameter of ΓV.

Definition 1 (Block Trim Function). Let Bv be a block generated using GenBlock that satisfies V. We define a
block trim function as a deterministic function trim that on input Bv outputs v.

Note that for two blocks B, B′ that satisfy V and are generated by an honest execution of GenBlock it
could happen that trim(B) = trim(B′) since GenBlock in the two executions could run fID on input the same
randomness stored in the state of Pt.

Definition 2 (Good Execution of GenBlock). Let B be a blockchain generated by an execution of ΓV. An
execution of GenBlock is good w.r.t. a blockchain B if it holds that GenBlock runs on input B s.t. Bdη1(λ) ≥ B,
moreover GenBlock runs fID on input fresh randomness and outputs a block that satisfies the validity predicate
V.

Definition 3 (Good Block). A block produced by an honest player running a good execution of GenBlock is a
good block.

Definition 4 (Pristine Block). Let trim be the block trim function defined in Definition 1. Let B be a blockchain
composed of k blocks generated by an execution of ΓV. The j-th block Bj of B is pristine if for each Bi of B
with 0 < i < j it holds that v 6= vi where v = trim(Bj) and vi = trim(Bi).

Assumption 1. Let B be a blockchain generated during an execution of ΓV. There exists t = poly(λ) and
u = poly(λ) such that for any sequence of t consecutive blocks Bi+1, . . . , Bi+t added to B during the execution
of ΓV, let n be the number of pristine blocks in Bi+1, . . . , Bi+t, it holds that:

1. At least n/2 + 1 of the pristine blocks in the sequence Bi+1, . . . , Bi+t have been generated by honest
players through good executions of GenBlock;

2. For each j ∈ {1, . . . t}, the probability that honest players obtain through honest executions of GenBlock
u′ > u different blocks satisfying the validity predicate for the position i+j in the blockchain is negligible.

We refer to t as the pristine parameter and to u as the attempts parameter.

For the sake of simplifying the description of our construction we will assume wlog that n is also a pristine
parameter.

3In order to simplify future parts of the Chapter we make an abuse of notation and we explicitly add the blockchain as input of
GenBlock even though the blockchain can be computed running GetRecords on input st.

4In the existing blockchain the value v could be an identifier of a wallet and fID is the randomized function that generates it.

7

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

2.2.2 Execution of ΓV in an Environment

At a very high level, the execution of the protocol ΓV proceeds in rounds that model time steps. Each partici-
pant in the protocol runs the UpdateState algorithm to keep track of the current (latest) blockchain state. This
corresponds to listening on the broadcast network for messages from other nodes. The GetRecords algorithm is
used to extract an ordered sequence of blocks encoded in the blockchain state variable. The Broadcast algorithm
is used by a player when she wants to post a new message m on the blockchain. Note that the message m is
accepted by the blockchain protocol only if it satisfies the validity predicate V given the current state, (i.e., the
current sequence of blocks).

Following prior works [GKL15, KP15, PSS17], we define the protocol execution following the activation
model of the Universal Composability framework of [Can01a] (though like [GG17] we will not prove UC-
security of our results). For any blockchain protocol ΓV(UpdateState, GetRecords, Broadcast,GenBlock), the
protocol execution is directed by the environment Z(1λ). The environment Z activates the players as either
honest or corrupt and is also responsible for providing inputs/records to all players in each round.

All the corrupt players are controlled by the adversary A that can corrupt them adaptively after that the
execution of ΓV started.

SpecificallyA can send a corruption request< corr,Pti > to player Pti at any point during the execution of
ΓV. The adversary is also responsible for the delivery of all network messages. Honest players start by executing
UpdateState on input 1λ with an empty state st = ε.
- In round r, each honest player Pti potentially receives a message(s)m fromZ and potentially receives incom-

ing network messages (delivered byA). It may then perform any computation, broadcast a message (using
Broadcast algorithm) to all other players (which will be delivered by the adversary; see below) and update
its state sti. It could also attempt to “add” a new block to its chain: Pti will run the procedure GenBlock,
and this execution of GenBlock will be good (see Definition 2) if requested by Z .

- A is responsible for delivering all messages sent by players (honest or corrupted) to all other players. A cannot
modify the content of messages broadcast by honest players, but it may delay or reorder the delivery of a
message as long as it eventually delivers all messages within a certain time limit.

- At any point Z can communicate with adversary A.

Constraints on the adversary. In order to show that a blockchain enjoys some useful properties (e.g., chain
consistency) prior works [PSS17, GKL15] restrict their analysis to compliant executions of ΓV where some
specific restrictions5 are imposed to Z and A. Those works showed that certain desirable security properties
are respected except with negligible probability in any compliant execution. Obviously, when in this chapter we
claim results assuming some properties of the blockchain, we are taking into account compliant executions of
the underlying blockchain protocol only. The same is done by [GG17].

2.2.3 Publicly Verifiable ZK Proof System from Blockchains

Here we define delayed-input publicly verifiable zero knowledge w.r.t. blockchain failure over a blockchain
protocol ΓV = (UpdateState,GetRecords, Broadcast,GenBlock). We will make use of the following notation.

The view of a player Pt consists of the messages received during an execution of ΓV, along with its random-
ness and its inputs. Let ExecΓV

(A,H,Z, 1λ) be the random variable denoting the joint view of all players in the
execution ΓV, this joint view view fully determines the execution. Let ΓV

view(A,H,Z, 1λ) denote an execution
of ΓV(A,H,Z, 1λ) producing view as joint view.

Definition 5 (Publicly Verifiable Proof System from Blockchain). A pair of stateful PPT algorithms Π = (P,V)
over a blockchain protocol ΓV is a publicly verifiable proof system for theNP-language L with witness relation
R if it satisfies the following properties:

Completeness. ∀ x,w s.t. (x,w) ∈ R, ∀ PPT adversary A and set of honest players H and environment Z ,
assuming that P ∈ H, there exist negligible functions ν1(·), ν2(·) such that:

5For instance, they require that any broadcasted message is delivered in a maximum number of time steps.

8

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Pr

 view← ExecΓV
(A,H,Z, 1λ)

V(x, π,B) = 1 : π ← PstP (x,w)

B = GetRecords(1λ, stj)

 ≥ 1− ν1(|x|)− ν2(λ)

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ). The running time of P is

polynomial in the size of the blockchain B = GetRecords(1λ, stj) where stj is the state of Ptj ∈ H at the
end of the execution ΓV

view(A,H,Z, 1λ).6

Soundness. ∀ x /∈ L, ∀ stateful adversary A and set of honest players H and environment Z , there exist
negligible functions ν1(·), ν2(·) such that:

Pr

 view← ExecΓV
(A,H,Z, 1λ)

V(x, π,B) = 1 : π, x← AstA

B = GetRecords(1λ, stj)

 ≤ ν1(|x|) + ν2(λ)

where stA denotes the state of A during the execution ΓV
view(A,H,Z, 1λ). Furthermore stj is the state of

an honest player Ptj ∈ H at the end of the execution ΓV
view(A,H,Z, 1λ).

The proof π might consist of multiple messages, i.e., π = (π1, . . . , πm), in this case, we will say that Π is
an m-messages proof system. Moreover if π is composed of m-messages π = (π1, . . . , πm), A is allowed
to choose x just before computing the last message πm of the proof π = (π1, . . . , πm).

If the soundness holds only against PPT adversary A, then we say that Π is an argument system, instead
of a proof system.

Definition 6 (Delayed-Input Completeness from Blockchain). Anm-messages Π proof system over a blockchain
protocol ΓV is delayed-input, if Π satisfies completeness when x,w are involved only in the computation of last
message πm of the proof π = (π1, . . . , πm).

Definition 7 (Witness Indistinguishability w.r.t. Blockchain Failure). A publicly verifiable proof system Π =
(P,V) over a blockchain protocol ΓV for the NP-language L with witness relation R is witness indistinguish-
able (WI) w.r.t. blockchain failure if it satisfies the following properties.

Let stPti denote the state of a player Pti in a execution of the blockchain protocol ΓV. ∀ x,w0, w1 such that
(x,w0) ∈ R and (x,w1) ∈ R, ∀ PPT adversary A and set of honest players H and environment Z , where
P ∈ H and for any b ∈ {0, 1} it holds that:{

viewA : viewA ← Exp0A,Π,ΓV(λ, x, w0)

}
≈
{

viewA : viewA ← Exp1A,Π,ΓV(λ, x, w1)

}
where ExpbA,Π,ΓV(λ, x, wb) is defined below, for b ∈ {0, 1}.

ExpbA,Π,ΓV(λ, x, wb):

- P runs on input (x,wb).
- An execution of ΓV(A,H,Z, 1λ) starts.

-PstPoutputs π, where stP is the state of P in the execution ΓV(A,H,Z, 1λ).
-A can send a collapse request < corr, all > obtaining stP from P and
st1, . . . , st|H|where sti is the state of Pti ∈ H.

-The execution of ΓV(A,H,Z, 1λ) terminates producing view.
-A outputs her view viewA and this is the output of the experiment.

6Note that the execution of ExecΓV

(A,H,Z, 1λ) could continue even after π is provided by P .

9

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Moreover, if π is composed of multiple messages π = (π1, . . . , πm) A is allowed to choose x any time
before that the last message πm of π = (π1, . . . , πm) is computed.

Definition 8 (Zero-Knowledge w.r.t. Blockchain Failure). A publicly verifiable proof system Π = (P,V) over
a blockchain protocol ΓV for the NP-language L with witness relation R is Zero-Knowledge w.r.t. blockchain
failure (pvZK) w.r.t blockchain failure if it satisfies the following property:

Let stPti denoting the state of a player Pti in execution of the blockchain protocol ΓV. There is a stateful PPT
algorithm S such that ∀ x,w s.t. (x,w) ∈ R, ∀ PPT adversary A and set of honest players H and environment
Z , where P ∈ H it holds that:{

viewA : viewA ← Exp0A,Π,ΓV(λ,w, x)

}
≈
{

viewA : viewA ← Exp1A,Π,S,ΓV(λ, x)

}
where Exp0A,Π,ΓV(λ, x, w) and Exp1A,Π,S,ΓV(λ, x) are defined below.

Exp0A,Π,ΓV(λ, x, w):

- P runs on input (x,w).
- An execution of ΓV(A,H,Z, 1λ) starts.

1. At any point A can send a corruption request < ZKcorr(x,w)> to P
obtaining stP , (where (x, w) ∈ R).

2. PstPoutputs π.
3. A can send a collapse request < corr, all > obtaining:

st1, . . . , st|H| where sti is the state of Pti ∈ H;
stP if A did not compute Step 1.

-The execution of ΓV(A,H,Z, 1λ) ends producing view.
-A outputs her view viewA in view and this is the output of the experiment.

Exp1A,Π,S,ΓV(λ, x):

- S runs on input x.
- An execution of ΓV(A, S,Z, 1λ) starts.

1. At any point A can send a corruption request < ZKcorr(x,w)> to S:
S provides the state stP of an honest prover of Π, (where (x,w) ∈ R).

2. S outputs π.
3. A can send a collapse request < corr, all >:

S provides st1, . . . , st|H| where sti is the state of Pti ∈ H;
S provides stP if A did not compute Step 1.

-The execution of ΓV(A,S,Z, 1λ) ends producing view.
-A outputs her view viewA in view and this is the output of the experiment.

2.3 Publicly Verifiable ZK Proof System

We construct a delayed-input publicly verifiable zero-knowledge proof system w.r.t. blockchain failure ΠNIZK =
(PNIZK,VNIZK) over any blockchain protocol ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) satisfy-
ing Assumption 1. The parameters of ΠNIZK are reported in Table 2.1, we recall that for easy of exposition we
consider that wlog in a sequence of t blocks, n of them are pristine, where n is an even integer.
ΠNIZK for the NP-language L makes use of the following tools:

10

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Table of Notation
` size of the theorem for LpvWI.
m number of messages of ΠpvWI.
q output-length of the block trim function trim. See Definition 1.
η chain consistency parameter of ΓV.
t, n pristine parameters of ΓV. See Assumption 1.
u attempts parameter of ΓV. See Assumption 1.

Table 2.1: Parameters of ΠNIZK.

- The block trim function trim defined in Definition 1, that on input a block B outputs a q-bits long string v.
- A non-interactive statistically binding commitment scheme ΠCom = (Com,VrfyOpen).
- A delayed-input publicly verifiable WI proof system w.r.t. blockchain failure ΠpvWI = (PpvWI,VpvWI)

over any blockchain protocol ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) for NP-language
LpvWI associated to the relation RpvWI =

{
((x, xcom), w) : (x,w) ∈ R

)
∨ (xcom, w) ∈ Rcom

}
, where

R is the relation associated to the NP-language L and Rcom is the relation associated to the following
NP-language:

Lcom =
{
{comj}u·tj=1, {vi}ni=1 : ∃ 1 ≤ j1 < · · · < jn/2+1 ≤ n, {Decjk}

n/2+1
k=1

s.t. VrfyOpen(comjk ,Decjk , vjk) = 1 ∀k = 1, . . . , n/2 + 1
}

Loosely speaking the relation Rcom is satisfied if the message committed in comjk is vjk for at least
n/2 + 1 distinct values of jk. The instance length of LpvWI is ` and the size of the proof generated by
PpvWI is of m messages.

Our delayed-input publicly verifiable zero-knowledge proof system w.r.t. blockchain failure ΠNIZK =
(PNIZK,VNIZK) is described in Figure 2.1.

Theorem 1. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be a any blockchain protocol that
satisfies Assumption 1. Let ΠCom = (Com,VrfyOpen) be a non-interactive statistically binding commitment
scheme. Let ΠpvWI = (PpvWI,VpvWI) be a delayed-input public verifiable WI w.r.t. blockchain failure proof
system over ΓV for NP-language LpvWI. Assuming erasure, ΠNIZK = (PNIZK,VNIZK) (described in Figure 2.1)
is a delayed-input publicly verifiable zero-knowledge proof system w.r.t. blockchain failure over ΓV for NP .

We note that a pvWI proof that satisfies delayed-input completeness can be instantiated from OWPs using the
work of [SSV19]. In Section 2.5 we prove that ΠpvWI satisfies Definitions 5, 7. Therefore we have the following
corollary.

Corollary 1. Let ΓV = (UpdateState,GetRecords,Broadcast,GenBlock) be a blockchain protocol that satisfies
Assumption 1. Assuming erasure, if one-way permutations exists, then ΠNIZK = (PNIZK,VNIZK) is a delayed-
input publicly verifiable zero knowledge proof system w.r.t. blockchain failure over ΓV for NP .

The proof of the Theorem 1 and the description of the simulator SNIZK for ΠNIZK can be found in the next
subsections.

Note that the inputs of ΠNIZK (i.e. the statement x and the witness w) are used only in the last message of the
protocol. This means that the prover can pre-process the first messages ahead of time (even without knowing the
statement) and complete the last message whenever the statement becomes available.

2.3.1 Delayed-Input Completeness (Definition 6)

Let st and stPti be respectively the states of P and of an honest player Pti after Step 6 of ΠNIZK (that is,
after the proof has been computed). Since both P and V are running the protocol honestly, from the chain-

11

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

PUBLICLY VERIFIABLE ZK PROOF SYSTEM W.R.T. BLOCKCHAIN FAILURE ΠNIZK = (PNIZK,VNIZK)

Parameters are defined in Table 2.1.
PROVER PROCEDURE: PNIZK. Input: instance x, witness w s.t. (x,w) ∈ R.

— First step.
1. Compute (comj ,Decj)← Com(0q) and erase Decj for j = 1, . . . , t · u.

— Blockchain Interaction.
2. Set st = ε. Post com1, . . . , comu·t on the blockchain by running Broadcast(1λ, com1, . . . , comu·t) and then

monitor the blockchain by running st = UpdateState(1λ, st), B = GetRecords(1λ, st), until com1, . . . , comu·t
followed by t additional blocks B1, . . . , Bt are posted on the blockchain Bdη. Let B1, . . . , Bn be the n pristine
blocks in the sequence B1, . . . , Bt.

— Second step.
3. Compute vj = trim(Bj) for j = 1, . . . , n and set com = {comj}u·tj=1, val = {vj}nj=1, xcom = (com, val),
xpvWI = (x, xcom).

4. Obtain π1
pvWI with randomness r1 executing PpvWI on input 1λ, `

and interacting with the blockchain if it is required by PpvWI.
5. For i = 2, . . . ,m− 1 :

Obtain πipvWI with randomness ri executing PpvWI on input πi−1
pvWI

and interacting with the blockchain if it is required by PpvWI.
6. Obtain πmpvWI executing PpvWI on input πm−1

pvWI, xpvWI, w and interacting with the blockchain if it is required by
PpvWI.

7. Set πpvWI = (π1
pvWI, . . . , π

m
pvWI) and π = (xpvWI, {comj}u·tj=1, πpvWI) erase any coins that PpvWI requests to erase

and output π.

VERIFIER PROCEDURE: VNIZK. Input: x, π = (xpvWI, {comj}u·tj=1, πpvWI), and a blockchain B̃ works as follows.

— Check Blockchain. If the messages {comj}u·tj=1 are not posted on the blockchain B̃dη then VNIZK outputs 0.

Otherwise, let B∗ be the block of the blockchain B̃dη where the messages {comj}u·tj=1 are posted. Let B1, . . . , Bn

be the n pristine blocks of the blockchain B̃dη after B∗. VNIZK computes v′j = trim(Bj) for j = 1, . . . , n and
parses xpvWI as instance x, commitments {comj}u·tj=1, and strings {vj}nj=1.

— Check Proof. Accept if all the following conditions are satisfied.
- v′j = vj for all j ∈ {1, . . . , n}.
- VpvWI(xpvWI, πpvWI, B̃) = 1.

EXECUTION OF ΓV BY HONEST PLAYER Ptj :
Ptj acts as described in Section 2.2.2, in particular, upon receiving a request of a good execution (see Definition
2) of GenBlock by Z:

Ptj picks r at random from {0, 1}poly(λ);
Ptj runs a good execution of GenBlock and uses the randomness r to execute fID.

If A sends a collapse request < corr, all >, A obtains stPti from honest player Pti, for all i = 1, . . . , |H|,
moreover A obtains the state stPNIZK

of PNIZK (if A did not send a corruption request to PNIZK before).

Figure 2.1: Description of our pvZK proof system w.r.t. blockchain failure ΠNIZK.

12

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

consistency property follows that Bdη ≤ B̃ (with overwhelming probability), where B = GetRecords(st) and
B̃ = GetRecords(stPti). Therefore V performs all the blockchain checks on B̃ successfully. After that P posts
the commitments {comj}u·tj=1 in the blockchain B we are guaranteed by the chain growth property of ΓV and by
Assumption 1 that new t blocks will be added to B and among them n will be pristine. Therefore P can construct
the instance xcom (as defined in Step 3 of Figure 2.1) in order to complete her execution running ΠpvWI.

Finally the completeness of ΠNIZK follows from the completeness of ΠpvWI and the correctness of ΠCom.

2.3.2 Soundness (Definition 5)

Claim 1. Assume that the commitment scheme Πcom is statistically binding, ΠpvWI is sound and Assumption 1
holds for ΓV then ΠNIZK is sound.

Proof. Let P?NIZK be a successful adversary. Recall that P?NIZK is successful if it produces with non-negligible
probability an accepting π of ΠNIZK w.r.t. x /∈ L, where x is adaptively chosen by P?NIZK before the last message
of π.

LetB∗ be the block in the blockchain B where the last commitment of the set of the commitments com1, . . . , comu·t
is posted by P?NIZK, and let B1, . . . , Bn be the n pristine blocks (in a sequence of t blocks) appeared in B after
the block B∗.

From Assumption 1 it follows that in a sequence of n pristine blocksB1, . . . , Bn at least n/2+1 are good (see
Definition 3). Let B1, . . . , Bn/2+1 be the n/2 + 1 good blocks in the sequence of pristine blocks B1, . . . , Bn,
and the value vj is s.t. vj = trim(Bj), for j = 1, . . . , n/2 + 1. When P?NIZK posts com1, . . . , comu·t, it has
no information about the values v1, . . . , vn/2+1, because when P?NIZK posts com1, . . . , comu·t each value vj (for
j = 1, . . . , n/2 + 1) can be guessed with probability 2−λ (since by Assumption 1 each vj has at least λ bits
of min-entropy). Moreover, since ΠCom is a perfectly binding commitment scheme, the committed message
is uniquely identified in the commitment phase. Therefore the probability that P?NIZK correctly commits the
values v1, . . . , vn/2+1 is negligible. It follows that the values v1, . . . , vn/2+1 are committed in com1, . . . , comu·t
only with negligible probability, therefore xcom /∈ Lcom. Since by contradiction we are assuming that P?NIZK is
successful w.r.t. x /∈ L, it follows that with non-negligible probability xpvWI = (xcom, x) /∈ LpvWI. From the
soundness property of ΠpvWI follows that P?NIZK is successful only with negligible probability.

2.3.3 Zero Knowledge w.r.t. Blockchain Failure (Definition 8)

Simulator SNIZK. The simulator SNIZK is presented in Figure 2.2.

Zero Knowledge w.r.t. Blockchain Failure. Let A be the adversary as defined in Definitions 8. Intuitively,
we want to prove that even if the blockchain collapses, the zero-knowledge property of ΠNIZK is still preserved.

In order to show that ΠNIZK satisfies zero knowledge w.r.t. blockchain failure we will consider the following
hybrid experiments.

- Hybrid H0. In hybrid experiment H0(λ) the simulator S′NIZK follows the honest prover procedure of
PNIZK. This experiment is identical to the setting where all proofs are computed according to the honest
prover procedure.

- Hybrid H1. Experiment H1(λ) is described as H0(λ) except that the simulator S′NIZK emulates the honest
player in the execution of ΓV except that it follows Step 3 and Steps 14-21 of Figure 2.2.

Note that in H0(λ), after that the commitments are posted in the blockchain, an honest player Ptj ∈ H
upon receiving a request of a good execution (see Definition 2) of GenBlock from Z runs fID on input
freshly generated randomness obtaining v. In H1(λ) the value v is generated in the same way as Ptj ∈ H
does in H0(λ) except that v is computed on staring of ΠNIZK. Since 1) the values vj ← fID(1λ; rj) for
j = 1, . . . , t · u are identically distributed in the two hybrid experiments; 2)S′NIZK is behaving in the same

13

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

SIMULATOR PROCEDURE: SNIZK.

Parameters are defined in Table 2.1. instance x.

— First step.
1. If a corruption request< ZKcorr(x,w)> is received, then execute the steps of PNIZK on input x,w. Else continue

with the following steps.
2. For j = 1, . . . , u · t :
3. Pick rj at random from {0, 1}poly(λ) compute vj ← fID(1λ; rj) and set R = R||rj .
4. Compute (comj ,Decj)← Com(vj).
— Blockchain Interaction.
5. Set st = ε. Post com1, . . . , comu·t on the blockchain by running Broadcast(1λ, com1, . . . , comu·t) and then

monitor the blockchain by running st = UpdateState(1λ, st), B = GetRecords(1λ, st), until com1, . . . , comu·t
followed by t additional blocks B1, . . . , Bt are posted on the blockchain Bdη. Let B1, . . . , Bn be the n pristine
blocks in the sequence B1, . . . , Bt.

— Second step.
6. Compute vj = trim(Bj) for j = 1, . . . , n and set com = {comj}u·tj=1, val = {vj}nj=1, xcom = (com, val),
π0
pvWI = (1λ, `).

7. Let Bj1 , . . . , Bjk the pristine blocks generated by honest players in the sequence B1, . . . , Bt set wcom =
Decj1 , . . . ,Decjk .

8. Obtain π1
pvWI with randomness r1 executing PpvWI on input 1λ, `

and interacting with the blockchain if it is required by PpvWI.
9. For i = 2, . . . ,m− 1 :

Obtain ri, πipvWI executing PpvWI on input ri−1, and πi−1
pvWI

interacting with the blockchain if it is required by PpvWI.
If a corruption request < ZKcorr(x,w)> is received.
Erase the values {Decj}u·tj=1.
Output r′ = r′||ri and π1, . . . , πi.

10. If a corruption request < ZKcorr(x,w)> was not received. as in Step 8 to compute πm.
11. Upon receiving x from A, set xpvWI = (x, xcom)

Obtain πmpvWI executing PpvWI with randomness rm on input πm−1
pvWI, xpvWI, wcom

and interacting with the blockchain if it is required by PpvWI.
12. Set πpvWI = (π1

pvWI, . . . , π
m
pvWI) and π = (xpvWI, {comj}nj=1, πpvWI).

Output π and in the case a corruption request was not received erase any coins that PpvWI requests to erase,
moreover erase {Dec}u·ti=1.

— EXECUTION OF ΓV SIMULATING HONEST PLAYER Ptj . Act on behalf of Ptj as described in Section 2.2.2, in
particular, upon receiving a request of a good execution (see Definition 2) of GenBlock by Z:

13. Run B = GetRecords(1λ, stj), let np be the number of pristine blocks posted after com1, . . . , comu·t in the
blockchain Bdη. Let K be the number of the blocks added in the blockchain Bdη. Let nb be the number of honest
execution of GenBlock already execute for the block BK+1.

14. If 0 ≤ np < n:
15. Parse R as r1, . . . , ru·t.
16. Run a good execution of GenBlock on behalf of honest player Ptj and use the

randomness rnp+nb to execute fID.
17. Else:
18. Pick r at random from {0, 1}poly(λ).
19. Run a good execution of GenBlock on behalf of honest player Ptj and use the
20. randomness r to execute fID.
21. If A sends a collapse request < corr, all >, A compute the following steps:

Disclose state stPti from honest player Pti, for all i = 1, . . . , |H|.
If a corruption request < ZKcorr(x,w)> did not occur obtain stpvWI

from PpvWI set stPNIZK
= stpvWI disclose stPNIZK

.

Figure 2.2: Simulator SNIZK of ΠNIZK.

14

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

way of the honest players in an execution of ΓV, we have that v1, . . . , vt·u are computed all together),
therefore H1 ≡ H0.

- Hybrid H2. If a corruption of the form < ZKcorr(x,w)> occurs when ΠNIZK starts, H2(λ) corresponds to
H1(λ), otherwise we consider a series of hybrid experiments H0

2 (λ), . . . , Hu·t
2 (λ) where H0

2 (λ) = H1(λ)
and H2(λ) = Hu·t

2 (λ) and they are described as follow.

Hybrid Hk
2 with k ∈ {1, . . . , u · t}. The hybrid experiment Hk

2 is describe ad Hk−1
2 except that

S′NIZK computes the k-th commitment following Steps 2-4 of Figure 2.2. Indeed, S′NIZK com-
putes (comj ,Decj) ← Com(vj) for j = 1, . . . , k (where vj ← fID(1λ; rj)) and it computes
(comj ,Decj)← Com(0q) for j = k + 1, . . . , u · t.
Assuming secure erasure, from Claim 2 it holds that Hk−1

2 ≈ Hk
2 for all k = 1, . . . , u · t, therefore

since H1 corresponds to H0
2 and H2 corresponds to Hu·t

2 we conclude that H1(λ) ≈ H2(λ).

- Hybrid H3. If a corruption of the form < ZKcorr(x,w)> occurs during the computation of the first m− 1
messages of ΠpvWI, we have that H2(λ) corresponds to H3(λ). Indeed due to the delayed-input property
of ΠpvWI, SNIZK computes the first m− 1 messages of ΠpvWI as PNIZK does. Note that the decommitment
information {Decj}u·tj=1 is securely erased byPNIZK, therefore if SNIZK receives a corruption request during
the computation π she is able to exhibit random coins that are identically distributed to the one that PNIZK

would have in her state.

If a corruption of the form < ZKcorr(x,w)> does not occur during the computation of the first m − 1
messages of ΠpvWI, then H3 is defined as follow.

The hybrid experiment H3(λ) is described exactly as H2(λ) except for the witness used to compute
the proof the last message πmpvWI generated using ΠpvWI, for which S′NIZK is acting as SNIZK. In
more details, for the computation of the proof πpvWI S′NIZK is behaving as described in Steps 11 of
Figure 2.2. Assuming secure erasure, since ΠpvWI satisfies WI w.r.t. blockchain failure it follows
that H2(λ) ≈ H3(λ) (see Claim 3).otherwise the two hybrid experiments are

H0(λ) corresponds to the experiment where PNIZK is interacting with A and H3(λ) corresponds to the
experiment where SNIZK is interacting with A. Since H3(λ) ≈ H0(λ) it follows that A distinguishes the two
experiments only with negligible probability.

Claim 2. Assume that Πcom satisfies computationally hiding, secure erasure, and the blockchain protocol ΓV

satisfies Assumption 1, then for every pair of messages m0,m1 ∈ {0, 1}q it holds that Hk−1
2 (λ) ≈ Hk

2 (λ) for
k ∈ {1, . . . , u · t}.

Proof. Suppose by contradiction that the above claim does not hold, this implies that there exists an adversary
A that is able to distinguish between Hk−1

2 (λ) and Hk
2 (λ). Note that A could wait until the protocol ΠNIZK

ends and then can send a collapse request < corr, all >. UsingA it is possible to construct a malicious sender
ACom that breaks the hiding of ΠCom with non-negligible probability.
Let CH be the challenger of the hiding game of ΠCom. ACom computes the following steps:

1. Compute vk running fID(1λ; r) where r is an uniformly chosen randomness and sends the messages m0 =
0q and m1 = vk to CH.

2. Upon receiving ˜comk from CH, ACom interacts with A compute the proof π. computing all the messages
of S′NIZK following the steps described in Hk

2 (λ) (and in Hk−1
2 (λ)) except for the k-th commitment for

which she uses ˜comk.

3. Emulation of the state stPNIZK
of PNIZK after π is compute: acting as S′NIZK in Hk

2 (λ) (and in Hk−1
2 (λ))

and secure erase the decommitment information {Decj}u·tj=1 (except for D̃eck that was never available
to ACom), set the state stPNIZK

as described Hk
2 (λ) (and in Hk−1

2 (λ))) that is as described in Step 12 of
Figure 2.1.

15

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

4. EXECUTION OF ΓV :

(a) Emulate the honest players acting as the honest player of ΓV (as described in Section Hk
2 (λ) (and in

Hk−1
2 (λ))).

(b) After π is computed ifA sends a collapse request< corr, all >, disclose the states of all the honest
players stPt1 , . . . , stPt|H| and stPNIZK

.

5. When A stops, ACom outputs the outcome of A.

ACom emulates the states of all the honest players stPt1 , . . . , stPt|H| in a perfect manner, since ACom just acts as
the honest players in the execution of ΓV. Moreover, stPNIZK

after π is computed in Step 3 of the above procedure,
corresponds to the state of an honest PNIZK in Hk

2 (λ) (and in Hk−1
2 (λ)). The proof is concluded observing that

if CH uses the message m0 to compute ˜comk then the reduction is distributed as Hk−1
2 and as Hk

2 otherwise.

Claim 3. Assume that ΠpvWI satisfies WI w.r.t. blockchain failure as in Definition 7, secure erasure, and the
blockchain protocol ΓV satisfies Assumption 1, then for every xpvWI, w0, w1 s.t. (xpvWI, w0) ∈ RpvWI and
(xpvWI, w1) ∈ RpvWI it holds that H2(λ) ≈ H3(λ).

Proof. Suppose by contradiction that the above claim does not hold, this implies that there exists an adversary
A that is able to distinguish between H2(λ) and H3(λ). Note that A could wait until the protocol ΠNIZK ends
and then can send a collapse request < corr, all >. Using A it is possible to construct a malicious verifier
ApvWI that breaks the WI w.r.t. blockchain failure property of ΠpvWI. Let CH be the challenger of the WI w.r.t.
blockchain failure game of ΠpvWI. ApvWI computes the following steps.

1. ApvWI acts as described in H2(λ) and H3(λ) until Step 6 of Figure 2.1. In particular, ApvWI computes
the instance xcom and the witness wcom as explained, respectively, in Step 6 and in Steps 7, 14-21 of Figure
2.2.to CH on starting of the interaction with CH.

2. ApvWI interacts as a proxy between CH and A for the messages π1
pvWI, . . . , π

m−1
pvWI, and interacting with

the blockchain as a PpvWI would do upon request of CH. two cases are possible. computation of i-th (for
i = 1, . . . ,m − 1) message of ΠpvWI ApvWI (that is acting as PNIZK) will obtain w s.t. (x,w) ∈ R and
sends xpvWI = (x, xcom), w, wcom to CH.

3. A chooses (x,w) ∈ R before the last message of ΠNIZK and therefore ApvWI (that is acting as PNIZK)
will obtain w s.t. (x,w) ∈ R and sends xpvWI = (x, xcom), w, wcom to CH before that he receives πmpvWI

from CH. ApvWI completes the proof π as described in Step 12 of Figure 2.1.

1. Emulation of the state stPNIZK
of PNIZK after π is compute: ApvWI is acting as S′NIZK in H2(λ) (and

in H3(λ)) and secure erase the decommitment information {Decj}u·tj=1, set stPNIZK
= stPpvWI

, where
stPpvWI

is received from the challenger CH.

4. EXECUTION OF ΓV :

1. ApvWI emulates the honest player acting as the honest player of ΓV (as described in Section H3(λ)
(and in H2(λ))).

2. After π is computed if A sends a collapse request < corr, all >, ApvWI discloses the states of all
the honest players stPt1 , . . . , stPt|H| and stPNIZK

.

5. When A stops, ApvWI outputs the outcome of A.
We note that ApvWI simulates the states of all the honest players stPt1 , . . . , stPt|H| in a perfect way, this is
because in the execution of ΓV, ApvWI is behaving in the same way of the honest players of an execution of ΓV

(as described in H3(λ) (and in H2(λ))).
When A stops, ApvWI outputs the outcome of A.
The proof is concluded observing that if CH uses the witness w to compute πpvWI then the reduction is

distributed as H2, and as H3 otherwise.

16

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

2.4 On Public Verifiability in [CGJ19]

A recent work [CGJ19] models the blockchain as a global ledger functionality Gledger available to all the partic-
ipants of a cryptographic protocol. [CGJ19] constructs concurrent self-composable secure computation protocol
for general functionalities in such global ledger model. The protocols constructed in [CGJ19] are not publicly
verifiable, and therefore do not satisfy the main feature that we study and achieve in this chapter. Indeed the
authors of [CGJ19] already notice in their work that non-interactive zero knowledge for NP is impossible in their
model. We remark that actually the impossibility extends also to publicly verifiable zero knowledge for languages
that are not in BPP and we give now an high-level intuition. First of all, note that in the model of [CGJ19], since
the blockchain is modeled as a global ledger, the simulator S of the zero-knowledge property has the same power
of the adversary while accessing Gledger. Suppose now by contradiction that it is possible to construct a publicly
verifiable zero-knowledge argument Π = (P,V) for the NP-language L in the Gledger model. This means that
there exists a simulator S that having access to Gledger on input any instance x ∈ L outputs an accepting proof
π w.r.t. x that is (computationally) indistinguishable from a proof generated by a honest prover P . Let us now
consider a malicious polynomial-time prover P∗ that in the Gledger-model wants to prove a false statement x∗ to
an honest verifier V . We will show that P∗ proves a false theorem with non-negligible probability, P∗ works as
follows. P∗ internally runs S on input x∗. Moreover, each interaction that S wants to do with Gledger is emulated
by P∗ and this is possible since S and P∗ are accessing Gledger in the same way. At the end of the execution, S
outputs π∗ w.r.t. x∗. P∗ forwards π∗ to V .

Note that we are guaranteed by the zero-knowledge property that π∗ is accepting and the view of an honest
verifier that receives π∗ from P∗ is (computationally) indistinguishable from the view that V has when she
receives a proof from an honest prover. Finally we note that public verifiability guarantees that π∗ can be
accepted by any verifier. The only caveat in the above reasoning can concern the fact that S might refuse to
produce an accepting proof when x 6∈ L. However this immediately shows that the language L is in BPP.

2.5 Publicly Verifiable WI of [SSV19]

In this section we will show that construction of delayed-input publicly verifiable witness indistinguishable proof
system ΠpvWI = (PpvWI,VpvWI) over any blockchain protocol ΓV = (UpdateState,GetRecords, Broadcast,
GetHash) satisfying Assumption 1, presented in [SSV19] satisfies WI w.r.t. blockchain failure in the secure
erasure model. The blockchain protocol Γ has chain consistency parameter η(λ), pristine parameters t, n (for
simplicity, we assume that n is an even integer).

The construction presented in [SSV19] makes use of the following tools. 1) A 3-round delayed-witness
public-coin adaptive-input WI adaptive-input special-sound ΠΣ = (PΣ,VΣ) for the relation RpvWI. 2) An
efficient procedure Ext (defined in [SSV19]) that takes as input t blocks, an auxiliary input aux and outputs τ
strings s1, . . . , sτ such that at least one string si is distributed statistically close to the uniform distribution over
{0, 1}λ.

ΠpvWI is described in Figure 2.3.

Theorem 2. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be a blockchain protocol that satisfies
Assumption 1. Let ΠΣ = (PΣ,VΣ) be a 3-round delayed-input public-coin adaptive-input WI adaptive-input
special-sound RpvWI. Assuming secure erasure ΠpvWI = (PpvWI,VpvWI) is a delayed-input publicly verifiable
WI w.r.t. blockchain failure proof system over ΓV for NP .

Proof. The proofs of completeness follows from the proof of Theorem 2 in [SSV19].

WI w.r.t. blockchain failure satisfying Definition 7. In order to show that ΠpvWI enjoys WI w.r.t. blockchain
failure satisfying Definition 7 we will consider the following 2 hybrid experiments.

Let H0(λ) be defined as the execution of ΠpvWI, where PpvWI uses the witness w0. Let H1(λ) be defined as
the execution of ΠpvWI, where PpvWI uses the witness w1. LetA be the adversary as defined in Definition 7. The

17

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

DELAYED-INPUT PUBLICLY VERIFIABLE WI W.R.T. BLOCKCHAIN FAILURE PROOF SYSTEM

ΠpvWI = (PpvWI,VpvWI)

Parameters : τ is a parameters of Ext, η is the chain consistency parameter of ΓV, t, n are pristine parameters
of ΓV.

PROVER PROCEDURE: PpvWI. Input: instance x, witness w s.t. (x,w) ∈ RpvWI.
— First message.
1. Compute Σ1

i ← PΣ(1λ, x), for i = 1, . . . , τ .

— Blockchain Interaction.
2. Set st = ε. Post Σ1

1|| . . . ||Σ1
τ on the blockchain by running Broadcast(1λ,Σ1

1|| . . . ||Σ1
τ) and then mon-

itor the blockchain by running st = UpdateState(1λ, st), B = GetRecords(1λ, st), until Σ1
1|| . . . ||Σ1

τ

followed by t additional blocks B1, . . . , Bt are posted on the blockchain Bdη.
— Second message.
3. Let Bp1 , . . . , Bpτ be the pristine blocks in the sequence B1, . . . , Bt. Extract challenges by executing

Ext(Bp1 , . . . , Bpn , aux) and obtain r1, . . . , rτ . Set Σ2
i = ri for i = 1, . . . , τ .

4. Compute Σ3
i ← PΣ(Σ2

i , xΣ, w), for i = 1, . . . , τ .
— Blockchain Interaction.
5. Post Σ3

1|| . . . ||Σ3
τ on the blockchain by running Broadcast(1λ,Σ3

1|| . . . ||Σ3
τ) and then monitor the

blockchain by running st = UpdateState(1λ, st), B = GetRecords(1λ, st), until Σ3
1|| . . . ||Σ3

τ is posted
on the blockchain Bdη.

6. Set π = (x, {Σ1
i ,Σ

2
i ,Σ

3
i }τi=1) and output π erasing all the coins needed to compute π setting stPpvWI

as
empty.

VERIFIER PROCEDURE: VpvWI. Input: x, π = (x, {Σ1
i ,Σ

2
i ,Σ

3
i }τi=1), and a blockchain B̃ works as follows.

— Check Blockchain. If the messages {Σ1
i }τi=1 are not posted on the blockchain B̃dη then VpvWI outputs

0. Otherwise, let B∗ be the block of the blockchain B̃dη where the messages {Σ1
i }τi=1 are posted. Let

B1, . . . , Bt be t consecutive blocks of the blockchain B̃dη after B∗ ,and let Bp1 , . . . , Bpn be the pristine
blocks. VpvWI computes {Σ2

i }τi=1 = Ext(Bp1 , . . . , Bpn , aux).

— Check Proof. Accept if all the following conditions are satisfied.
- The messages {Σ3

i }τi=1 are posted at least t blocks after B∗;
- VΣ(x,Σ1

i ,Σ
2
i ,Σ

3
i) = 1 for i = 1, . . . , τ ;

EXECUTION OF ΓV BY HONEST PLAYER Ptj :
Ptj acts as described in Section 2.2.2.
If A sends a collapse request < corr, all >, A obtains stPti from honest player Pti, for all i =
1, . . . , |H|, moreover A obtains the state stPpvWI

of PpvWI.

Figure 2.3: Delayed-input publicly verifiable WI w.r.t. blockchain failure proof system ΠpvWI.

18

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

output of each experiment is the pair (π, viewA), where π is the transcript of ΠpvWI computed in the experiment
and viewA is the view of A in the experiment.

Claim 4. Let ΠΣ = (PΣ,VΣ) be a 3-round delayed-witness public-coin adaptive-input WI adaptive-input
special-sound RpvWI. Assuming secure erasure, and Assumption 1 holds for ΓV then for every xpvWI, w0, w1

s.t. (xpvWI, w0) ∈ RpvWI and (xpvWI, w1) ∈ RpvWI it holds that H0(λ) ≈ H1(λ).

Proof. Suppose by contradiction that the above claim does not hold, this implies that there exists an adversary
A that is able to distinguish w.r.t. between H0(λ) and H1(λ) Note that A has the additional power to wait until
the protocol ΠpvWI ends and then sends a collapse request < corr, all >.

Let CH be the challenger of adaptive-input WI game of ΠΣ. AΣ will interact as a proxy between CH and A
for the messages {Σ1

i ,Σ
3
i }τi=1 and she will compute all other messages following PpvWI of H0 (of H1).

In more details, AΣ acts as follows.

1. AΣ receives {Σ̃1
i }τi=1 from CH and sets Σ1

i = Σ̃1
i for i = {1, . . . , τ}.

2. AΣ computes the other steps of ΠpvWI, until Step 3, she acts as PpvWI of H0 (of H1). In particular in Step
3 AΣ computes {Σ2

i }τi=1 as PpvWI of H0 (of H1) does.

3. AΣ sends {Σ2
i }τi=1 to CH along with x,w0, w1 obtained from A.

4. AΣ receives {Σ̃3
i }τi=1 from CH and sets Σ3

i = Σ̃3
i for i = {1, . . . , τ}, AΣ completes the computations of

π precisely as PpvWI does in both H0 and H1.

5. Emulate state stPpvWI
of PpvWI: AΣ acting as PpvWI erases all the coins needed to compute π as soon as

the proof is computed, setting stPpvWI
as an empty state,

6. If A sends a corruption request < corr, all > AΣ discloses stPpvWI
. AΣ emulates the state of PpvWI in a

perfect way, since at that point (after the computation of π) the state of honest player PpvWI is empty since
she already erased the coins of π.

At the end of the execution AΣ outputs what A outputs.

The proof is concluded observing that if CH uses the witness w0 to compute {Σ̃3
i }τi=1 then the output of this

execution is distributed as H0. Instead if CH uses the witness w1 to compute {Σ̃3
i }τi=1 then the output of this

execution is distributed as H1.

Soundness, Definition 5. We note that ΠpvWI satisfies the Definition 5, it follows a sketched proof.
Let P? be a successful adversary. Recall that P? is successful if it produces with non-negligible probability

an accepting π of ΠpvWI w.r.t. x /∈ LpvWI, where x is adaptively chosen by P? before the last message of π.
We will now argue that the probability with which P? completes the execution of ΠΣ w.r.t. xpvWI s.t.

xpvWI /∈ LΣ is negligible in λ. First, note that at least one of the outputs of Ext(Bpn , . . . , Bpn , aux) is distribute
statistically close to a distribution over {0, 1}λ. In particular, let Σ∗2i be this output, from the adaptive-input
special soundness of ΠΣ it follows that P? computes Σ3

i s.t. VΣ(xpvWI,Σ
1
i ,Σ

∗2
i ,Σ

3
i) = 1 with probability less

or equal to 2−λ.
Summing up, since xpvWI is s.t. xpvWI /∈ LΣ with non-negligible probability and P∗ has only negligible

probability to compute τ accepting transcripts of ΠΣ w.r.t a false instance xpvWI, we can conclude that P∗ is
successful only with negligible probability.

Note that is ti possible to instantiate ΠΣ = (PΣ,VΣ) using [LS90] that is adaptive-input special-sound in the
variant of [COSV17].

Corollary 2. Let ΓV = (UpdateState,GetRecords,Broadcast,GenBlock) be a blockchain protocol that satisfies
Assumption 1. Assuming secure erasure ΠpvWI = (PpvWI,VpvWI) is a delayed-input publicly verifiable WI w.r.t.
blockchain failure proof system over ΓV for NP .

19

Chapter 3

Quick Computations on Blockchains

We consider a general transform to design smart contracts that retain security in the presence of forks. As secu-
rity notion for modeling executions of smart contracts, we focus on secure multi-party computation (MPC). In
particular we consider on-chain MPC executions with the aid of smart contracts. The classical double-spending
problem tells us that messages of the MPC protocol should be confirmed on-chain before playing the next ones,
thus slowing down the entire execution. We show how to design smart contracts on forking blockchains reducing
the number of confirmations, still maintaining security and fairness.

We design a compiler that takes any “digital and universally composable” MPC protocol (with or without
honest majority) and transforms it into another one (for the same task and same setup) where all messages are
played on-chain without delays and still security is maintained. The special requirements on the starting protocol
mean that messages consists only of bits (e.g., no hardware token is sent) and security holds also in the presence
of other protocols. Then we show that our compiler satisfies fairness with penalties as long as honest players
only wait once. By reducing the number of confirmations, we construct protocols that are significantly faster
than previous constructions.

The full version of the results presented in this chapter can be found here [BFVV19].

3.1 Running MPC on Forking Blockchains

Given the definitions of the blockchain model reported in Section 2.2.1, we formalize different ways how to run
an MPC protocol with the aid of a blockchain.

In Section 3.1.1 we specify what it means to run an MPC protocol on the blockchain both in the presence of
quick and non-quick players. The security definition appears in Section 3.1.2.

3.1.1 Blockchain-Aided MPC

Next, we define what it means to run an n-party protocol π for securely computing some function f : ({0, 1}∗)n
→ ({0, 1}∗)n over a blockchain protocol Γ.

Intuitively, running π on Γ simply means that the players write the protocol’s messages on the blockchain
instead of using point-to-point connections. However, since the blockchain may fork, the protocol’s participants
have to choose how to manage possibly unconfirmed blocks that are part of the current chain. Looking ahead,
this choice will have impact both on the efficiency and on the security of the protocol execution. In particular,
we distinguish between quick and non-quick players as formalized below.

Non-quick execution. Roughly speaking, a player is said to be non-quick if it always decides its next message
by looking at the transcript of the protocol that is obtained by pruning the last k blocks of the blockchain, where
k is the parameter for the consistency property of the underlying blockchain.

20

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Definition 9 (Non-quick player). Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol with
k-consistency. A player Pi is said to be non-quick if it behaves as follows:

• Initialize τ (0)
i := ε, sti := ε and ri := 0.

• Run the following loop:

– Update the state sti by running UpdateState(1λ), and retrieveBi←$ GetRecords(sti) until the partial
transcript τ (ri) is contained in Bdki .

– If the protocol is over (i.e., the transcript τ (ri) is sufficient for determining the output), output the
value yi as a function of τ (ri)

i and terminate.

– Else, compute the next protocol message m(ri+1)
i , invoke Broadcast(m

(ri+1)
i), and set ri := ri + 1.

Quick execution. On the other hand, a player is quick if it decides and broadcasts its next message by looking
at the latest version of the blockchain (i.e., without pruning blocks). Since the consistency property does not
hold for the last k blocks, quick players may retrieve different protocol’s transcripts as the protocol proceeds. In
particular, it may happen that at a given time step party Pi reads from the blockchain a partial transcript τ (r̃),
whereas at a later time step the same player reads τ (r̃′) for some r̃′ < r̃. This is due to the fact that some of the
messages contained in τ (r̃) may end up in unconfirmed blocks, and thus be discarded.

Definition 10 (Quick execution). Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol with
k-consistency. A player Pi is said to be quick if it behaves as follows:

• Initialize τ (0)
i := ε and sti := ε.

• Run the following loop:

– Update the state sti by running UpdateState(1λ), and let Bi←$ GetRecords(sti).

– Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈ Bi.
– If the protocol is over (i.e., the transcript τ (r̃) is sufficient for determining the output), output the

value yi as a function of τ (r̃) and terminate.

– Else, compute the next protocol message m(r̃+1)
i and invoke Broadcast(m

(r̃+1)
i).

More generally, we call ϕ-quick a player that is non-quick until a partial transcript τ (ϕ) is at least k blocks
deep in the blockchain, and afterwards it starts being quick. We sometimes call ϕ the finality parameter. Note
that a 0-quick player is identical to a quick player, whereas an∞-quick player is identical to a non-quick player.
We call (χ, ϕ)-quick a player that is quick for the first χ rounds, and then behaves like a ϕ-quick player.

3.1.2 Security in the Presence of Quick Players

We can now define security of MPC protocols running on the blockchain. As in the standard setting, the definition
compares a protocol execution in the real world with one in the ideal setting where a trusted party is made
available. The main difference with the standard definition is that the attacker A is given black-box access to the
algorithms in Γ, which it can use arbitrarily. The simulator is not allowed to control the blockchain (i.e. it must
simulate the view of the adversary while invoking the algorithms in Γ on behalf of the honest players).

The real model: This is the execution of π on Γ, where the honest players are ϕ-quick. As usual, the adversary
A is coordinated by a non-uniform distinguisher D. At the outset, D chooses the inputs (1λ, xi) for each
player Pi, and gives I, {xi}i∈I and z to A, where I ⊆ [n] represents the set of corrupted players and z
is some auxiliary input. The parties then start running π on Γ, with the honest players Pi being ϕ-quick
and behaving as prescribed in π (using input xi), and with malicious parties behaving arbitrarily (directed

21

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

by A). At some point, A gives to D an arbitrary function of its view; note that the latter includes the
view generated via ExecΓ,A,D(λ) in the blockchain protocol. Finally, D receives the outputs of the honest
parties and must output a bit. We denote by REALΓ,ϕ

π,A,D(λ) the random variable corresponding to D’s
guess.

The ideal model: This is identical to the ideal model for standard MPC (Section 3.1.4), with the only difference
that the simulator S is also responsible for simulating the attacker’s view corresponding to the interaction
of the honest players with the blockchain. The latter is achieved using the algorithms of the underly-
ing blockchain protocol Γ. We denote by IDEALΓ

f,S,D(λ) and IDEALΓ
f⊥,S,D

(λ) the random variable
corresponding to D’s guess in the ideal world, where the latter is for the case of security with aborts.

Definition 11 (Secure MPC in the presence of quick players). Let π be an n-party protocol run over a blockchain
protocol Γ. We say that π t-securely computes f in the presence of ϕ-quick players and malicious adversaries if
for every PPT adversary A there exists a PPT simulator S such that for every non-uniform PPT distinguisher D
corrupting at most t parties the following holds:{

REALΓ,ϕ
π,A,D(λ)

}
λ∈N
≈c
{
IDEALΓ

f,S,D(λ)
}
λ∈N .

When replacing IDEALΓ
f,S,D(λ) with IDEALΓ

f⊥,S,D
(λ) we say that π t-securely computes f with aborts in the

presence of ϕ-quick players and malicious adversaries.

Remark 1 (On ϕ =∞). One may think that every protocol π that t-securely computes f (with or without aborts)
in the presence of malicious adversaries, must t-securely compute f (with or without aborts) in the presence of
∞-quick (i.e., non-quick) players and malicious adversaries.

Remark 2 (On ϕ = 0). Note that when the players are fully quick (i.e., ϕ = 0), the adversary’s view in the
real world may include multiple executions of the original protocol π (upon the same inputs chosen by the
distinguisher). This view may not be possible to simulate in the ideal world, where the simulator can invoke the
ideal functionality f only once.

For this reason, whenever ϕ = 0, we implicitly assume that the simulator is allowed to query the ideal func-
tionality f multiple times. Note that this yields a meaningful security guarantee only for certain functionalities
f , similarly to the setting of resettably secure computation [GS09].

Remark 3 (On the power of the adversary). We stress that we assume that the adversary of the MPC protocol
has no impact on the execution of the consensus protocol of the underlying blockchain. Note that if we would
instead assume that the adversary of the MPC protocol also creates new branches and/or contributes in deciding
which branch of a fork is eventually confirmed on the blockchain then he can have an unfair advantage. Indeed
the adversary can start more branches when he does not like the output computed in a branch, and/or can decide
which output among the various outputs appearing in different branches should be confirmed on the blockchain.
Obviously the above unfair advantages are unavoidable and our protocol is still secure by introducing the un-
avoidable real-world attack into the ideal world, similarly to the classical fairness issue resolved through aborts
in the ideal world.

Remark 4 (On public verifiability). We notice that any on-chain MPC protocol with quick players admits the
case where a honest player complete her execution computing an output that does not necessarily correspond to
the transcript that others later on will see on the blockchain. In other words, the local output computed by players
could not match the publicly verifiable execution that remains visible on the blockchain. The reason why public
verifiability could fail is that an execution of the protocol could be entirely contained in a branch of a fork that
will not become permanent in the blockchain. The above issue is intrinsic in all protocols played on-chain in
the presence of forks and quick players. An obvious solution for a honest player consists of waiting that the last
message of the protocol is confirmed on the blockchain and only after that the computation ends returning the
computed output.

22

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

3.1.3 Preliminaries

In the next subsection we need to use the following cryptographic tools.

Public-key encryption. A public-key encryption (PKE) scheme is a tuple of polynomial-time algorithms (Gen,
Enc,Dec) specified as follows. (i) The randomized algorithm Gen takes as input the security parameter, and
outputs a pair of keys (pk , sk); (ii) The randomized algorithm Enc takes as input a public key pk and a message
m ∈ M, and outputs a ciphertext c; (iii) The deterministic algorithm Dec takes as input a secret key sk and
a ciphertext c, and outputs a value in M ∪ {⊥} (where ⊥ denotes decryption error). Correctness says that
for every key λ ∈ N, every (pk , sk) in the support of Gen(1λ), and every message m ∈ M, it holds that
Dec(sk ,Enc(pk ,m)) = m with probability one over the randomness of Enc.

Definition 12 (Semantic security). We say that (Gen,Enc,Dec) satisfies semantic security if for all PPT attackers
A := (A0,A1) there exists a negligible function ν(·) such that:∣∣∣∣P [b′ = b :

(pk , sk)←$ Gen(1λ); (m0,m1, z)←$ A0(pk)
b←$ {0, 1}; c←$ Enc(pk ,mb); b

′←$ A1(z, c)

]
− 1

2

∣∣∣∣ ≤ ν(λ).

Signature schemes. A signature scheme is a tuple of polynomial-time algorithms (Gen,Sign,Verify) specified
as follows. (i) The randomized algorithm Gen takes as input the security parameter and outputs a secret key sk
together with a public verification key pk ; (ii) The deterministic algorithm Sign takes as input the secret key sk
and a message x ∈ {0, 1}∗ and outputs a signature y; (iii) The randomized algorithm Verify takes as an input the
verification key pk , a message/signature pair (x, y) and outputs a decision bit.

Correctness says that for all λ ∈ N, for all (pk , sk) ∈ Gen(1λ), and for all x ∈ {0, 1}∗ it holds that
Verify(pk , x,Sign(sk , x)) = 1 (with probability one over the coin tosses of Verify).

Secret Sharing Schemes. An n-party secret sharing scheme (Share,Recon) is a pair of poly-time algorithms
specified as follows. (i) The randomized algorithm Share takes as input a message m ∈M and outputs n shares
σ = (σ1, . . . , σn) ∈ S1 × · · · × Sn; (ii) The deterministic algorithm Recon takes as input a subset of the shares,
say σI with I ⊆ [n], and outputs a value inM∪ {⊥}.

Definition 13 (Threshold secret sharing). Let n ∈ N. For any t ≤ n, we say that (Share,Recon) is an (t, n)-
secret sharing scheme if it satisfies the following properties.

• Correctness: For any message m ∈ M, and for any I ⊆ [n] such that |I| ≥ t, we have that Recon(
Share(m)I) = m with probability one over the randomness of Share.

• Privacy: For any pair of messages m0,m1 ∈M, and for any U ⊂ [n] such that |U| < t, we have that

{Share(1λ,m0)U}λ∈N ≈c {Share(1λ,m1)U}λ∈N.

3.1.4 Multi-Party Computation

We recall standard notion of UC-security for multi-party computation (MPC). Let f : ({0, 1}∗)n → ({0, 1}∗)n
be a function, and consider n players P1, . . . ,Pn executing a protocol π for computing f . Our default network
model consists of the players interacting in synchronous rounds via private and authenticated point-to-point
channels.

Intuitively, the security of π is formalized by comparing its execution in the real world (where an attacker
may corrupt a subset of the players) with the ideal execution in which a trusted party computes the function f on
behalf of the players.

23

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The real model. In the real world, the protocol π is run in the presence of an adversary A coordinated by a non-
uniform environment Z = {Zλ}λ∈N. At the outset, Z chooses the inputs (1λ, xi) for each player Pi, and gives
I, {xi}i∈I and z to A, where I ⊆ [n] represents the set of corrupted players and z is some auxiliary input. For
simplicity, we only consider static corruptions (i.e., the environment decides who is corrupt at the beginning of
the protocol). The parties then start running π, with the honest players Pi behaving as prescribed in the protocol
(using input xi), and with malicious parties behaving arbitrarily (directed by A). The attacker may delay sending
the messages of the corrupted parties in any given round until after the honest parties send their messages in that
round; thus, for every r, the round-r messages of the corrupted parties may depend on the round-r messages of
the honest parties.

At some point, A gives to Z an arbitrary function of its view, and Z additionally receives the outputs of the
honest parties and must output a bit. We denote by REALπ,A,Z(λ) the random variable corresponding to Z’s
guess.

The ideal model. In the ideal world, a trusted third party evaluates the function f on behalf of a set of dummy
players (Pi)i∈[n]. As in the real setting, Z chooses the inputs (1λ, xi) for each honest player Pi, and gives I,
{xi}i∈I and z to the ideal adversary S, corrupting the dummy parties (Pi)i∈I . Hence, honest parties send their
input x′i = xi to the trusted party, whereas the parties controlled by S might send an arbitrary input x′i. The
trusted party computes (y1, . . . , yn) = f(x′1, . . . , x

′
n), and sends yi to Pi. Finally, S gives to Z an arbitrary

function of its view, and Z additionally receives the outputs of the honest parties and must output a bit. We
denote by IDEALf,S,Z(λ) the random variable corresponding to Z’s guess.

The above specification of the ideal model automatically implies fairness (i.e., corrupted parties get the output
if and only if honest parties do as well). Unfortunately, as shown by Cleve [Cle86], such a strong guarantee
is impossible to achieve for some functionalities without assuming honest majority. For this reason, we also
consider a weaker flavor of the ideal model yielding a middle-ground notion known as security with aborts,
which is possible to achieve even in the presence of honest minority. LetH := [n] \ I. The only difference with
the above specification is that the trusted party at first forwards only the outputs {yi}i∈I to the ideal adversary S.
Hence, S might send either a message (continue,H′) or abort to the trusted party. In the former case, all the
honest parties inH′ are given their output yi whereas the honest parties inH \H′ receive an abort symbol ⊥. In
the latter case, all honest parties receive ⊥. We denote by IDEALf⊥,S,Z(λ) the random variable corresponding
to Z’s final guess.

The definition. We are now ready to define security.

Definition 14 (UC-Secure MPC). Let π be an n-party protocol for computing a function f : ({0, 1}∗)n →
({0, 1}∗)n. We say that π t-securely UC-realizes f in the presence of malicious adversaries if for every PPT
adversary A there exists a PPT simulator S such that for every non-uniform PPT environment Z corrupting at
most t parties the following holds:

{REALπ,A,Z(λ)}λ∈N ≈c {IDEALf,S,Z(λ)}λ∈N .

When replacing IDEALf,S,Z(λ) with IDEALf⊥,S,Z(λ) we say that π t-securely computes f with aborts in the
presence of malicious adversaries.

3.2 Compiler Description

In this section, we propose and analyze a simple transformation that allows to run any MPC protocol safely
on the blockchain, even when the players are quick. The description of our compiler appears in Section 3.2.1,
while in Section 3.2.2 we analyze its security. Finally, in Section 3.2.3, we discuss how to extend our generic
transformation in order to achieve fairness with penalties, as long as the players start being quick after the
confirmation of the first round.

24

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

3.2.1 Compiler Description

Intuitively our transformation proceeds as follows. Our starting point is any MPC protocol π UC-securely com-
puting an n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n in the presence of malicious players (with aborts).
Hence, the honest players fix the random tape for running π and simply execute protocol π by broadcasting their
messages on the blockchain. Furthermore, each honest player Pi keeps track of the longest protocol transcript
αi generated so far and, in the presence of a fork, aborts the execution in case the view on a given branch is not
consistent with αi1. This intuitively ensures that the underlying protocol π is run only once, even in the presence
of forks.

Since the initial protocol π may require private channels between the players, we need to augment the above
transformation in such a way that subsets of honest parties can exchange messages in a confidential and authen-
ticated manner. Let m(r)

i,j be the message that Pi sends to Pj at the generic round r. The latter is achieved by

having Pi encrypting m(r)
i,j using the public encryption key ek j of Pj , and then signing the resulting ciphertext

c
(r)
i,j with its own private signing key sk i, which is the standard way of building a secure channel. We refer the

reader to Fig. 3.1 for a formal description.

Generic Compiler π∗

Let π be an n-party ρ-round protocol, and Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol. Further, let
(Gen,Enc,Dec) be a PKE scheme and (Gen′, Sign,Verify) be a signature scheme, both with domain {0, 1}∗ (see Section 3.1.3 for
the formal definitions). The protocol π∗ proceeds as follows:

• For i ∈ [n], each player Pi initializes sti := ε, samples (ek i, dk i)←$ Gen(1λ), (vki, sk i)←$ Gen′(1λ), and
ωi←$ {0, 1}∗, and invokes Broadcast(ek i||vki||i).

• For i ∈ [n], each player Pi keeps running sti←$ UpdateState(1λ) and Bi←$ GetRecords(sti) until all the messages
(ek j , vkj)j∈[n] ∈ Bi.

• For i ∈ [n], each player Pi sets τ (0) := (ek j , vkj)j∈[n] and αi := τ (0), and then runs the following loop:

1. Update the state sti by running UpdateState(1λ), and let Bi←$ GetRecords(sti).

2. Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈ Bi. Then:

– If the ciphertexts in τ (r̃) are not consistent with those in αi, output ⊥ and terminate.
– Else if r̃ = ρ, output the value yi as a function of τ (ρ) and terminate.
– Else, go to the next step and if αi is a prefix of τ (r̃) let αi := τ (r̃).

3. For each j ∈ [n], with j 6= i, and for each r ≤ r̃, decrypt the ciphertexts c(r)j,i and use the corresponding values m(r)
j,i

to compute the messages m(r̃+1)
i,j to be sent at round r̃ + 1 (using the corresponding portion of the random tape ωi).

4. Finally, let c
(r̃+1)
i,j ←$ Enc(ek j ,m

(r̃+1)
i,j) (using again random coins coming from ωi) and σ

(r̃+1)
i,j =

Sign(sk i, c
(r̃+1)
i,j), and invoke Broadcast((c

(r̃+1)
i,j ||σ(r̃+1)

i,j)j∈[n]\{i}).

Figure 3.1: Generic compiler for obtaining blockchain-aided MPC with quick players.

Note that wlog. we assume that in the underlying protocol π in each round every Pi sends a single message
to each Pj 6=i over a private and authenticated channel. π∗ takes the messages of the protocol π and send them
on-chain. Moreover, Pi picks a sufficiently long random tape ωi that is then used to run the compiled version
π∗ of π over Γ. Observe that ωi includes both the randomness required to compute the messages in π and the
random coins used to encrypt them. In π∗, in the presence of forks, an honest Pi that does not abort broadcasts
on the blockchain exactly the same ciphertexts on multiple branches since the randomness used for encryption is
the same on all branches where an honest party sends the message of π.

1We say that two views αi and αj are consistent if and only if αj contains all the MPC protocol messages in αi or αi contains all the
MPC protocol messages in αj .

25

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

3.2.2 Security Analysis

The theorem below establishes the security of our generic compiler.

Theorem 3. Let (Gen,Enc,Dec) be a semantically secure PKE scheme, and (Gen′, Sign,Verify) be a (deter-
ministic) unforgeable signature scheme. Furthermore, let π be an n-party ρ-round protocol that t-securely
UC-realizes a functionality f with aborts in the presence of malicious adversaries. Then, the protocol π∗ of
Fig. 3.1 t-securely computes f with aborts in the presence of quick players and malicious adversaries.

UC security is needed due to the fact that the attacker in the real world may interact with the blockchain by
posting messages and reading its state. As shown in [CGJ19], such blockchain-active adversaries render standard
simulation techniques (e.g., black-box rewinding) moot. Note also that Remark 2 does not hold for our protocol.
If the adversary tries to furnish two different inputs in two different branches it can be spotted by some honest
player, leading to an abort. Therefore only one possible input can be given to the functionality.

We need to show that for every PPT adversary A∗, there exists a PPT simulator S∗ such that no non-uniform
PPT distinguisher D∗ can tell apart the experiments REALΓ,0

π,A∗,D∗(λ) and IDEALΓ
f⊥,S∗,D∗

(λ). In particular,
the simulator S∗ needs to simulate the interaction of the honest players with the blockchain protocol Γ as it
happens in the real experiment. Intuitively, S∗ relies on the simulator S guaranteed by the underlying protocol π
as follows. At the beginning, S∗ samples the public/secret keys for encryption/signatures for the honest players.
Then, S∗ runs A∗ reading its messages from the emulated execution of the blockchain protocol Γ, and simulates
its view as follows: (i) The round-r messages m(r)

j,i sent by the honest players Pj to the malicious players

Pi are obtained from the simulator S; (ii) The round-r messages m(r)
j,j′ that are exchanged by the honest players

Pj ,Pj′ are replaced with the all-zero string. Of course, S∗ does additional bookkeeping in order to simulate a real
execution of the protocol using the blockchain; in particular, S∗ needs to check that the attacker plays consistently
on different branches of a fork, and simulate an abort whenever the latter does not happen. Moreover, when S
extracts the inputs for the malicious parties, the simulator S∗ forwards the same inputs to the trusted party, obtains
the outputs for the malicious parties, and sends it to S. Finally, S∗ completes the simulation consistently with the
choice of S of aborting or not.

Very roughly, the security of the PKE scheme and of the signature scheme imply that the view of the attacker
is identical to that in a real execution of protocol π, so that security of π∗ follows by that of π.

Proof. We begin by describing the simulator S∗. Let S be the PPT simulator guaranteed by the malicious security
of π. Upon input the set of corrupted parties I, inputs (xi)i∈I , and auxiliary input z, the simulator S∗ proceeds
as follows:

1. Initialize S upon input (I, (xi)i∈I , z), with uniformly chosen random tape ωsim←$ {0, 1}∗.

2. For each j 6∈ I, sample (ek j , dk j)←$ Gen(1λ), (vkj , sk j)←$ Gen′(1λ), ωj ←$ {0, 1}∗, and invoke Broadcast(ek j ||
vkj ||j).

3. For each j 6∈ I, keep running stj ←$ UpdateState(1λ) and Bj ←$ GetRecords(stj) until all the messages

(ek i, vki)i∈[n] ∈ Bj . Set τ (0)
j := (ek i, vki)i∈[n] and αj := τ (0).

4. For each j 6∈ I, emulate the behavior of party Pj as follows:

(a) Update the state stj by running UpdateState(1λ), and let Bj ←$ GetRecords(stj).

(b) Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈ Bj . Then:

• If the ciphertexts in τ (r̃) are not consistent with those in αj , send abort to the trusted party,
simulate A∗ aborting in the real protocol, and terminate.

• Else, go to the next step and if αj is a prefix of τ (r̃) let αj := τ (r̃).

26

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

(c) Extract from τ
(r̃)
j the ciphertexts (c

(r̃)
i,j)i∈I and the signatures (σ

(r̃)
i,j)i∈I that A∗ (on behalf of each

corrupted player Pi) forwards to Pj . If there exists i ∈ I such that Verify(vki, σ
(r̃)
i,j) = 0, send

abort to the trusted party, simulate A∗ aborting in the real protocol, and terminate. Else, for each
r ≤ r̃, decrypt the ciphertexts c(r)

i,j using the decryption key dk j , and pass the corresponding messages

((m
(1)
i,j)i∈I,j∈H, . . . , (m

(r̃)
i,j)i∈I,j∈H) to S. Hence:

• Upon receiving abort from S, send abort to the trusted party, simulate A∗ aborting in the real
protocol, and terminate.

• Upon receiving (xi)i∈I from S, send (xi)i∈I to the trusted party, obtain the outputs (yi)i∈I , and
forward (yi)i∈I to S. In case S replies with (continue,H′), send (continue,H′) to the trusted
party and terminate.

• Upon receiving a set of messages (m
(r̃+1)
j,i)j∈H,i∈I—corresponding to the simulated messages

that each honest player Pj sends to the corrupted party Pi— for each j ∈ H and i ∈ I compute
c

(r̃+1)
j,i ←$ Enc(ek i, ,m

(r̃+1)
j,i) (using coins from ωj) and σ(r̃+1)

j,i = Sign(sk j , c
(r̃+1)
j,i). Then, for

each j, j′ ∈ H, let c(r̃+1)
j,j′ ←$ Enc(ek j′ , 0

|m(r̃+1)

j,j′ |) (using coins from ωj) and σ(r̃+1)
j,j′ ←$ Sign(sk j , c

(r̃+1)
j,j′),

and finally invoke Broadcast((c
(r̃+1)
j,i ||σ(r̃+1)

j,i)i∈[n]\{j}).

To conclude the proof, we consider a sequence of hybrid experiments (ending with the real experiment) and
argue that each pair of hybrids is computationally close thanks to the properties of the underlying cryptographic
primitives.

Hybrid H3(λ): This experiment is identical to IDEALΓ
f⊥,S∗,D∗

(λ).

Hybrid H2(λ): Identical to H3(λ) except that we replace the ciphertexts (c
(r)
j,j′)j∈H,j′∈H\{j} that each honest

party Pj sends to the other honest players Pj′ with an encryption of the real messages (m
(r)
j,j′)j∈H,j′∈H\{j}

that the same parties would send in a real execution of π. Note that the other ciphertexts (c
(r)
j,i)j∈H,i∈I are

still emulated using the simulator, and the output of the experiment is determined by the trusted party.

The inputs for the honest parties are chosen to be the values (xi)i∈H chosen by the distinguisher D∗ at the
beginning of the experiment, and the random tape of each player is chosen uniformly once and for all as
in the real world.

Hybrid H1(λ): Identical toH2(λ) except that we artificially abort if A∗ modifies one of the ciphertexts (c
(r)
j,i)j∈H,i∈[n]\{j}

corresponding to the messages that each honest player sends in a given round. Note that these ciphertexts
correspond to both the real messages (m

(r)
j,j′)j∈H,j′∈H\{j} and the simulated messages (m

(r)
j,i)j∈H,i∈I .

Hybrid H0(λ): This experiment is identical to REALΓ,0
π∗,A∗,D∗(λ).

Lemma 1. {H3(λ)}λ∈N ≈c {H2(λ)}λ∈N.

Proof. We reduce to semantic security of (Gen,Enc,Dec). Let h = |H|. For k ∈ [0, h], consider the hybrid
experiment H3,k(λ) in which the distribution of the ciphertexts (c

(r+1)
j,j′)j∈H,j′∈H\{j} is modified as in H2(λ)

only for the first h honest parties. Clearly, {H3,0(λ)}λ∈N ≡ {H3(λ)}λ∈N and {H3,h(λ)}λ∈N ≡ {H2(λ)}λ∈N.
Next, we prove that for every k ∈ [0, h] it holds that {H3,k(λ)}λ∈N ≈c {H3,k+1(λ)}λ∈N which concludes

the proof of the lemma. By contradiction, assume that there exists an index k ∈ [0, h], and a pair of PPT algo-
rithms (D∗,A∗) such that D∗ can distinguish the two experiments H3,k(λ) and H3,k+1(λ) with non-negligible
probability. We construct a PPT attacker B breaking semantic security of (Gen,Enc,Dec) as follows:

• Receive the target public encryption key ek∗ from the challenger.

27

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the auxiliary input z, then pass
(I, (xi)i∈I , z) to A∗.

• Interact with A∗ as described in the ideal experiment, except that:

– The public encryption key for player Pk+1 is set to be the target public key ek∗.

– For each j ≤ k, when it comes to simulating the ciphertexts (c
(r)
j,j′)j′∈H\{j}, use the real messages

(m
(r)
j,j′)j′∈H\{j}, encrypt them using the public encryption key ek j′ of Pj′ , and sign the ciphertexts

with the secret key sk j (which is known to the reduction).

– When it comes to simulating the ciphertexts (c
(r)
k+1,j′)j′∈H\{j}, forward the pair of plaintexts

(m
(r)
k+1,j′ , 0

|m(r)

k+1,j′ |)j′∈H\{k+1} to the left-or-right encryption oracle and sign the corresponding ci-
phertexts using the secret signing key skk+1 of Pk+1 (which is known to the reduction).

– For each j > k + 1, when it comes to simulating the ciphertexts (c
(r)
j,j′)j′∈H\{j}, use the dummy

messages (0
|m(r)

j,j′ |)j′∈H\{j}, encrypt them using the public encryption key ek j′ of Pj′ , and sign the
ciphertexts with the secret key sk j (which is known to the reduction).

• Finally, run D∗ upon the final output generated by A∗, and return whatever D∗ outputs.

Note that the reduction can indeed simulate the interaction with the blockchain protocol Γ as in the ideal
experiment, and moreover it can generate the real messages (mr

j,j′)j∈H,j′∈H\{j} as it knows the parties’ inputs
(xi)i∈[n]. By inspection, the simulation performed by B is perfect in the sense that when the challenger encrypts

the messages m(r)
k+1,j′ the view of (D∗,A∗) is identical to that in H3,k+1(λ). Similarly, when the challenger

encrypts the dummy messages 0
|m(r)

k+1,j′ | the view of (D∗,A∗) is identical to that in H3,k(λ). Hence, B breaks
semantic security of (Gen,Enc,Dec) with non-negligible probability, concluding the proof.

Lemma 2. {H2(λ)}λ∈N ≈c {H1(λ)}λ∈N.

Proof. Let BAD be the event that an artificial abort happens in H1(λ). Note that this means that, for some
j ∈ H, the attacker A∗ replaces one of the ciphertexts c(r)

j,i that Pj would send to Pi in the real protocol with

a different ciphertext c̃(r)
j,i , in such a way that the corresponding signature σ̃(r)

j,i is still accepting. Clearly, the
experiments H2(λ) and H1(λ) are identical conditioning on BAD not happening, and does it suffices to show
that P [BAD] is negligible.

Given a PPT distinguisher D∗ and a PPT attacker A∗ such that A∗ provokes event BAD in a run of H2(λ)
with non-negligible probability, we can construct a PPT attacker B breaking security of the signature scheme
(Gen′, Sign,Verify). The reduction works as follows:

• Receive the target public verification key vk∗ from the challenger.

• Choose a random j∗ as a guess for the index corresponding to the honest party for which A∗ provokes the
bad event.

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the auxiliary input z, then pass
(I, (xi)i∈I , z) to A∗.

• Interact with A∗ as described in H2(λ), except that:

– The public verification key for player Pj∗ is set to be the target public key vk∗.

– When it comes to simulating the round-rmessages from party Pj∗ , generate the ciphertexts (c
(r)
j∗,i)i∈[n]\{j∗}

as done in H2(λ), and then forward each of c(r)
j∗,i to the challenger, obtaining the corresponding sig-

nature σ(r)
j∗,i that is needed in order to complete the simulation.

28

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

– Keep updating the local state of Pj∗ until an index i ∈ [n] \ {j∗} is found such that the partial
transcript αj∗ contains a pair (c̃

(r)
j∗,i, σ̃

(r)
j∗,i) such that Verify(vkj∗ , c̃

(r)
j∗,i, σ̃

(r)
j∗,i) = 1 and c̃(r)

j∗,i is different

from the original ciphertext c(r)
j∗,i previously sent on behalf of Pj∗ .

• If no such pair is found, abort the simulation. Else, return (c̃
(r)
j∗,i, σ̃

(r)
j∗,i).

Note that the simulation performed by B is perfect, in that the view of (D∗,A∗) is identical to that in a run of
H2(λ). Moreover, conditioning on B guessing the index j∗ correctly, the reduction is successful in breaking
security of the signature scheme exactly with probability at least P [BAD], which is non-negligible. Since the
former event also happens with non-negligible probability, this concludes the proof.

Lemma 3. {H1(λ)}λ∈N ≈c {H0(λ)}λ∈N.

Proof. The proof is by reduction to UC-security of the underlying protocol π. By contradiction, assume that
there exists a PPT adversary A∗ and a non-uniform PPT distinguisher D∗ that can distinguish betweenH1(λ) and
H0(λ) with non-negligible probability. Consider the following PPT attacker A, initialized with a set of corrupted
parties I, inputs (xi)i∈I for the malicious players, and auxiliary input z = (z∗, (ek i, dk i)i∈[n], (vki, sk i)i∈[n])
which will be specified later:

• Pass (I, (xi)i∈I , z∗) to A∗.

• For each i ∈ I, upon receiving the round-r messages (m
(r)
j,i)j∈H from the honest players to the ma-

licious players, let c(r)
j,i ←$ Enc(ek i,m

(r)
j,i) and σ(r)

j,i = Sign(sk j , c
(r)
j,i), and emulate broadcasting (c

(r)
j,i ,

σ
(r)
j,i)j∈H,i∈I via the blockchain protocol.

• For each j ∈ H, upon receiving the round-r messages (m
(r)
i,j)i∈I that A∗ wants to send to the honest parties,

let c(r)
i,j ←$ Enc(ek j ,m

(r)
i,j) and σ(r)

i,j = Sign(sk i, c
(r)
i,j), and emulate broadcasting (c

(r)
i,j , σ

(r)
i,j)i∈I,j∈H via the

blockchain protocol.

• For each j ∈ H, compute the messages (m
(r)
j,j′)j′∈H\{j} exchanged between honest parties as done in

H0 (which is the same in H1(λ)), let c(r)
j,j′ ←$ Enc(ek j′ ,m

(r)
j,j′) and σ(r)

j,j′ = Sign(sk j , c
(r)
j,j′), and emulate

broadcasting (c
(r)
j,j′ , σ

(r)
j,j′)j∈H,j′∈H\{j} via the blockchain protocol.

• In case a fork appears during the simulation of the underlying blockchain protocol, replicate the messages
from the honest players as done in the other branches (using exactly the same randomness). On the other
hand, if the messages from A∗ differ from those sent on the simulation of a previous branch, simulate A∗

aborting and terminate.

• Output whatever A∗ outputs.

Additionally, let Z be the following PPT distinguisher:

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the auxiliary input z∗, then
sample (ek i, dk i) and (vki, sk i) for all i ∈ [n], and pass (I, (xi)i∈I , z) to the above defined attacker A,
where z = (z∗, (ek i, dk i)i∈[n], (vki, sk i)i∈[n]).

• Upon receiving the final output from A, pass it to D∗ and output whatever D∗ outputs.

By inspection, in case the attacker A is playing in a real execution of protocol π, the view of D∗ is identical to that
in an execution of H0(λ) with A∗ controlling the malicious parties. Similarly, in case the view of A is emulated
using the simulator S (corrupting the dummy parties controlled by A) of protocol π, the view of D∗ is identical to
that in an execution ofH1(λ) with A∗ controlling the malicious parties. It follows that Z can distinguish between
REALπ,A,Z(λ) and IDEALf⊥,S,Z(λ) with non-negligible probability, a contradiction.

The theorem now follows directly by combining the above lemmas.

29

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

3.2.3 On Fairness with Penalties

In their work, Andrychowicz et al. [ADMM14, ADMM16] proposed a different notion of fairness for MPC
protocols that run on blockchain: fairness with penalties. This notion states that if an adversary in an MPC
protocol decides to abort the execution of the protocol it will be financially penalized. To obtain the penalization
in the lottery protocol, Andrychowicz et al. added a deposit step in the protocol.

Our compiler described in §3.2 does not suffer we discuss here how to obtain fairness with penalties following
in part the outline of [KB14, BK14b].

Let us now assume the existence of an (n, n)-secret sharing scheme (Share,Recon), non-interactive commit-
ment schemes, and consider a functionality f ′ that first calculates y ← f(x1, . . . , xn), where each party Pi holds
xi, and then calculates the shares of the output (σ1, . . . , σn)←$ Share(y), the commitments C = (γ1, . . . , γn),
where γi←$ Com(σi), and outputs (C, σi) to each player Pi. Let us call π′ the protocol realizing f ′. We can
apply our generic compiler to π′ to obtain a protocol π′bc that can be run in the blockchain. Our protocol πfair,
running with players P1 . . . ,Pn works as follows

(i) Protocol execution: All the players engage in the protocol π′bc. A party Pi aborts the execution if π′bc
aborts. Otherwise, obtains (C, σi) in the last round.

(ii) Smart contract: P1 publishes the smart contract depicted in Fig. 3.2.

(iii) Commitment phase: For each i ∈ [n], Pi triggers deposit(Ci) together with d coins, where d is a fixed
deposit. If some player does not publish his commitments with the deposit or there is a disagreement on
the commitments within time1 (i.e., a player Pj sends Cj 6= Ci for some Pi 6=j), or deposits a value di < d,
Pi abort the execution. Recall that abort in this phase is still fine, since no information about the output y
is released. Otherwise, if time1 has passed, go to the Opening Phase.

(iv) Opening phase: For each i ∈ [n], Pi opens his commitment by sending openCom(i, σi), thus receiving
back his d coins, wait that all the openings are published in the smart contract (within time2) and calculates
y ← Recon(σ1, . . . , σn). If, after time2, some share is missing, Pi aborts the execution.

During the last phase, if some player did not open the commitment or sent an incorrect value, the smart
contract will penalize him by freezing his deposit. Thus, the adversary is not incentivized to send an incorrect
share.

This attempt to add fairness with penalties, however, introduces an attack. Given an n-party protocol πΓ
f ′

obtained by the compiler described in §3.2 applied to πf ′ , with the addition of the smart contract, commit and
opening phases described above, we have the following scenario:

• For all i ∈ [n], party Pi runs πfair obtaining (C, σi).

• For all i ∈ [n], party Pi triggers deposit(C) together with d coins to the smart contract.

• For all i ∈ [n− 1], party Pi opens his commitment by triggering openCom(σi).

• Wlog., we say that Pn is an adversary. Pn computes the output y. If Pn does not like y in the current
branch, Pn can try to exploit a fork happening during the execution of πfair to change the in a different
branch to obtain a new couple (C ′, σ′n).

• The honest parties P1, . . . ,Pn−1 notice that there is a message published by Pn that differs from the value
previously received by Pn. Since the transcript obtained from the blockchain differs from the transcript
stored in their local state, they will abort.

30

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The General Compiler Smart Contract runs with players P1, . . . ,Pn and consists of two main functions
deposit and openCom and two fixed timestamps time1, time2.

Commitment Phase: In round t1, when deposit(Ci) together with d coins is triggered from a party Pi, store
(i, Ci). Then, if ∀i, j : Ci = Cj proceed to the Opening Phase. Otherwise, for all i, if the message
(i, Ci) has been stored, send message d coins to Pi and terminate.

Opening Phase: In round t2, when openCom(i, σi) is triggered from Pi, check if Com(σi) = γi, where γi
is obtained from parsing Ci = (γ1, . . . , γn) (recall that all the Ci are the same), and send d coins back
to Pi.

Figure 3.2: General compiler smart contract.

The protocol described is not fair, since we can construct a counterexample that proves that the unfair party
Pn can obtain the output without being penalized.

We now state the issue more formally. P1, . . . ,Pn will play πΓ
f ′ to obtain (C, σi). As the smart contract is

published, Pn will trigger deposit(C) together with d coins. At this point, Pn waits that all Pi, with i ∈ [n]
publish the opening σi.

When Pn sees σ1, . . . , σn−1 on the blockchain, it computes the output. If Pn dislikes the output, then he tries
to exploit a branch created before the end of the execution of πfair to change messages in that branch to obtain
an advantage. Since Pn publishes different messages on different branches of the blockchain, there exist some
party Pi, with i ∈ [n] that will notice it, causing an abort in the protocol.

Let’s call b1 the branch where Pn learned the output and b2 the branch exploited to change the execution of
πfair. We have two cases:

• If b1 is the branch that will be confirmed on the blockchain, Pn will be penalized.

• If b2 is the branch that will be confirmed on the blockchain, Pn will cause an abort in the protocol before
that the commitment phase starts. In this case he does not get penalized for learning the output.

With this counterexample we show that the proposed solution is not enough to obtain fairness with penalties,
since Pn has the possibility to learn the output without incurring in any punishment. It is possible to obtain
fairness with penalties using our general compiler (see next), and waiting that the commitment phase is confirmed
on the ledger. Indeed, if the commitment phase described in Figure 3.2 is finalized on the blockchain, the
adversary A cannot change the commitment done on the blockchain without losing her deposit. A is forced to
continue the run wit the finalized commitment phase to receive back the deposit.

More precisely, an adversary A cannot learn y unless A decides to lose the d coins deposited in the com-
mitment phase. Since the commitment phase is confirmed on the ledger, A cannot find a fork to exploit the
execution of the protocol on another branch. Yet, A can cause an abort in the protocol, but if it happens before
the commitment phase she will not learn the output y. If the abort happens after the commitment phase, A will
learn the output but will be penalized.

Theorem 4. Let’s assume the existence of non-interactive commitment schemes and (n, n)-secret sharing schemes.
Let π′bc be an n-party ρ-round protocol realizing f ′ in the presence of quick players. Then, the protocol πfair de-
scribed above securely realizes f satisfying fairness with penalties in the presence of (ρ, 1)-quick players.

Proof Sketch. We can claim security of the the compiled protocol π′bc obtained by applying the general compiler
to π′, by referring to the same proof of Theorem. 3. Now, we argue that the overall protocol πfair achieves fairness
with penalties. As mentioned before, aborts during the execution of π′bc are acceptable, since the adversary cannot

31

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

learn any information about the output. After the committing phase, that is finalized, the adversary could try to
exploit different branches to send different openings of his commitments. We have the following time-line: The
execution started in a branch b1 and a forks happens right after the committing phase, generating a branch b2.
Wlog. of generality we can extend this argument to multiple parallel executions in different branches. We have
the following scenarios:

Scenario 1: A corrupted player abort in both branches. Since the commitments are finalized, fairness with
penalties follows in a straightforward manner, since he did not open his commitments in each branch, and
so also in the confirmed one.

Scenario 2: A corrupted player opens his share in b1 and aborts the execution in b2 (after the commitment
phase). If b1 gets confirmed, the honest parties will learn the output. If b2 gets confirmed, it automatically
boils down to Scenario 1.

Scenario 3: A corrupted player Pi opens his share in b1 and tries to open on a different share in b2. Since the
commitment is always confirmed, the adversary cannot try to change his commitment by exploiting forks.
If A is able to open the commitment by providing two different shares, then we can define an adversary
Acom breaking the binding property of the underlying commitment scheme with non-negligible probability.
That means that at least in one of the two branches Pi gets penalized, and if he provides the correct opening
in one of the branches and it gets confirmed, honest players will learn the output.

32

Chapter 4

Privacy-Preserving Auditable Token
Payments in a Permissioned Blockchain
System

Token management systems were the first application of blockchain technology and are still the most widely used
one. Early implementations such as Bitcoin or Ethereum provide virtually no privacy beyond basic pseudonymity:
all transactions are written in plain to the blockchain, which makes them perfectly linkable and traceable.

Several more recent blockchain systems, such as Monero or Zerocash, implement improved levels of privacy.
Most of these systems target the permissionless setting, just like Bitcoin. Many practical scenarios, in contrast,
require token systems to be permissioned, binding the tokens to user identities instead of pseudonymous ad-
dresses, and also requiring auditing functionality in order to satisfy regulation such as AML/KYC.

We present a privacy-preserving token management system that is designed for permissioned blockchain
systems and supports fine-grained auditing. The scheme is secure under computational assumptions in bilinear
groups, in the random-oracle model.

4.1 Introduction

4.1.1 Motivation

Early implementations of token payment systems such as Bitcoin or Ethereum provide virtually no privacy
beyond basic pseudonymity: all transactions are written in plain to the blockchain, which makes them linkable
and traceable.

Several approaches exist for adding different levels of privacy to blockchain-based transactions. Tumblers
such as CoinJoin [Max13] combine several transactions of different users and obscure the relation between payers
and payees. In mix-in-based systems such as CryptoNote [vS13], transactions reference multiple superfluous
payers that do however not actually participate in the transaction and only serve as a cover-up for the actual
payer. Confidential Assets [PBF+18] hide the amounts in a payment but leave the payer-payee relation in the
open. Finally, advanced systems such as Zerocash [BSCG+14] both encrypt the amounts and fully hide the
payer-payee relation.

While the privacy of transactions is important, it should not void the requirements of transparency and au-
ditability, especially in permissioned networks that come with strong identity management and promise to ensure
accountability and non-deniability. This chapter introduces a solution dedicated to the permissioned setting to
cover this gap: it hides the content of transactions without preventing authorized parties from auditing them.

Another goal of this chapter is to move away from complex and non-falsifiable computational assumptions
that underpin zkSNARK-based schemes and instead work with more conservative assumptions. Restricting

33

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

ourselves to the permissioned setting allows us to leverage a combination of signatures and standard ZK-proofs
to achieve these goals.

4.1.2 Related Work

Various solutions for improving privacy in blockchain-based token systems exist. We briefly review the most
related ones.

Miers et al. [MGGR13] introduced Zerocoin, which allows users to anonymize their bitcoins by converting
them into zerocoins that rely on Pedersen commitments and zero-knowledge proofs. Zerocoins can be changed
back to bitcoins without leaking their origin. Zerocoin however does not offer any transacting or auditing capa-
bilities.

Confidential Assets of Poelstra et al. [PBF+18] protect privacy (in a limited form) by hiding the types and
the values of the traded assets. The idea, similarly to Zerocoin, is to use Pedersen commitments to encode the
amount and types of traded assets, and zero-knowledge proofs to show the validity of a transaction. The proposed
scheme however does not hide the transaction graph or the public keys of the transactors. While this allows for
some form of public auditability, it hinders the privacy of the transacting parties.

Zerocash [BSCG+14] is the first fully anonymous decentralized payment scheme. It offers unconditional
anonymity, to the extent that users can repudiate their participation in a transaction. Thanks to a combination of
hash-based commitments and zkSNARKs, Zerocash validates payments and prevents double-spending relatively
efficiently. On the downside, Zerocash requires a trusted setup and an expensive transaction generation and its
security relies on non-falsifiable assumptions.

Extensions to Zerocash have been proposed [GGM16] to support expressive validity rules to provide ac-
countability: notably, the proposed solution ensures regulatory closure (i.e. allowing exchanges of assets of the
same type only) and enforcing spending limits. In terms of accountability, the proposed scheme allows the trac-
ing of certain tainted coins, while not really extensively and consistently allowing transactions to be audited. By
building on Zerocash, the proposed scheme inherits the same limitations regarding computational assumptions
and trusted setup.

QuisQuis [FMMO18] and Zether [BAZB19] propose solutions that provide partial anonymity. On a high
level, instead of sending a transaction that refers only to the accounts of the sender and the recipients of a
payment, the sender adds accounts of other users, who act as an anonymity set (similar to CryptoNote [vS13]).
Both schemes couple ElGamal encryption with Schnorr zero-knowledge proofs to ensure that user accounts
reflect the correct payment flows. Contrary to Zerocash, QuisQuis and Zether rely on falsifiable assumptions and
do not require any trusted setup.

Solidus [CZJ+17] is a privacy-preserving protocol for asset transfer that is suitable for intermediated bilateral
transactions, where banks act as mediators. Solidus conceals the transaction graph and values by using banks as
proxies. The authors leverage ORAMs to allow banks to update the accounts of their clients without revealing
exactly which accounts are being updated. The novelty of Solidus is PVORM (Publicly Verifiable Oblivious
RAM Machine), which is an ORAM that comes with zero-knowledge proofs that show that the ORAM updates
are correct with respect to the transaction triggering them. In Solidus there is no dedicated auditing functionality;
however banks could open the content of relevant transactions at the behest of authorized auditors.

The zkLedger protocol of Narula, Vasquez, and Virza [NVV18] is a permissioned asset transfer scheme that
hides transaction amounts as well as the payer-payee relationship and supports auditing. One main difference
with our approach is the end user: zkLedger aims at a setting where the transacting parties are banks, whereas
our solution considers the end user to be the client of “a bank.” This is why zkLedger enjoys relatively more
efficient proofs and could afford a transaction size that grows linearly with the number of total transactors in the
platform (i.e. banks), which is inherently small. (In our scheme, transaction sizes do not grow with the number
of overall parties.) Similarly when it comes to auditability, zkLedger offers richer and more flexible semantics
but at the expense of audit granularity. Auditing in zkLedger is limited to banks and does not cover cases where
auditors are required to monitor the transaction flow of the clients (of the banks).

34

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

4.1.3 Results

We describe a token management system for permissioned networks that enjoys the following properties:

Privacy: Transactions written on the blockchain conceal both the values that are transferred and the payer-payee
relationship. The transaction leaks no information about the tokens spent in this transaction beyond the
fact that they are valid and unspent.

Authorization: Users authorize transactions via credentials; i.e., the authorization for spending a token is bound
to the user’s identity instead of a pseudonym (or address). The authorization makes use of anonymous
credentials and is privacy-preserving.

Auditability: Each user has an assigned auditor that is allowed to see the transaction information related to that
particular user.

Satisfying these three requirements is crucial for implementing a payment system that protects the users’
privacy but at the same time complies with regulation.

The system we propose is based on the unspent transaction output (UTXO) model pioneered by Bitcoin [Nak08b]
and supports multi-input-multi-output transactions. It inherits several ideas from prior work, such as the use of
Pedersen commitments from Confidential Assets [PBF+18] and the use of serial numbers to prevent double-
spending from Zerocash [BSCG+14]. These are combined with a blind certification mechanism that guarantees
the validity of tokens via threshold signatures, and with an auditing mechanism that allows flexible and fine-
grained assignment of users to auditors.

We use a selection of cryptographic schemes that are based in the discrete-logarithm or pairing settings
and are structure-preserving, such as Dodis-Yampolskiy VRF [DY05], ElGamal encryption [ElG85a], Groth
signatures [Gro15], Pedersen commitments [Ped91b], and Pointcheval-Sanders signatures [PS16]. This allows
us to use the relatively efficient Groth-Sahai proofs [GS08] and achieve security under standard assumptions, in
the random-oracle model.

Outline. The remainder of the chapter is structured as follows. In Section 4.2, we provide further background
on several important techniques. Section 4.3 then shows an overview of our protocol. Section 4.4 describes
the types of cryptographic schemes used in the protocol, before Section 4.5 specifies the security model. Sec-
tion 4.6.5, contains the protocol description and the security analysis. Section 4.7 provides details on how to
instantiate the protocol using well-established primitives that do not require any complex setup assumptions. In
Section 4.8, we describe the implementation and the performance measurements.

4.2 Background

4.2.1 Decentralized token systems

A decentralized token transfer is performed by appending a transfer transaction to the blockchain. Such a
transaction comprises the transfer details (e.g. sender, receivers, type and value) and a proof that the author of
the transaction possesses enough liquidity to perform the transfer. The transaction is then validated against the
blockchain state (i.e. the ledger). More precisely, the blockchain checks that the origin of the transaction has
the right to transfer the token and that the overall quantity of tokens is preserved during the transfer. Existing
decentralized token systems are either account-based (e.g. [Eth]) or unspent transaction outputs (UTXO)-based
(cf. [Nak08b]). A valid transfer in an account-based systems results in updating the accounts of the sender and
the receivers. In a UTXO-based token system, a transfer transaction includes a set of inputs—tokens to be
consumed—and outputs—tokens to be created. A valid transfer in such systems leads to destroying the inputs
and adding the outputs to the ledger to be later consumed by subsequent transactions.

35

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

4.2.2 Privacy-preserving token systems

Decentralization of token systems gives rise to serious privacy threats: if transactions contain the transfer infor-
mation in the clear, then anyone with access to the ledger is able to learn the history of each party’s transaction.
We call a decentralized token system privacy-preserving if it partially or fully hides the transfer details. Exam-
ples of decentralized and privacy preserving token systems are Confidential Assets [PBF+18], Zether [BAZB19],
QuisQuis [FMMO18] and Zerocash [BSCG+14], with the last one offering the highest level of privacy protec-
tion.
Zerocash. The privacy in Zerocash relies on a combination of commitments, zkSNARKs and Merkle-tree mem-
bership proofs. Namely, tokens in Zerocash are computed as a hiding commitment to a value, a type and an
owner’s pseudonym. After its creation, a token is added to a public Merkle tree and during a transfer, the origin
of the transaction proves in zero-knowledge that the token is valid (i.e. included in the Merkle tree), that it was
not spent before and that she owns it. Thanks to zkSNARKs, transaction validation in Zerocash is quite fast. Yet,
this comes at the cost of a complex trusted setup and a very expensive proof generation. To obviate these two
limitations, we exploit the properties of permissioned token systems to replace Merkle trees with signature-based
membership proofs, in order to devise a solution that relies only on Groth-Sahai proofs [GS08].

4.2.3 Permissioned token systems

In a permissioned token system such as Hyperledger Fabric [ABB+18] or Quorum [quo], a user is endowed
with a long-term credential that reflects her attributes and role. Tokens are introduced by special users, called
issuers, through issue transactions. These transactions are then validated against predefined policies that reflect
existing norms and regulations. For example, issuing policies define which issuers are authorized to create which
tokens and under which conditions. Similarly to issue transactions, transfer can also be validated against
policies: the simplest of which is that a transfer can take place only between registered users. A fundamental
property of permissioned systems is that transactions are signed using long-term credentials. As a by-product,
transactions can be traced back to their origin, enforcing thus the requirements of auditability and accountability.

4.2.4 Signature-based membership proofs

We use signatures to implement zero-knowledge membership proofs [CCas08]. Roughly speaking, consider a
set S that consists of elements that are signed using a secret key sk associated with S. It follows that proving
knowledge of some e in S in zero-knowledge amounts to (i) computing a hiding commitment of e; (ii) and
then proving knowledge of a signature, computed with sk, on the committed value. In this paper, we use this
mechanism for two purposes: (i) to prove that a user is in the set of registered users; (ii) and to show that a token
is in the set of valid tokens recorded in the ledger.

4.2.5 Encryption-based auditability

In an encryption-based auditable token system, transactions carry ciphertexts intended for the authorized audi-
tors. For such a mechanism to be viable, it is important to ensure that (i) the ciphertexts encrypt the correct
information; (ii) and they are computed using the correct keys. This can be achieved through zero-knowledge
proofs—computed by the creator of the transaction—that link the ciphertexts to the transfer details and attest
that the two requirements listed above are not violated.

4.3 Overview

4.3.1 Design Approach

The first component of our solution is token encoding. Each token is represented by a hiding commitment (e.g.
Pedersen’s) that contains the identifier of the token owner, the value of the token and its type. The life-cycle of

36

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

a token is governed by two transactions: issue and transfer. An issue transaction creates a token of a
given type and value and assigns it to the issuer (i.e. author of the transaction). For an issue transaction to be
valid it should be submitted by the authorized issuer. For ease of exposition, we assume that a token issuer can
issue only one type of tokens and we conflate the type of a token with its issuer. Once a token is created it changes
ownership through transfer transaction. Given that we operate within the UTXO framework, transfer
transaction consists of a set of input tokens to be consumed and a set of output tokens to be created and it is
validated against the following rules:

• The author of the transaction is the rightful owner of the input tokens;

• the owners of the output tokens are registered;

• the type and the value of tokens are preserved;

• the input tokens can be traced back to valid transactions in the ledger;

• the input tokens were not consumed before (to prevent double spending).

Our solution moves away from zkSNARK and their trusted setup assumption and relies only on standard
NIZK proofs (e.g. Groth-Sahai’s [GS08]). More precisely, it leverages the permissioned setting to use ZK
signature-based membership proofs to ascertain that a user is registered and that a token belongs to the ledger in
a privacy-preserving manner. Namely, we assume that there is a registration authority that provides authorized
users with long-term credentials (i.e. signatures) with their attributes, and a certifier that a user contacts with
a certification request to vouch for the validity of tokens she owns. A certification request contains a token
(i.e. commitment) and upon receiving such a request the certifier checks whether the token is included in a
valid transaction in the ledger. If so, the certifier blindly signs the token and the resulting signature can be used
subsequently to prove that the token is legitimate.

To prevent double spending, we leverage serial numbers to identify tokens when they are consumed, as
in Zerocash. It is important that these serial numbers satisfy the following security properties: (i) collision
resistance: two tokens result in two different serial numbers; (ii) determinism: the same token always yields the
same serial number; (iii) unforgeability: only the owner of the token can produce a valid serial number. We use
verifiable random functions (e.g. Dodis-Yampolskiy [DY05]) to generate serial numbers that are a function of
the token owner secret key and a randomness that is tied to the token at its creation time.

To enable auditability, we encrypt the information in transfer transactions (i.e. sender, receivers, types
and values) under the public keys of the sender’s and the receivers’ auditors. To accommodate real-world use-
cases, our solution does not assume a single auditor for all users. This means that the encryption scheme must
not only be semantically-secure but also key-private, such as ElGamal.

4.3.2 Architectural Model

Participants

Our solution involves the following types of users:

Users

They own tokens that represent some real-world assets, and wish to exchange their tokens with other users in the
network. This is achieved through transfer transactions.

Issuers

They are users who are authorized to introduce tokens in the system through issue transactions. For simplicity
purposes, we assume that each issuer is allowed to introduce only one type of token and that the type of token is
defined as the identifier of the respective issuer.

37

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Auditors

These are entities with the authority and responsibility to inspect transactions of users. We assume that each user
in the system is assigned an auditor at registration time and that this assignment is immutable.

Certifier

This is a privileged party that provides users with certificates that vouch for the validity of their tokens. More
specifically, a user who wishes to transfer the ownership of a token contacts the certifier with the token; the
certifier in turn inspects whether the token appears in a valid transaction in the ledger or not. If so, the certifiers
sends a certificate (i.e. signature) to that effect to the user.

Registration authority

This is a privileged party that generates long-term credentials for all the participants in the system, including
users, issuers, auditors and certifiers. Namely, the credentials tie the real-world identity of the requestor to her
attributes and her public keys. An example of an attribute in our solution is the role (e.g., “user”, “auditor”,
“certifier”) that determines what type of credentials to be generated. A user credential is a signature that binds
the user public keys to both her identifier and her auditor’s identifier; whereas an auditor credential is a signature
that links the auditor’s encryption key to her identifier; finally the certifier’s credential is a signature of her public
key.

Ledger

This is a decentralized data store that keeps records of all issue and transfer transactions that have been
previously submitted. It is accessible to all parties in the system to read from and submit transactions to. The
ledger has a genesis block that contains (i) the system security parameters; (ii) the public information of the
registration authority and the credentials of the certifier; and (iii) the identifiers of the issuers authorized to
introduce tokens in the system.

Interactions

The interactions between system participants are shown in Figure 4.1. At first users, issuers, auditors and certifier
engage with the registration authority in a registration protocol to get long-term credentials for their subsequent
interactions.

A genesis block is created that announces the system parameters, the public information of the registration
authority, the credentials of the certifiers and an initial list of authorized issuers. From now on, the system will
be able to accommodate token management requests. More precisely, issuers submit issue transactions to the
ledger to introduce new tokens, and the ledger ensures that all incoming transactions are correctly stored. Anyone
with access to the ledger, in particular the certifier and auditors, can verify whether the transaction is valid or
not using the information in the genesis block. Subsequently, token transfer operations take place between users
through transfer transactions. The ledger again stores the transaction to make it available to all participants.
For simplicity, we assume that the ledger accepts all transactions without verification. However to transfer a
token, a user contacts the certifier that checks if the transaction including the token is valid. Only then the
certifier signs the token making it transferable. To inspect a user activity, an auditor reads transactions from the
ledger, checks their validity and tries to decrypt them with her secret key only if they are valid.

4.3.3 Trust Model

Registration authority. We assume that the registration authority is trusted to assign correct credentials to all
parties in the system. A participant presents a set of attributes and her public key to the registration authority and

38

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Figure 4.1: This figure shows the interactions between the participants in our system. Users, issuers, auditors and the certifier are
granted credentials by interacting with the registration authority. Upon an external decision to create new tokens, one or more issuers
submit an issue transaction to the ledger and the ledger automatically adds the transaction. To transfer a token, a user contacts the
certifier with a certification request that references the token to be signed and the transaction that created it. If it is an issue transaction,
the certifier checks if the author of the transaction is authorized. If it is a transfer transaction, the certifier verifies if the ZK proof is
valid. Once the owner of a token receives the corresponding certificate, she can transfer it to registered users. Finally, auditors assigned
to a user can audit that user’s transactions by obtaining access to the ledger.

39

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

receives in return a credential that binds her attributes to her public key. It is incumbent upon the registration
authority to verify the correctness of the attributes of a participant prior to sending the credential. For example, it
should verify that the participant knows the secret key underlying the advertised public key; it should also verify
in the case of users that the announced auditors are legitimate. Furthermore, the registration authority is trusted
to assign one unique credential per participant. However, it is not trusted regarding the privacy of users.

Notice that the trust assumption in the registration authority can be relaxed via a distributed registration
protocol.

Users. Users may collude to compromise the security of the system. They may attempt to steal tokens of oth-
ers, double-spend their own tokens, forge new tokens, transfer tokens to non-registered users, encrypt incorrect
information in the auditors’ ciphertexts, etc. They may also attempt to undermine the privacy of honest users by
de-anonymizing transactors, linking tokens, learning the content of transactions, etc.

Issuers. Issuers are users that are trusted to introduce tokens of a certain type. However, issuers may collude
to surreptitiously create tokens on behalf of other honest issuers, compromise the privacy of users and obviate
auditing among other things.

Certifier. To transfer a token, a user contacts the certifier to receive a signature that proves the token validity
(i.e. inclusion in a valid transaction in the ledger). Accordingly, the certifier is trusted to generate signatures only
for tokens that can be traced back to valid transactions in the ledger. We can relax this trust assumption using
a threshold signature scheme that distributes the certification process and guarantees its integrity as long as the
majority of the signers (i.e. certifiers) is honest.

While certifiers may be able to link transfer transactions referencing certified tokens to certification
requests, they should not be able to derive any further information about the transactions in the ledger or the
tokens they certify.

Auditors. Auditors are authorized to only learn the information pertained to their assigned users. That is,
colluding users and auditors should not be able to derive any information about the token history of users who
are not assigned to the malicious auditors.

Ledger. For simplicity purposes, we use the ledger only as a time-stamping service. It does not perform any
transaction validation, rather it stores the full transaction including the proofs of correctness. Anyone later can
check the transaction, verify the proofs and decide if the transaction is valid or not. We assume however that
the ledger is live and immutable: a transaction submitted to the ledger will eventually be included and cannot be
deleted afterwards.

4.4 Cryptographic Schemes

The section presents the cryptographic schemes that will be used to build the protocol. We only present them
briefly, and provide more information on concrete instantiations later in the chapter. All cryptographic algorithms
are parameterized by a so-called security parameter λ ∈ N given (sometimes implicitly) to the algorithms.

4.4.1 Commitment Schemes

A commitment scheme COM consists of three algorithms ccrsgen, commit, and open. The common refer-
ence string (CRS) generator ccrsgen is probabilistic and, on input the security parameter λ, samples a CRS
crs ←$ ccrsgen(λ). The commitment algorithm is a probabilistic algorithm that, on input of a vector (m1, . . . ,m`)
of messages, outputs a pair (cm, rcm)←$ commit(crs, (m1, . . . ,m`)) of commitment cm and opening rcm. We

40

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

sometimes also use the notation cm ← commit(crs, (m1, . . . ,m`); rcm) to emphasize that a specific random
string rcm is used. Finally, there is a deterministic opening algorithm open(crs, cm, (m1, . . . ,m`), rcm) that
outputs either true or false.

Commitments must be hiding in the sense that, without knowledge of rcm, they do not reveal information on
the committed messages, and they must be binding in the sense that it must be infeasible to find a different set of
messages m′1, . . . ,m

′
` and r ′cm that open the same commitment.

4.4.2 Digital Signature Schemes

A digital signature scheme SIG consists of three algorithms skeygen, sign, and Vf. The key generation algorithm
(sk, pk)←$ skeygen(λ) takes as input the security parameter λ and outputs a pair of private (or secret) key sk
and public key pk. Signing algorithm Sig←$ sign(sk,m) takes as input private key sk and message m , and
produces a signature Sig. Deterministic verification algorithm b ← Vf(pk,m, Sig) takes as input public key
pk, message m , and signature Sig, and outputs a Boolean b that signifies whether Sigis a valid signature on m
relative to public key pk. The standard definition of signature scheme security, existential unforgeability under
chosen-message attack, has been introduced by Goldwasser, Micali, and Rivest [GMR88]. It states that the
probability for an efficient adversary, given an oracle that generates valid signatures, to output a valid signature
on a message that has not been queried to the oracle must be negligible. The security of a signature scheme can
also be described by an ideal functionality FSIG. We use the variant of the signature functionality FSIG that was
introduced by Camenisch et al. [CDT19]. This version of the functionality is compatible with the modular NIZK
proof technique introduced in the same paper.

4.4.3 Threshold Signature Schemes

A non-interactive threshold signature scheme TSIG consists of four algorithms tkeygen, sign, combine, and Vf.
Threshold key generation (sk1, . . . , skn, pk1, . . . , pkn, pk)←$ tkeygen(λ, n, t) gets as input security parameter
λ, total number of parties n, and threshold t. Each party can sign with their own secret key ski as above to
generate a partial signature Sigi. Any t valid signatures can be combined using combine into a full signature Sig,
which is verified as in the non-threshold case. A signature produced honestly by any t parties verifies correctly,
but any signature produced by less than t parties will not verify.

4.4.4 Public-Key Encryption

A public-key encryption scheme PKE consists of three algorithms ekeygen, enc, and dec. Key-generation
algorithm (sk, pk)←$ ekeygen(λ) takes as input security parameter λ and outputs a pair of private key sk and
public key pk. Probabilistic encryption algorithm c←$ enc(pk,m) takes as input message m and public key pk
and produces ciphertext c. We also write c ← enc(pk,m; r) where we want to emphasize that the encryption
uses randomness r. Deterministic decryption m ← dec(sk, c) takes as input ciphertext c and private key sk and
recovers message m . Correctness requires that dec(sk, enc(pk,m)) = m for all (sk, pk) generated by ekeygen.
For our work, we require semantic security as first defined by Goldwasser and Micali [GM84]. The scheme must
additionally satisfy key privacy as defined by Bellare, Boldyreva, Desai, and Pointcheval [BBDP01], which states
that, given a ciphertext c, it must be hard to determine the public key under which the ciphertext is encrypted.

4.4.5 Verifiable Random Functions

A verifiable random function VRF consists of three algorithms vkeygen, eval, and check. Key generation
(vsk , vpk)←$ vkeygen(λ) takes as input the security parameter and outputs a pair of private key vsk and public
key vpk . Deterministic evaluation (y, π) ← eval(vsk , x) takes as input secret key vsk and input value x, and
produces as output the value y with proof π. Deterministic verification b ← check(vpk , x, y, π) takes as input
public key vpk , input x, output y, and proof π, and outputs a Boolean that signifies whether the proof should be
accepted.

41

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The scheme satisfies correctness if honest proofs are always accepted. Soundness means that it is infeasible
to produce a valid proof for a wrong statement. The scheme must satisfy pseudo-randomness which means that,
given only vpk , the output y for a fresh input x is indistinguishable from a random output.

4.4.6 Non-Interactive Zero-Knowledge Proofs of Knowledge

Let R be a binary relation. For pairs (x,w) ∈ R, x is called statement (i.e. public input) whereas w is called
witness (i.e. private input). L = {x, ∃ w s.t. (x,w) ∈ R} is called language of relation R. A NIZK proof-of-
knowledge system NIZK for language L comprises three algorithms: zkcrsgen, prove and Vf. CRS generation
crs←$ zkcrsgen(λ,R) takes as input the security parameter λ and a relationR and outputs a common reference
string. On input of (x,w) ∈ L and crs, proof generation ψ←$ prove(x,w, crs) returns a proof ψ. Proof ψ is
verified by calling algorithm b ← verify(ψ, x, crs), which in turn outputs a Boolean that indicates whether the
proof is valid or not.

Correctness for such a proof system means that honestly-generated proofs are always accepted. Knowledge
soundness implies that a prover that produces a valid proof for some x must know a witness w with (x,w) ∈ R,
in the sense that w can be extracted. Finally, zero-knowledge ensures that the verification of correct statements
yields nothing beyond the fact that they are correct. We describe the security of NIZK proofs of knowledge more
formally using an ideal functionality FNIZK.

Functionality FRNIZK

FNIZK is parameterized by a relation R for which we can efficiently check membership. It keeps an initially
empty list L of proven statements and a list L0 of proofs that do not verify.

1. On input (prove, y, w) from a party P , such that (y, w) ∈ R,a send (prove, y) to A.

2. Upon receiving a message (done, ψ) from A, with ψ ∈ {0, 1}∗, record (y, ψ) in L and send (done, ψ)
to P .

3. Upon receiving (verify, y, ψ) from some party P , check whether (y, ψ) ∈ L, then return 1 to P , or
whether (y, ψ) ∈ L0, then return 0 to P . If neither, then output (verify, y, ψ) toAand wait for receiving
answer (witness, w). Check (y, w) ∈ R and if so, store (y, ψ) in L, else store it in L0. If (y, ψ) is valid,
then output 1 to P , else output 0.

aInputs that do not satisfy the respective relation are ignored.

Figure 4.2: Non-interactive zero-knowledge functionality based on the one described by Groth et al. [GOS12a].

Our functionality FNIZK is adapted from the work of Groth et al. [GOS12a], with a few modifications of
which most are mainly stylistic. The most relevant difference is that we store a set L0 of false statements that
have been verified; we need this to ensure that a statement that was evaluated as false by one honest party will
also be evaluated as false by all other honest parties. Otherwise FNIZK has the two expected types of inputs
prove and verify, and the adversary is allowed to delay proof generation unless FNIZK is used in the context
of responsive environments [CEK+16].

In the remainder of the chapter, we succinctly represent zero knowledge proofs of knowledge using the com-
mon notation introduced by Camenisch and Stadler [CS97], namely PK {(x) : w} denotes a proof of knowledge
of witness w for statement x.

42

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

4.5 Security Formalization

4.5.1 Notation

We use sans-serif fonts to denote constants such as true or false, and typewriter fonts to denote string
constants.

4.5.2 Universal Composition and MUC

In this section, we only recall basic notation and specific parts of the model that we need in this work. Details
can be found in [Can01b, CDPW07, Can18].

The UC framework follows the simulation paradigm, and the entities taking part in the protocol execution
(protocol machines, functionalities, adversary, and environment) are described as interactive Turing machines
(ITMs). The execution is an interaction of ITM instances (ITIs) and is initiated by the environment Z that
provides input to and obtains output from the protocol machines, and also communicates with adversary Aresp.
simulator S. The adversary has access to the protocols as well as functionalities used by them. Each ITI has an
identity that consists of a party identifier pid and a session identifier sid . The environment and adversary have
specific, constant identifiers, and ideal functionalities have party identifier ⊥. The understanding here is that all
ITIs that share the same code and the same sid are considered a session of a protocol. It is natural to use the
same pid for all ITIs that are considered the same party.

ITIs can invoke other ITIs by sending them messages, new instances are created adaptively during the pro-
tocol execution when they are first invoked by another ITI. To use composition, some additional restrictions on
protocols are necessary. In a protocol µφ→π , which means that all calls within µ to protocol φ are replaced by
calls to protocol π, both protocols φ and π must be subroutine respecting. This means, in a nutshell, that while
those protocols may have further subroutines, all inputs to and outputs from subroutines of φ or π must only
be given and obtained through φ or π, never by directly interacting with their subroutines. (This requirement
is natural, since a higher-level protocol should never directly access the internal structure of φ or π; this would
obviously hurt composition.) Also, protocol µ must be compliant. This roughly means that µ should not be
invoking instances of π with the same sid as instances of φ, as otherwise these instances of π would interact
with the ones obtained by the operation µφ→π .

In summary, a protocol execution involves the following types of ITIs: the environment Z , the adversary A,
instances of the protocol machines π, and (possibly) further ITIs invoked by Aor any instance of π (or their
subroutines).

The contents of the environment’s output tape after the execution is denoted by the random variable EXECπ,A,Z(λ, z),
where λ ∈ N is the security parameter and z ∈ {0, 1}∗ is the input to the environment Z . The formal details of
the execution are specified in [Can18]. We say that a protocol π UC-realizes a functionality F if

∀A ∃S ∀Z : EXECπ,A,Z ≈ EXECφ,S,Z ,

where “≈” denotes indistinguishability of the respective distribution ensembles, and φ is the dummy protocol
that simply relays all inputs to and outputs from the functionality F.

Multi-protocol UC. The standard UC framework does not allow to modularly prove protocols in which, e.g., a
zero-knowledge proof system is used to prove that a party has performed a certain evaluation of a cryptographic
scheme correctly. Camenisch, Drijvers, and Tackmann [CDT19] recently showed how this can be overcome. In
a nutshell, they start from the standard FRNIZK-functionality which is parameterized by a relation R, and show that
if R is described in terms of evaluating a protocol, then the protocol can equivalently be evaluated outside of the
functionality, and even used to realize another functionality F. This results in a setting where FNIZK validates
a pair (y, w) of statement y and witness w by “calling out” to the other functionality F. We use this proof
technique extensively in this work.

43

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

4.5.3 The Privacy-Preserving Token Functionality

The functionality FTOKEN realized by our privacy-preserving token system is formalized in Figure 4.3. To keep
the presentation simple, the functionality formalizes the guarantees for the case of a single token issuer I . The
functionality initially requires registration authority A, certifier C , and issuer I to initialize. (This corresponds
to the fact that all protocol steps depend on those parties’ keys.) Likewise, regular parties P have to generate
and register their keys before they can perform operations. Each party can then read the tokens they own and
generate transfer transactions that reference those tokens and transfers them to one or more receivers. Issuers
can additionally issue new tokens. In the inputs and outputs of the functionality, v always represents the value
of a token, and cm serves as a handle identifying the token (it stems from the commitment that represents the
token on the ledger). Finally, the functionality specifies which information is potentially leaked to the adversary,
and which operations the adversary can perform in the name of corrupted parties.

4.5.4 Set-Up Functionalities

Our protocol requires a number of set-up functionalities to be available.

Common reference string. Functionality FCRS (see Figure 4.5) provides a string that is sampled at random
from a given distribution and accessible to all participants. All parties can simply query FCRS for the refer-
ence string. The functionality is generally used to generate common public parameters used in a cryptographic
scheme. Functionality FCRS is parameterized by a CRS generator crsgen, which on input security parameter
λsamples a fresh string crs ←$ crsgen(λ).

Transaction ledger. We describe a simplified transaction ledger functionality as FLEDGER in Figure 4.5. In a
nutshell, every party can append bit strings to a globally available ledger, and every party can retrieve the current
ledger.

The functionality intentionally idealizes the guarantees achieved by a real-world ledger; transactions are
immediately appended, final, and available to all parties. We also use FLEDGER as a local functionality. These
simplifications are intended to keep the paper more digestible.

Secure and private message transfer. Functionality FSMT provides a message transfer mechanism between
parties. The functionality builds on the ones described by Canetti and Krawczyk [CK02], but additionally hides
the sender and receiver of a message, if both are honest. This is required since our protocol passes information
between transacting parties, and leaking the communication pattern to the adversary would revoke the anonymity
otherwise provided by our protocol.

More formally, functionality FSMT models a secure channel between a sender S and a receiver R. In compar-
ison to the functionality introduced by Canetti and Krawczyk [CK02], however, our functionality additionally
provides privacy and hides the parties that are involved in the transmission.

Public-key registration. The registration functionality FREG models a public-key infrastructure. It allows each
party P to input one value x ∈ {0, 1}∗ and makes the pair (P, x) available to all other parties. This is generally
used to publish public keys, binding them to the identity of a party.

Anonymous authentication. As our protocol is in the permissioned setting but supposed to provide privacy,
we need anonymous credentials to authorize transactions. Our schemes integrate well with the Identity Mixer
family of protocols [CH02]. Yet, as these topics are not the core interest of this paper, we abstract the necessary
mechanisms in the functionality FA-AUTH as depicted in Figure 4.8.

In a nutshell, the functionality allows parties to first register and then “authorize” commitments; the function-
ality returns “proofs” ψ assuring that the party’s identity is contained in a certain position of that commitment.

44

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Privacy-preserving token functionality FTOKEN

Functionality FTOKEN stores a list of registered users and an initially empty map Records. The session identifier
is of the form sid = (A,C , I , sid ′).

• Upon input init from P ∈ {A,C , I }, output to A(initialized, P). (This must happen for all three
before anything else.)

• Upon input register from a party P , if P is unregistered, then mark P as registered and output
(registered, P) to A. (Otherwise ignore.)

• Upon input read from a registered party P , issue (read?, P) to A. Upon receiving response
(read!, P) from A, return to P a list of all records of the type (cm, v) that belong to P .

• Upon input (issue, v) from I , output (issue, v) to A. Receiving from Aa response (issue, cm), if
Records[cm] 6= ⊥ then abort, else set Records[cm]← (v , P,alive). Return (issued, cm) to I .

• Upon receiving an input (issue, v , cm) from A, where I is corrupt, check and record the commitment
as in the previous step. Return to A.

• Upon input
(
transfer, (cmi)

m
i=1, (v

out
j ,Rj)

n
j=1

)
from an honest party P , where P and all Rj for j =

1, . . . , n are registered, proceed as follows.

1. If, for any i ∈ {1, . . . ,m}, Records[cmi] = ⊥ then abort, else set (v in
i , P

′
i , st i)← Records[cmi].

2. If, for any i ∈ {1, . . . ,m}, st i 6= alive or P ′i 6= P , then abort.

3. If
∑m

i=1 v
in
i 6=

∑n
j=1 v

out
j then abort.

4. Let L be an empty list. For all j = 1, . . . , n, if Rj is corrupt then append to L the information
(j, P,Rj , v

out
j). Output (transfer,m, n, L) to A.

5. Receiving from Aa response (transfer, (cmout
j)nj=1), if Records[cmout

j] 6= ⊥ for any j ∈
{1, . . . , n} then abort, else set Records[cmout

j] ← (vout
j ,Rj ,delayed) for all j ∈ {1, . . . , n}

and set Records[cmi]← (v in
i , P

′,consumed) for all i ∈ {1, . . . ,m}.
6. Return (transferred, (cmout

j)nj=1) to P .

• On (transfer, P, (cm in
i)mi=1, (Rj , v

out
j , cmout

j)nj=1) where P is corrupt, proceed analogously to above
except for using the given output commitments.

• Upon receiving an input (deliver, cm) from Awith Records[cm] = (v , P,delayed) for some v , set
Records[cm]← (v , P,alive). If C is corrupted, then output P to A.

Figure 4.3: Privacy-preserving token functionality.

45

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Functionality Fcrsgen
CRS

FCRS is parameterized by a probabilistic algorithm crsgen. Initially, it sets crs ←$ crsgen(λ).

1. On input read from a party P , return crs to P .

Figure 4.4: Common reference string.

Ledger functionality FLEDGER

Functionality FLEDGER stores an initially empty list L of bit strings.

• Upon input (append, x) from a party P , append x to L. If P is corrupt then send (append, x, P) to A,
else return to P .

• Upon input retrieve from a party P or A, return L.

Figure 4.5: Ledger functionality.

The functionality allows to further bind the proof to a bit string m , which intuitively can be understood as “party
P (as referenced in the commitment) signs message m .” The exact reason for this mechanism will become clear
in the protocol description in Section 4.6.4.

Our description of FA-AUTH is simplistic and tailored to an easy treatment in our proofs. For a complete
composable model of anonymous authentication schemes, see e.g. the work of Camenisch, Dubovitskaya, Har-
alambiev, and Kohlweiss [CDHK15a].

Digital signatures. We use the variant of the signature functionality FSIG that was introduced by Camenisch et
al. [CDT19]. This version of the functionality is compatible with the modular NIZK proof technique introduced
in the same paper.

Distributed key generation. Functionality FDKG idealizes a distributed key-generation protocol such as, for
discrete-log based schemes, the one of Gennaro et al. [GJKR07]. The simplified functionality given in Fig-
ure 4.10 is not directly realizable since it does not model that, e.g., the communication may be delayed or
prevented by the adversary. We decided to still use this version to simplify the overall treatment.

Secure message transmission functionality FSMT

Functionality FSMT is for transmitting messages in a secure and private manner.

• Upon input (send,R,m) from a party S:

– If both S and R are honest, provide a private delayed output (sent, S,R,m) to R.

– If at least one of S and R is corrupt, provide a public delayed output (sent, S,R,m) to A’s queue.

Figure 4.6: Secure message transmission functionality.

46

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Registration functionality FREG

Functionality FREG is for registering users’ public keys. It stores an initially empty list of users {U } and an
empty list {X } of pairs of users and public keys.

• Upon input (register, x) from a party P where P /∈ {U } and (?, x) /∈ {X }, set {U } ← {U } ∪ {P}
and {X } ← {X } ∪ {(P, x)} and output (registered, (P, x)) to A.

• Upon input (lookup, P ′) from a party P , check if P ′ ∈ {U }. If not, return ⊥, else return (P ′, x′).

Figure 4.7: Registration functionality.

Extended anonymous authentication functionality FA-AUTH

Functionality FA-AUTH is parameterized by a commitment opening algorithm open. It stores an initially empty
{U } of registered users, and an initially empty list of records.

• Upon input register from a party P where P /∈ {U }, set {U } ← {U } ∪ {P} and output
(registered, P) to A.

• Upon input (lookup, P ′) from a party P , return (the result of) P ′ ∈ {U }.

• Upon input (prove, crs, cm, rcm, x, y,m) from party P , if open(crs, cm, (x, P, y), rcm) then generate a
proof ψ, store the record (transfer, crs, cm, ψ,m) internally and output ψ to P .

• Upon input (verify, crs, cm, ψ,m) from some P , look up if there is a record (transfer,
crs, cm, ψ,m) and output success (only) if it exists.

Figure 4.8: Extended anonymous registration functionality.

47

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Functionality F (skeygen,sign,Vf)
SIG

Functionality FSIG (see Figure 4.9) requires that sid = (S, sid ′), where S is the party identifier of the sender.
Set {C }, initially empty, specifies the set of currently corrupted parties. The functionality keeps a set {S}of
properly signed messages.

0. Upon the first activation from S, run (sk, pk)←$ skeygen(λ), where λis obtained from the security pa-
rameter tape, and store (sk, pk).

1. Upon input pubkey from party S, output (pubkey, pk) to S.

2. Upon input (sign,m) from party S with m ∈ {0, 1}∗, compute Sig←$ sign(sk,m). Set {S} ← {S} ∪
{m} and output s to S.

3. Upon input (verify, pk′,m′, s′) from party P , compute b ← Vf(pk′,m′, s′). If S /∈ {C } ∧ pk =
pk′ ∧ b ∧m′ /∈ {S} then output (result, 0) to P . Else output (result, b) to P .

4. Upon input (corrupt, P) from the adversary, set {C } ← {C } ∪ {P}. If P = S, then additionally
output skto A.

Figure 4.9: Signature functionality.

Functionality FDKG

FDKG is parameterized by a PPT algorithm tkeygen. The session identifier sid specifies the total number of
certifiers n and the threshold bound t.

• Upon input init from a party Ci:

– If no keys (sk1, . . . , skn, pk) are stored yet, generate (sk1, . . . , skn, pk)←$ tkeygen(λ, n, t).

– Return (ski, pk) to Ci.

Figure 4.10: Distributed key generation functionality.

4.6 Privacy-Preserving Auditable UTXO

This section describes the complete protocol. We begin by introducing the core ideas and mechanisms. Sec-
tion 4.6.4 then describes multi-input multi-output transactions, followed by Section 4.6.5 that assembles all
pieces and describes the full protocol. Section 4.6.6 introduces the extension that makes the protocol auditable.

4.6.1 Core Protocol Ideas

The protocol represents tokens as commitments (cm, rcm)←$ commit(crs, (v , P)) that are stored on FLEDGER,
where v is the value and P is the current owner. Issuers can create new tokens in their own name. Transferring
tokens (v , P) to a party R means replacing the commitment to (v , P) with a commitment to (v ,R). We now
describe the protocol steps in more detail, but still at an informal level.

To issue a token of value v , the issuer generates a new commitment (cm, rcm)←$ commit(crs, (v , I)),
which means a token with value v is created with owner I . The protocol generates a proof

ψ0 ← PK {(rcm) : open(crs, cm, rcm, (v , I)) = true} ,

48

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

which shows that the commitment contains the expected information. Issuer I also creates a signature Sig on
message (v , cm, ψ0). The information written to FLEDGER is tx = (issue, v , cm, ψ0,Sig).

A party can transfer a token identified by a commitment cm to a receiver R by generating a new commitment
(cm ′, r ′cm)←$ commit(crs, (v ,R)). She generates a first NIZK ψ1 showing that cm ′ contains the correct infor-
mation and that the receiver is registered, and a second proof ψ2 of eligibility (i.e. the initiator of the transfer
owns cm) using FA-AUTH. The information written to FLEDGER is tx = (transfer, cm ′, ψ1, ψ2). At this point,
we cannot yet describe how P proves that (a) cm is a valid commitment on the ledger—we cannot include cm
in the transaction as that would hurt privacy—and (b) that P is not double-spending cm . These aspects will be
covered in the next steps. Party P also sends the message (token, cm ′, r ′cm, v) to R privately.

So far, we have shown how to transfer a single token from a party P to a receiver R. Following sections show
how to (i) make sure that only valid and unspent tokens are transferred; and (ii) support multi-input multi-output
transfers.

4.6.2 Certification via Blind Signatures

(Threshold) blind signature functionality F (TSIG,commit)
BLINDSIG

Functionality FBLINDSIG requires that sid = ((C1, . . . ,Cn), t, `, sid ′), where C1, . . . ,Cn are the party identifiers
of the signers. It is parameterized by the (deterministic) commit algorithm of the commitment as well as the a
threshold signature scheme TSIG = (tkeygen, sign,Vf). The functionality keeps an initially empty set {S}of
signed messages.

• Upon init from some Ci, run (sk1, . . . , skn, pk1, . . . , pkn, pk)←$ tkeygen(λ, n, t, `), where λis ob-
tained from the security parameter tape, and store (sk1, . . . , skn, pk). Output (init,Ci) to A.

• Upon input pubkey from party P , return (pubkey, pk).

• On input (request, crs, rcm, (m1, . . . ,m`)) from party P :

1. Compute cm ← commit(crs, (m1, . . . ,m`); rcm) and store it internally along with the messages
and randomness.

2. Send delayed output (request, P, crs, cm) to each Ci, i ∈ {1, . . . , n}.

• Upon input (sign, cm) from Ci:

1. If no record with commitment cm exists, then abort.

2. If there is a record ((m1, . . . ,m`), S) ∈ {S} with S ⊆ {C1, . . . ,Cn}, update the record with
S ← S ∪ {Ci}. Else set {S} ← {S} ∪ {((m1, . . . ,m`), {Ci})}.

3. If |S| ≥ t, then compute Sig← sign(sk, (m1, . . . ,m`)) and output Sig to requestor P .

• Upon input (verify, pk′, (m1, . . . ,m`), Sig) from P , compute b← Vf(pk′, (m1, . . . ,m`),Sig). If pk =
pk′∧b∧

(
((m1, . . . ,m`), S) /∈ {S}∨|S| < t

)
then output (result, false) to P . Else output (result, b)

to P .

• Upon input (seckey, i) from A, if Ci is corrupted, then return ski.

Figure 4.11: Blind signature functionality, threshold version.

The problem of verification of token validity during transfer is resolved by certification. We consider a
specific party, called a certifier C , which vouches for the validity of the token (v , P) stored as a commitment cm

49

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

on FLEDGER by issuing a signature Sigon (v , P). In the proof ψ1, P refers to signature Siginstead of commitment
cm .

A naive implementation of the above scheme would require party P to reveal the content (v , P) of cm to
certifier C , so that the latter issues the corresponding signature Sig. Namely prior to signing, C checks that
cm opens to (v , P) and that cm is stored on FLEDGER. Disclosing the pair (v , P) to C is both undesired and
unnecessary. Instead we rely on a blind signature protocol, in which C learns only the commitment cm , but not
its contents, and blindly signs the contents.

While C learns cm during the protocol, it will not be able to leverage the data on FLEDGER to trace when
P makes use of the corresponding signature Sig. More precisely, within ψ1, party P only proves knowledge of
signature Sigand does not reveal it.

Note that a malicious certifier can essentially generate tokens by providing its signature without checking
for existence of the commitment on FLEDGER. Therefore, in Section 4.7.7, we describe how the certification task
can be distributed, so that no single party has to be trusted for verification. Figure 4.11 shows a threshold blind
signature ideal functionality, which we will use in the description of our solution in Section 4.6.5.

4.6.3 Serial Numbers Prevent Double-Spending

Double-spending prevention is achieved via a scheme that is inspired by Zerocash [BSCG+14] in that it uses a
VRF to compute serial numbers for tokens when they are spent. The VRF key is here, however, bound to a user
identity via a signature from the registration authority. On a very high level, the above protocol is extended as
follows.

1. Each user P creates a VRF key pair (vsk , vpk). They obtain a signature SigA from registration authority
A that binds vsk to their identity P .

2. Each commitment contains an additional value ρ.

3. During transfer, the value ρ is used to derive the serial number (sn, π) ← eval(vsk , ρ). The transaction
stored in FLEDGER also contains sn .

4. We cannot store the VRF proof π on FLEDGER, as it is bound to vpk and would deanonymize P . Therefore,
P proves knowledge of signature SigA, which binds vpk to her identity, and proves that check(vpk , ρ, sn, π) =
true through a NIZK proof.

It is important to note that authority A must be trusted for preventing double-spending, since it could easily
register two different VRF keys for the same user. It is therefore recommended to implement A in a distributed
fashion.

The proof ψ1 made by P during a transfer of the token (v , P, ρin) is then

ψ1 ← PK
{(

r ′cm,SigA, SigC ,R, P, ρ
in, ρout, π, v

)
:

Vf(pkC , (v , P, ρ
in),SigC) ∧ open(crs, cm ′, (v ,R, ρout), r ′cm)

∧ Vf(pkA, (P, vpk), SigA) ∧ check(vpk , ρin, sn, π)
}
,

which can be parsed as follows: prior to the transfer, P obtains signature SigC on (v , P, ρin) under pkC from
C . The first condition in the proof statement checks that P knows signature SigC on the triplet (v , P, ρin).
The second condition checks that the new commitment cm ′ contains the same value v . These two conditions,
together with trust in the correctness of C , ensure that the token corresponding to cm ′ is properly derived from a
token existing on FLEDGER. The third condition checks that the VRF public key vpk indeed belongs to P , and the
fourth condition checks that the computation of the serial number sn is correct. These two conditions, together
with trust in the correctness of A, prevent token (v , P, ρin) from being double-spent.

50

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

4.6.4 Multi-Input Multi-Output Transactions

Multi-input multi-output transactions allow a sender to transfer tokens contained in multiple commitments at
once, and to split the accumulated value into multiple outputs for potentially different receivers. We therefore
modify the transaction format to contain multiple inputs and multiple outputs. We also have to extend the NIZK:
besides the fact that we have to prove consistency of multiple inputs and multiple outputs, we now have to show
that the sum of the inputs equals the sum of the outputs.

Due to arithmetics in finite algebraic structures, we also have to prove that no wrap-arounds occur. This is
achieved, as in previous work, by the use of range proofs. For a given value max ∈ {1, . . . , p}, the condition is
that 0 ≤ v ≤ max for any value v that appears in an output commitment.

The proof, in more detail, now becomes

ψ1 ← PK
{(

(Sigi, v
in
i , ρ

in
i , πi)

m
i=1, P, SigA, (Rj , r

j
cm, v

out
j , ρout

j , vpk j ,SigjA)nj=1

)
:

∀i ∈ {1, . . . ,m} : Vf(pkC , (v
in
i , P, ρ

in
i),Sigi)

∧ ∀j ∈ {1, . . . , n} : open(crs, cmj , (v
out
j ,Rj , ρ

out
j), r jcm)

∧ Vf(pkA, (P, vpk),SigA)

∧ ∀j ∈ {1, . . . , n} : Vf(pkA, (Rj , vpk j),SigjA)

∧ ∀i ∈ {1, . . . ,m} : check(vpk , ρin
i , sni, πi)

∧
m∑
i=1

v in
i =

m∑
j=1

vout
j ∧ ∀j ∈ {1, . . . , n} : 0 ≤ vout

j ≤ max
}
. (4.1)

The processing of the transaction is analogously modified to check this more complex NIZK. We now argue
that the statement proved in the NIZK indeed guarantees the consistency of the system.

The first sub-statement (together with the honesty of C) guarantees that all commitments used as inputs in-
deed exist in the ledger, and the fact that the commitment is binding further implies that the values (v in

i , P, ρ
in
i)

indeed correspond to the expected state of the system. The next sub-statement shows that the output commit-
ments indeed contain the expected values (vout

j ,Rj , ρ
out
j). The subsequent two statements ensure that all parties

are properly registered on the system, and the statement check(vpk , ρin
i , sni, πi) prevents double-spending by

showing that the serial numbers are computed correctly.
The final two equations guarantee the global consistency of the system: the summation equation then shows

that no tokens have been created or destroyed in this transaction. Finally, the range proof shows that all outputs
contain a value in the valid range, which avoids wrap-arounds.

4.6.5 The Protocol

This section describes the protocol sketched in the above sections more formally. The protocol has a bit
registered ← false and keeps an initially empty list of commitments. We begin by describing the protocol
for a regular user P of the system.

• Upon input register, if registered is set, then return. Else, retrieve the public keys of A and C from
FREG. Query crs from FCRS. Generate a VRF key pair (vsk , vpk) and send a message (register, vpk)
to A via FSMT to obtain a signature SigA on (P, vpk). If all steps succeeded, then set registered ← true
send register to FA-AUTH.

• Process pending messages and retrieve new data from FLEDGER. This is a subroutine called from functions
below.

– For transactions tx = (issue, v , cm, ψ0, Sig) from FLEDGER, validate ψ0 by inputting (verify,
(crs, cm, v , I), ψ0) to FNIZK and verify Sig via Vf(pkI , (v , cm, ψ0), Sig). If both checks succeed,
record cm as a valid commitment.

51

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

– For transactions tx = (transfer, (sni, ψ2,i)
m
i=1, (cmj)

n
j=1, ψ1), check the serial numbers sn1, . . . ,

snm for uniqueness, validate ψ1 viaFNIZK and verify ψ2,1, . . . , ψ2,n via (verify, crs, cmi, ψ2,i,m)
to FA-AUTH for m = ((sni)

m
i=1, (cmj)

n
j=1, ψ1). If all checks succeed, then store cm1, . . . , cmm as

valid.

– For each incoming message (sent, S, P,m) buffered fromFSMT, parsem as (token, cm, rcm, v , ρ)
and test whether the commitment is correct, i.e. whether it holds that open(crs, cm, rcm, (v , P, ρ)) =
true. Check whether there is a transfer transaction tx that appears in FLEDGER and contains cm .
If all checks are successful, then input (request, rcm, (v

in, P, ρin)) to FBLINDSIG and wait for a
response Sigcm . Store the complete information in the internal list.

• Upon input read, if ¬registered then abort, else first process pending messages. Then return a list of all
unspent assets (cm, v) owned by the party.

• Upon input (issue, v), assuming that registered , process pending messages and proceed as follows.

1. Choose a uniformly random ρ and create a commitment (cm, rcm)←$ commit(crs, (v , I , ρ)).

2. Compute a proof

ψ0 ← PK {(rcm, ρ) : open(crs, cm, rcm, (v , I , ρ)) = true} ,

where I and v are publicly known; this is achieved by sending (prove, x, w) to FNIZK, where
the statement is x = (crs, cm, v , P) and the witness is w = (rcm, ρ). Compute a signature
Sig←$ sign(skI , (v , cm, ψ0)).

3. Send to FLEDGER the input (append, (issue, v , cm, ψ0, Sig)).

4. Store tuple (cm, rcm, v , ρ) internally and return (issued, cm).

• Upon input
(
transfer, (cmi)

m
i=1, (v

out
j ,Rj)

n
j=1

)
, assuming that registered , query (lookup,Rj) to

FREG for all j = 1, . . . , n in order to make sure that Rj is registered. Then process pending messages and
proceed as follows.

1. If, for any i ∈ {1, . . . ,m}, there is no recorded commitment (cmi, r
i
cm, v

in
i , P, ρ

in
i), then abort.

2. If
∑m

i=1 v
in
i 6=

∑m
j=1 v

out
j then abort.

3. Choose uniformly random ρout
j for j = 1, . . . , n, and create commitments

(cmj , r
j
cm)←$ commit(crs, (vout

j ,Rj , ρ
out
j)).

4. Compute the serial numbers as (sni, πi)← eval(vsk , ρin
i), for i = 1, . . . ,m.

5. Compute proof ψ1 as in Equation (4.1).

6. Set m ← ((sni)
m
i=1, (cmj)

n
j=1, ψ1) For each i = 1, . . . ,m, send (prove, cm in

i , ri, v
in
i , ρ

in
i ,m) to

obtain ψ2,i.

7. Send (token, cmj , r
j
cm, vout

j , ρout
j) to Rj via FSMT, for each 1 ≤ j ≤ m, and send to FLEDGER the

input
(append, (transfer, (sni, ψ2,i)

m
i=1, (cmj)

n
j=1, ψ1)).

8. Delete cm in
i from the internal state and return (transferred, (cmj)

n
j=1).

• Upon receiving (sent, S, P,m) from FSMT, buffer it for later processing. Respond ok to sender S.

The protocol machines for parties C and A are easier to describe. Certifier C checks the validity of a
commitment and signs if it finds the commitment in the ledger. In more detail:

1. Upon input init obtain crs from FCRS and input init to FBLINDSIG.

52

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

2. Upon receiving (request, P, crs ′, cm) from FBLINDSIG, check that crs = crs ′. Query FLEDGER for the
entire ledger. For each yet unprocessed transaction tx on FLEDGER, validate the proofs as described in the
party protocol. Check whether cm is marked as a valid commitment.

3. If the above check is successful, send (sign, cm) to FBLINDSIG.

Certification authority A signs VRF public keys of parties.

1. Upon init, generate a key pair (skA, pkA)←$ skeygen(λ) for the signature scheme and input (register,
pkA) to FREG.

2. When activated, input retrieve to FSMT to obtain the next message. Let it be m from P . If no message
has been signed for P yet, then sign SigA ← sign(skA, (P,m)) and send SigA via FSMT back to P .

4.6.6 Auditing

The auditing capability we implement associates to each user U an auditor AU . Auditor AU has the capabilities
to decrypt all transaction information associated to U , such as the transaction outputs that are associated with U ,
as well as the full transactions issued by U . The set of auditors is denoted by AU.

We formalize the guarantees in a functionality FATOKEN described in the following. Functionality FATOKEN

stores a list of registered users and an initially empty map Records. The session identifier is of the form sid =
(A,C , I ,AU, sid ′).

• Upon input init from P ∈ {A,C} ∪AU, output to A(initialized, P). (This must happen for all
before anything else.)

• Inputs register, read, and issue are treated as in FTOKEN.

• Upon input (bind,U , AU) from A, where U is a registered user and AU ∈ AU is an initialized auditor,
and there is not yet a pair (U , AU ′) withAU 6= AU ′ ∈ AU, record (U , AU) and output (bound,U , AU)
to A.

• Upon input
(
transfer, (cmi)

m
i=1, (v

out
j ,Rj)

n
j=1

)
from an honest party P , where P and all Rj for j =

1, . . . , n are registered, proceed as follows.

1. If, for any i ∈ {1, . . . ,m}, Records[cmi] = ⊥ then abort, else set (v in
i , P

′
i , st i)← Records[cmi].

2. If, for any i ∈ {1, . . . ,m}, st i 6= alive or P ′i 6= P , then abort.
3. If

∑m
i=1 v

in
i 6=

∑n
j=1 v

out
j then abort.

4. Let L be an empty list. For all j = 1, . . . , n, if Rj or its auditor AUj are corrupt, then append to
L the information (P,Rj , v

out
j). If the auditor AU of P is corrupt, include the information for all

inputs and all outputs. Output (transfer, L) to A.
5. Receiving fromAa response (transfer, (cmout

j)nj=1), if Records[cmout
j] 6= ⊥ for any j ∈ {1, . . . , n}

then abort, else set Records[cmout
j]← (vout

j ,Rj ,alive) for all j ∈ {1, . . . , n} and set Records[cmi]←
(v in
i , P,consumed) for all i ∈ {1, . . . ,m}.

6. Return (transferred, (cmout
j)nj=1) to P .

• Upon input (audit, cm) from auditorAU , if Records[cm] = ⊥ then return⊥. Otherwise, set (v in, P, st)←
Records[cm]. If P is not audited by AU , then return ⊥, else return (v , P).

The protocol is adapted as follows. First, each commitment also contains the identity of the previous owner.
This is not technically necessary but allows to prove that the auditable information is correct while keeping
the description here compact. The binding between the auditor and the user is achieved through a (structure-
preserving) signature from A. The auditing functionality is implemented as follows: A party P that executes a
transfer encrypts the following information:

53

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

• To its own auditor, for each input the value v in and current owner P . For each output the value vout
j , sender

P , and receiver Rj .

• For each output to Rj , to the auditor of Rj the value vout
j , sender P , and receiver Rj .

This is achieved by encrypting the information, including the resulting ciphertexts in the transfer, and proving
that the encryption is consistent with the information in the commitment.

For concreteness, consider an input described by commitment cm = commit(crs, (v in, P, P ′, ρin); rcm).
We encrypt current owner c1 = enc(pkAU , P ; r1) and value c2 = enc(pkAU , v , r2). Then we generate a NIZK
proof:

PK
{(

v in, P, P ′, ρin,Sig, pkAU , r1, r2

)
:

Vf(pkC , (v
in, P, P ′, ρin),Sig) ∧ Vf(pkA, (P, pkAU), SigA)

∧ c1 = enc(pkAU , P ; r1) ∧ c2 = enc(pkAU , v
in, r2)

}
where pkC and pkA are public, and c1 and c2 are part of the transaction.

Similarly, for a transfer from P to R and an output commitment cm = commit(crs, (vout,R, P, ρout); rcm),
we encrypt to the auditor (here we use the one of P) the sender c1 = enc(pkAU , P ; r1), the receiver c2 =
enc(pkAU ,R; r2), and the value c3 = enc(pkAU , v

out; r3). We then generate a NIZK proof:

PK
{(

vout,R, P, ρout, rcm, pkAU ,SigA
)

:

open(crs, cm, (vout,R, P, ρout), rcm) ∧ Vf(pkA, (P, pkAU), SigA)

∧ c1 = enc(pkAU , P ; r1) ∧ c2 = enc(pkAU ,R, r2) ∧ c3 = enc(pkAU , v
out; r3)

}
with public parameters crs and pkA, as well as cm , c1, c2, and c3 taken from the transaction.

4.6.7 Security Analysis

This section contains the main result of the paper, namely that the protocol in Section 4.6.5 instantiates function-
ality FTOKEN.

Theorem 5. Assume that COM = (ccrsgen, commit, open) is a commitment scheme that is perfectly hiding
and computationally binding. Assume that VRF = (vkeygen, eval, check) is a verifiable random function. Then
πTOKEN realizes FTOKEN with static corruption. Corruption is malicious for I and users, and honest-but-curious
for C . A is required to be honest, but is inactive during the main protocol phase.

The restriction that C can only be corrupted in an honest-but-curious model is necessary: Otherwise C can
issue signatures on arbitrary commitments, even ones that are not stored in FLEDGER. We use the composition
result of [CDT19] to prove this, since we want to prove correctness of the evaluation of the verification algorithm.

Proof. We use the proof technique of Camenisch et al. [CDT19] in instantiating the functionalities FNIZK, FSIG,
and FBLINDSIG in a way that FNIZK can call out to FSIG and FBLINDSIG for the verification of signatures. This has
the advantage that the respective clauses in the statement are ideally verified.

We then need to describe a simulator. Simulator S emulates functionalities FLEDGER, FREG, FA-AUTH, FNIZK,
FSIG, and FSMT. To emulate FLEDGER, S manages an initially empty internal ledger and allows Ato read it via
retrieve or append messages as described below. S initially sets initialized ← false. We start by describing
the behavior of S upon outputs provided by FLEDGER.

• Upon receiving (initialized, P) for P ∈ {A,C}, generate a signature key pair for the respective
party and simulate the public key of the respective party being registered at FREG. After receiving this for
both A and C , set initialized ← true.

54

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

• Upon receiving (registered, P) fromFTOKEN, markP as registered and generate output (registered,
P) as a message from FA-AUTH to A.

• Processing of pending messages (several occasions, see below) for party P : For every record tx marked
for delayed processing, proceed as follows.

– If I is corrupt and tx = (issue, P ′, v , cm0, ψ0, ψ2), then issue (verify, y, ψ0) to Aas an output
of FNIZK, with y = (crs, cm0, v , P

′), and expect as response a witness w. If w = (rcm, ρ
in) is valid

for cm0, and proof ψ2 is valid according to the simulated instance of FA-AUTH, then provide the input
(issue, v , cm0) to FTOKEN.

– If tx = (transfer, (sni, ψ2,i)
m
i=1, (cmj)

n
j=1, ψ1), then issue (verify, y, ψ1) to Aas an output of

FNIZK, with y = (pkC , crs, (cmj)
n
j=1, pkA, (sni)

m
i=1). Expect as response from adversary Aa wit-

ness w = ((Sigi, v
in
i , ρ

in
i , πi)

m
i=1, P, SigA, (Rj , r

j
cm, vout

j , ρout
j)nj=1). If w is valid, and ψ2,1, . . . , ψ2,n

are valid according to the simulated instance of FA-AUTH, and corresponding messages have been
sent, then mark tx as valid. Provide a request (transfer, P, (cmi)

m
i=1, (Rj , v

out
j , cm[out]j)

n
j=1)

to FTOKEN.

– For all valid transactions tx where in the meantime the corresponding message (coin, cmj , r
j
cm, vout

j ,
ρout
j) is sent, input (deliver, cmj) to FTOKEN.

• Upon receiving (read?, P) from FTOKEN, process pending messages and return (read!, P) to FTOKEN.

• Upon receiving (issue, v) from FTOKEN, first process pending messages. Then, generate a new all-
zero commitment (cm∗, r∗cm)←$ commit(crs, (0, 0, 0)). Next, emulate an output (prove, y) from FNIZK

for the statement y = (crs, cm∗, v , P) and proceed upon an input (done, ψ∗0) for the same instance
of FNIZK. Emulate the proof ψ∗2 as in FA-AUTH, storing the respective instance as a record. Append
(issue, v , cm∗, ψ∗0, ψ

∗
2) to the internal ledger. Input (issue, cm∗) to FTOKEN.

• Upon receiving (transfer,m, n, L) fromFTOKEN, first process pending messages. For each i = 1, . . . ,m,
generate a random serial number sn∗i . Then proceed as follows for j = 1, . . . , n. If there is no en-
try for j in L, then generate a commitment (cm∗j , r

j
cm)←$ commit(crs, (0, 0, 0)). If there is an entry

(j, P,Rj , v
out
j), then generate a random value ρout

j ←$ {M } and compute commitment (cm∗j , r
j
cm)←$

commit(crs, (vout
j ,Rj , ρ

out
j)). Next, emulate the output (prove, y) from FNIZK for instance y = (pkC ,

crs, (cm∗j)
n
j=1, pkA, (sn

∗
i)
m
i=1) and record the proof ψ∗1 returned by A. Emulate the proofs ψ∗2,1, . . . , ψ

∗
2,i

as in FA-AUTH. Append transaction (transfer, (sn∗i , ψ2,i)
m
i=1, (cm

∗
j)
n
j=1, ψ

∗
1) to the internal ledger and

emulate transmission of n messages of the same length as (token, cm∗j , r
j
cm, vj , ρ

out
j) on FSMT (i.e., ap-

pend the length to the internal queue). Respond with (transfer, (cm∗j)
n
j=1) to FTOKEN. WhenAdelivers

a message on FSMT, input (deliver, cm∗j) for the corresponding j to FTOKEN.

• Upon receiving (transfer, cm), first process pending messages. Record cm in the state of the simulated
party C , and proceed as in the above case.

• Upon input (append, s, P ′) from Afor a corrupt P ’, append s to the ledger and mark for delayed pro-
cessing. Return to A.

If S obtains from Aa query to FA-AUTH in the name of a corrupt party P that is marked as registered, then S
internally handles the inputs prove and verify just like FA-AUTH. IfAprovides an input message x to FSMT on
behalf of a corrupted party P , then the message is ignored unless it is of the format x = (token, cm, rcm, v , ρ).
If it has the right format, then S checks whether the corresponding transaction tx exists on FLEDGER; if it does,
then input the respective deliver message to FTOKEN. If such a transaction does not exist, then store the
message x for later. Our goal is now to prove that if the commitment and the VRF are secure, then the ideal and
real experiments are indistinguishable. We prove this by describing a sequence of experiments, where EXEC0 is

55

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

the real experiments and we transform it step-by-step into the ideal experiment, showing for each adjacent pair
of steps that they are indistinguishable. The overall statement then follows via the triangle inequality.

Experiment EXEC1 is almost the same as EXEC0 but commitments generated during (issue, v) at an honest
party P as well as commitments generated during (transfer, . . .) at an honest party P , where R is also
honest, are replaced by commitments generated via (cm, rcm)←$ commit(crs, (0, 0, 0)). Functionality FNIZK

is changed so that it does not actually check the input of honest parties.
Experiments EXEC0 and EXEC1 are equivalent since the commitment is perfectly hiding and therefore the

distribution of the output to the adversary is unchanged. As all inputs of the honest parties’ protocols to FNIZK

are correct, omitting the checks has no effect.
Experiment EXEC2 is almost the same as EXEC1 but serial numbers output by honest parties are replaced by

uniformly random values from the same set. Experiments EXEC2 and EXEC1 are indistinguishable because of the
pseudorandomness of VRF, which is easily proved by reduction. Note that the environment never sees honestly
generated proofs.

In the following, we describe the response to environment queries in both EXEC2 and the ideal experiment
and point out the differences. We assume that the state in terms of valid commitments is the same prior to the
input, and show when the output to the query is the same and when the state in terms of valid commitments
remains consistent. The consistency of the input-output behavior is relatively straightforward to check for most
inputs. We focus here on the ones used in transfer.

• On input (transfer, . . .) from an honest user P , if not both of P and all R1, . . . ,Rj are registered,
then the request is ignored in both cases. Also if not all transferable commitments cm1, . . . , cmi exist
and are associated to user P , both invocations abort. The protocol πTOKEN then generates new commit-
ments cm ′1, . . . , cm

′
j and send them for the proof to FNIZK, which requests a proof ψ1 from A. Upon

return, πTOKEN generates an additional proof ψ2 via FA-AUTH, sends the transaction (transfer, . . .) to
FLEDGER and the token messages to FSMT. If any Rj is corrupt, this latter invocation means that Alearns
(r jcm, vout

j , ρout
j) as well as the sender P via FSMT in addition.

The functionality FTOKEN provides either just m,n—if all R1, . . . ,Rj are honest—or the values (j, P,Rj ,
vout
j) for each corrupt Rj . In the first case, S generates a commitment to all-zero messages and requests

the proof ψ1 from Avia FNIZK-interaction, in the second case S has all the data available to perform the
same computations as the protocol.

The output distribution is the same since in both cases the commitment is an all-zero commitment and the
serial number is uniformly random.

• Processing of pending transactions. For all new (possibly adversarial) transactions on FLEDGER, the honest
parties first attempt to verify the proofs via FNIZK. For adversarially-generated proofs, the first attempt for
each such proof may lead to a message from FNIZK requesting the witness fromA. The same messages are
generated by S , which then records the messages and issues the proper requests to FTOKEN. (Note that this
processing in FTOKEN takes place at this point in time, but the timing is indistinguishable from that in the
protocol as each honest user input leads to that user processing the pending transactions in the protocol.)

For (passively) corrupt C , if a commitment cm is delivered to the receiver, the simulator learns the re-
ceiver’s identity and emulates the behavior in the real protocol where C also learns both the commitment
and the identity of the receiver.

For adversarial transfers sent to the party via FSMT, it may mean that the message sent on FSMT is not
proper (so it is ignored by both πTOKEN and S), or that it parses correctly does not have a corresponding
transaction in FLEDGER (in the sense that the commitment cm∗ in the message does not exist there—then
it is also ignored), or that both message and transaction can be found, in which case the view of the party
changes when the tokens are found.

The only difference between the two above executions is when the adversary fabricates a transaction in the
name of a corrupt party that makes a state transition that is different from the one that is done in FTOKEN. Let

56

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

us first consider issue transactions, where the statement is y = (crs, cm∗, v , P ′). When an honest party
verifies the proof with FNIZK, then Ahas to provide a proper witness (r∗cm, ρ) such that the commitment opens to
open(crs, cm∗, (v , P, ρ∗), r∗cm) = true.

Consider a transaction tx = (transfer, (sn∗i , ψ2,i)
m
i=1, (cm

∗
j)
m
j=1, ψ

∗
1) input by the adversary. When ψ∗1 is

verified by the honest party, thenAis given the statement y = (pkC , crs, (cm
∗
j)
n
j=1, pkA, (sn

∗
i)
m
i=1) and provides

a witness w = ((Sigi, v
in
i , ρ

in
i , πi)

m
i=1, P, SigA, (Rj , r

j
cm, vout

j , ρout
j)nj=1), which satisfies the PK-statement

PK
{(

(Sigi, v
in
i , ρ

in
i , πi)

m
i=1, P, SigA, (Rj , r

j
cm, v

out
j , ρout

j)nj=1

)
:

∀i ∈ {1, . . . ,m} : Vf(pkC , (v
in
i , P, ρ

in
i),Sigi)

∧ ∀j ∈ {1, . . . , n} : open(crs, cmj , (v
out
j ,Rj , ρ

out
j), r jcm)

∧ Vf(pkA, (P, vpk),SigA)

∧ ∀i ∈ {1, . . . ,m} : check(vpk , ρin
i , sni, πi)

∧
m∑
i=1

v in
i =

m∑
j=1

vout
j ∧ ∀j ∈ {1, . . . , n} : 0 ≤ vout

j ≤ max
}
.

As Vf(pkC , (v
in
j , P, ρ

in
i),Sigi) are evaluated via FBLINDSIG, and C checks the correctness of crs , we also know

that Sig1, . . . ,Sigm were generated for inputs (request, crs, r icm, (v
in
i , P, ρ

in
i)), and the commitment cm∗i =

commit(crs,
(v in
i , P, ρ

in
i); r icm) indeed exists on the ledger. Then either cmi was created during a previous transaction with

the same input (v in
i , P, ρ

in
i) or we can turn Z into an adversary that breaks the binding property of COM.

As Vf(pkA, (P, vpk), SigA) is evaluated via a call to FSIG, and the correctness of both FSIG and the honesty
of A implies that vpk is the unique VRF public key associated to P . So at this point we know that vpk and ρin

i are
correct. As check(vpk , ρin

i , sn
∗
i , πi) = true, either (sn∗i ,)← eval(vsk , ρin

i) or we can turn Z into an adversary
against the soundness of VRF. This means that sn∗i is also correct, no double-spending occurred. The last two
lines mean that the sum of all output values and the sum of all input values are the same, so the overall value is
preserved (and the input provided by the simulator is accepted by FTOKEN).

The construction has negligible correctness error due to collision of sequence numbers.

4.7 Instantiation

In this section, we provide details on how to instantiate the protocol using well-established primitives that do not
require any complex setup assumptions.

4.7.1 Pedersen Commitments

The commitment scheme is instantiated with Pedersen commitments [Ped91b] on multiple values. Consider a
group G and generators g0, g1, . . . , g` ∈ G such that the relative discrete logarithms between the gi are not known.
A commitment to a vector (x1, . . . , x`) ∈ {1, . . . , |G|}` of inputs is computed by choosing a uniformly random
r ∈ {1, . . . , |G|} and computing (cm, rcm) ← (gr0g

x1
1 · · · g

x`
` , r). Pedersen commitments are perfectly hiding

and computationally binding under the discrete-logarithm assumption in group G.

4.7.2 Pointcheval-Sanders (PS) Signatures

We use the signature scheme of Pointcheval and Sanders [PS16] to implement the blind signature used for
token certification. The scheme operates in an asymmetric pairing setting with groups G1 and G2 of size p,
with target group GT and bilinear map e : G1 × G2 → GT. Key generation skeygen chooses g̃ ∈ G2 and
(x, y1, . . . , y`) ∈ Z`+1

p and sets sk ← (x, y1, . . . , y`) and pk ← (g̃, g̃x, g̃y1 , . . . , g̃y`) = (g̃, X̃, Ỹ1, . . . , Ỹ`).

57

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

A signature Sig = sign(sk, (m1, . . . ,m`)) on message vector (m1, . . . ,m`) ∈ Z`p is computed as sign ←
(h, hx+

∑
j yjmj) with h is randomly-chosen in G1. Verification of signature Sig = (Sig1,Sig2) is performed by

checking Sig1 6= 1G1 and e(Sig1, X̃
∏
j Ỹ

mj
j) = e(Sig2, g̃).

PS signatures are CMA under an interactive computational assumption. In follow-up work, Pointcheval and
Sanders [PS18] showed that the scheme can be modified to be secure under a non-interactive assumption, by
adding and signing another random element m0. For simplicity, we use the original version in this instantiation.

4.7.3 Certification through Blind Signatures

The functionalityFBLINDSIG is instantiated by the following protocol πBLINDSIG, which operates in the {FNIZK,FREG,
FSMT}-hybrid model. Let HG : G1 → G1 denote a cryptographic hash function modeled as a random oracle.

• Upon input init, certifier C generates a new key pair (sk, pk) with sk = (x, y1, . . . , y`) and pk =
(g̃, X̃, Ỹ1, . . . , Ỹ`), and sends (register, pk) to FREG.

• Upon input pubkey, P sends (query,C) to FREG and outputs the result.

• Upon input (request, crs, rcm, (m1, . . . ,m`)), proceed as follows.

1. Pick z←$ Zp and compute u← gz . Compute cm ← grcm
0

∏`
i=1 g

mi
i and h← HG(cm).

2. For each i = 1, . . . , `, choose ri←$ Zp, ai ← uri , and bi ← hmigri .

3. Obtain the proof

ζ ← PK
{(

(mi, ri)
`
i=1, rcm

)
:
∧̀
i=1

(ai = uri ∧ bi = hmigri) ∧ cm = grcm
0

∏̀
i=1

gmii
}

on input (prove, y, w) atFNIZK with y = (cm, h, u, a1, . . . , a`, b1, . . . , b`) andw = ((mi, ri)
`
i=1, rcm).

4. Call FSMT with (send,C , (ζ, crs, cm, u, (ai, bi)`i=1)).

• Upon receiving (sent, P, (ζ, crs, cm, u, (ai, bi)`i=1)) from FSMT, certifier C proceeds as follows:

1. Verify ζ via FNIZK and compute h← HG(cm). If verification fails, input (send, P,⊥) to FSMT and
stop.

2. Store (ζ, crs, cm, u, (ai, bi)
`
i=1, h) internally and output to signer C message (request, P, crs, cm).

• Upon input (sign, cm), signer C proceeds as follows:

1. If no record for commitment cm is stored, stop.

2. Compute b̄← hx
∏`
i=1 b

yi
i = g r̄hx

∏`
i=1 h

miyi and ā←
∏`
i=1 a

yi
i = ur̄.

3. Call FSMT with (send, P, (ā, b̄)).

• Upon receiving (sent,C , m̄) from FSMT, receiver P proceeds as follows:

1. If m̄ cannot be parsed as (ā, b̄) ∈ G2
1 output (result,⊥) and stop.

2. Compute h′ ← b̄ā−1/z and check e(h, X̃
∏`
i=1 Ỹ

mi
i)

?
= e(h′, g̃). If the check fails, output (result,⊥)

and stop. Else output (result, (h, h′)).

Note that in the above description we use a deterministic variant of Pointcheval-Sanders signatures. Namely,
generator h is not selected randomly in G1, rather it is computed as the hash of commitment cm . The reason
behind this slight modification is to enable a non-interactive distributed signature (i.e. signers do not need to
interact), see Section 4.7.7 for further details. It is easy to show that the security of this variant holds in the
random-oracle model.

58

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Lemma 4. Protocol πBLINDSIG realizes FBLINDSIG under Assumption 2 of Pointcheval and Sanders [PS16], given
that C is honest-but-curious and Adoes not have access to the secret key of C .

A similar protocol has been provided as part of the Coconut systems by Sonnino, Al-Bassam, Bano, Meikle-
john, and Danezis [SABB+18], but the protocol there is slightly less efficient. Furthermore, Section 4.7.7 shows
how the above token certification can be distributed.

4.7.4 Groth Signatures

We use Groth’s structure preserving signatures [Gro15] to bind a user public key to an auditor public key. The
signature scheme operates in a pairing setting with groups G1, G2, and GT, and on messages in G1. Let g
and g̃ be random generators of G1 and G2 respectively. Key generation skeygen(λ, `) selects a vector sk =
(x, y1, . . . , y`−1)←$ Z`p and a random generator h←$ G1, and computes pk ← (h, X̃, Ỹ1, . . . , Ỹ`−1) = (h, g̃x,

g̃y1 , . . . , g̃y`−1). Signature sign(sk, (m1, . . . ,m`)) selects uniformly at random r←$ Zp, computes ã ← g̃1/r,
b ← (hgx)r, and c ← (hxm`

∏`−1
i=1 m

yi
i)r, and sets Sig ← (ã, b, c). Verification of signature Sig = (ã, b, c) for

messages (m1, . . . ,m`) proceeds by verifying two pairing equations e(b, ã) = e(h, g̃)e(g , X̃) as well as

e(c, ã) = e(h, X̃)e(m`, g̃)
`−1∏
i=1

e(mi, Ỹi).

Dodis-Yampolskiy VRF

We use the VRF of Dodis and Yampolskiy [DY05] that operates in the pairing setting. Key generation vkeygen(λ)
chooses a random sk←$ Zp and sets pk ← gsk. Evaluation eval(sk, x) aborts if sk + x /∈ Z×p . It computes out-
put y ← e(g , g̃)1/(sk+x) ∈ GT and proof π ← g̃1/(sk+x) ∈ G2. Verification check(pk, x, y, π) checks whether
e(g , π) = y and e(pk · gx, π) = e(g, g̃); if so it outputs b = 1.

4.7.5 Groth-Sahai NIZK

Since all equations we have to verify — for the Pointcheval-Sanders signatures, the Pedersen commitments, the
Groth signatures, and the Dodis Yampolskiy VRF — are defined in terms of bilinear groups, we propose to use
Groth-Sahai proofs [GS08] to instantiate FNIZK in our solution.

4.7.6 ElGamal Public-Key Encryption

We use ElGamal encryption [ElG85a]. Key generation ekeygen(λ) chooses a uniformly random exponent sk←$

{1, . . . , |G|} and computes pk ← gsk. Encryption enc(pk,m) chooses a uniformly random r←$ {1, . . . , |G|}
and computes c ← (gr, pkrm). Decryption dec(sk, c) with c = (c1, c2) computes m ← c2c

−sk
1 . The encryption

scheme is semantically secure and key private under the Decisional Diffie-Hellman assumption.

4.7.7 Range Proofs

Our protocol requires range proofs to ensure that no field wrap-arounds are exploited to increase the quantity of
tokens in a transfer. The range proof we use is based on the work of Camenisch, Chaabouni, and shelat [CCas08],
instantiated with Pointcheval-Sanders signatures.

Distributing certification

The Pointcheval-Sanders signature scheme can be extended into a non-interactive t-out-of-n threshold signature
scheme. Consider n signers C1, . . . ,Cn from which a recipient P collects at least t signature shares that can be
combined into a complete signature. We describe the process with a trusted key generation, however, notices

59

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

that it is straightforward to convert the key generation mechanism into a multiparty computation between the
signers (see e.g. [GJKR07]). We describe the key generation algorithm tkeygen and the reconstruction algorithm
combine. The algorithm to produce a signature share is identical to original signing algorithm (taking secret
key share as input instead of the overall secret key). That is, to sign a message (m1, . . . ,m`), signer Ci calls
algorithm (h, h′)←$ sign(ski, (m1, . . . ,m`))) with skj = (xj , y1j , . . . , y`j). The resulting signature share is a
valid Pointcheval-Sanders signature for public key pkj = (X̃j , Ỹ1j , . . . , Ỹ`j).

Algorithm tkeygen(λ, n, t, `) computes (skj , pkj)
n
j=1, pk as follows:

• Pick `+ 1 random polynomials px, py1 , . . . py` of degree t− 1 with coefficients from Zp.

• Compute X̃ ← gpx(0), Ỹ1 ← gpy1 (0), . . . , Ỹ` ← gpy` (0).

• Compute all X̃j = gxj and Ỹij ← gyji .

• Set pk = (X̃, Ỹ1 = gpy1 (0), . . . , Ỹ` = gpy` (0)), and pkj = (X̃1, Ỹ01, . . . , Ỹ`1). Set skj = (px(j), py0(j), . . . , py`(j))
and output (sk1, . . . , skn, pk1, . . . , pkn, pk).

Algorithm combine, on input {(Sigi, pki)}i∈S , (m1, . . . ,m`), for a set S ⊆ {1, . . . , n} with |S| = t, proceeds
as follows.

• Output⊥ if not all {(Sigi, pki)}i∈S with Sigi = (hi, h
′
i) have the same h and if Vf((X̃i, Ỹ1i, . . . , Ỹ`i), (m1, . . . ,m`), (h, h

′
i))

does not hold for all i ∈ S.

• Compute Lagrange coefficients λj =
∏
i∈S\j

i
i−j for all j ∈ S.

• Compute and output (h, h′ =
∏
j∈S h

′
j
λj).

Protocol πBLINDSIG from Section 4.7.3 has to be modified as follows:

• Instead of generating a key locally at C , all signers C1, . . . ,Cn together use FDKG to generate the set of
keys. Signer C1 registers the public key pkat FREG.

• Requestor P sends the request message to parties C1, . . . ,Cn until it has collected t signatures that verify.
It then uses combine to combine that into a single signature that verifies relatively to pk.

Theorem 6. Let n ∈ N and t < n. The above-described variant of the protocol realizes the threshold variant of
FBLINDSIG.

No further adaptations to the users’ protocol beyond the use of the threshold functionality are necessary, as
the verification equation for the signatures remains the same.

4.8 Implementation and Performance

To evaluate the feasibility of our protocol, we implemented a prototype using the primitives described in Ap-
pendix 4.7 and measured its performance. By design, our prototype is compatible with Hyperledger Fabric and
requires minimal changes to be integrated. This section elaborates on the integration effort and measures the
overhead incurred by our scheme.

4.8.1 Hyperledger Fabric

Hyperledger Fabric is a permissioned blockchain system. Hyperledger Fabric entities exchange messages, called
transactions, over the Hyperledger Fabric network. A transaction is used to introduce either a new smart contract
(chaincode in Hyperledger Fabric terms) into the system or changes to the state of an already existing chaincode
(i.e. execute). The first process is called chaincode instantiation, whereas the latter process is referred to as

60

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

chaincode invocation. A special type of transactions, reconfiguration transactions, is used to introduce changes
to the system configuration.

In a Hyperledger Fabric network, we identify three types of participants: (i) clients who submit transactions
to the network in order to instantiate or invoke chaincodes, or to reconfigure the system; (ii) peers which execute
chaincodes, validate transactions and maintain a (consistent) copy of the ledger; and (iii) orderers which jointly
decide the order in which transactions would appear in the ledger.

For the proper operation of the system, each instance of Hyperledger Fabric considers one or more mem-
bership service providers (in short, MSPs) that issue long-term identities to parties falling under their authority.
These identities allow system entities to securely interact with each other; essentially, MSPs provide the required
abstractions to validate identities; namely, to compute and verify signatures. The configuration of valid MSPs
is included in the genesis block of each Hyperledger Fabric instance and can be updated via reconfiguration
transactions.

Hyperledger Fabric follows an execute-order-validate model. Here, chaincodes are speculatively executed on
one or more peers upon a client request—called chaincode proposal—prior to submitting the resulting transaction
for ordering. Execution results are signed by the peers that generated them in chaincode endorsements and are
returned to the client who requested them. Endorsements (i.e. peer signatures) are included in the transaction
that the client constructs and sends to the ordering service. The latter orders the transactions it receives and
outputs a first version of the ledger called raw ledger. Raw ledger is provided to the peers of the network upon
demand. Upon receiving the raw ledger, peers validate the ordered transactions against the endorsement policy
of their origin chaincodes. An endorsement policy specifies the endorsements that a transaction should carry to
be deemed valid. If validation completes successfully, then the transaction is committed to the ledger.

Notice that although there is a separation in Hyperledger Fabric between clients and peers, there still is a
communication channel between the two, leveraged by clients to acquire endorsements on the chaincodes they
wish to invoke and perform queries on the ledger state. In the following section, we show how to make use of
this channel to extend Hyperledger Fabric with our protocol.

4.8.2 Integration Architecture

We first require that each issuer, user and auditor operates a Hyperledger Fabric client. These clients are used
to generate an issue or transfer transactions, submit token certification requests and read from the ledger.
Along these lines, we outsource the cryptographic operations required to generate token transactions to a prover
chaincode in the aim of alleviating the load at the client. This setting assumes that each client possesses a peer
that she trusts with the computation of the zero-knowledge proofs and serial numbers. We contend that this is a
reasonable assumption especially for Hyperledger Fabric that focuses on enterprise applications.

We also make use of the already-existing communication protocol between the clients and the peers to im-
plement what we call, for convenience, certifier chaincode. This is a chaincode that runs only on a selective set
of peers chosen at setup time and trusted to jointly certify valid tokens, following the protocol in Section 4.7.7.
Each such a peer is endowed with a share of the certification signing key, and whenever invoked, provides its
share to the certifier chaincode.

Finally, we leverage the membership service infrastructure of Hyperledger Fabric to grant long-term iden-
tities to issuers and users. In particular, we integrate the identity mixer MSP of Hyperledger Fabric with our
solution to allow privacy preserving user authentication. When it comes to assigning auditors to users, we use an
off-band channel to bind identity mixer user identities with auditor encryption public keys. In a real implemen-
tation, this could be accommodated by an external identity management service, preferably distributed1.

Notice that our protocol uses the ledger only as a time-stamping service, without any validation function-
alities; those are offloaded indirectly to certifiers and auditors. This could be supported in Hyperledger Fabric
directly by setting the endorsement policy of the prover chaincode to any. We note that we plan to extend our
prototype to allow the ledger to also validate token transactions. More concretely, we intend to exploit the fact

1The auditor assignment requires structure preserving signatures, which as of now lack single-round distributed instantiations.

61

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

token certification
user 198, 90
certifier 123, 36

proof generation proof validation
overall computation 1992, 844 2885, 134
in-out consistency 157, 43 287, 21
token validity 263, 02 322, 34
serial number 208, 24 452, 55
auditability 1361, 99 1823, 01

Table 4.1: This table shows the performance numbers of token certification and transfer in milliseconds (ms). We note that the
transaction size is a little over 63KB; this figure however can be further optimized.

that Hyperledger Fabric supports pluggable transaction validation [Hyp] that allows chaincodes to specify their
own custom validation rules, in our case, the custom validation would consist of executing the verification of the
ZK proofs.

4.8.3 Performance Numbers

We installed Hyperledger Fabric client and peer infrastructure with our custom validation process on a MacBook
Pro (15-inch, 2016), with 2.7 GHz Intel Core i7, and 16 GB of RAM. We implemented our prototype in golang,
as this is the core language of Hyperledger Fabric, and used EC groups in BN256 curves. We instantiated both
prover and certifier chaincodes on all the peers in the network, while disseminating the secret shares needed for
token certification only to the peers reserved for that purpose. For efficiency reasons, we used Schnorr [Sch91]
proofs to implement some of the zero-knowledge proofs; this however comes at the cost of formally losing
composable security.

We measured the time required to produce and validate a transfer transaction as these operations are the
most computationally-heavy. We produced our results using the measurements of 100 runs of each operation.

Our results are shown in Table 4.1 for transfers with two inputs and two outputs. Although our scheme
supports an arbitrary number of inputs and outputs, we opt for this combination as it is the common configuration
in existing schemes. We assume that there is one certifier and that the maximum liquidity that can be issued or
transferred at anytime is capped at 216.

In the performance evaluation of transaction generation and validation, we present separately the overhead
resulting from (i) checking that the input and outputs preserve value and type; (ii) hiding the transaction graph,
cf. entries token validity and serial numbers; (iii) and auditability. Our measurements show that the overall
transaction construction time is little less than 2s, whereas transaction validation takes a little less than 3s. Au-
ditability is the most expensive operation as it requires the generation and the verification of multiple proofs of
correct encryption under obfuscated public keys; more than 2/3 of the overall computation time. Second comes
the operations that hide the transaction graph with proof generation time of almost 0.5s and verification time of
roughly 0.7s. This shows that in applications where auditability and full privacy are not a priority, our solution
performs relatively-well, less than 158ms for transaction generation and 287ms for its verification. Our perfor-
mance figures exclude proofs of ownership as the performance of those is outweighed by the Identity Mixer
overhead.

While these numbers are not yet favorable to a wide adoption, we would like to stress that the AMCL library
underlying our implementation is not optimized. An optimization in the crypto libraries is expected to bring
in a speedup of at least one order of magnitude [Kra15]. We also note that the current implementation did not
investigate possibilities of parallelization.

We also measured the time it takes to get a token certificate. Table 4.1 shows that the computation at the user
takes around 199ms, whereas the overhead at the certifier is 123ms.

62

Chapter 5

Timed Cryptographic Primitives

Timestamping is an important cryptographic primitive with numerous applications. The availability of a decen-
tralized blockchain such as that offered by the Bitcoin protocol offers new possibilities to realise timestamping
services. Nevertheless, to our knowledge, neither the classical timestamping results, nor recent blockchain-based
proposal are formally defined and proved in a composable setting. In this chapter, we continue the work stated
in the deliverable D2.2, and show how to UC-realize the functionalities proposed in Chapter 5 of D2.2. In the
first part of the chapter we provide a high level overview of the functionalities and their UC-realization. In the
remaining part of the chapter we formally show how to realize these functionalities. For a formal description on
the UC-functionalities considered in this chapter we refer the reader to Chapter 5 of the Deliverable D2.2.

5.1 Technical Overview

In this section we provide a technical summary of our contributions. In the later sections, we provide elaborated
versions of them.

5.1.1 Beacon functionality and enhanced ledger

In order to construct a source of sufficiently unpredictable and publicly verifiable randomness, we design and
use a blockchain-based beacon. We investigate how an ideal beacon can be weakened so that it is implementable
by a protocol which uses the ledger functionality and a random oracle. In particular, we specify a weak beacon
functionality which is sufficiently strong to be used for timestamping cryptographic primitives. Our beacon,
similar to [BMTZ17,BGK+18,GKL15,PSS17], relies on the assumption that the blocks generated by the honest
parties include at least λ̂ bits entropy. However, this does not mean that it is possible to extract at least λ̂-bit
randomness from a sequence of blocks that contains an honestly generated entry. Generally speaking, the reason
is that parties work in parallel to extend the chain, and there is a possibility that they collide which gives the
adversary the choice between the colliding blocks. This gives the adversary a bit more power in guessing the
output of the beacon. Informally, the entropy of the honest block can be reduced by a factor that depends on the
number of honest blocks proposed within a small window from the round in which the beacon emits its value.
Nevertheless, as we will argue later, this issue can at most eliminate a few bits of entropy from the beacon.
Attempting to capture the above, we hit a shortcoming of the ledger from [BMTZ17]. The reason is that the
current definition of the ledger does not account for the entropy of the honest blocks. A way to rectify that would
be to change the ledger functionality in a non-black-box manner and reprove the its security. To resolve the
aforementioned issue, we introduce an explicit wrapper called WBU-wrapper. In a nutshell, the WBU-wrapper
wraps the ledger functionality, i.e., takes control of all its interfaces, and acts as an upper relayer. Together
with the formal definition of the WBU-wrapper we also show that the (UC-abstraction of the) Bitcoin backbone
protocol in [BMTZ17] emulates the wrapped ledger. As a next step we define a weak beacon functionality Bw
and provide an instantiation of it using the wrapped ledger functionality. This functionality can be queried with a

63

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

round number ρ, and return the couple (η, tsl), where η denotes the random value, and tsl represents the output
number (i.e., there is not a one-to-one correspondence between the rounds of Gclock and the output number of
Bw). Note that any implementation of an ideal randomness beacon is expected to meet (at least) the following
requirements:

Agreement on the Output: The output of the beacon can be verified by any party who has access to the beacon.
Liveness: The beacon generates new values as time advances. The output of the beacon can be verified (albeit at

some point in the future) by any party who has access to the beacon.
Perfect Unpredictability: No one should be able to bias or even predict (any better than guessing) the outcome

of the beacon before it has been generated.

Nevertheless, due to the adversarial influence on the contents of the ledger, we cannot obtain a perfect beacon
from the ledgers that are implemented by common cryptocurrencies (cf. also [BGZ16b] for an impossibility).
Indeed, we will allow the adversary to predict the next ∆ outputs of Bw, and to generate a new output after at
most R rounds. At a high level, our beacon protocol works as follows. A party that wants to compute the latest
beacon’s output simply needs to compute the hash of the latest `− µ+ 1 blocks of the ledger. This ensures that
at least one hashed block is honest, and therefore that the adversary cannot predict more than the next ∆ outputs,
where ∆ = ` − µ. Moreover, R = MaxRound, where MaxRound denotes the maximum number of rounds after
that the state of the ledger has to be extended. We note passing that one might be tempted to implement the
Bw by hashing only the last (stable) block of the hash chain, which would yield to a more efficient construction.
However, as we will argue later, this approach is not generic and is suitable only for a certain type of blockchains.
For more details on the wrapper and on the weak beacon we refer the reader to Section 5.2 and 5.3 respectively.

5.1.2 Timed digital signature

In this section, we provide a technical overview of our timed signatures. Here, we extend the standard notion
of the digital signature by different levels of timing guarantees. In our model, a timestamped signature σ for a
messagem is equipped with a time mark τ that contains information about when σ was computed by the signer (σ
corresponds to an output of Gclock). We refer to this special notion of signature as Timed Signature (TSign). We
define three categories of security for TSign: backdate security, postdate security, and their combination which
we refer to just as timed security. Intuitively, backdate security guarantees that the signature σ time-marked
with τ has been computed some time before τ ; postdate security guarantees that the signature σ was computed
some time after τ ; and timed security provides to the party that verifies the signature σ a time interval around τ
in which σ was computed. We will formally define these three new security notions with a single notion Fw,t

σ

parameterized by a flag t ∈ {+,−,±} where t = “ − ” indicates that the functionality guarantees backdate
security, t = “ + ” indicates postdate security, and t = “± ” indicates timed security. Analogously to the weak
beacon, Fw,t

σ and all parties that have access to this functionality, are registered to Gclock which provides the
notion of time inherently required by our model.

In a nutshell, and more formally, the functionality Fw,t
σ provides to its registered parties a new time-slot

tsl ∈ N every R rounds (in the worst case). Once a time slot tsl is issued, it can be used to time(stamp) a
signature σ. The meaning of tsl depends on the notion of security that we are considering. For backdate security
(i.e., t = “ − ”), a signature σ marked with tsl denotes that σ was computed during a time slot tsl′ ≤ tsl.
For postdate security (t = “ + ”) tsl denotes that σ was computed during a time slot tsl′ ≥ tsl. For timed
security, the signature σ is equipped with two time-marks tslback and tslpost that denote that σ was computed
in a time-slot tsl′ such that tslpost ≤ tsl′ ≤ tslback. A new time-slot issued by Fw,t

σ can be immediately
seen and used by A. However, the adversary can delay honest parties from seeing new time-slots—i.e., truncate
the view that each honest party has of the available time-slots. That is, for each party pi,A can decide to hide the
most recent W -many available time-slots. There are also other subtleties that the ideal functionality Fw,t

σ needs
to capture and this makes the functionality more complicated that one might expect. We refer the reader to the
formal definition of the functionality in Chapter 5 of the Deliverable D2.2.

To obtain postdate security we rely on the weak beacon and on signatures. The signer in our case queries

64

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

the beacon thus obtaining the pair (η, tsl) where η represents the tsl-th output of Bw (which is also the most
recent) and sign the message together with with η. In order to obtain backdate-security, the signer inserts its
signature, via a transaction to the blockchain. Now, the signature is only considered validly timed after it appears
on the ledger’s state and is posted within a predefined delay. Moreover, as we will prove, combining the above
two ideas yields a signature with both backdate and postdate security.

5.1.3 Timed Zero-Knowledge PoK (TPoK) and Signature of Knowledge (TSoK)

TPoK. In this section we apply the same methodology used for timed signatures in the previous section
to define analogously timed versions of non-interactive zero-knowledge proofs of knowledge. The basis for
our approach is the standard UC Non-Interactive Zero-Knowledge functionality proposed FNIZK in [GOS12b].
Roughly, FNIZK considers two parties, a prover and a verifier. The prover provides as input to FNIZK an NP-
statement x. The functionality checks whether (x,w) ∈ R (where R is an NP-relation) and if the check is
successful then FNIZK stores (x, π) and sends a proof π to the prover. The verifier can query the functionality
with a couple (x, π), and if FNIZK stores the couple (x, π) sends 1 to the verifier, 0 otherwise.

We extend FNIZK to consider different levels of timed-security, in the same way as we have done for signa-
tures: A proof π generated with respect to an NP-statement is equipped with a time-mark tsl that gives some
information about when π was computed. We refer to this notion of NIZK as TPoK and, also in this case, we
consider three categories of security: backdate, postdate and timed security. The formalization of these notions
is given by means of the UC-functionalities Fw,t

TPoK, with t = “ − ”, “ + ”, “ ± ”. Fw,t
TPoK is formally described

in the Chapter 5 of the Deliverable 2.2. In this setting, intuitively, a prover can send to the functionality a couple
(x,w), and if (x,w) ∈ R then Fw,t

TPoK returns a couple (π, tsl), where tsl is a time-mark. A verifier that
queries Fw,t

TPoK with a couple (π, tsl) and gets 1 as the answer from the functionality has the guarantees that:
1) the prover knew the witness for the NP-statement x (like in case of FNIZK) and 2) the proof π was gener-
ated (using the witness) in some moment specified by tsl. We also provide three instantiations, one for each
of the three security notions mentioned above. That is, we show a protocol Πw,t

TPoK that UC-realize Fw,t
TPoK for

all t ∈ {−,+,±}. Πw,−
TPoK is similar to Πw,−

σ , indeed the prover of Πw,−
TPoK, on input (x,w) ∈ R, just needs

to compute a NIZK proof (e.g. computed using FNIZK) and stores it into the ledger. Πw,+
TPoK instead needs to

use Bw. Πw,+
TPoK follows the commit-and-prove paradigm in which the prover commits to the witness w for the

NP-statement x to be proven, and then proves to the verifier that the committed message corresponds to a valid
witness for x. In our protocol we want to associate some time-stamp to the proof generated by the prover, so
we slightly modify the above approach as follows. The prover obtains the pair (η, tsl) by invoking the weak
beacon Bw with the current round ρ, where η represents the tsl-th output of Bw (which is also the most recent).

Then the prover computes a commitment com of w||η and proves to the verifier that com contains a witness
for x concatenated with η. The verifier, upon receiving the proof computed by the prover accepts it if and only if
the following two conditions hold: 1) value η has been output by Bw in some round τ ; 2) the NIZK proof given
by the prover is accepting. Since the NIZK that we use is a PoK and we assume that a malicious prover cannot
predict the output of the weak beacon Bw more than δ = MaxRound · (WindowSize + `− µ) rounds in advance
then the verifier has the guarantee that the proof has been computed (and that the witness w was known by the
prover) in some moment subsequent to τ − δ. The protocol Πw,±

TPoK instead internally runs Πw,+
TPoK and stores the

proof on the ledger, and this is sufficient to provide timed security.

TSoK. The work of Chase et al. [CL06] introduces the notion of signature of knowledge (SoK). A signature of
knowledge schemes allows to issue signatures on behalf of any NP-statement. That is, receiving a valid signa-
ture for a message m with respect to an NP-statement x means that the signer of m knew the witness w for the
NP-statement x. Exactly in the same spirit of signature and NIZK, we define the notions of backdate, postdate
and timed SoK. That is, we define the UC-functionalities Fw,t

TSoK with t ∈ {−,+,±}. Those functionalities are
analogous to the functionalities for timed signatures and NIZKs we have just discussed. It should be easy to see
that postdate, backdate and timed secure NIZK implies respectively postdate, backdate and timed secure TSoK.

65

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Indeed we observe in the Fw,t
TPoK-hybrid model it is possible to obtain a protocol that UC-realizes Fw,t

TSoK. The
approach is to construct a commitment of a witness concatenated with the message that we want to sign and
then run Fw,t

TPoK to prove that the commitment actually contains the concatenation of the witness for x and the
message m.

5.2 Weak Block Unpredictability (WBU)

A delicate point about the ledger from [BMTZ17, BGK+18] is the way it enforces the chain quality property
from [GKL15]. Recall that this property requires that in every sequence of ` blocks put into the state, at least
µ of them have to be associated with honest leaders. The ledger enforces this by the simulator declaring in a
special field—corresponding to a coinbase transaction—the identity of the party who should be considered as
having inserted each block; the extend-policy predicate will then ensure that the simulator has to declare blocks
as created by honest parties with a sufficiently high frequency as above.

Our analysis—as well as the security analyses of the ledger [BMTZ17, BGK+18] and the backbone abstrac-
tion of the protocol [GKL15, PSS17]—uses the assumption that the coinbase transaction of such honest blocks
includes at least λ̂ bits randomly chosen by an honest party1. One might be tempted to deduce that it is pos-
sible to extract (at least) λ̂ bits of randomness from each sequence of ` blocks. However, this is not the case.
Informally, the reason is that parties are in parallel working to extend the chain, and there is a chance that they
might collide, giving the adversary the choice between the colliding blocks. And, although, one can use the
existence of uniquely successful rounds—i.e., rounds in which only one honest party succeeds in solving the
PoW puzzle—guaranteed to exist by the analysis of [GKL15], this is not sufficient: The problem is that the most
recent part of the blockchain is not stable (it is not part of the common prefix) so the adversary can, in principle
overwrite it, potentially using alternative postfixes (which can include blocks even by honest parties that have
inconsistent view of the blockchain’s head). This gives the adversary a bit more slackness in guessing the output
of the beacon. Informally, the entropy of the honest block can be reduced by a factor that depends on the number
of honest blocks proposed within a small window from the round in which the beacon emits its value. However,
as we will argue below, this grinding might at most eliminate a few bits of entropy from the beacon.

Attempting to capture the above, we hit a shortcoming of the ledger from [BMTZ17]. The reason is that
in the current definition of the ledger, there is no way for an honest party to insert some random value into a
block’s content, as the ledger allows its simulator to have full control of the contents of the blocks inserted into
the state. Note that the extend policy algorithm (responsible for enforcing the chain quality and liveness) in the
ledger functionality does not account for the above property. A way to rectify that would be to adjust the extend
policy, but this would then mean changing the ledger in a non-transparent manner.

Instead, here we choose to take the following approach, which was also proposed in [BMTZ17] for explicitly
capturing assumptions—in the case of [BMTZ17] it was used for capturing honest majority of computing power:
We introduce an explicit wrapper that exactly captures the property that yields the above entropic argument.
We refer to this wrapper as WBU-wrapper, and to the corresponding property that it enforces as weak beacon
unpredictability, and denote it asWWBU.

In a nutshell, the WBU-wrapper wraps the ledger functionality, i.e., takes control of all its interfaces, and acts
as a relayer except for the following behavior: It might accept a special input from the simulator in any round
(even multiple times per round). Once it does, it returns a random nonce N and records the pair (N, ρ), where ρ
is the current round. Furthermore, for each block inserted into the state, it records the block along with the round
in which this insertion occurred (note that the wrapper can easily detect insertions by reading the state through
all miner’s interfaces). If it observes that the simulator does not ask for a nonce for more than ` · MaxRound
rounds, or does not insert a block with its coinbase including a previously output nonce N within a δ-long time
window from the creation of N , where δ = MaxRound · WindowSize · (` − µ), then the wrapper halts. The
formal definition of the weak block unpredictability wrapper is as follows.

1Formally, in [BMTZ17,BGK+18] the ledger chooses the contents of the coinbase transactions of honest blocks, including the nonces
and possible new keys/wallet-addresses, hence the simulator cannot predict them.

66

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Definition 15 (Weak Block Unpredictability Wrapper: WWBU). AWWBU is a functionality-wrapper (that wraps
Gledger) and operates as follows:

• Upon receiving (new nonce) from the simulator it returns random fresh N ∈ {0, 1}λ to the simulator,
and records (N, ρ), where ρ is the current round (WWBU can get this round by querying the clock.)

• For any block proposed by the simulator that makes it into the ledger’s state, which is flagged (via the
coinbase transaction, by the simulator) as originating from an honest party (WWBU can detect this as
discussed above). If this block does not contain some N previously recorded, then halt; otherwise, if
(N, ρ′) has been recorded and the current round index is ρ > ρ′+δ = ρ′+MaxRound·WindowSize·(`−µ)
then halt. In any other case simply relay messages between the wrapped functionality and the entities it is
connected to (i.e., the simulator, the environment, and the global setups it has registered with.)

As an additional contribution of this work, which we believe might be of independent interest, we prove
the following lemma which states that the (UC abstraction of the) Bitcoin backbone protocol from [BMTZ17]
emulates the wrapped ledger WWBU[Gledger], where, Gledger is the ledger from [BMTZ17]. We prove that by
showing that the blocks generated by the protocol satisfy the weak beacon unpredictability property. The lemma
follows then directly by observing that the simulator of [BMTZ17] internally generates the coinbase for honest
blocks by emulating the honest protocol.

Lemma 5. The (UC version of the) Bitcoin backbone protocol ΠBB [BMTZ17] realizesWWBU(Gledger).

Proof. Let κ be the security parameter of ΠBB, δ = MaxRound · WindowSize · (`− µ) and λ = λ̂− log(κ).
We start the proof by showing that in ΠBB, under the assumption that the honest parties include a random

value of length λ̂ in each coinbase transaction, no adversary can predict at round ρ, with probability greater than
2−λ, the nonce η′ that is added by an honest party to a block that becomes part of state at round ρ + δ. Let ρ1

be the round in which an honest party pi sees st = state|pi , then the block that extends st could either be a block
generated by an honest party, or a block generated by a malicious party. Moreover, this new block has to be
added to st after at most MaxRound · WindowSize rounds. In the case that the block that extends st is malicious,
we cannot say much on the entropy since, without loss of generality, we assume that the content of the block is
in full control of the adversary. Let us now consider the case in which the added block is honest. Let ρ2 be the
round in which the block becomes part of the ledger state. We note that all honest parties that generate candidate
blocks2 for state at round ρ2 could see state already at round ρ1 with T = |ρ2−ρ1| ≤ MaxRound ·WindowSize.
We now want to compute t, which represents the number of all the possible candidate blocks that can be seen
by the adversary in the interval [ρ1, ρ2]. Note that there could be other candidate blocks for ledger states that are
shorter than state, but those blocks cannot be used by the adversary anymore.

From [GKL15, Remark 3] we know that the number of blocks generated by the honest parties in an interval
of size T is t = pq(n−m)T , where n is to the total number of parties, m is the number of parties controlled by
the adversary, p is the probability that an honest party generates a block and q is the upper bound on the number
of queries that each party can make to the random oracle. Moreover, from the proof of [GKL15, Lemma 6] we
know that pq(n − m) ≤ 1

2 , therefore t ≤ T /2 ≤ MaxRound · WindowSize/2. Given that WindowSize and
MaxRound are polynomially related to the security parameter of the ledger κ, we have that t = poly(κ).

From the chain quality we also know that after at most ` − µ blocks, an honestly generated block has to
be added to the ledger state. This means that if δ = MaxRound · (WindowSize + ` − µ), then by round ρ + δ
there is one block included in the ledger state that has min-entropy λ = λ̂ − log(κ), conditional on the view
of the adversary at round ρ. We are now ready to show that ΠBB implements WWBU[Gledger]. We describe
a corresponding polynomial-time simulator Sim. Let SimBB be the simulator for ΠBB. Sim acts as the ideal-
functionality Gledger for SimBB with the following difference. Whenever it is required to compute a nonce for
the coinbase transaction, Sim queriesWWBU[Gledger] with new nonce thus obtaining (N, ρ) and uses N as the
nonce with N ∈ {0, 1}λ̂.

2In this proof we call candidate block a block that could extend state.

67

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

5.3 The (Weak) Beacon functionality

5.3.1 Our weak beacon protocol

In this section, we propose a protocol that realizes the Bw functionality in the (WWBU(Gledger),FRO)-hybrid
model. We first recall some of the properties that Gledger (similarlyWWBU(Gledger)) enjoys, and will be useful
here.

1. The chain quality property of Gledger guarantees that any portion of state of length ` contains, at least, a
portion of µ blocks originated by some honest parties. This means that the remaining `− µ blocks might
be chosen by the adversary and the contents of these blocks are under full control of the adversary.

2. Since honest blocks include at least λ bits of entropy, the output of a hash function modeled as a RO with
security parameter λ on input an honest block represents a uniform random value in {0, 1}λ.

At a high level, our beacon protocol works as follows. A party that wants to compute the beacon’s output
reads state fromWWBU(Gledger) and outputs the hash of the latest `− µ+ 1 blocks of state. At first glance, as
any chunk of ` − µ + 1 blocks of state contains (at least) an honestly generated block, the output of the beacon
is an unpredictable random value. However, this is not the case. The first observation is that, using the technique
described above, an adversary can predict the next ` − µ outputs of the beacon in advance. In particular, the
adversary first allows a sequence of µ honestly generated blocks to be added to the chain and then it inserts its
own ` − µ pre-computed adversarial blocks after those µ blocks. But, the prediction power of the adversary is
not limited to ` − µ blocks. We recall that the view that an honest party has of the ledger state could differ of
at most WindowSize blocks. Therefore, in the worst case, the adversary sees WindowSize blocks in advance
with respect to an honest party, thus giving an additional prediction power to him. In conclusion we can claim
that, given a ledger WWBU(Gledger) with chain quality parameters (µ, `) and window size WindowSize, it is
possible to construct a weak beacon Bw in which an adversary can predict, with respect to an honest party, the
next ∆ = `−µ+WindowSize outputs. This means that an adversary, in the worst case, can predict the outcome
of the beacon δ = MaxRound ·∆ rounds in advance with respect to an honest party, where MaxRound represents
the liveness parameter of Gledger. The only thing left to argue is how the output of the beacon is distributed. In
the above scenario, not only the adversary can predict the next ` − µ outputs, but can also bias those outputs
since he can decide to extend state with any sequence of ` − µ blocks. Since we model the hash function as a
random oracle, it is easy to see that the bias of the output of the beacon depends on the randomness inside the
honest blocks and on the hashing power of the adversary. Indeed, a powerful adversary can always decide what
the next ` − µ of state will be in the worst case. In this work we denote with MaxSize the maximum number
of queries that the adversary can ask the RO. We observe that our instantiation of the weak beacon only needs
to read information from the ledger. In Fig. 5.1 we provide a formal construction of the weak beacon protocol
Πw that UC-realizes Bw with w = ((µ, `), MaxRound, WindowSize, MaxSize). The steps described in Fig. 5.1
follow the description given here with the exception that all the parties invoke the procedure update time table()
every time that an input is received (see Fig. 5.2). This procedure helps a party to keep track of the size of the
ledger (i.e. the size of state) at any round.

Theorem 7. Let WWBU(Gledger) be the wrapper functionality for Gledger defined in Def. 15 parameterized by
((µ, `), MaxRound, WindowSize), then protocol Πw described in Fig. 5.1 securely realizesBw in the (WWBU(Gledger),
Gclock,FRO)-hybrid model with w = ((µ, `), MaxRound, WindowSize, MaxSize) where MaxSize = poly(λ).

Proof. Let A be an arbitrary polynomial time adversary. We will describe a corresponding polynomial time
ideal process adversary Sim such that no non-uniform polynomial time environment can distinguish whether Πw

is running in the (WWBU(Gledger),Gclock,FRO)-hybrid model with parties p1, . . . , pn and adversary A or the
ideal process is running with Bw, Sim and dummy parties p̃1, . . . , p̃n. Sim starts by invoking a copy of A. It
will run a simulated interaction of A, the parties and the environment. In particular, whenever the simulated A
communicates with the environment, Sim just passes this information along. And whenever A corrupts a party
pi, Sim corrupts the corresponding dummy party p̃i.

68

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

We assume that a set of parties P are registered to WWBU(Gledger), Gclock and FRO. Every time that a party
pi ∈ P receives an input it invokes the procedure update time table(). Let cq ← ` − µ + 1. The party pi on
input (←$, τ, sid) proceeds as follows.

1. Send (READ, sid) toWWBU(Gledger) and wait for an answer.

2. Upon receiving (READ, sid, state) from WWBU(Gledger) set tsl ← T local
pi (τ) and send

(Eval, sid, tsl||state|tsl−cq,tsl) to FRO.

3. Upon receiving the answer (Eval, sid, η) from FRO output (←$, sid, tsl, η).

Figure 5.1: The weak beacon protocol in (WWBU(Gledger),Gclock,FRO)-hybrid model.

update time table()
When the procedure is invoked by pi ∈ P the query (CLOCK-READ, sidC) is sent to Gclock. Upon receiv-
ing the answer (CLOCK-READ, sidC , R) from Gclock, send (READ, sid) to WWBU(Gledger). Upon receiving
receiving (READ, sid, state) fromWWBU(Gledger) set T local

pi (R) := |state|.

Figure 5.2: The procedure update time table().

In the following description of Sim, we denote with head the current size of the state state of Gledger. The
behavior of Sim can be summarized as follows.

1. Whenever A sends (Eval, sid, i||x) to FRO, Sim does the following.

• If i > head + ` − µ, then pick a random value ρ ∈ {0, 1}λ and instruct FRO to reply with (i||x, ρ)
any time that (Eval, sid, i||x) is received.

• If head < i ≤ head+`−µ, then send (READ SETS, sid) toBw. Upon receiving (READ SETS, sid,S1, . . . ,S`−µ),
take randomly a new element η from Si−head− S̃i−head, S̃i−head ← S̃i−head ∪ {η} and instruct FRO
to reply with η on the query (Eval, sid, i||x).

2. Any time that state is extended with a new block Block, Sim checks if Block is generated honestly by
reading the value hflag. Let cq ← ` − µ + 1. Sim computes x ← state|head,head−cq and does the
following.

• If hflag = 1 then send I = (SET RANDOM, sid) to Bw. If Bw replies with (OK, sid, η), then instruct
FRO to reply with η on the query (Eval, sid, head||x) and set S̃1 = ∅, . . . , S̃`−µ = ∅

• if hflag = 0 check ifFRO has been queried with (Eval, sid, head||x). If it has, then send (SET, sid, x)
to Bw else send I = (SET RANDOM, sid). We observe that if (Eval, sid, head||x) has been queried
before by the adversary, then η ∈ S(head mod `−µ).

3. At any round, Sim updates T according to the slackness values ofWWBU(Gledger). That is, Sim reads the
values pti1 , . . . , ptin fromWWBU(Gledger), defines a time-table T ′ that extends the previous one (T) by
setting T ′[R, pi1] = ptij for all the honest parties pij , and set T ′[τ, pik] = |state| for all the corrupted
parties pik . Then Sim sends (SET-DELAYS, sid, T ′) to Bw.

We now observe that Sim in step 3 keeps consistent the view that each party has of state with the view ofH.
That is, each party that in the ideal model can see the i-th value ofH can see also the i-th block of state in the real
world. This is done in step 3 by updating the time-table T consistently with the slackness of WWBU(Gledger).
Moreover, any time that state is extended with a new block, H is extended as well. As showed in step 2, H is

69

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

extended via adding a random value decided by the functionality if state was extended honestly, or by using a
value taken from the set Si with i = head mod ` − µ. The crucial observation here is that, because honest
blocks include at least λ bits of fresh entropy, if state is extended with an honest block then the output of the
RO on input (Eval, sid, state(head−`+µ+1,head)) is a uniform in {0, 1}λ. Moreover, since any consecutive blocks
of state contain, at least, µ honestly generated blocks, this guarantees that the adversary can only predict the
next ` − µ outputs. In step 1 Sim takes care of the latter aspect by keeping consistent the content of the sets
S1, . . . ,S`−µ with the queries made by the real world adversary to the RO. In more details, once that Sim gets
the sets S1, . . . ,S`−µ from Bw then he instructs the RO to reply to the query (Eval, sid, j||x) with η, where η
is randomly chosen from Sj mod `−µ. We recall that these sets have size MaxSize where MaxSize denotes an
upper bound on the number of queries that can be made by the adversary to the RO. We also observe that, in
order to reply with different values of Sj mod `−µ to the queries (Eval, sid, j||x), (Eval, sid, j||x′) with x 6= x′,
Sim keep track of all the values of Sj mod `−µ that have been already used to program the RO in a special set
S̃j mod `−µ.

5.3.2 Discussion on alternative constructions

By looking at some real blockchains such as the Bitcoin blockchain, one would be tempted to implement Bw by
hashing only the last (stable) block of the hash chain. This might actually be a more efficient way to implement
our weak-beacon functionality than the one in this work. However, it would not be a generic approach and is
suitable for a certain type of blockchains, e.g., Bitcoin. In particular, the alternative approach would require
some properties of blockchains not captured by Gledger. Indeed, for the case of Bitcoin we have that the blocks
are organized in a hash-chain—where the hash function behaves as a random oracle—and those aspects are not
exported to the UC Ledger. Our construction works for arbitrary blockchains, as it uses the UC ideal ledger
functionality by Badertscher et al. in a black-box (ideal) manner wrapped with WWBU. We use WWBU to only
capture the fact that honest blocks (which appear frequently according to chain quality) have sufficient entropy,
which we prove is the case using only the basic properties of the Backbone protocol; for adversarial blocks the
Ledger offers no unpredictability guarantees. Hence, the alternative construction cannot work unless we make
extra assumptions on the structure of the blockchain and hence on the entropy of the maliciously generated
blocks. We remark that even though one might be able to prove that Bitcoin’s output does have such extra
properties—sufficient for the above alternative construction—the resulting statement would not be stronger: one
would still need to rely on the unpredictability of the next honest block and on chain quality; hence it would at
most give a slightly more efficient solution (hashing one block instead of ` − µ) at the cost of a more involved
analysis with extra assumptions.

5.4 Timed Signatures

We provide a scheme Πw,t
σ that UC-realizes the functionality Fw,t

σ for t = “ − ”, “ + ”, “ ± ”. The backdate
secure TSign scheme Πw,−

σ showed in Fig. 5.3 realizes Fw,−
σ in the (FSIGN,Gledger,Gclock)-hybrid model. In

this, informally, the signer signs a message m using a standard signature scheme, creates a transaction that
contains the signature of the message and then asks the ledger to store the transaction permanently into state.
Intuitively, the construction is secure as of the security of the signature scheme and because the history of the
ledger cannot be changed. Also, Πw,−

σ realizes Fw,−
σ with w = (⊥, MaxRound, WindowSize, waitingTime)

where MaxRound, WindowSize and waitingTime are the parameters of Gledger. In this construction, as for the
weak beacon protocol, every honest party pi maintains a table T local

pi that is updated on any input received by pi
according to the procedure update time table(). The aim of T local

pi is to associate each round of Gclock to the
size of the state of Gledger. The postdate secure TSign scheme Πw,+

σ , showed in the Fig. 5.4, realizes Fw,+
σ in

the (FSIGN,Bw,Gclock)-hybrid model. In this protocol the signer, on input a message m, first invokes the weak
beacon Bw thus obtaining the most recent output (in his view) η and then signs m||η using a standard signature

70

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

scheme. Intuitively, this scheme is secure due to the unforgeability of the signature scheme and because an
adversary can, in the worst case, predict only the future ∆ outputs of the beacon. More precisely, Πw,+

σ realizes
Fw,+
σ with w = (∆ = (`, µ), MaxRound, WindowSize,⊥) where MaxRound, WindowSize are the parameters of
Bw.

The timed secure TSign scheme Πw,±
σ showed in Fig. 5.5 realizes Fw,±

σ in the (Fw,+
σ ,Bw,Gclock)-hybrid

model. In the construction we promote the postdate security of Fw,+
σ to timed security by simply storing the

signature obtained via Fw,+
σ into the ledger. The security of this scheme follows immediately from the postdate

security of Fw,+
σ and from the immutability of Gledger.

We assume that the parties P are registered to Gledger, Gclock and FSIGN. Each party pi ∈ P manages a local time
table T local

pi that is updated any time that pi receives an input by invoking the procedure update time table().
Initialization. The signer S ∈ P sends (KEY GEN, sid) to FSIGN thus obtaining (VERIFICATION KEY, sid, v).
Signature. The signer S ∈ P on input (TIMED SIGN, sid,−,m, τreq) executes the following steps.

1. Send (SIGN, sid,m) to FSIGN and upon receiving the answer (SIGNATURE, sid,m, σ), create a transaction
tx := (m,σ) and send (SUBMIT, sid, tx) toWWBU(Gledger).

2. Wait until tx is added to the state ofWWBU(Gledger). Let tslback be the block of state that contains tx,
output (TIMED SIGNATURE, sid,−, (tslback,m, σ,⊥)).

Verification. The party pi ∈ P on input (TIMED VERIFY, sid,−, (tslback,m, σ, v′,⊥)) proceeds as follows.

1. Send (Vf, sid,m, σ, v′) to FSIGN.

2. Upon receiving (VERIFIED, sid,m, b) from FSIGN, if b = 1 then send (READ, sid) toWWBU(Gledger) else
output (TIMED VERIFIED, sid,−, (⊥,m, 0,⊥)).

3. Upon receiving the answer (READ, sid, state) from WWBU(Gledger) check if the transaction tx =
(m,σ) is stored in the tslback-th block of state. If it is, then find the smallest τback such
that T local

pi [τback] = tslback and output (TIMED VERIFIED, sid,−, (τback,m, 1,⊥)) otherwise output
(TIMED VERIFIED, sid,−, (⊥,m, 0,⊥)).

Figure 5.3: The protocol Πw,−
σ in the (FSIGN,Gledger,Gclock)-hybrid model.

Theorem 8. The protocol Πw,−
σ described in Fig. 5.3 realizes with perfect securityFw,−

σ in the (Gledger,Gclock,FSIGN)-
hybrid model where Gledger is parameterized by ((µ, `), MaxRound, WindowSize, waitingTime).

Proof. LetA be an arbitrary polynomial time adversary. We will describe a corresponding polynomial time ideal
process adversary Sim such that no non-uniform polynomial time environment can distinguish whether Πw,−

σ is
running in the (WWBU(Gledger),Gclock,FSIGN)-hybrid model with parties p1, . . . , pn and adversary A or the
ideal process is running with Fw,−

σ , Sim and dummy parties p̃1, . . . , p̃n. Sim starts by invoking a copy of A. It
will run a simulated interaction of A, the parties and the environment. In particular, whenever the simulated A
communicates with the environment, Sim just passes this information along. And whenever A corrupts a party
pi, Sim corrupts the corresponding dummy party p̃i. We summarize the behavior of Sim as follows.

• If (KEY GEN, sid) is received then forward it toFSIGN upon receiving the answer (VERIFICATION KEY, sid, v)
sent it back to Fw,−

σ .

• If the input (TIMED SIGN, sid,−,m, S̃, τreq) is received it means that a dummy party S̃ has received
the input (TIMED SIGN, sid,−,m, τreq). Therefore, send (SIGN, sid,m) to FSIGN, and upon receiving
(SIGNATURE, sid,m, σ) generate the transaction tx ← (m,σ) and send tx toWWBU(Gledger). When tx

is added to the state state ofWWBU(Gledger), take the index of the block tslback that contains tx and send
(TIMED SIGNATURE, sid,−,m, (tslback, σ, v,⊥)) to Fw,−

σ .

71

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

• If the input (TIMED VERIFIED, sid,−, (tslback,m, σ, v′,⊥)) is received it means that a dummy party p̃i
has received the input (TIMED VERIFY, sid,−, (tslback,m, σ, v′,⊥)). Therefore Send (Vf, sid,m, σ, v′)
to FSIGN and upon receiving the answer (VERIFIED, sid,m, φ) send (READ, sid) toWWBU(Gledger). Upon
receiving the answer from (READ, sid, state) check if the block in the tslback-th position of state contains
the transaction tx = (m,σ). If it is not, then φ← 0. Send (TIMED VERIFIED, sid,m, φ) to Fw,−

σ .

• At any round Sim updates T according to the slackness values ofWWBU(Gledger). That is, Sim reads the
values pti1 , . . . , ptin fromWWBU(Gledger), defines a time-table T ′ that extends the previous one (T) by
setting T ′[R, pi1] = ptij for all the honest parties pij , and set T ′[τ, pik] = |state| for all the corrupted
parties pik . Then Sim sends (SET-DELAYS, sid, T ′) to Fw,−

σ .

We recall that the maximum number of blocks after that an honest transaction is added to the state of
WWBU(Gledger) is waitingTime. Therefore, if the environment can distinguish between the ideal and the real
execution it means that the security of either FSIGN or Gledger has been compromised.

We assume that the parties P are registered to FSIGN, Bw and Gclock.
Initialization. The signer S ∈ P sends (KEY GEN, sid) to FSIGN thus obtaining
(VERIFICATION KEY, sid, v).
Signature. The signer S ∈ P on input (TIMED SIGN, sid,+,m, τreq) executes the following steps.

Send (←$, τ, sid) to Bw and upon receiving (←$, sid, tslpost, η) send (SIGN, sid, tslpost||m||η) to
FSIGN.
Upon receiving (SIGNATURE, sid, tslpost||m||η, σ), σt ← (σ, η) and output
(TIMED SIGNATURE, sid,+, (⊥,m, σt, tslpost)).

Verification. The party pi ∈ P on input (TIMED VERIFY, sid,+, (⊥,m, σt, v′, tslpost)) parses σt as (σ, η)
and executes the following steps.

Parses σt as (σ, η) and query Bw to check when (and if) the value η was issued by Bw. If η has never
been issued by Bw then output (TIMED VERIFIED, sid,+, (⊥,m, 0,⊥)). Else, let τpost be the round in
which η has been issued, send (Vf, sid, tslpost||m||η, σ, v′) to FSIGN.
Upon receiving (VERIFICATION, sid,m, b) from FSIGN, if b = 1 then output
(TIMED VERIFIED, sid,+, (⊥,m, 1, τpost)) else output (TIMED VERIFIED, sid,+, (⊥,m, 0,⊥))

Figure 5.4: The protocol Πw,+
σ in the (FSIGN,Bw,Gclock)-hybrid model.

Theorem 9. Let Fw,+
σ be the functionality parameterized by w = (∆, MaxRound, WindowSize,⊥), then the

protocol Πw,+
σ described in Fig. 5.4 realizes with perfect security Fw,+

σ in the (Bw′ ,Gclock,FSIGN)-hybrid model
where Bw′ is parameterized by w′ = ((µ, `), MaxRound, WindowSize, MaxSize) with ∆ = `− µ.

Proof. Following the approach proposed in the proof of Theorem 8, we summarize the behavior of Sim as
follows.

• If (KEY GEN, sid) is received then forward it toFSIGN upon receiving the answer (VERIFICATION KEY, sid, v)
sent it back to Fw,+

σ .

• If the input (TIMED SIGN, sid,+,m, S̃, τreq) is received it means that a dummy party S̃ has received the
input (TIMED SIGN, sid,+,m, τreq). Therefore, send (←$, sid, τreq) to Bw, and upon receiving (←$, η)
send (SIGN, sid, tslpost||m||η) to FSIGN. Upon receiving (SIGNATURE, sid,m′, σ), define σt ← (σ, η)
send (TIMED SIGNATURE, sid,+,m, (⊥, σt, v, tslpost)) to Fw,+

σ .

72

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

• If the input (TIMED VERIFIED, sid,+, (⊥,m, σ, v′, tslpost)) is received it means that a dummy party p̃i
has received the input (TIMED VERIFY, sid,+, (⊥,m, σt, v′, tslpost)). Therefore parse σt as (σ, η) and
send (Vf, sid, tslpost||m||η, σ, v′) to FSIGN and upon receiving the answer (VERIFIED, sid,m, φ) query
the Bw to check if the value η is the tslpost-th output of Bw. If it is not then set φ ← 0 and send
(TIMED VERIFIED, sid,m, φ) to Fw,+

σ .

• At any round Sim updates T according to the time table that is managed by Bw. That is, let T ′ be the time
table of Bw, then Sim sends (SET-DELAYS, sid, T ′) to Fw,+

σ at any round.

• If the adversary obtains a valid signature σ for the message i||m||η by queryingFSIGN with (SIGN, sid, i||m||η)
then send (TIMED SIGN, sid,+,m, τreq) toFw,+

σ . Upon receiving (TIMED SIGN, sid,+,maxtsl,m, S, τreq),
check if maxtsl+δ ≤ i. If it is not, then ignore, otherwise set tslpost ← i and send (TIMED SIGNATURE, sid, t,m,
(⊥, σ, v, tslpost)) to Fw,+

σ . We refer to a signature (m, (⊥, σ, tslpost)) computed in the way we just de-
scribed as predicted signature. Any time that a predicted signature is caught by Sim, he stores it together
with η.

• At any round Sim updates T according to the time table that is managed by Bw. That is, let T ′ be the time
table of Bw, then then Sim sends (SET-DELAYS, sid, T ′) to Fw,+

σ at any round.

• Any time that Bw issues a new value Sim checks if the signatures predicted by the adversary are actually
valid. That is, for any recorded entry with the form (m, (⊥, σ, tslpost), η) that has tslpost = |H| (we
recall that H contains all the output issued by Bw), Sim checks if H[tslpost] = η. If it is not then Sim
sends I = (DELETE, sid, t, (tslback, x, π, tslpost)). In the end Sim aligns the size of the time-slots with
the size new size ofH by sending (NEW SLOT, sid) to Fw,+

σ .

We assume that the parties P are registered to Gledger, Gclock and to the functionality Fw,+
σ . Each party

pi ∈ P manages a local time table T local
pi that updates on any input he receives by invoking the procedure

update time table().
Initialization. The signer S ∈ P sends (KEY GEN, sid) to Fw,+

σ thus obtaining (VERIFICATION KEY, sid, v).
Signature. The signer S ∈ P on input (TIMED SIGN,±, sid,m, τreq) executes the following steps.

1. Forward (TIMED SIGN, sid,+,m, τreq) to Fw,+
σ and upon receiving the answer

(TIMED SIGNATURE, sid,+, (⊥,m, σ, tslpost)), create a transaction tx ← (m,σ, tslpost) and
send (SUBMIT, sid, tx) toWWBU(Gledger).

2. Wait until tx is added to the state ofWWBU(Gledger). Let tslback be the block of state that contains tx,
output (TIMED SIGNATURE, sid,±, (tslback,m, σ, tslpost)).

Verification. The party pi ∈ P on input (TIMED VERIFY, sid,±, (tslback,m, σ, v′, tslpost)) proceeds as fol-
lows.

1. Send (TIMED VERIFY, sid,+, (⊥,m, σ, v′, tslpost)) to Fw,+
σ .

2. Upon receiving (TIMED VERIFIED, sid,+,⊥,m, b, τ) from Fw,+
σ , if b = 1 then send (READ, sid) to

WWBU(Gledger) else output (TIMED VERIFIED, sid,±,⊥,m, 0,⊥).

3. Upon receiving the answer (READ, sid, state) from WWBU(Gledger) check if the transaction tx =
(m,σ, tslpost) is stored in the tslback-th block of state. If it is, then find the smallest τback such
that T local

pi [τback] = tslback and output (TIMED VERIFIED, sid, τback,m, 1, τpost) otherwise output
(TIMED VERIFIED, sid,⊥,m, 0,⊥).

Figure 5.5: The protocol Πw,±
σ in the (Fw,+

σ ,Gledger,Gclock)-hybrid model.

73

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Theorem 10. LetFw,±
σ be the functionality parameterized by w = (∆, MaxRound, WindowSize, waitingTime),

then the protocol Πw,±
σ described in Fig. 5.5 realizes with perfect security Fw,±

σ in the (Fw,+
σ ,Gledger,Gclock)-

hybrid model-hybrid model.

5.5 Timed Zero Knowledge

TPoK with Postdate Security via UC-NIZK. Our protocol Πw,+
TPoK UC-realizesFw,+

TPoK in the (FNIZK,Bw,Gclock)-
hybrid model (with w = ((µ, `), MaxRound, WindowSize, MaxSize)). Πw,+

TPoK follows the commit-and-prove
paradigm in which the prover commits to the witness w for theNP-statement x to be proven, and then proves to
the verifier that the committed message corresponds to a valid witness for x. In our protocol we want to associate
some time-stamp to the proof generated by the prover, so we slightly modify the above approach as follows.
The prover obtains (η, τ) by invoking the weak beacon Bw and computes a commitment com of w||η. Then the
prover proves to the verifier that com contains a witness for x concatenated with η. More precisely, let L be an
NP-language andR be the correspondingNP-relation; to compute a proof the prover uses a NIZK PoK for the
following NP-relation

Rel′ = {(com, x, η), (Dec, w) s.t. Dec(com,Dec, η||w)) = 1 AND (x,w) ∈ R}.

where x is the statement being proved and w is the corresponding witness (i.e. (x,w) ∈ R). The verifier, upon
receiving the proof computed by the prover accepts it if and only if the following two conditions hold: 1. value
η has been output by Bw in some round τ ; 2. the NIZK proof given by the prover is accepting.

Since the NIZK that we use is a PoK and we assume that a malicious prover cannot predict the output of the
weak beacon Bw more than δ = MaxRound · (WindowSize + `− µ) rounds in advance then the verifier has the
guarantee that the proof has been computed (and that the witness w was known by the prover) in some moment
subsequent to τ − δ.

In Fig. 5.6 we show the details of our protocol. Our protocol uses FNIZK, Bw and Gclock. We recall that Bw
can be implemented by having read-only access toWWBU(Gledger).

We assume that the parties P are registered to FNIZK for the NP-relation Rel′, Bw and Gclock.
Proof. The party p ∈ P on input (TIMED PROVE, sid, (x,w), τ) checks if (x,w) /∈ R. If it is, then ignores I else
executes the following steps.

Send (←$, τ, sid) to Bw and upon receiving (←$, sid, tsl, η), compute (com,Dec)
$←− Com(w||η) and

define xt ← (com, x, η) and wt ← (w,Dec) such that (xt, wt) ∈ Rel′.
Send (PROVE, sid, (xt, wt)) to FNIZK and upon receiving the answer (PROOF, sid, π) output
(PROOF, sid, xt, (π, tsl)).

Verification. The party p on input (TIMED VERIFY, sid,+, xt, (⊥, π, tsl)) parses xt as (com, x, η) and executes
the following steps.

Query the beacon to see in which round τ the value η was issued.
If this τ does not exist then output (TIMED VERIFICATION, sid,+,⊥, 0,⊥), otherwise send (Vf, sid, xt, π)
to FNIZK.
Upon receiving (VERIFICATION, sid, b) from FNIZK output (TIMED VERIFICATION, sid, t,⊥, b, τ).

Figure 5.6: The protocol Πw,+
TPoK in the (FNIZK,Bw,Gclock)-hybrid model.

Theorem 11. Let Fw,+
TPoK be the functionality parameterized by w = (∆, MaxRound, WindowSize,⊥) then the

protocol described in Fig. 5.6 realizes with perfect security Fw,+
TPoK in the (Bw′ ,FNIZK,Gclock)-hybrid model

where Bw′ is parameterized by w′ = ((µ, `), MaxRound, WindowSize, MaxSize) with ∆ = `− µ.

From Postdate Secure TPoK to Timed TPoK. In this section we show how to obtain a protocol Πw,±
TPoK that

UC-realizes Fw,±
TPoK in the (Fw,+

TPoK,Gledger,Gclock)-hybrid model. Πw,±
TPoK is the first protocol described in this

work that uses Gledger to store some information. Informally, every time that it is required to generate a proof
for an NP-statement x, Πw,±

TPoK queries Fw,+
TPoK thus obtaining a proof (x, π, tslpost).

74

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

We assume that the parties P are registered to WWBU(Gledger) and to the functionality Fw,+
TPoK that is parame-

terized with the NP-relation R. Every time that a party pi ∈ P receives ad input she invokes the procedure
update time table() (see Fig. 5.2 fore more details on this procedure).
Proof. The party pi ∈ P on input (TIMED PROVE, sid,±, (x,w), τ) check if (x,w) ∈ R. If it is not, then ignore
I , proceed as follows otherwise.

1. Forward (TIMED PROVE, sid,+, (x,w), τ) to Fw,+
TPoK and upon receiving the answer

(TIMED PROOF, sid,+,⊥, π, tsl), create a transaction tx ← (x, π, tsl) and send (SUBMIT, sid, tx) to
WWBU(Gledger).

2. Wait until tx is added to the state ofWWBU(Gledger). Let tslback be the block of state that contains tx,
output (TIMED PROOF, sid,±, x, (tslback, π, tslpost)).

Verification. The party pi ∈ P on input (TIMED VERIFY, sid,±, x, (tslback, π, tslpost)) proceeds as follows.

1. Send (TIMED VERIFY, sid,+, x, (⊥, π, tslpost)) to Fw,+
TPoK.

2. Upon receiving (TIMED VERIFICATION, sid,+,⊥, b, τ) from Fw,+
TPoK, if b = 1 then send (READ, sid) to

WWBU(Gledger) else output (TIMED VERIFICATION, sid,±,⊥, 0,⊥).

3. Upon receiving the answer (READ, sid, state) from WWBU(Gledger) check if the transaction tx :=
(x, π, tslpost) is stored in the tslback-th block of state. If it is, then find the smallest τback such that
T local
pi [τback] = tslback and output (TIMED VERIFICATION, sid,±, τback, 1, τpost, 1) otherwise output

(TIMED VERIFICATION, sid,±,⊥, 0,⊥).

Figure 5.7: The protocol Πw,±
TPoK in the (Fw,+

TPoK,Gledger,Gclock)-hybrid model.

Then the prover of Πw,±
TPoK generates a transaction that contains (x, π, tslpost) and asks Gledger to add the

transaction to state. The parameter waitingTime of Πw,±
TPoK is the same parameter that in Gledger defines the

upper bound on the number of blocks that needs to be added to state before that a transaction submitted from
an honest party gets into state. Intuitively, the postdate security of Πw,±

TPoK comes immediately from the postdate
security of Fw,+

TPoK and the backward security comes from the fact that once that a transaction is part of state it
cannot be removed. The formal construction of Πw,±

TPoK for theNP-RelationR is shown in Fig. 5.7. In this, every
honest party pi manages a table T local

pi that is updated on any input received by pi according to the procedure
update time table(), see Sec. 5.3.1 for more details. The proofs that our constructions implement the different
notions of TPoK are very similar to the proof of Sec. 5.4.

5.5.1 Signature of Knowledge

It should be easy to see that postdate, backdate and timed secure NIZK implies respectively postdate, backdate
and timed secure TSoK. Indeed we observe in the Fw,t

TPoK-hybrid model it is possible to obtain a protocol that
UC-realizes Fw,t

TSoK following the approach proposed in [CL06] that we mentioned above. The only difference
is that instead of using NIZK we rely on Fw,t

TPoK to prove that the ciphertext c contains the concatenation of the
witness for x and the message m.

75

Chapter 6

Zero-Knowledge SNARKs from Linear-Size
Universal and Updateable Structured
Reference Strings

Zero-knowledge proof systems have long been recognized as an important cryptographic primitive for protecting
electronic privacy. The availability of a distributed ledger creates new possibilities for realizing strong privacy
protection online. Private cryptographic currencies such as zcash are already deployed systems and other systems
such as zkay extend smart contracts with privacy features. These developments are enabled by succinct non-
interactive arguments of knowledge (short SNARKs) which sacrifice perfect soundness for the benefit of a short
non-interactive proof needed in the blockchain setting.

In this chapter we describe Sonic, a novel SNARK that is particularly well suited for distributed ledgers. The
full version of our result can be found here [MBKM].

6.1 Introduction

In the decades since their introduction, zero-knowledge proofs have been used to support a wide variety of po-
tential applications, ranging from verifiable outsourced computation [PHGR13, BCG+13, BCTV14, BCG+18]
to anonymous credentials [CG08, BCC+09, GGM14, CKLM14, CDHK15b], with a multitude of other settings
that also require a balance between privacy and integrity [BFG13, CCFG16, CKLM13, BBBF18, FPS+18]. In
recent years, cryptocurrencies have been one increasingly popular real-world application [BCG+14, KMS+16,
GM17, MS18], with general zero-knowledge protocols now deployed in both Zcash and Ethereum. In the cryp-
tocurrency setting it is common for clients to download and verify every transaction published to the network.
This means that small proof sizes and fast verification time are important for the practical deployment of zero-
knowledge protocols. There are several practical schemes from which to choose, with a vast space of tradeoffs
in performance and cryptographic assumptions.

Currently, the most attractive proving system from the verifier’s perspective is a (pre-processing) succinct
non-interactive argument of knowledge, or zk-SNARK for short, which has a small constant proof size and
constant-time verification costs even for arbitrarily large relations. The most efficient scheme described in the
literature is a zk-SNARK by Groth [Gro16] which contains only three group elements. Typically, zk-SNARKs
require a trusted setup, a pairing-friendly elliptic curve, and rely on strong assumptions.

In contrast, proving systems such as Bulletproofs [BBB+18] do not require a trusted setup and depend
on weaker assumptions. Unfortunately, although its proof sizes scale logarithmically with the relation size,
Bulletproof verification time scales linearly, even when applying batching techniques. As a result, Bulletproofs
are ideal for simpler relations.

Although zk-SNARKs have been deployed in applications, such as the private payment protocol in Zcash,

76

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

the trusted setup has emerged as a barrier for deployment. If the setup is compromised in Zcash, for example,
an attacker could create counterfeit money without detection. It is possible to reduce risk by performing the
setup with a multi-party computation (MPC) protocol, with the property that only one participant must be honest
for the final parameters to be secure [Wil16, BCC+14]. However, the resulting parameters are specific to the
individual relation, and so each distinct application must perform its own setup. Applications must also perform
a new setup each time their construction changes, even for minor optimizations or bug fixes.

Groth et al. [GKM+18b] recently proposed a zk-SNARK scheme with a universal structured reference string
(SRS1) that allows a single setup to support all circuits of some bounded size. Moreover, the SRS is updatable,
meaning an open and dynamic set of participants can contribute secret randomness to it indefinitely. Although
this is still a trusted setup in some sense, it increases confidence in the security of the parameters as only one
previous contributor must have destroyed their secret randomness in order for the SRS to be secure.

In terms of efficiency, however, while the construction due to Groth et al. does have constant-size proofs
and constant-time verification, it requires an SRS that is quadratic with respect to the number of multiplication
gates in the supported arithmetic circuits. Moreover, updating the SRS requires a quadratic number of group
exponentiations, and verifying the updates requires a linear number of pairings. Finally, while the prover and
verifier need only a linear-size, circuit-specific string for a given fixed relation (rather than the whole SRS),
deriving this from the SRS requires an expensive Gaussian elimination process. In a concrete setting such as
Zcash, which has a circuit with 217 multiplication gates, the SRS would be on the order of terabytes and is thus
prohibitively expensive.

6.1.1 Results

We present Sonic, a new zk-SNARK for general arithmetic circuit satisfiability. Sonic requires a trusted setup,
but unlike conventional SNARKs the structured reference string supports all circuits (up to a given size bound)
and is also updatable, so that it can be continually strengthened. This addresses many of the practical challenges
and risks surrounding such setups. Sonic’s structured reference string is linear in size with respect to the size of
supported circuits, as opposed to the scheme by Groth et al., which scales quadratically. The structured reference
string in Sonic also does not need to be specialized or pre-processed for a given circuit. This makes a large,
distributed and never-ending setup process a practical reality.

Proof verification in Sonic consists of a constant number of pairing checks. Unlike other zk-SNARKs, all
proof elements are in the same source group, which has several advantages. Most significantly, when verifying
many proofs at the same time, the pairing operations need to be computed only once. Thus the marginal costs
stem solely from a handful of exponentiations in the group. We also remove the requirement for operations in
the second source group, which are typically more expensive.

Sonic’s verification includes checking the evaluation of a sparse bivariate polynomial in the scalar field.
We introduce a method to check this evaluation succinctly (given a circuit-dependent precomputation) and thus
maintain our zk-SNARK properties. Our proof of correct evaluation introduces a new permutation argument and
a grand-product argument.

Additionally Sonic can achieve better concrete efficiency if an untrusted “helper” party aggregates a batch of
proofs. This batching operation computes advice to speed up the verifier. In a blockchain application, this helper
could be a miner-type client that already processes and verifies transactions for inclusion in the next block.

We define security in this setting in Section 6.2, and present and prove secure the regular usage of Sonic in
Section 6.5 and Section 6.6. In Section 6.7 we present the more efficient version of Sonic which is helper-assisted.
Finally, we implement our protocol and discuss its performance in Section 6.8, demonstrating verification times
that are competitive with state-of-the-art pre-processing zk-SNARKs for typical arithmetic circuits. For any size
of circuit proof sizes are 256 bytes and the verification times for circuits with small instances and arbitrarily sized
witnesses are approximately 0.7ms (assuming there are helpers).

1“Structured reference string” is the recommended language to use when referring to what was once called a “common reference
string” [Wor18].

77

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

6.1.2 Techniques

The goal of Sonic is to provide zero-knowledge arguments for the satisfiability of constraint systems representing
NP-hard languages. Sonic defines its constraint system with respect to the two-variate polynomial equation used
in Bulletproofs that was designed by Bootle et al. [BCC+16]. In the Bulletproofs polynomial equation, there
is one polynomial that is determined by the instance of the language and a second that is determined by the
constraints. The polynomial determined by the instance a is given by∑

i,j

ai,jX
iY j

i.e., each element of the instance is used to scale a monomial in the overall polynomial. For this reason, an SRS
that contains only hidden monomial evaluations suffices for committing to the instance. Groth et al. [GKM+18b]
showed that an SRS that contains monomials is updatable. The second polynomial that is determined by the
constraints is known to the verifier. We use this knowledge to allow the verifier to obtain evaluations of the
polynomial while avoiding putting constraint-specific secrets in the SRS.

To commit to our polynomials, we use a variation of a polynomial commitment scheme by Kate et al. [KZG10].
We prove the commitment scheme secure in the algebraic group model [FKL18], which is a model that lies some-
where between the standard model and the generic group model. This security proof does not follow from the
initial reductions by Kate et al. because we additionally need to show that the adversary can extract the commit-
ted polynomials. Kate et al.’s scheme has constant size and verification time, but is designed for single-variate
polynomials, whereas our polynomials are two-variate. To account for this, we hide only one evaluation point
in the reference string. The polynomial defining the instance is of a special form where it can be committed to
using a univariate scheme; i.e., it is of the form ∑

i

aiX
iY i.

The prover first commits to the polynomial defining the statement, and then the second evaluation point y is
determined in the clear. The prover can then commit to other polynomials of the form∑

i,j

ti,jX
iyj

using a univariate scheme.
When the prover and verifier both know a two-variate polynomial that the verifier wants to calculate, this

work can be unloaded onto the prover. In our scheme we utilize this observation by placing the work of comput-
ing the polynomial specifying the constraints onto the prover. The prover then has to show that the polynomial
has been calculated correctly. We provide two methods of achieving this. In the first, we simply provide a proof
that the evaluation is correct. While asymptotically preferable, concretely this proof is three times the size of our
second method. In this scenario, many proofs are calculated by many provers, and then a “helper” calculates the
circuit-specifying polynomial for each proof. The circuit-specifying polynomial contains no private information,
so the helper can be run by anyone. The helper then proves that they have calculated all of the polynomials cor-
rectly at the same time, which they can do succinctly with a one-off circuit-dependent cost that can be amortized
over many proofs.

6.2 Definitions for Updatable Reference Strings

In this section, we revisit the definitions around updatable SRS schemes due to Groth et al. [GKM+18b], in terms
of defining properties of zero-knowledge proofs in the case in which the adversary may subvert or participate in
the generation of the common reference string. Given that our protocol in Section 6.5 is interactive (but made
non-interactive in the random oracle model), we also present new definitions for interactive protocols that take
into account these alternative methods of SRS generation.

78

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

6.2.1 Notation

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S| denotes its size and x $←− S denotes
sampling a member uniformly from S and assigning it to x. We use λ ∈ N to denote the security parameter and
1λ to denote its unary representation. We use ε to denote the empty string.

Algorithms are randomized unless explicitly noted otherwise. “PPT” stands for “probabilistic polynomial
time” and “DPT” stands for “deterministic polynomial time.” We use y ← A(x; r) to denote running algorithm

A on inputs x and random coins r and assigning its output to y. We write y $←− A(x) or y r←− A(x) (when we
want to refer to r later on) to denote y ← A(x; r) for r sampled uniformly at random.

We use code-based games in security definitions and proofs [BR06]. A game SecA(λ), played with respect
to a security notion Sec and adversary A, has a MAIN procedure whose output is the output of the game. The
notation Pr[SecA(λ)] is used to denote the probability that this output is 1.

6.2.2 The Subvertible SRS Model

Intuitively, the subvertible SRS model [BFS16] allows the adversary to fully generate the reference string itself,
and the updatable SRS model [GKM+18b] allows the adversary to partially contribute to its generation by per-
forming some update. Formally, an updatable SRS scheme is defined by two PPT algorithms Setup and Update,
and a DPT algorithm VerifySRS. These behave as follows:

• (srs, ρ)
$←− Setup(1λ) takes as input the security parameter and returns a SRS and proof of its correctness.

• (srs′, ρ′)
$←− Update(1λ, srs, (ρi)

n
i=1) takes as input the security parameter, a SRS, and a list of update

proofs. It outputs an updated SRS and a proof of the correctness of the update.

• b ← VerifySRS(1λ, srs, (ρi)
n
i=1) takes as input the security parameter, a SRS, and a list of proofs. It

outputs a bit indicating acceptance (b = 1), or rejection (b = 0).

We consider an updatable SRS to be perfectly correct if an honest updater always convinces an honest verifier.

Definition 16. An updatable SRS scheme is perfectly correct if

Pr
[
(srs, ρ)

$←− Setup(1λ) : VerifySRS(1λ, srs, ρ) = 1
]

= 1,

and if for all (λ, srs, (ρi)
n
i=1) where VerifySRS(1λ, srs, (ρ)ni=1) = 1, we have that

Pr

[
(srs′, ρn+1)

$←− Update(1λ, srs, (ρi)
n
i=1) :

VerifySRS(1λ, srs′, (ρ)n+1
i=1) = 1

]
= 1.

In terms of the usage of these SRSs, a protocol cannot satisfy both subvertible zero-knowledge and subvert-
ible soundness [BFS16]. That is, assuming the adversary knows all the randomness used to generate the SRS,
they can either break the zero-knowledge property of the scheme or they can break the soundness property of
the scheme. We thus recall here the two strongest properties we can hope to satisfy, which are subvertible zero-
knowledge and updatable knowledge soundness. The definitions of these properties are simplified versions of
the ones given by Groth et al. [GKM+18b], with the addition of a random oracle H (which behaves as expected,
so we omit its description).

Let R be a polynomial-time decidable relation with triples (srs, φ, w). We say w is a witness to the instance
φ being in the relation defined by srs when (srs, φ, w) ∈ R. We consider an argument (Prove,Verify) to
be subversion zero-knowledge if an adversarial verifier, including one that (fully) generates the SRS, cannot
differentiate between real and simulated proofs.

79

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Definition 17 (Subvertible Zero-Knowledge). An argument for the relation R is S-zero-knowledge if for all PPT
algorithmsA there exists a PPT extractorX and a simulator SimProve such that the advantage |2 Pr[S-ZKA,X (1λ)]−
1| is negligible in λ, where this game is defined as follows:

MAIN S-ZKA,XA(λ)

b
$←− {0, 1}

(srs, (ρi)
n
i=1)

r←− AH(1λ)

τ
$←− XA(r)

if VerifySRS(1λ, srs, (ρi)
n
i=1) = 0 return 0

b′ ← AH,Opf (r)
return b′ = b

Opf(φ,w)

if (srs, φ, w) 6∈ R return ⊥
if b = 0 return SimProve(srs, τ, φ)
else return Prove(srs, φ, w)

To define update knowledge-soundness, we consider an adversary that can influence the generation of the
SRS. To do this, it can query an oracle with an intent set to “setup” (for the first update proof), “update” (for all
subsequent update proofs), or “final” (to signal the SRS for which it will attempt to forge proofs). The oracle
sets the SRS only if: (1) all update proofs verify; and (2) it was responsible for generating at least one of the
update proofs. We do not use updatable knowledge soundness directly, but this part of the security game (in
which A and U-Os interact to create the SRS) can be re-purposed for any cryptographic primitive. We use this
updatability notion mainly for the polynomial commitment scheme we present in Section 6.5.2.

Definition 18 (Updatable Knowledge Soundness). An argument for the relation R is U-knowledge-sound if for
all PPT algorithms A there exists a PPT extractor XA such that Pr[U-KSNDA,XA(1λ)] is negligible in λ, where
this game is defined as follows:

MAIN U-KSNDA,XA(λ)
srs← ⊥
(φ, π)

r←− AH,U-Os(1λ)

w
$←− XA(srs, r)

return Verify(srs, φ, π) ∧ (srs, φ, w) 6∈ R

U-Os(intent, srsn, (ρi)
n
i=1)

if srs 6= ⊥ return ⊥
if intent = setup

(srs′, ρ′)
$←− Setup(1λ)

Q← Q ∪ {ρ′}
return (srs′, ρ′)

if intent = update
b← VerifySRS(1λ, srsn, (ρi)

n
i=1)

if b = 0 return ⊥
(srs′, ρ′)

$←− Update(1λ, srsn, (ρi)
n
i=1)

Q← Q ∪ {ρ′}
return (srs′, ρ′)

if intent = final
b← VerifySRS(1λ, srsn, (ρi)

n
i=1)

if b = 0 or Q ∩ {ρi}i = ∅ return ⊥
srs← srsn; return srs

else return ⊥
To argue about the soundness of Sonic, we consider an interactive definition. We do not use the standard

definition of special soundness because our verifier provides two challenges, but rather the generalized notion of
witness-extended emulation [Lin03]. We adapt the definition given by Bootle et al. [BCC+16] as follows:

Definition 19. Let P be an argument for the relation R. Then it satisfies updatable witness-extended emulation

80

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

if for all DPT P∗ there exists an expected polynomial-time (PT) emulator E such that for all PPT algorithms A:

Pr[(srs′, ρ′)
$←− Setup(1λ) ;

(srs, (ρi)i, φ, w)
$←− A(srs′, ρ′) ;

view← 〈P∗(srs, φ, w),V(srs, φ)〉 :

VerifySRS(1λ, srs, (ρi)i) ∧ A(view) = 1]

≈ Pr[(srs′, (ρ′i)i)
$←− Setup(1λ) ;

(srs, (ρi)
n
i=1, φ, w)

$←− A(srs′, ρ′) ;

(view, w)← E〈P∗(srs,φ,w),V(srs,φ)〉 :

VerifySRS(1λ, srs, (ρi)i) ∧ A(view) = 1 ∧
if view is accepting then (φ,w) ∈ R],

where the oracle called by E〈P∗(srs,φ,w),V(srs,φ)〉 permits rewinding to a specific point and resuming with fresh
randomness for the verifier from this point onwards.

This definition uses a slightly different setup from the one in Definition 18: rather than interacting arbitrarily
with an update oracle to set the SRS, the adversary is instead given an initial one and is then allowed to update
that in a one-shot fashion. Following Groth et al. [GKM+18b, Lemma 6], these two definitions are equivalent
for Sonic, so we opt for the simpler one.

6.3 Building Blocks

6.3.1 Bilinear Groups

Let BilinearGen(1λ) be a bilinear group generator that given the security parameter 1λ produces bilinear param-
eters bp = (p,G1,G2,GT , e, g, h), where G1,G2,GT are groups of prime order p with generators g ∈ G1,
h ∈ G2 and e : G1 × G2 → GT is a non-degenerative bilinear map. That is, e(ga, hb) = e(g, h)ab ∀a, b ∈ Fp
and e(g, h) generates GT .

We require bilinear groups such that the maximum size of our circuit is bounded by d2 ≤ (p − 1)/32. In
practice we expect that d2 � (p− 1)/32.

We employ bilinear group generators that produce what Galbraith, Paterson and Smart [GPS08] classify as
Type III bilinear groups. For such groups no efficiently computable homomorphism between G1 and G2 exist.
These are currently the most efficient bilinear groups.

6.3.2 The Algebraic Group Model

Sonic is proven secure in the algebraic group model (AGM) by Fuchsbauer et al [FKL18], who used it to prove
(among other things) that Groth’s 2016 scheme [Gro16] is secure under a “q-type” variant of the discrete log
assumption. Previously the only security proof for this scheme was provided in the generic group model (GGM).
Although proofs in the GGM can increase our confidence in the security of a scheme, its scope is limited since
it does not capture group-specific algorithms that make use of its representation (such as index calculus ap-
proaches).

The AGM lies between the standard model and the GGM, and it is a restricted model of computation that
covers group-specific attacks while allowing a meaningful security analysis. Adversaries are assumed to be

81

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

restricted in the sense that they can output only group elements obtained by applying the group operation to pre-
viously received group elements. Unlike the GGM, in the AGM one proves security implications via reductions
to assumptions (just as in proofs in the standard model).

It is so far unknown how the AGM relates to knowledge-of-exponent (KOE) assumptions, which have been
used to build every known SNARK that has been proven secure in the standard model (and indeed it is known
that SNARKs cannot be proven secure under more standard falsifiable assumptions [GW11]). The format of
these KOE assumptions is similar to the AGM in the sense that proving the assumption incorrect would require
showing that there is an adversary that can compute group elements of a given format but that cannot extract
an algebraic representation. Popular KOE assumptions in asymmetric bilinear groups all require the adversary
to compute elements in the second source group. As we would like to avoid introducing proof elements in
the second source group (as these are typically more expensive due to current implementations of asymmetric
bilinear groups), we instead decided to work with the AGM.

An algorithmAalg is called algebraic if whenever it outputs an elementZ in G, it also outputs a representation
(z1, . . . , zt) ∈ Ftp such that Z =

∏t
i=1 g

zi
i where L = {g1, . . . , gt} is the list of all group elements given to Aalg

in its execution thus far. Unlike the GGM, in the AGM one proves security implications via reductions. To prove
our scheme secure in the algebraic group model we use the q discrete log assumption (q-DLOG), as follows:

Assumption 2 (q-DLOG assumption). Suppose that A is an algebraic adversary. Then

Pr

[
bp← BilinearGen(1λ); x

$←− Fp;
x′

$←− A(bp, {gxi , hxi}qi=−q) : x = x′

]

is negligible in 1λ.

6.3.3 Structured Reference String

In all of the following we require a structured reference string with unknowns x and α of the following form{
{gxi}di=−d, {gαx

i}di=−d,i6=0, {hx
i
, hαx

i}di=−d, e(g, hα)
}

for some large enough d to support the circuit depth n.
This string is designed so that gα is omitted from the reference string. Thus we can, when necessary, force

the prover to demonstrate that a committed polynomial (in x) has a zero constant term.

6.3.4 Polynomial Commitment Scheme

Sonic uses two main primitives as building blocks: a polynomial commitment scheme and a signature of correct
computation. A polynomial commitment scheme is defined by three DPT protocols:

• F ← Commit(bp, srs,max, f(X)) takes as input the bilinear group, the structured reference string, a
maximum degree, and a Laurent polynomial with powers between −d and max. It returns a commitment
F .

• (f(z),W)← Open(bp, srs,max, F, z, f(X)) takes as input the same parameters as the commit algorithm
in addition to a commitment F and a point in the field z. It returns an evaluation f(z) and a proof of its
correctness.

• b ← pcV(bp, srs,max, F, z, v,W) takes as input the bilinear group, the SRS, a maximum degree, a
commitment, a point in the field, an evaluation and a proof. It outputs a bit indicating acceptance (b = 1),
or rejection (b = 0).

82

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

We require that this scheme is evaluation binding; i.e., given a commitment F , an adversary cannot open F to
two different evaluations v1 and v2 (more formally, that it cannot output a tuple (F, z, v1, v2,W1,W2) such that
pcV returns 1 on both sets of evaluations and proofs). We also require that it is bounded polynomial extractable;
i.e., any adversary that can provide a valid evaluation opening also knows an opening f(X) with powers −d ≤
i ≤ max, i 6= d − max (more formally, that this is true for any adversary that outputs a tuple (F, z, v,W) that
passes verification). For both properties, we require that they hold with respect to an adversary that can update
the SRS; i.e., that has access initially to the oracle in Definition 18.

In Section 6.5.2 we provide a polynomial commitment scheme satisfying these two properties. We prove its
security in the algebraic group model in Theorem 14.

6.3.5 Signature of Correct Computation

A signature of correct computation is defined by two DPT protocols:

• (s(z, y), sc) ← scP(bp, srs, s(X,Y), (z, y)) takes as input the bilinear group, the SRS, a two-variate
polynomial s(X,Y), and two points in the field (z, y). It returns an evaluation s(z, y) and a proof sc.

• b← scV(bp, srs, s(X,Y), (z, y), s, sc) takes as input the same parameters as the scP algorithm in addition
to an evaluation and a proof. It outputs a bit indicating acceptance (b = 1), or rejection (b = 0).

We require that this scheme is sound; i.e., given (z, y) and s, an adversary can convince the verifier only if
s = s(z, y).

We provide two competing constructions: one in Section 6.7 and the other in Section 6.6. The first has linear
verifier computation, but can be aggregated by an untrusted helper to achieve constant verifier computation in the
batched setting. The second has constant verifier computation but higher concrete overhead. Both constructions
have constant size.

6.4 System of Constraints

Sonic represents circuits using a form of constraint system proposed by Bootle et al. [BCC+16]. We make several
modifications so that their approach is practical in our setting.

Our constraint system has three vectors of length n: a, b, c representing the left inputs, right inputs, and
outputs of multiplication constraints respectively, so that

a ◦ b = c.

We also have Q linear constraints of the form

a · uq + b · vq + c ·wq = kq

where uq,vq,wq ∈ Fn are fixed vectors for the q-th linear constraint, with instance value kq ∈ Fp. For example,
to represent the constraint x2 + y2 = z, one would set

• a = (x, y), b = (x, y), c = (x2, y2)

• u1 = (1, 0),v1 = (−1, 0),w1 = (0, 0), k1 = 0

• u2 = (0, 1),v2 = (0,−1),w2 = (0, 0), k2 = 0

• u3 = (0, 0),v3 = (0, 0),w3 = (1, 1), k3 = z

83

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Any arithmetic circuit can be represented with our constraint system by using the multiplication constraints to
determine the multiplication gates and the linear constraints to determine the wiring of the circuit and the addition
gates. Thus the constraint system covers NP.

We proceed to compress the n multiplication constraints into an equation in formal indeterminate Y , as
n∑
i=1

(aibi − ci)Y i = 0.

In order to support our later argument, we (redundantly) encode these constraints into negative exponents of Y ,
as

n∑
i=1

(aibi − ci)Y −i = 0.

We compress the Q linear constraints similarly, scaling by Y n to preserve linear independence.

Q∑
q=1

(a · uq + b · vq + c ·wq − kq)Y q+n = 0.

Let us define the polynomials

ui(Y) =

Q∑
q=1

Y q+nuq,i

vi(Y) =

Q∑
q=1

Y q+nvq,i

wi(Y) = −Y i − Y −i +

Q∑
q=1

Y q+nwq,i

k(Y) =

Q∑
q=1

Y q+nkq

and combine our multiplicative and linear constraints to form the equation

a · u(Y) + b · v(Y) + c ·w(Y) +

n∑
i=1

aibi(Y
i + Y −i)− k(Y) = 0. (6.1)

Given a choice of (a,b, c, k(Y)), we have that Equation 6.1 holds at all points if the constraint system is satisfied.
If the constraint system is not satisfied the equation fails to hold with high probability, given a large enough field.

We apply a technique from Bootle et al. [BCC+16] to embed the left hand side of Equation 6.1 into the
constant term of a polynomial t(X,Y) in a second formal indeterminate X . We design the polynomial r(X,Y)
such that r(X,Y) = r(XY, 1).

r(X,Y) =

n∑
i=1

(
aiX

iY i + biX
−iY −i + ciX

−i−nY −i−n
)

s(X,Y) =
n∑
i=1

(
ui(Y)X−i + vi(Y)Xi + wi(Y)Xi+n

)
r′(X,Y) = r(X,Y) + s(X,Y)

t(X,Y) = r(X, 1)r′(X,Y)− k(Y)

The coefficient of X0 in t(X,Y) is the left-hand side of Equation 6.1. Sonic demonstrates that the constant term
of t(X,Y) is zero, thus demonstrating that our constraint system is satisfied.

84

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

6.5 The Basic Sonic Protocol

Sonic is a zero-knowledge argument of knowledge that allows a prover to demonstrate that a constraint system
(described in Section 6.4) is satisfied for a hidden witness (a,b, c) and for known instance k. The instance k is
uploaded into the constraint system through the polynomial k(Y). Given a choice of r(X,Y) from Section 6.4,
if for random y ∈ Fp we have that the constant term of t(X, y) is zero, the constraint system is satisfied with
high probability.

Our Sonic protocol is built directly from a polynomial commitment scheme and a signature of correct com-
putation, as visualized in Figure 6.1. We discuss here the basic Sonic protocol, assuming these building blocks
are in place, and provide a suitable bounded extractable polynomial commitment scheme in Section 6.5.2 that we
prove secure in the AGM. In Sections 6.6 and 6.7 we discuss two different methods of constructing the signature
of correct computation, one which gives rise to a standalone zk-SNARK and one which achieves better practical
results through the use of an untrusted helper.

Figure 6.1: The basic Sonic protocol is built on top of a bounded-extractable polynomial commitment scheme
and a signature of correct computation.

Our protocol begins by having the prover construct r(X,Y) using their hidden witness. They commit to
r(X, 1), setting the maximum degree to n. The verifier sends a random challenge y. The prover commits to
t(X, y), and our commitment scheme ensures that this polynomial has no constant term. The verifier sends a
second challenge z. The prover opens their committed polynomials to r(z, 1), r(z, y) and t(z, y). The verifier
can calculate r′(z, y) for itself from these values and thus can check that r(z, y)r′(z, y)− k(y) = t(z, y). Note
that the coefficients of the public polynomial k(Y) are determined by the instance that the prover is claiming is
in the language. If this holds then the verifier learns that the evaluated polynomials were computed by a prover
that knows a valid witness. A more formal description of this protocol is given in Figure 6.2.

The verifier’s check that the quadratic polynomial equation is satisfied is performed in the field. This means
we avoid having proof elements on both sides of the pairing, which is useful for efficiency, without contradicting
Groth’s result about Non-Interactive Linear Proofs (NILPs) requiring a quadratic constraint [Gro16]. As a result,
when batching we avoid having to check one pairing equation per proof (pairing operations are expensive) and
can instead check one field equation per proof.

The Fiat-Shamir transformation takes an interactive argument and replaces the verifier challenges with the
output of a hash function. The idea is that the hash function will produce random-looking outputs and therefore be
a suitable replacement for the verifier. We describe Sonic in the interactive setting where all verifier challenges
are random field elements. In practice we assume that the Fiat-Shamir heuristic would be applied in order to
obtain a non-interactive zero-knowledge argument in the random oracle model.

Theorem 12. Assuming the ability to extract a trapdoor for the subverted reference string, Sonic satisfies sub-
version zero-knowledge.

Proof. To prove subversion zero-knowledge, we need to both show the existence of an extractor XA that can
compute a trapdoor, and describe a SimProve algorithm that produces indistinguishable proofs when provided
with the extracted trapdoor. We do not discuss the details of SRS generation here so we do not prove the existence
of the extractor, but one such example can be found in the original proof of Groth et al. [GKM+18b, Lemma 4].

85

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Common input: info = bp, srs, s(X,Y), k(Y), e(g, hα)
Prover’s input: a,b, c

zkP1(info, a,b, c) 7→ R:

cn+1, cn+2, cn+3, cn+4
$←− Fp

r(X,Y)← r(X,Y) +
∑4

i=1 cn+iX
−2n−iY −2n−i

R← Commit(bp, srs, n, r(X, 1))
send R

zkV1(info, R) 7→ y:

send y $←− Fp

zkP2(y) 7→ T :
T ← Commit(bp, srs, d, t(X, y))
send T

zkV2(T) 7→ z:

send z $←− Fp

zkP3(z) 7→ (a,Wa, b,Wb,Wt, s, sc):
(a = r(z, 1),Wa)← Open(R, z, r(X, 1))
(b = r(z, y),Wb)← Open(R, yz, r(X, 1))
(t = t(z, y),Wt)← Open(T, z, t(X, y)))
(s = s(z, y), sc)← scP(info, s(X,Y), (z, y))
send (a,Wa, b,Wb,Wt, s, sc)

zkV3(a,Wa, b,Wb,Wt, s, sc) 7→ 0/1:
t← a(b+ s)− k(y)
check scV(info, s(X,Y), (z, y), (s, sc))
check pcV(bp, srs, n,R, z, (a,Wa))
check pcV(bp, srs, n,R, yz, (b,Wb))
check pcV(bp, srs, d, T, z, (t,Wt))
return 1 if all checks pass, else return 0

Figure 6.2: The interactive Sonic protocol to check that the prover knows a valid assignment of the wires in the
circuit. The stated algorithms describe the individual steps of each of the parties (e.g., zkVi describes the i-th
step of the verifier given the output of zkPi−1), and both parties are assumed to keep state for the duration of the
interaction.

86

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The simulator is given the trapdoor gα and chooses random vectors a, b from Fp of length n and sets
c = a · b. It computes r(X,Y), r′(X,Y), t(X,Y) as in Section 6.4 where (unlike for the prover) t(X,Y) can
have a non-zero coefficient inX0. The simulator then behaves exactly as the prover in Figure 6.2 with its random
polynomials.

Both the prover and the simulator evaluate gr(x,1), r(z, 1), and r(zy, 1). This reveals 3 evaluations (some of
these are in the exponent). The prover has four blinders for r(X) with respect to the powers −2n − 1,−2n −
2,−2n − 3,−2n − 4. Thus for a verifier that obtains less than three evaluations, the prover’s polynomial is in-
distinguishable from the simulator’s random polynomial. All other components in the proofs are either uniquely
determined given the previous components for both prover and simulator, or are calculated independently from
the witness (and are chosen in the same method by both prover and simulator).

Theorem 13. Sonic has witness extended emulation, when instantiated using a secure polynomial commitment
scheme and a sound signature of correct computation.

Proof. Soundness of the signature of correct computation gives us that s = s(z, y).
Bounded polynomial extractability tells us that R contains the polynomial

r(X, 1) =
n∑

i=−d,i6=−d+n

riX
i

and that T contains the polynomial

τ(X) =

d∑
i=−d,i 6=0

τiX
i.

Observe that in our polynomial constraint system 3n < d (otherwise we cannot commit to t(X,Y)), thus r(X,Y)
has no −d+ n term.

We show that the element T can be computed only if the circuit is satisfied by the polynomial coefficients
extracted from R. Evaluation binding tells us that a = r(z, 1), b = r(zy, 1) = r(z, y) and the verifier checks
that t = a(b+ s)− k(y) = τ(z). Suppose this holds for n+Q+ 1 different challenges y ∈ Fp. Then we have
equality of polynomials in Section 6.4 since a non-zero polynomial of degree n+Q+1 cannot have n+Q roots;
i.e.,

r(X)(r(X,Y) + s(X,Y))− k(Y)

has no constant term. This implies that r(X, y) defines a valid witness.

6.5.1 Efficiency

As seen in Figure 6.2, our prover uses two polynomial commitments which it opens at three points. It also uses
one signature of correct computation. Two of these openings can be batched using techniques we describe in
the full version [MBKM]. The idea behind the batching is that given two polynomial commitments F1 and F2,
if a verifier chooses random values r1 and r2, then an adversary can open F r11 F r22 only if it can also (with high
probability) open F1 and F2 separately. The polynomial k(Y) is sparse and determined by the instance, and thus
takes O(`) field operations to compute.

6.5.2 Polynomial Commitment Scheme

Sonic uses a polynomial commitment scheme which is an adaptation of a scheme by Kate, Zaverucha, and
Goldberg [KZG10]. This scheme has constant-sized proofs for any size polynomial and verification consists
of checking a single pairing. We require that the scheme is evaluation binding; i.e., given a commitment F ,
an adversary cannot open F to two different evaluations v1 and v2. Our proof of evaluation binding is directly
taken from Kate et al.’s reduction to q-SDH. However, we also require that the scheme is bounded polynomial

87

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Common input: info = bp, srs,max
Prover’s input: f(X)

Commit(info, f(X)) 7→ F :
F ← gαx

d−maxf(x)

return F

Open(info, F, z, f(X)) 7→ (f(z),W):
w(X)← f(X)−f(z)

X−z
W ← gw(x)

return (f(z),W)

pcV(info, F, z, (v,W)) 7→ 0/1:
check e(W,hαx)e(gvW−z, hα) = e(F, hx

−d+max
)

return 1 if all check passes, else return 0

Figure 6.3: Polynomial commitment scheme inspired by Kate et al [KZG10].

extractable; i.e., any algebraic adversary that opens a commitment F knows an opening f(X) with powers
−d ≤ i ≤ max, i 6= 0. Kate et al. prove only that their scheme is “strongly correct”; i.e., if an adversary knows
an opening f(X) with polynomial degree to a commitment then f(X) has degree bounded by d. In this sense
Kate et al. are implicitly relying on a knowledge assumption, because there is no guarantee that an adversary
that can open a commitment knows a polynomial inside the commitment. We prove our adapted polynomial
commitment scheme secure in the algebraic group model and this proof may be of independent interest.

Our proof uses the fact that f(X)− f(z) is divisible by (X − z), even for Laurent polynomials. To see this
observe that

f(X)− f(z) =
d∑
−d

aiX
i − aizi

=

d∑
i=1

ai(X − z)(Xi−1 + zXi−2 + . . . zi−1) + 0a0

+
−d∑
i=−1

ai(X − z)(−z−1X−i − z−2X−i+1 − . . .− z−iX−1)

Theorem 14. In the algebraic group model, the polynomial commitment scheme in Figure 6.3 is evaluation
binding and bounded polynomial extractable under the 2d-DLOG assumption.

Proof. We closely follow the structure used by Fuchsbauer et al. [FKL18, Theorem 7.2]. We consider an alge-
braic adversary Aalg against the security of the polynomial commitment scheme; by definition, this means that
Aalg breaks either bounded polynomial extractability or evaluation binding; i.e., that

Apc
bp,Aalg

≤ Aextract
bp,Aalg

+Abind
bp,Aalg

.

We show that
Apc
bp,Aalg

≤ Aq-DLOG
bp,Balg +Aq-DLOG

bp,Calg

88

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

for adversaries Balg and Calg, which proves the theorem.
We start with bounded polynomial extractability, where we show that

Aextract
bp,Aalg

≤ Aq-DLOG
bp,Balg .

An adversary Balg(g1, gx, . . . , gx
q
) simulates the bounded polynomial extractability game with Aalg as follows.

1. When Aalg queries its oracle U-Os on setup, Balg chooses random values (u1, u2) and uses its DLOG
instance to generate and return an SRS with implicit randomness (u1x, u2x).

2. When Aalg queries its oracle on update, Balg uses the algebraic representation provided by Aalg to learn
the randomness (xi, αi) used by Aalg in generating its intermediate SRSs (if any exist). It then picks new
randomness (u′1, u

′
2) and updates its own stored randomness as (u1, u2) = (xiu

′
1u1, αiu

′
2u2). It then uses

this randomness (consisting of its old randomness, the randomness of Aalg, and its new randomness) to
simulate the update proof. It returns the simulated update proof and the new SRS to A.

3. When Aalg queries its oracle on final, Balg behaves as the honest oracle.

4. Balg runs (F, z, v,W)
r←− Aalg(bp, srs,max).

5. The randomness r determines multivariate polynomials

f(X,Xα) = fx(X) +Xαfα(X),

w(X,Xα) = wx(X) +Xαwα(X),

such that
F = gf(xu1,xu2) and W = gw(xu1,xu2).

From these polynomials, Balg computes the polynomial

Q1(X,Xα) = Xα(X − z)w(X,Xα) + vXα −X−d+maxf(X,Xα).

It aborts if Q1(X,Xα) = 0.

6. Define the univariate polynomial Q′1(X) = Q1(u1X,u2X). Balg aborts if Q′1(X) = 0.

7. Balg factorsQ′1(X) to obtain its roots (of which there are at most 4d) and checks them against the q-DLOG
instance to determine if x is among them. If so, it returns x. Otherwise it returns ⊥.

Now let us analyze the probability that Aalg breaks bounded polynomial extractability; i.e., that

f(X,Xα) 6= XαX
d−max

 max∑
i=−d,i 6=0

aiX
i

 ,

but that Balg does not return the target x. This happens if (1) Balg aborts in Step 5, (2) Balg aborts in Step 6, or
(3) if x is not amongst the roots obtained in Step 7. We consider these three scenarios in turn.

In Step 5, if Q1(X,Xα) = 0 then

Xα(X − z)w(X,Xα) + vXα − (X−d+max)f(X,Xα) = 0

which implies that
(X − z)wx(X) + v − (X−d+max)fα(X) = 0

89

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

and (X − z) divides (X−d+max)fα(X)− v and fα(X) has non-zero terms between −max and d. Thus fα(X)
has no terms with degree less than −max. Moreover fα(X) has no zero term because this is not given in the
reference string. Thus B aborts in this step only if f(X,Xα) is as assumed, which means Aalg has not broken
bounded polynomial extractability.

In Step 6, Balg aborts only if Q1(u1X,u2X) = 0. By the Schwartz-Zippel lemma, the probability of this
occurring is bounded by (4d)2

p−1 where d is the total degree of Q (recall we have negative powers). Following the

generic bound for Boneh and Boyen’s SDH assumption [BB08] we may assume that Aq-DLOG
bp,Balg ≥

q2

p−1 ; i.e., that
the probability that Balg aborts in this way is negligible.

In Step 7, Q1(u1x, u2x) exactly defines the verifier’s equation, so if Aalg succeeds then Q1(u1x, u2x) = 0.
Thus Q′1(x) = 0 and x is a root of Q′1(X).

Thus whenAalg succeeds at breaking bounded polynomial extractability, Balg returns x unlessQ1(u1X,u2X) =
0, which happens with bounded probability. Thus

Aextract
bp,Aalg

≤ Aq-DLOG
bp,Balg

as desired.
We now consider evaluation binding, where we show that

Abind
bp,Aalg

≤ Aq-DLOG
bp,Calg .

In fact, Calg does not act directly on the q-DLOG assumption, but rather on the q-SDH assumption [BB08], which

states that given (g, gx, . . . , gx
q
) it is hard to compute (c, g

1
x−c) for some value c. In particular we show that if

Aalg can open their commitment at z to two different evaluations then Calg can compute a tuple of this form.
Following the generic bound for q-SDH [BB08], this assumption is implied by q-DLOG so the result holds.

The adversary Calg(g1, gx, . . . , gx
q
) simulates the evaluation binding game with Aalg as follows.

1. Calg behaves just as Balg did in its Steps 1-4 in answering oracle queries.

2. Calg runs (F, z, v1, v2,W1,W2)
r←− Aalg(bp, srs,max).

3. If v1 6= v2 Calg returns (z, (W1W
−1
2)

1
v2−v1). Otherwise it returns ⊥.

If v1 6= v2 then
e(W,hα)e(W−zgv, hα) = e(W,hα)e(W ′−zgv

′
, hα)

and rearrangement yields
e(WW ′−1, hα(x−z)) = e(gv

′−v, hα).

Thus Calg returns (z, g
1

x−z) and
Abind
bp,Aalg

≤ Aq-DLOG
bp,Calg

as required.

6.6 Succinct Signatures of Correct Computation

In Section 6.5, we provided our main Sonic construction assuming a secure polynomial commitment scheme and
signature of correct computation. While we showed a secure polynomial commitment scheme in Section 6.5.2,
it remains to provide an instantiation of a secure signature of correct computation (scP, scV) [PST13]. Recall
from Section 6.5 that Sonic uses a signature of correct computation to ensure that an element s is equal to s(z, y)
for a known polynomial

s(X,Y) =
d∑

i,j=−d
si,jX

iY j .

90

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

We require the soundness notion that no adversary can convince an scV verifier unless s = s(z, y), and as
usual require this property to hold even against adversaries that can update the SRS. We provide two competing
realizations of signatures of correct computation. The first one is described in this section and it is calculated by
a prover, and has succinct size and verifier computation. The second one considers settings in which one can use
untrusted helpers to improve practical efficiency, and we describe it in Section 6.7.

We use the structure of s(X,Y) in order to prove its correct calculation using a permutation argument, which
itself has a grand-product argument as an underlying component. We take inspiration from our main construction
and from the permutation and grand-product arguments described by Bayer and Groth [BG12] and by Bootle et
al [BCG+17]. We restrict ourselves to constraint systems for which s(X,Y) can be expressed as the sum of M
polynomials, where the j-th such polynomial is of the form

Ψj(X,Y) =

n∑
i=1

ψj,σj,iX
iY σj,i

for (fixed) polynomial permutation σj and coefficients ψj,i ∈ F. By introducing additional multiplication con-
straints to replace any linear constraints that do not fit this format, we can coerce any constraint system in
Section 6.4 into the correct form.

To expand further, our constraint system is determined by vectors uq,vq,wq of size n that are typically
sparse. To represent Ψj in the desired form, we require that each power of Y in s(X,Y) appears in no more
than M occurrences, which means that for all 1 ≤ i ≤ n, only three values of uq,vq,wq can be non-zero. If
uq is too dense (the maximum density is determined by the number of permutation arguments and there is an
efficiency trade off between proof size and prover computation), we split our original constraint into two or more
constraints: we set 0 =

∑n−`
i=1 aiuq,i − an+1 and

kq = an+1 +
n∑

i=n−`+1

aiuq,i + b · vq + c ·wq.

In doing so we have extended the length of a by one, and so also must extend the length of b and c by one to
obtain a dummy multiplicative constraint. The precise number of additional multiplication constraints depends
on the number of additive constraints (essentially it implies that if there are more than 2n addition constraints
in an arithmetic circuit, then these are no longer free). In practice we found that the increase in the number of
multiplication constraints for SHA256 circuits is approximately a factor of 3 when M = 3.

Our signature of correct computation uses a polynomial permutation argument, which itself uses a grand-
product argument. The permutation argument allows us to verify that each polynomial commitment contains
Ψj(X, y), and this can then be opened at z to verify that Ψj(z, y) has been calculated correctly. The purpose
of this argument is to offload the verifier’s computational costs onto the prover. After using batching techniques
described in the full version [MBKM], we get proof sizes of approximately 1kB.

The permutation verifier does not take in the permutation itself, but a derived reference string srsΨ that can
be deterministically generated from the global srs and the permutation Ψ using 4 multi-exponentiations of size
n in G1. The cost of generating the derived reference string is then amortized when the protocol is run over
multiple instances.

6.6.1 Polynomial Permutation Argument

A polynomial permutation argument is defined by three DPT protocols

• srsΨ ← Derive(bp, srs,Ψ(X,Y)) takes as input a bilinear group, a structured reference string, and a

polynomial Ψ(X,Y) =
n∑
i=1

ψσiX
iY σi . It outputs a derived reference string srsΨ.

• (ψ, perm) ← permP(srsΨ, y, z,Ψ(X,Y)) takes as input a derived reference string, two points in the
field, and a polynomial Ψ(X,Y). It outputs ψ = Ψ(z, y) and a proof perm.

91

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Figure 6.4: Sonic is built using a polynomial commitment scheme and a signature of correct computation. Here
we describe how the prover can construct the signature of correct computation using permutation arguments,
grand-product arguments, and the polynomial commitment scheme described in Section 6.5.2.

• 0/1 ← permV(srsΨ, y, z, (ψ, perm)) takes as input a derived reference string, two points in the field, an
evaluation, and a proof. It outputs a bit indicating acceptance (b = 1), or rejection (b = 0).

We require that this scheme is sound; i.e., an adversary can convince a verifier only if ψ = Ψ(z, y). As with our
earlier building blocks, we require this to hold even against adversaries that can update the SRS. Our polynomial
permutation argument is given in the full version [MBKM].

Theorem 15. The signature of computation scheme in Figure 6.5 is sound when instantiated using a sound
permutation argument.

Proof. The polynomial s(X,Y) is given by
∑

j ψj(X,Y). The soundness of the permutation argument gives
us that no adversary can convince the verifier of Ψj unless ψj is the correct evaluation of Ψj at (z, y); i.e.,
ψj =

∑n
i=1 ψj,iz

iyσj,i . Thus the verifier is convinced if and only if s =
∑

j ψj is the correct evaluation of
s(X,Y) at z, y.

6.6.2 Grand-Product Argument

One of the main components of our polynomial permutation argument is a grand-product argument. A grand-
product argument is defined by two DPT protocols

• gprod ← gprodP(bp, srs, A,B, a(X), b(X)) takes as input the bilinear group, the SRS, two polynomial
commitments, and two openings such that

∏
i ai =

∏
i bi.

• 0/1← permV(bp, srs, A,B, gprod) takes as input the bilinear group, the SRS, two polynomial commit-
ments, and a proof. It outputs a bit indicating acceptance (b = 1), or rejection (b = 0).

We require that this scheme is knowledge-sound; i.e., an adversary can convince a verifier only if it knows
openings to A and B whose coefficients have the same grand-product; i.e., such that

∏
i ai =

∏
i bi. Again, we

require this to hold even against adversaries that can update the SRS. Our grand-product argument is given in the
full version [MBKM].

92

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Common input: info = {srsΨj}Mj=1, y, z

scP(info, {Ψj(X,Y)}Mj=1) 7→ (s, {ψj , permj}Mj=1):
for 1 ≤ j ≤M :

(ψj , permj)← permP(srsΨj , y, z,Ψj(X,Y))

s←
∑M

j=1 ψj
return (s, {ψj , permj}Mj=1)

scV(info, (s, {ψj , permj}Mj=1)) 7→ 0/1:

check s =
∑M

j=1 ψj
for 1 ≤ j ≤M :

check permV(srsΨj , y, z, (ψj , permj))

return 1 if all checks pass, else return 0

Figure 6.5: A signature of correct computation using a permutation argument.

Helper Verifier Proof size

Helped O(mn log(n)) O(m) +O(n) 3m+ 3 G1, 2m+ 1 F
Unhelped - O(m) 16m G1, 14m F

Table 6.1: Computational efficiency and proof size for the sc with respect to the helped verifier. Here n is the
number of multiplication gates and m is the number of proofs for the same constraint system. Although the
unhelped version has better asymptotic efficiency, in practice the helped verifier is more efficient.

6.7 Signatures of Correct Computation with Efficient Helped Verification

Recall that Sonic uses a signature of correct computation to ensure that an element s is equal to s(z, y) for a
known polynomial

s(X,Y) =
d∑

i,j=−d
si,jX

iY j .

In Section 6.6 we described a signature of correct computation that is calculated directly by a prover, and has
succinct size and verifier computation. Alternatively, in some settings one can use untrusted helpers to improve
practical efficiency, which we describe in this section. In the helper setting, proof sizes and prover computation
are significantly more efficient.

In the amortized setting, where one is proving the same thing many times, we can use “helpers” in order
to aggregate many signatures of correct computation at the same time. The proofs provided by the helper are
succinct and the helper can be run by anyone (i.e., they do not need any secret information from the prover).
Verification requires a one-off linear-sized polynomial evaluation in the field and an addition two pairing equa-
tions per proof. Compared to the unhelped costs (which require an additional 4 pairings per proof) this is more
efficient assuming there is a sufficiently large number of proofs in the batch. As discussed in the introduction, the
natural candidate for this role in the setting of blockchains is a miner, as they are already investing computational
energy into the system. An efficiency overview is given in Table 6.1.

The algorithm for our helped signature of correct computation is given in Figure 6.7. The helper is denoted
by hscP and the verifier is denoted by hscV. Roughly the idea is as follows. The helper commits to s(X, yj) for
each element yj . The verifier provides a random challenge u. The helper commits to s(u,X), and then opens
its commitment to s(X, yj) at u and its commitment s(u,X) at yj and checks the two are equal. The verifier

93

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Figure 6.6: Sonic can be constructed using a signature of correct computation that is calculated by a helper as
opposed to directly by the prover. The helper algorithm is run on a batch of proofs, and provides the setting in
which Sonic obtains the best practical efficiency.

provides a random challenge v. The helper opens s(u,X) at v. The verifier computes s(u, v) for itself and
checks that the helper’s opening is correct.

Theorem 16. The aggregated signature of correct computation in Figure 6.7 is sound when instantiated using a
secure polynomial commitment scheme.

Proof. Bounded polynomial extraction of the underlying polynomial commitment gives us that there exist al-
gebraic extractors that output degree-d Laurent polynomials s′j(X) and c′(X) such that Sj = gαs

′
j(x) and C =

gαc
′(x). First observe that the probability that c′(v) = s(u, v) at a randomly chosen v but that c′(X) 6= s(u,X)

is negligible in a sufficiently large field. Second observe that given c′(X) = s(u,X), a PPT algebraic adver-
sary can open C only at a (not randomly chosen) value yj to s(u, yj). Finally observe that the probability that
s′j(X) = s(u, yj) at a randomly chosen u but that s′j(X) 6= s(X, yj) is negligible in a sufficiently large field.
Thus soundness follows from the evaluation binding of the polynomial commitment.

6.8 Implementation

In order to compare the concrete performance of our construction to other protocols we provide an open-source
implementation in Rust [Son] of Sonic implemented with helpers. We chose to implement only this variant of
Sonic because it has better practical efficiency. The numbers in Table 6.2 were obtained on CPU i7 2600K with
32 GB of RAM, running at 3.4 GHz.

In terms of our parameters, we make use of the BLS12-381 elliptic curve construction, which is designed
so that its group order is a prime p such that Fp is equipped with large 2n roots of unity for performing fast
polynomial multiplications with radix-2 fast-Fourier transforms. BLS12-381 targets the 128-bit security level.
Kim and Barbulescu [KB16a] describe an optimization to the Number Field Sieve algorithm, analyzed further
by Babalescu and Duquesne [KB16b], which may reduce security to 117 bits, but the attack requires a (currently
unknown) efficient algorithm for scanning a large space of polynomials.

Proof verification is dominated by a set of pairing equation checks and an evaluation of s(X,Y) in the
scalar field. Most of the pairings within (and amongst many) proof verifications involve fixed elements in G2,
so the verifier can combine all of them into a single equation with a probabilistic check. In the context of batch
verification each individual proof thus requires arithmetic only in G1. Only a small, fixed number of pairing
operations are performed at the end.

As mentioned in Section 6.7, the evaluation of s(X,Y) can be done once for a batch of proofs given
some post-processing by an untrusted helper. We consider the performance of batch verification with this post-
processing.

94

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Input size (bits) Gates Size Timing

SRS (MB) Proof (bytes) SRS (s) Prove (s) Helper (s) Helped Verifier (ms)

Pedersen hash preimage (input size)

48 203 0.47 256 2.24 0.15 0.09 0.69
384 1562 3.74 256 17.62 0.84 0.46 0.72

Unpadded SHA256 preimage

512 39516 91.05 256 422.39 14.63 8.41 0.68
1024 78263 182.09 256 831.87 28.93 14.23 0.68
1536 117010 273.14 256 1301.43 38.86 21.54 0.68

Table 6.2: Sonic’s efficiency in proving knowledge of x such that H(x) = y for different sizes of x. Numbers
are given to two significant digits. The first rows are for the Pedersen hash function and the final rows are for
SHA256. “Helper” and “Helped Verifier” are the marginal cost of aggregating and verifying an additional proof
assuming that the helper has been run. These are calculated by batch-verifying 100 proofs, subtracting the cost
to verify one, and dividing by 99.

In each individual proof we must compute k(y) depending on our instance. We keep this polynomial sparse
by having coefficients only in our instance variables, and keeping all other coefficients zero. If constants are
needed in the circuit, they are expressed with coefficients of an instance variable that is fixed to one.

We provide an adaptor which translates circuits written in the form of quadratic “rank-1 constraint systems”
(R1CS) [BCG+13], a widely deployed NP language currently undergoing standardization, into the system of
constraints natural to our proving system. This adds some constant amount of overhead during proving and
verifying steps, but eases implementation and comparison with existing constructions.

The numbers obtained are relevant only to batched proofs, so we wrote an idealized verifier of the Groth
2016 scheme [Gro16], where a batch of proofs are verified together. In this idealized version we assume the
G2 elements do not need to be deserialised and that there is only one public input. We found the marginal cost
of verification was around 0.6ms, compared to Sonic’s 0.7ms. We thus claim that Sonic has verification time
which is competitive with the state-of-the-art for zk-SNARKs, but unlike prior zk-SNARKs has a universal and
updatable SRS.

In Table 6.2 we mimicked Bulletproofs [BBB+18, Table 3] in measuring the results of our Sonic imple-
mentation. Our implementation is not constant time, however, which may affect this comparison (or indeed the
comparison of prover performance to any implementation with constant-time algorithms). We measured the ef-
ficiency of the prover, the verifier, and the helped verifier in proving knowledge of x such that H(x) = y. Proof
sizes are always 256 bytes and verifier computation is always around 0.7ms. In Bulletproofs, in contrast, the
proof size for the unpadded 512-bit SHA256 preimage is 1376 bytes and verification time is 41.52 ms, although
as we mention this comparison is not exact give in particular that their system was throttled to 2 GHz and that
there are optimized implementations for fixed circuits.2 The runtime of our prover goes up in a roughly linear
fashion, as expected. The cost of the helped verifier, in contrast, remains the same for all circuit sizes.

6.9 Relation to Distributed Ledgers

Zero-knowledge protocols have gained significant traction in recent years in the application domain of distributed
ledgers, which has led to the development of new protocols with significant performance gains. At the same time,
the requirements of this application have given rise to protocols with new features, such as an untrusted setup

2https://github.com/dalek-cryptography/zkp

95

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

and a reference string that allows one to prove more than a single relation. We present Sonic, which captures a
valuable set of tradeoffs between these key functional requirements of untrusted setup and universality. At the
same time, as we demonstrate via a prototype implementation, Sonic has proof sizes and verification time that
are competitive with the state-of-the-art.

96

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Common input: info = bp, srs, {zj , yj}mj=1, s(X,Y)

hscP1(info) 7→ ({Sj , sj ,Wj}mj=1):
for 1 ≤ j ≤ m:
Sj ← Commit(bp, srs, d, s(X, yj))
(sj ,Wj)← Open(Sj , zj , s(X, yj))

send {Sj , sj ,Wj}mj=1

hscV1(info, {Sj , sj ,Wj}mj=1) 7→ u:

send u $←− Fp

hscP2(u) 7→ {ŝj , Ŵj , Qj}mj=1:
C ← Commit(bp, srs, d, s(u,X))
for 1 ≤ j ≤ m:

(ŝj , Ŵj)← Open(Sj , u, s(X, yj))
(ŝj , Qj)← Open(C, yj , s(u,X))

send {ŝj , Ŵj , Qj}mj=1

hscV2({ŝj , Ŵj , Qj}mj=1) 7→ v:

send v $←− Fp

hscP2(v) 7→ Qv:
(s(u, v), Qv)← Open(C, v, s(u,X))
send Qv

hscV(Qv) 7→ 0/1:
sv ← s(u, v)
for 1 ≤ j ≤ m:

check pcV(bp, srs, Sj , d, zj , (sj ,Wj))

check pcV(bp, srs, Sj , d, u, (ŝj , Ŵj))
check pcV(bp, srs, C, d, yj , (ŝj , Qj))

check pcV(bp, srs, C, d, v, (sv, Qv))
return 1 if all checks pass, else return 0

Figure 6.7: The helper protocol for computing aggregated signatures of correct computation.

97

Chapter 7

Secure Groups and Their Applications in
MPC-based Threshold Cryptography

7.1 Summary

We propose a scheme to implement finite groups as oblivious data structures, meaning that no information can
be inferred about the values of the group elements after a sequence of operations. For a given group, the scheme
defines the oblivious representation of group elements and oblivious operations on group elements. Operations
include the group law, exponentiation and inversion, random sampling and encoding/decoding.

The oblivious operations are defined by a set of secure multiparty computation (MPC) protocols. We demon-
strate these protocols in a standard setting for information theoretically secure MPC, tolerating a dishonest mi-
nority of passively corrupt parties. Practical protocols are presented for the group of quadratic residues, elliptic
curves groups and class groups of imaginary quadratic order. The Python package for secure groups will be
published with the final version of this work.

To illustrate the application of secure groups, we extend a classical threshold cryptosystem with protocols to
simplify in- and output to a multiparty computation.

7.2 Introduction

The cryptographic scheme for secure groups introduced in this chapter aims to significantly simplify secure
computation involving finite groups, in particular for applications in threshold cryptography. With secure groups,
a protocol engineer can implement secure group operations by composing time-tested MPC protocols.

Recall that a finite group is a finite set that satisfies closure, associativity, identity and invertibility. The
secure group scheme implements finite groups in a privacy-preserving manner: Both the representation of group
elements and the implementation of the group operations are oblivious, meaning that no information can be
inferred about the values of the group elements unless they are public. The scheme includes necessary protocols
and algorithms to instantiate this oblivious data structure in the MPC setting, notably secure exponentiation,
random sampling and encoding/decoding. We distinguish between general finite groups and groups commonly
used in cryptography, particularly elliptic curve groups and class groups.

For general groups, if a faithful linear representation over a finite field is available from modular representa-
tion theory, it directly permits an oblivious representation of the group elements (as square matrices over a finite
field) and an oblivious implementation of the group operation (as matrix multiplication).

Cryptographic applications often involve finite cyclic groups. While finding the linear representation for
cyclic groups is trivial, additional requirements make their secure representation non-trivial in the MPC setting.

First, applications typically require hardness of the discrete logarithm problem for the particular group, mak-
ing linear representations unsuitable. Second, implementing the group operation in an oblivious way (including

98

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

inversion, squaring and exponentiation) is not trivial for general finite groups. We present practical examples for
quadratic residues, elliptic curve groups and class groups.

7.2.1 Contributions

The Concept of Secure Groups. We introduce secure groups as cryptographic schemes to facilitate concrete
implementations of finite groups in MPC. Implementing finite groups in an MPC setting minimally requires an
oblivious representation of group elements and an oblivious implementation of the group operation. We note that
Bar-Ilan and Beaver already considered a generic protocol for secure inversion of group elements, as a natural
generalization of secure matrix multiplication [BIB89, Lemma 6].

In this chapter we study oblivious group representations and operations in detail, which leads to a surprising
number of interesting research questions such as: How to obliviously sample a random element from a group?
Or, how to define an encoding that permits an efficient oblivious decoding of a secret-shared group element?
This work is the first comprehensive study of such questions.

Oblivious Group Representation and Operation. We define practical oblivious representations and opera-
tions for a set of frequently used finite groups. Depending on the type of group, we present different insights:

• The multiplicative group F∗q and any of its subgroups directly permit an oblivious representation and group
operation using secret shares over Fq. Encoding and decoding from and to the secure group is not trivial,
however. We present several techniques and their trade-offs.

• Groups defined on elliptic curves over finite fields directly permit an oblivious representation. To facilitate
the implementation of such groups, we employ the complete formulas known for Weierstrass and Edwards
curves.1 We highlight one result from [HWCD08] for parallel architectures, which yields an oblivious
group law with low multiplicative depth.

• Class groups of positive definite binary quadratic forms are studied in more depth. For class groups with
a given discriminant ∆, we study the representation of elements using integer shares defined over finite
fields. We define the secure group operation by introducing a protocol to obliviously compute the extended
gcd of two secret-shared integers. We also discuss random sampling, encoding and exponentiation for
secure class groups, as they present a case example of such techniques for groups of unknown order.

Extended GCD Protocol. For form class groups of imaginary quadratic order, the group operation called
composition requires computation of the extended gcd. To calculate the extended gcd of two secret-shared
integers, we have developed an efficient secure xgcd protocol in draft. The final protocol will be published with
PRIViLEDGE deliverable D2.4.

Secure Group Protocols. The protocols for (secure) encoding/decoding, random sampling, inversion and ex-
ponentiation for finite groups of known and unknown order aim to optimize both generality and efficiency.

For example, we suggest a generic, probabilistic encoding technique based on [Kob87, Section 3] that permits
efficient decoding of a secret group element. Our technique to sample elements for generic groups is based on the
notion of random walks in groups [Dia88, ACS02, ER65]. A particularly efficient technique by Dixon [Dix08]
is adopted, which in turn permits us to apply a random self-reduction technique to construct efficient secure
exponentiation protocols for finite groups.

1Edwards [Edw07] introduced a new normal form of elliptic curves with group law formulas that can be stated explicitly and do not
have exceptional cases. Bernstein and Lange [BL07] introduced fast complete formulas for addition and doubling in projective coordi-
nates. Hisil et al. [HWCD08] improved complete formulas for twisted Edwards curves, in particular one that parallelizes multiplications.
Renes et al. [RCB16] presented complete formulas for prime order elliptic curves, originally from Bosma and Lenstra [BL95], optimized
for cryptographic applications.

99

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Extending Threshold Cryptosystems and Proof Systems. To demonstrate secure groups, we extend the clas-
sical threshold cryptosystem [Ped91a] with MPC to gain additional functionalities: One protocol to threshold
decrypt ciphertexts to Shamir shares and a second proxy reencryption protocol that converts a ciphertext
for one public key to a ciphertext for a second public key. Examples of recent work on threshold cryptosystems
using MPC are [SA19] and [GG19].

Furthermore, secure groups make it straightforward to conduct the prover side of a Σ-protocol or succinct
non-interactive argument of knowledge (SNARK) in MPC. We illustrate this by constructing the proof of a
Pinocchio SNARK [PHGR13] via a secure multi-party computation using our library. This, in turn, allows
convenient constructions of verifiable MPC protocols, i.e. proof systems that enable MPC parties to create a
publicly verifiable proof of correctness of the MPC computation, even in the extreme case that all MPC parties
are corrupt [SVdV16]. These examples can be found in the Python package published with the final version of
this work.

7.2.2 Roadmap

The chapter is organized as follows. Section 7.3 introduces preliminaries for finite groups and secure multiparty
computation. Section 7.4 introduces secure groups and presents constructions for quadratic residues, elliptic
curve groups and class groups. Section 7.5 presents protocols to implement secure groups: encoding/decoding,
generating random elements and secure exponentiation. Section 7.6 presents a threshold cryptosystem built from
secure groups. Section 7.7 concludes the chapter by introducing our Python package for secure groups.

7.3 Preliminaries

7.3.1 Finite Groups

Throughout, G denotes a finite group, Gn denotes a group of order n, and Zn is shorthand for Z/nZ unless
explicitly stated otherwise. Group notation is multiplicative, if not mentioned explicitly otherwise. A repre-
sentation % refers to a map associating a group element with a tuple over (multiple) finite fields. If we refer
to representations as linear transformations of vector spaces as per representation theory, we will indicate this
explicitly, denote the representation by ρ and use the term linear representation.

7.3.2 Prime-Order Subgroups of F∗q
Let g be an element of prime order p in F∗q . Then p | q − 1 and G = 〈g〉 is the subgroup of order p in F∗q . If
p = (q − 1)/2, then G is the Quadratic Residue group (QR group). Often q is prime (not a prime power), then
Fq = Zq.

7.3.3 Elliptic Curve Groups

Let E(Fq) denote the elliptic-curve group of E. Let 1G denote the identity element. Cryptographic purposes
require that the cyclic (sub)group G ⊆ E(Fq) is defined by a generator of large prime order such that solving the
discrete logarithm problem is hard relative to G.

7.3.4 Class Groups

We focus on class groups of positive definite binary quadratic forms. Let F∆ denote the set of binary quadratic
forms with discriminant ∆. For a given discriminant ∆, we denote the class group by G∆.

An integral binary quadratic form is

f(x, y) = ax2 + bxy + cy2 (7.1)

100

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

where a, b, c ∈ Z are not all equal to zero. We write f = (a, b, c) and call f a form. A form is positive definite if
and only if its discriminant ∆ = b2 − 4ac < 0 and a > 0. The group operation is referred to as composition of
forms. We focus on class groups of positive definite binary quadratic forms and use multiplicative notation.

The class group G∆ is finite and its cardinality is the class number, h(∆). Computing the class number
is at least as hard as factoring the discriminant [BW88]. We will not discuss how to construct class groups
for cryptographic purposes, but refer to [CLT18]. For an introduction to form class groups, see for example
[BV07, Lon19].

7.3.5 MPC Setting

We consider an MPC setting with m parties tolerating a dishonest majority of up to t passively corrupt parties,
0 ≤ t ≤ (m− 1)/2. The basic protocols for secure addition and multiplication over a finite field rely on Shamir
secret sharing [BGW88]. For our practical experiments we use the MPyC framework [Sch18], which succeeds
the VIFF framework [Gei10].

Let [[a]] denote a Shamir secret sharing for any finite field element a ∈ F. If necessary to specify the field’s
modulus q, denote [[a]]q for a ∈ Fq. The bit length of an integer q is denoted by `q. In the context of class groups
and integer xgcd, [[a]] denotes a Shamir sharing of a bounded integer a ∈ Z with |a| ≤ Q, such that repeated
integer multiplication does not flow over the field modulus, q. We will refer to the bit length of q/Q as headroom.
A vector is denoted in bold, as well as a vector of shares, e.g., [[x]]. We typically suppress the modulus in the
notation of a secret share.

To instantiate secure groups of non-prime order, we also need additive sharings over Z as well as additive
sharings over Zn for arbitrary n > 0. We use [[a]]+Z to denote an additive sharing of a ∈ Z and [[a]]+n to denote
an additive sharing of a modulo n. The shares will be random integers ai ∈R Zn satisfying

∑
i ai = a. We

note that a Shamir sharing [[a]] can be converted to an additive sharing [[a]]+p by letting each party in a quorum Q,
|Q| ≥ t+ 1, use ai = λQ,ia

′
i as its additive share, where a′i is its Shamir share.

Let Pi for i ∈ {1, ...,m} denote MPC parties. Names of algorithms and protocols are in sans-serif. Let
a← open([[a]]) denote the protocol for opening a secret share, [[r]]← random(F) the computation of a random
Shamir share, [[x]] = ([[a0]], ..., [[a`−1]]) ← bd([[a]]) the bit-decomposition of one Shamir share into `a Shamir
shares, [[b]] ← ltz([[x]]) the less than zero comparison of an (integer) share and [[a]] ← norm([[x]]) the determi-
nation of the most (or least) significant bit equal to 1. See [Hoo12], [Tof07] and [DFK+06] for these and other
common MPC protocols, which we will use as black-boxes.

Secure integer division ([[q]], [[r]]) ← div([[a]], [[b]]), such that a = bq + r, is also used as black box. Our
implementations are based on the Newton-Raphson method [ACS02, CS10] and Taylor series [DNT12].

7.4 Defining Secure Groups

The secure group scheme includes definitions for representation of secure group elements, secure group oper-
ations, including doubling, exponentiation and inversion, random sampling and encoding to/from secure group
elements.

Let a map % permit a representation of a group element a ∈ G to a tuple or matrix of finite field elements.
Note that different finite fields can be used in one representation. Let [[a]]G denote a secure group element
corresponding to coordinate-wise application of [[]] to %(a). We will omit % when it is clear from the context that
we are using a tuple- or matrix representation, and omit G from [[]]G and write [[a]] when it is clear that we are
using a secure group element.

Definition 20. Let G be a finite group. A secure group scheme comprises protocols for the following tasks,
where a, b ∈ G.

Secure representation. Given a ∈ G, fields F(1), . . . ,F(j) and map % : G→ F(1)×. . .×F(j), compute [[%(a)]]G.

Secure group operation. Given [[a]]G and [[b]]G, compute [[a ∗ b]]G.

101

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Secure inversion. Given [[a]]G, compute [[a−1]]G.

Secure exponentiation. Given [[a]]G and [[x]] with x ∈ Z, compute [[ax]]G.

Secure random element. Compute [[a]]G with a ∈R G.

Secure encoding/decoding. For a set S and an injective map σ : S → G:

• Encoding. Given [[s]], compute [[σ(s)]]G.

• Decoding. Given [[a]]G with a ∈ σ(S), compute [[σ−1(a)]].

Special cases for all these protocols are obtained when one or more inputs/outputs are public. E.g., Sec-
tion 7.5.5 includes different protocols to compute [[b]]G ← a[[x]], b ← [[a]]xG and [[b]]G ← [[a]]

[[x]]
G for a, b ∈ G and

x ∈ Z. Furthermore, the protocol to compute a[[x]] with a ∈ G of prime order differs from a protocol to compute
a[[x]] when a ∈ G is of general (known or unknown) order.

Note that there may be multiple encoding/decodings for a group G, each defined on a specific set S. The
trivial encoding/decoding is obtained when S = G, which is still interesting in the special cases mentioned
above. For example, an encoding (or decoding) with a private input of a group element (held by one of the
parties, or an external party) yields a way to perform a private input.

7.4.1 Finite Groups in General

Secure equivalents for the groups (Fq,+) and (F∗q , ∗) and all their subgroups are available with little implemen-
tation effort. It is required that q > m, where m is the (maximum) number of parties in the MPC protocol.
However, encoding and secure decoding in the threshold setting is not trivial. This is covered in Section 7.5.1.

To extend to other groups, we continue with linear representations, which offer a general technique that
permits expressing the group element and operation in an MPC-friendly way.

General Linear Representations of Finite Groups.

Using linear representations of finite groups over finite fields, i.e., using the homomorphism ρ : G → GL(V)
for a vector space V , provides a general way to define secure equivalents for finite groups. For example, for
the symmetric group Sq, one could take the permutation matrix representation over F2, which can be directly
translated to its secure equivalent by coordinate-wise application of [[]].

For representation theory and specifically the sub-topic of representations over finite fields, modular repre-
sentation theory, we refer to [Ser77]. General existence of linear representations can be inferred from the fact
that every group G is isomorphic to a subgroup of the symmetric group acting on G, per Cayley’s theorem, and
that every permutation can be trivially represented by a permutation matrix over a finite field.

For efficiency, we seek linear representations of low degree over small finite fields. This is illustrated with
the Rubik’s Cube Group in Example 1.2

Example 1 (Linear representation of minimum degree). Assume we would like to replace the trusted shuffler
in a Rubik’s Cube competition by a secure shuffling MPC protocol. The Rubik’s Cube group G is a subgroup
of S48 generated by the six permutations corresponding to a clockwise turn of one side. For the oblivious linear
representation of group elements, we seek a low degree linear representation over a small finite field.

A candidate linear representation is ρ : G→ GL20(F7). Each ρ(a) for a ∈ G corresponds with a permutation
matrix that encodes all 20 movable cubies as positions (12 edge and 8 corner cubies). Each position encodes an
edge flip or a corner twist as elements in F7 of multiplicative order 2 and 3, respectively.

2Note that small groups can also be implemented using table lookup. The table for ∗ is a public, square matrix X , say. Trivial
encoding uses integers in {0, . . . , q − 1}. Using secure conversion of integers to unit vectors one can evaluate [[a ∗ b]] by [[u]]TX[[v]],
where u and v are the unit vectors corresponding to a and b. Along these lines one can get quite efficient implementations.

102

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The smallest faithful linear representation of the Rubik’s cube group is of degree 20 as shown by Holt
and Makholm [HM16]. With the above linear representation, the secure equivalent of a group element a ∈
G corresponds to coordinate-wise application of [[]] to ρ(a), denoted by [[a]]G. The secure group operation
corresponds to a matrix product based on secure dot products, which can be done at limited cost in many MPC
frameworks. This matrix product and the corresponding secure group operation can be executed in one MPC
round.

Unsuitability of Linear Representations for Cryptographic Groups. Finding a homomorphism ρ : G →
GL(V) does not guarantee that the discrete logarithm and decisional Diffie-Hellman problems for the secure
group are at least as hard as those for G. Therefore, for cryptographic applications, we require ρ to be efficient
to apply and invert for all g ∈ G. The next section discusses secure cryptographic groups in detail.

7.4.2 Secure Cryptographic Groups

This section discusses secure representations of prime order subgroups of F∗q , elliptic curve groups and class
groups.

Prime Order Subgroups of F∗q .

The representation of prime order subgroups of F∗q is straightforward. For a ∈ F∗q , define [[a]]G := [[a]].

Elliptic Curve Groups.

Let F be a finite field, [[]] : F → Fm be a secret sharing for m parties, G an elliptic curve group defined over F,
then the function % : G→ (Fm)2, (x, y) 7→ ([[x]], [[y]]) trivially maps the affine point (x, y) ∈ G to secret shares.

Defining the secure group operation for elliptic curve groups requires expressing the group law formulas
without exceptions for any two points. Fortunately, group law formulas without exceptions, so-called complete
formulas, exist for groups of prime order over Weierstrass curves and Edwards curves. For complete formulas,
we refer to [RCB16] for Weierstrass curves and to [BL07] and [HWCD08] for Edwards curves.

Example 2. For an Edwards curve group G = E(Fq), we proceed as follows: For a point P = (x1, y1) ∈ G we
define [[P]]G := ([[x1]], [[y1]]). The unified group law formula on P and Q = (x2, y2) is defined as follows:(

x1y2 + y1x2

c(1 + dx1y1x2y2)
,

y1y2 − ax1x2

c(1− dx1y1x2y2)

)
= (x3, y3). (7.2)

Since xi and yi (i ∈ {1, 2, 3}) are elements of the finite field Fq, operations are defined for Shamir shares.
Substituting xi and yi by [[xi]] and [[yi]] in Eq. (7.2) gives our definition [[P]]G+[[Q]]G → ([[x3]], [[y3]]) = [[P+Q]]G.

Efficient Group Law for Secure Edwards Curve Group.

Using twisted Edwards curves, the result from Hisil et al. [HWCD08, Section 4.2] reduces multiplicative depth
of our secure group law circuit to two multiplications when parallelized over four processors. Note that the actual
number of multiplications is eight plus two scalar multiplications.

The efficient group law requires extended twisted Edwards coordinates. Table 7.1 presents the parallelized
formula where (x1, y1, t1, z1) and (x2, y2, t2, z2) denote the two inputs in extended coordinates.

Our implementation parallelizes the group law by opening four sets of channels between MPC parties to com-
pute the eight multiplications asynchronously. This also demonstrates a feature of the MPyC framework [Sch18],
which natively supports asynchronous functions.

103

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Table 7.1: Parallelized group law formula
Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 r1 ← y1 − x1 r2 ← y2 − x2 r3 ← y1 + x1 r4 ← y2 + x2

1M 2 r5 ← r1 · r2 r6 ← r3 · r4 r7 ← t1 · t2 r8 ← z1 · z2

1D 3 Idle Idle r7 ← k · r7 r8 ← 2r8

4 r1 ← r6 − r5 r2 ← r8 − r7 r3 ← r8 + r7 r4 ← r6 + r5

1M 5 x3 ← r1 · r2 y3 ← r3 · r4 t3 ← r1 · r4 z3 ← r2 · r3

Algorithm 1 [Lon19, Section 6]: compose(f1, f2) f1, f2 positive definite
Input: f1 = (a1, b1, c1) and f2 = (a2, b2, c2)

1: g ← 1/2(b1 + b2), h← −1/2(b1 − b2)
2: w ← gcd(a1, a2, g)
3: j ← w, s← a1/w, t← a2/w, u← g/w
4: (µ, ν)← linear congruence(tu, hu+ sc1, st) . requires computation of the xgcd
5: (λ, σ)← linear congruence(tν, h+ tµ, s)
6: k ← µ+ νλ, l = (kt− h)/s,m← (tuk − hu− c1s)/st
7: return (st, ju− (kt+ ls), km− jm) . f1 ∗ f2

Class Groups.

This section discusses secure class group elements and key considerations for implementing the secure group
operation for class groups of imaginary quadratic orders. Let [[a]] denote an integer sharing of a ∈ Z. For a
form f = (a, b, c) ∈ G, a secure form class group element is defined as [[f]]G := ([[a]], [[b]], [[c]]) representing an
equivalence class. Similar to elliptic curves, the form class group elements are represented by tuples that permit
secret sharing and secure arithmetic. However, for class groups we use secure integers instead of finite field
elements.

Algorithm 1 presents composition of two positive definite forms f1, f2 ∈ G∆. Implementing Algorithm 1
in MPC requires a secure integer gcd protocol in step 2 and a secure integer linear congruence protocol in
steps 4 and 5, which in turn requires computation of the extended gcd for integers. The publication of this xgcd
protocol is deferred to PRIViLEDGE deliverable D2.4.

Squaring, or composing a form with itself, and repeated squaring are common building blocks for public key
cryptography. The composition algorithm simplifies in case of squaring, particularly when the discriminant is
the negative of a prime. See Algorithm 2 from [Lon19, Section 6.3.1] for the simplification.

To allow representation of an equivalence class by a unique form and to bound the bit-length of the form, a
reduction operation is required. A form f = (a, b, c) is called normal if −a < b ≤ a, and reduced if it is normal
and a ≤ c, and if a = c then b ≥ 0.

The bit-length of the first coefficient doubles after one squaring operation. To reduce the form f = (a, b, c)
a normalization and a series of reduction operations are applied until the criteria for a reduced form are met. In
the oblivious case, the number of reduction operations is not allowed to leak information about f , which requires
a number of reduction operations that is equal to a general upper bound. We refer to [Lon19, Section 5] for the
algorithms. Lemma 6 provides an upper bound for the number of reduction steps after a squaring operation.

Lemma 6 ([Lon19]). Let ∆ < 0 and f = (a, b, c) ∈ G∆ be a normalized and reduced form. Let f̃ = (ã, b̃, c̃)
be the unreduced output of square(f) by Algorithm 2. Then the number of reduction steps for (ã, b̃, c̃) is bounded
by log2 (

√
|∆|/3) + 2.

Proof. If f = (a, b, c) is a normalized form, then a maximum of log2 (ã/
√
|∆|) + 2 steps is required to produce

a reduced form. If ∆ < 0, then a ≤
√
|∆|/3. From the previous two statements follows that the number of

104

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Algorithm 2 [Lon19]: square(f) f ∈ G∆ positive definite, ∆ negative prime
Input: f = (a, b, c)

1: (µ, ν)← linear congruence(b, c, a) . requires computation of the xgcd
2: ã← a2, b̃← b− 2aµ, c̃← µ2 − (bµ− c)/a
3: return (ã, b̃, c̃) . f2

reduction operations required after one squaring operation is bounded by log2 (a2/
√
|∆|)+2 ≤ log2 (

√
|∆|/3)+

2.

One secure reduction operation requires one secure integer division. From the size of the discriminant then
follows the number of secure integer divisions required to keep the form reduced, which becomes large for
cryptographic applications. Nevertheless, working with unreduced forms is costlier as it increases the number of
rounds for the secure xgcd protocol to quadratic in the size of the unreduced form.

Example 3. Suppose a 1208-bit discriminant provides the security of 2048-bit RSA key, Lemma 6 indicates that
an oblivious reduction protocol would require 605 reduction rounds to achieve 2048-bit security.

7.5 Secure Group Protocols

7.5.1 Encoding and Decoding

To enable integer inputs and outputs for applications of secure groups, we consider encoding functions σ : S → G
with S ⊂ Z. We discuss several techniques for encoding an integer s to a group element σ(s) and decoding back
to s. Depending on the application, either s is secret-shared, or σ(s) is secret-shared, or both.

We first present several encodings for quadratic residue groups. Next we consider a generic method for
arbitrary groups, and finally, we present a specific encoding for class groups.

Encodings for Quadratic Residues.

Let G = (Z∗p)2 be the group of quadratic residues modulo an odd prime p, and let n = |G| = (p− 1)/2. Many
encodings (or, embeddings) for G have been proposed in the cryptographic literature. For our purposes, we
consider the following four encodings for G:

σ1 : {1, . . . , n} → G, s 7→ s2 mod p

σ2 : {1, . . . , n} → G, s 7→
{
s, if s ∈ G
p− s, if s 6∈ G

σ3 : {0, . . . , bp/kc − 1} → G, s 7→ min(G ∩ {ks+ i : 0 ≤ i < k})
σ4 : {1, . . . , n} → G, s 7→ H(s, arg mini{i ≥ 1: H(s, i) ∈ G}),

where 1 < k < p and H is a cryptographic hash function with codomain Z∗p.
Encoding σ1 is the natural encoding for G. Since squaring is a 2-to-1 mapping on Z∗p as s2 = (−s)2, it

follows that σ1 is a bijective encoding on {1, . . . , n}. Decoding of a ∈ G amounts to taking the unique modular
square root of a ≤ n.

For p ≡ 3 (mod 4), σ2 is another bijective encoding for G, generalizing the encoding defined for safe primes
p in [CS03, Section 4.2, Example 2]. We see that σ2(s) = p− s for s 6∈ G is indeed a quadratic residue modulo
p because p− s ≡ (−1)s (mod p) is the product of two quadratic nonresidues. Decoding of a ∈ G amounts to
σ−1

2 (a) = a if a < p/2 and σ−1
2 (a) = p− a otherwise.

Encoding σ3 resembles an encoding introduced by Koblitz in the context of elliptic curve cryptosystems [Kob87,
Section 3.2]. The value of σ3(s) is well-defined as long as each interval {ks + i : 0 ≤ i < k} contains a
quadratic residue. This can be ensured by picking k sufficiently large as a function of p. The classical result by

105

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Algorithm 3 encode%,k(a) a ∈ {0, ..., bp/kc}
Parameters: Parameter k (see Section 7.5.1), function % as per Definition 20.

1: repeat . Loop while no solution a′a′a′ found in step 4
2: i←R [0, k) . Alternative: i← i+ 1 starting with i = 0
3: a′ ← a · k + i
4: until ∃ a′a′a′ such that %−1(a′a′a′) ∈ G and a′0a

′
0a
′
0 = a′

5: return %−1(a′a′a′), i . Output: Encoding in G, increment i (optional)

Burgess [Bur63] implies that k = d√pe ensures successful encoding for sufficiently large p (see also [Hum03]).
Under the extended Riemann Hypothesis, Ankeny [Ank52] proved that the least quadratic non-residue for prime
p equals O(log2 p).

In practice, however, we may set parameter k = dlog2 pe or a small multiple thereof.3 In general, encoding
σ3 is not bijective. Decoding of any a in the range of σ3 is simple as σ−1

3 (a) = ba/kc.
Finally, encoding σ4 corresponds to a hash function used in certain elliptic curve signature schemes [BLS04,

Section 3.2]. Since Pr[H(s, i) ∈ G] = 1
2 in the random oracle model, computing σ4(s) requires two hashes and

two Legendre symbols on average. The collision-resistance of H implies that the encoding will be “computa-
tionally injective” in the sense that it is infeasible to find s 6= s′ for which σ4(s) = σ4(s′). Due the one-wayness
of H , however, decoding of any a in the range σ4 amounts to an exhaustive search.

Secure Encoding/Decoding. For our purposes, we are interested in secure computation of these encodings and
decodings. We briefly compare the performance for the four encodings. A secure encoding [[σ1(s)]] amounts to
a secure squaring of [[s]], which is very efficient. Secure decoding [[σ−1

1 (a)]] requires taking the modular square
root of a quadratic residue [[a]]. This can be done efficiently by multiplying [[a]] with a uniformly random square
[[r]]2, opening the result ar2, taking a square root a1/2r (in the clear) and dividing this by [[r]]. Finally, we need
one secure comparison to make sure that the result is in {1, . . . , n}.

Similarly, a secure encoding [[σ2(s)]] amounts to securely evaluating the Legendre symbol [[(s | p)]]. Since s
is known to be nonzero, we simply multiply [[s]] with a uniformly random square [[r]]2 and also with [[1− 2b]] =
[[(−1)b]] for a uniformly random bit b, opening the result sr2(−1)b, for which we compute the Legendre symbol
z = (sr2(−1)b | p). Then [[(s | p)]] = z[[(−1)b]]. Secure decoding boils down to a secure comparison with
public (p− 1)/2, which is quite efficient.

A secure encoding [[σ3(s)]] amounts to the secure evaluation of k Legendre symbols [[(ks+i | p)]] and finding
the first +1 among these. With k of the order log2 p, this represents a considerable amount of work. However,
secure decoding [[σ−1

3 (a)]] = [[ba/kc]] is much more efficient, especially if k is a power of two.
Finally, σ4 is not practical to compute obliviously. To obliviously select the smallest i such that [[(H(s, i) |

p)]] = +1, requires computing [[H(s, i)]] for 0 ≤ i < |G|, which is not practical. σ4 does not allow efficient
(secure) decoding.

Generic Encodings

Algorithms 3 and 4 generalize encoding σ3 from Section 7.5.1. Algorithm 3 returns an encoding together with an
auxiliary increment i that corresponds to a successful encoding. This simplifies the decoding of a secure group
element by using Protocol 1.

3Probabilistic heuristics for small primes (< 20 bits), suggest that the greatest number of consecutive quadratic non-residues in the
average-case is fit by log2(p). Buell and Hudson [BH84] computed the lengths of the longest sequences of consecutive residues and
non-residues. By numerical analysis the authors find that the longest sequence of residues and non-residues for a given prime p are fit
very closely by log2(p)+δ with δ slightly larger than 1, which suggests a choice of k for an average-case selection of modulus p. A small
data set from [Hum03] using smaller primes (http://www.math.caltech.edu/people/hummel.html) shows sequences of
length < 2(log(p) + δ) in worst-case. Heuristics for larger primes (say ≥ 256-bit) are computationally heavy and beyond the scope of
this work.

106

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Algorithm 4 decode%,k(a,G) Assumes encoding with Algorithm 3
Input: a ∈ G, function %, and parameter k as per Algorithm 3

1: a′a′a′ ← %(a)
2: b′ ← a′0a

′
0a
′
0

3: b← bb′/kc using integer division
4: return b . Output: Decoding b of a with b ∈ {0, ..., bp/kc}

Protocol 1 decode%,k([[a]]G, [[i]]) Assumes encoding with Algorithm 3
Input: [[a]]G for a ∈ G, representation %, parameter k a power of 2, and (optional) increment [[i]]

1: [[a′a′a′]]← %([[a]]G)
2: if [[i]] given then
3: [[b′]]← [[a′0a

′
0a
′
0]]− [[i]] . a′0a

′
0a
′
0 is the first coefficient of a′a′a′

4: [[b]]← [[b′]]/k . k | b′ holds
5: else
6: [[b]]← trunc([[a′0a

′
0a
′
0]], log2(k)) . truncate (remove) last log2(k) bits

7: return [[b]] . Output: Decoding of a

This technique is illustrated with an example.

Example 4. Suppose a (twisted) Edwards curve E(Fp) with curve equation E : ax2 + y2 = c2(1 + dx2y2) for
given a, c, d ∈ Fp. For encoding input b, increment i = 0 and parameter k, Algorithm 3 step 2 sets x ← bk + i
and tests in step 2 if this x corresponds to an x-coordinate of a valid element (x, y) ∈ E(Fp). If not, increase
i and repeat. In the case of a (twisted) Edwards curve group, step 2 corresponds to testing if y2 is a quadratic
residue modulo p:

(y2 | p) = (
c2 − ax2

1− c2dx2
| p) ?

= +1. (7.3)

Protocol 1 decodes a secure group element encoded with Algorithm 3. If the encoder provided a shared
auxiliary increment [[i]], secure decoding only requires addition and scalar multiplication. Else, secure decoding
requires secure truncation of the least log2(k) bits, assuming k is a power of 2.

For class groups, we suggest k = gap`, the worst-case prime gap associated with an `-bit discriminant. We
explain encoding to class groups in Section 7.5.1.

Encoding to Class Groups.

For class groups of positive definite binary quadratic forms, integer a can be mapped onto form (a, b, c) ∈ F∆

by choosing b as the square root of ∆ modulo 4a. As computation of the square root is more expensive when
a is not a prime number, we introduce an encoding approach referred to as distance embedding [Sch03]. First,
a prime number a′ closest to a is selected, then its corresponding square root b′ is computed and a′ and b′ are
returned together with distance a− a′. Given a class group G∆ the encoding domain has upper bound P , where
P is the largest prime P such that P ≤

√
|∆|/2.

Holding on to the distance during MPC computations is undesirable if we expect to transform the input
a. Given a worst-case prime gap for an `-bit discriminant, gap`, we avoid the need to return the distance by
setting parameter k = gap` and mapping input a to a′ = a · k + i for i = 0 before starting Algorithm 5.
Algorithm 5, step 3 is similar to searching for candidates by incrementing i as in step 2 of Algorithm 3. After a
successful encoding of a′ per Algorithm 5 to a form fa′ = (a′, b, c), where a′ denotes the prime found in step 3
of Algorithm 5, we can discard the distance knowing that a = ba′/gap`c.

107

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Algorithm 5 [Sch03]: encode(n,G∆) n ≤ P for largest prime P ≤
√
|∆|/2

1: a← max(2, n− 1)
2: repeat
3: a← next prime(a)
4: until (∆ | a) = +1 ∧ a 6≡ 1 mod 8
5: b←

√
∆ mod a . modular square root

6: if ∆ 6≡ b mod 2 then
7: b← a− b
8: f ← (a, b, b

2−∆
4a)

9: d← n− a
10: return f , d . Output: Encoding f ∈ G∆ corresponding to n with distance d

7.5.2 Generating Random Elements in Secure Groups

Dixon [Dix08] presents an algorithm to produce ε-uniformly distributed random elements, meaning that each
group element has probability (1± ε)(1/|G|) to be the output of the algorithm, for general finite groups.4 It uses
the following definition of random cubes.

Definition 21 (Random Cube, [Dix08]). If a0, a1, . . . , aj−1 is a list of elements of G, then the random cube
Wj := Cube(a0, . . . , aj−1) is the probability distribution where Wj(b) is proportional to the number of ways in
which b ∈ G can be written as aε00 · · · a

εj−1

j−1 with each εi ∈ {0, 1}.

Using random cubes to sample secure group elements requires k random bits, where k is the security pa-
rameter for the required entropy. A protocol that generates k secret elements in F ∩ {0, 1}, [[rrr]], is denoted by
[[rrr]]← random bits(F, k).

Theorem 17 ([Dix08]). Let {g0, . . . , gd−1} be a generating set of G andWj := Cube(g−1
j−1, . . . , g

−1
0 , g0, . . . , gj−1)

a sequence of cubes, where for j > d, gk−1 is chosen at random from Wj−1. Then for each δ > 0, there is a
constant Kδ, independent of d or G, such that with probability at least 1− δ, the distribution Wj is 1/4-uniform
when j > d+Kδ log(|G|).

The number of group operations to construct the random element generator from Theorem 17 is proportional
to log2(|G|) and the average cost to produce successive random elements is proportional to log(|G|). Precompu-
tation of cube Wj from Theorem 17 can be outsourced to a trusted party or MPC ceremony.

Constant Kδ in Theorem 17 may still make the implementation impractical. However, [Dix08, Theorem
3(c)] states that we can reduce the cube length if we start from a distribution W that is close to the uniform
distribution U in the variational distance:

||W − U ||var :=
1

2

∑
a∈G
|W (a)− U(a)| = max

A⊂G
|W (A)− U(A)|. (7.4)

Theorem 18 ([Dix08]). Let U be the uniform distribution on G and suppose W is a distribution such that
||W −U ||var ≤ ε for some ε with 0 ≤ ε < 1. Let a0, . . . , aj−1 be elements of G chosen independently according
to distribution W . If Zj := Cube(a0, . . . , aj−1), then with probability at least 1− 2−h, Zj is 2−k-uniform when

j ≥ 1

log2(2/(1 + ε))
(2 log2(|G|) + h+ 2k). (7.5)

Example 5. For the Rubik’s Cube group, log2(|G|) ≈ 65.23. Assuming we generated a 1/4-uniform cube
W using Theorem 17. To generate, with probability at least 1 − 2−10, a new 1/4-uniform cube Zj requires a
minimum length of j ≈ 0.47(2 · 65.23 + 10 + 4) ≈ 67.90 group elements. The multiplicative depth of a circuit
to generate random Rubik’s Cube elements is then dlog2 68e = 7.

4See Lukács [Luk05] for Abelian groups and [MNP01] specifically for class groups.

108

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

7.5.3 Secure if-else

Let c ∈ {0, 1}, protocol if-else securely selects [[a]]G or [[b]]G based on condition [[c]]:

if-else([[c]], [[a]]G, [[b]]G)→ [[a]]G if c = 1 and [[b]]G if c = 0 . (7.6)

A representation % that maps any element a ∈ G to a vector (a0, ..., aj−1) of finite field F elements, directly
permits such a protocol by computing, for each i ∈ {0, ..., j − 1} in parallel, [[di]] ← [[c]] · ([[ai]] − [[bi]]) + [[bi]]
over F and then reconstructing the group element %−1([[ddd]])→ [[d]]G.

7.5.4 Secure Inverse

The sampling and if-else protocols from Sections 7.5.2 and 7.5.3 allow us to invert secure group elements for
finite groups with known or unknown order. Protocol 5 in Appendix 7.8.1 implements this functionality following
the classical technique by [BIB89].

7.5.5 Secure Exponentiation for Finite Groups

This section presents secure exponentiation protocols for finite groups of general, known order:

1. Section 7.5.5 for [[ax]]G ← a[[x]]

2. Section 7.5.5 for [[ax]]G ← [[a]]xG

3. Section 7.5.5 for [[ax]]G ← [[a]]
[[x]]
G

Abelian Groups. The following sections present protocols for abelian groups of prime order (e.g. QR-group
Gp ⊆ Z∗q) and groups of general, known order (e.g. the Rubik’s Cube group). For public groups of prime order,
we refer to a technique by [AAN18] in which the multiplicative depth of the protocols does not depend on the
input size. We generalize this technique to finite abelian groups by sampling a secure element in the group using
Theorem 18.

Non-abelian Groups. For non-abelian groups of known order (e.g. Rubik’s Cube group) we cannot apply
the random self-reduction techniques of [DFK+06] and [AAN18], but adapt the constant-round secure matrix
multiplication protocol by Bar-Ilan and Beaver [BIB89] to secure groups.

Case 1: [[ax]]← a[[x]].

Secure exponentiation, public output. We recall an approach for secure exponentiation with public base and
public output, a[[x]] → ax: First, each party Pi locally computes axiλi , where xi denotes Pi’s share of [[x]]. Then,
all parties broadcast the result and compute

∏
i a
xiλi → ax. This protocol is valid for a ∈ Gp and x ∈ Zp.

By using additive share [[x]]+ in the exponent, the above generalizes to groups of general order n. To convert
Shamir share [[x]] to additive share [[x]]+, we define convert([[x]]n)→ [[x]]+n as per Section 7.3.5.

Secure exponentiation, secret output. Protocol 2, secure exponentiation, public base, computes [[ax]] ←
a[[x]]. Its round complexity does not depend on the bit length of the inputs, which makes secure computation with
large group elements practical. For groups of prime order and Shamir shares that have a modulus p consistent
with the order of the base group, Protocol 2 computes the Lagrange interpolation in the exponent.

This generalizes to groups of arbitrary order by converting to additive shares in step 1. For finite groups of
order n, convert the Shamir share [[]]p to an additive share [[]]+n that is consistent with the order of the base group,
meaning that elements are in Zn. The protocol holds for both abelian and non-abelian groups.

109

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Protocol 2 exponentiation(a, [[x]]) a ∈ G, for x ∈ Zp
1: Convert [[x]] into additive shares xi over Zp, Zn, or Z depending on n.
2: Each Pi ∈ Q computes ci ← axi .
3: if “public output” then
4: Each Pi ∈ Q publishes ci.
5: ax ←

∏
i∈Q ci

6: return ax
7: else
8: Each Pi ∈ Q distributes [[ci]]G
9: [[ax]]G ←

∏
i∈Q[[ci]]G

10: return [[ax]]G

Protocol 3 exponentiationk([[a]]G, x) G abelian
Parameters: Security parameter k and cube Zk(g) as per Theorem 18

1: [[r]]← random bits(F, k)
2: [[grgrgr]]G ←

∏
i if-else([[ri]], gi, 1G)

3: [[a ∗ grgrgr]]G ← [[a]]G ∗ [[grgrgr]]G
4: agrgrgr ← open([[a ∗ grgrgr]]G)
5: ax(grgrgr)x ← (agrgrgr)x

6: [[(grgrgr)−x]]G ←
∏
i if-else([[ri]], g

−x
i , 1G)

7: [[ax]]G ← ax(grgrgr)x ∗ [[(grgrgr)−x]]G
8: return [[ax]]G

Case 2: [[ax]]← [[a]]x.

Abelian Groups. For a prime-order group Gp, Protocol 7 from [AAN18, Section 3.2] implements secure
exponentiation with public exponent efficiently. It calls a sub-protocol for secure exponentiation with public
base. Protocol 3 extends this result to finite groups of general order.

In the case of groups of general order, the statistical security of Protocol 3 requires sampling an element ε-
uniformly from the group. We use the sampling technique from Section 7.5.2 for general finite groups. Adapting
this technique to sample secret elements requires k secret random bits, where k is the security parameter for
the required entropy. A protocol that generates k secret elements in F ∩ {0, 1}, [[rrr]], is denoted by [[rrr]] ←
random bits(F, k).

Non-abelian Groups. The secure exponentiation protocols by [DFK+06, Section 7.2] and [AAN18] do not
directly generalize to non-abelian groups. For a random element r =

∏
i ri and public exponent a, the random

self-reduction step in those protocols requires the equality (
∏
i ri)

a =
∏
i r
a
i to hold.

The constant-round secure matrix multiplication protocol of [BIB89, Section 4.2] does permit a secure ex-
ponentiation protocol for non-abelian groups, given that we can sample ε-uniformly random and compute the
inverse for secure groups (see Sections 7.5.2 and 7.5.4 respectively). Protocol 6 in Appendix 7.8.1 presents this
direct generalization of [BIB89, Section 4.2].

Case 3: [[ax]]← [[a]][[x]].

Abelian Groups. Analogous to the previous protocol, we generalize Protocol 8 from [AAN18, Section 3.3]
to abelian groups of known order. Protocol 3 is changed slightly to enable secure exponentiation with secret
base and secret exponent. Replace step 5 by [[ax(grgrgr)x]]G ← (agrgrgr)[[x]] using Protocol 2. Replace step 6 by
[[(grgrgr)−x]]G ←

∏
i if-else([[ri]], g

[[−x]]
i , 1G), using k parallel instances of Protocol 2 to compute g[[−x]]

i . The protocol
then returns the multiplication of the outcomes of Steps 5 and 6.

110

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Non-abelian Groups. Protocol 7 in Appendix 7.8.1 generalizes the bit-decomposition technique of [DFK+06,
Section 7.2] to non-abelian groups. For secret base [[a]]G and secret exponent [[x]] of bit length `x, it calls
Protocol 6 `x times (in parallel) to compute [[a]]2

j

G for j ∈ {0, . . . , `x}.

7.5.6 Secure Exponentiation for Groups of Unknown Order

Protocol 7 applies to groups of unknown order, e.g. class groups. For secure exponentiation with secret base, we
call Protocol 6, which requires sampling from the group (e.g. using Theorem 18).

7.5.7 Privacy and Correctness of the Secure Group Protocols

Privacy. Statistical security follows from the fact that Protocol 3 is an appropriate secure random self-reduction
of Protocol 2, if protocol secure random samples uniformly random from the group. Using Theorem 18,
sampling is ε-uniform for arbitrarily small ε. Hence, Protocol 3 can be considered a functionality of an Arithmetic
Black Box. Under the same caveat of ε-uniform, Protocols 5, 6 and 7 can be considered applications of an
Arithmetic Black Box.

Correctness. Our protocols are direct generalizations of techniques presented in [AAN18], [DFK+06] and
[BIB89].

7.6 MPC-blended Threshold Cryptosystems

In this section we present several applications of secure groups in the context of threshold cryptosystems, using
the well-known threshold ElGamal cryptosystem as a basic example [Ped91a]. We focus on the case of security
against passive adversaries, assuming an MPC setting with m parties and a corruption threshold of t, 0 ≤ t <
m/2.

Let G be a cyclic group with generator g of large prime order p. Given our protocols for secure groups, a
simple (t+ 1,m)-threshold ElGamal cryptosystem is obtained as follows:

Distributed key generation. The parties generate [[x]] with x ∈R Zp, and run Protocol 2 to compute gx. The
parties keep private key [[x]] in shares and output public key h = gx.

Encryption. Given message M ∈ G, pick u ∈R Zn. The ciphertext for public key h is the pair (gu, huM).

Threshold decryption. Given ciphertext (A,B), the parties use [[x]] to run Protocol 2 to compute Ax. The
parties output message M = B/Ax.

The complexity of the protocols for distributed key generation and threshold decryption is entirely hidden in the
underlying MPC framework supporting secure groups.

Note: for Protocol 2 only a quorum of t+1 parties are needed, each publishing axi (in MPyC, use mpc.transfer()
from t+ 1 parties to all m parties).

We now extend the threshold ElGamal cryptosystem noting that instead of using messageM ∈ G in the clear
we can also use [[M]]G in shares, just as we keep the private key [[x]] in shares, using our protocols for secure
groups:

Encryption of shared message. Given message [[M]]G, the parties generate [[u]] with u ∈R Zp, and output
ciphertext for public key h as the pair (g[[u]], h[[u]][[M]]G). Here, Protocol 2 is used twice, either with public
output (A,B) or with secret output ([[A]]G, [[B]]G).

Threshold decryption to shared message. Given ciphertext (A,B), the parties run Protocol 2 to compute [[Ax]]G =
A[[x]]. The parties compute and keep message [[M]]G = B/[[Ax]]G in shares. Similarly, the parties may de-
crypt a ciphertext ([[A]]G, [[B]]G).

111

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Protocol 4 convert(Eh(a)) Eh(a) an ElGamal encryption, h = gx

Input: Eh(a) = (c1, c2) ∈ G×G, secret shared [[x]] such that h = gx

1: [[cx1]]G ← c
[[−x]]
1 with Protocol 2

2: [[a]]G ← c2[[c−x1]]G
3: [[b]]← decode([[a]]G) . Using Protocol 1
4: return [[b]] . Output: b such that σ(b) = a

Combining these protocols we can do things like reencryption for another public key h′: use threshold
decryption to a shared message and then encryption under the new public key. We can also do a reencryption as
follows:

Proxy reencryption. Assume the parties hold shares for two private keys [[x1]] and [[x2]], then they may compute
[[x1/x2]] and use this with Protocol 2 to convert ciphertext (A,B) for public key h1 = gx1 into ciphertext
(A[[x1/x2]], B) for public key h2 = gx2 .

Proxy reencryption key. Assume the parties hold shares for two private keys [[x1]] and [[x2]], then they may
compute and open [[x1/x2]] as a proxy reencryption key.

The above protocols can be extended with encoding/decoding. Protocol 4 convert extends the functionality
threshold decryption to shared message by outputting a Shamir share [[b]] instead of a secure group ele-
ment, assuming the input of the encryption is encoded with Algorithm 3. For readability Protocol 4 assumes no
auxiliary input (e.g. increment i) is passed to decode in Step 3.

To pass increment i securely to MPC parties using the extended threshold cryptosystem, we slightly adapt
σ3 from Section 7.5.1. We modify σ3 as follows: σ3′ : {0, . . . , bp/kc − 1} → (G,G), s 7→ (ks+ i, i) such that
i = arg mini{0 ≤ i < k : ks+ i ∈ G∩ i ∈ G}. Intuitively, the output of this σ3′ can be viewed as (σ3(s), σ3(0))
where i is equal for both (ignoring that i is the smallest increment encoding σ3(s)). We now send encryptions
of both group elements to MPC parties. To decode σ3(s), parties interpret the first coordinate of [[σ3(0)]]G as [[i]]
and pass it to decode in Step 3 of convert.

7.7 Implementation

The secure groups scheme is implemented in Python using the MPyC package [Sch18]. This implementation
includes secure representations for various elliptic curve groups (Weierstrass, Edwards), the symmetric group, the
group of quadratic residues and class groups. To demonstrate its applicability, we include demos for the threshold
conversion protocol (Protocol 4) using quadratic residues and twisted Edwards curves, computations with class
groups using a new xgcd protocol (under development), random sampling in the Rubik’s cube group, the well-
known Pinocchio ZK-SNARK [PHGR13] and the Trinocchio multiparty zero knowledge proof [SVdV16] based
on Pinocchio. The Secure Groups Python package will be published with the final version of this work.

7.8 Appendix

7.8.1 Exponentiation Protocols for Non-abelian Groups

For completeness, the secure exponentiation protocols that are a direct translation of the protocols by [BIB89]
and [DFK+06] are summarized below.

Protocol 6 has a number of rounds that does not depend on the bit length of the input. However, while step 4
requires a constant number of rounds, the number of invocations is linear in the size of the exponent, `x. The
number of invocations can be reduced to O(log(`x)) by applying repeated squaring. This increases the round
complexity to O(log(`x)).

112

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Protocol 5 [BIB89]: inversek([[a]]G) G abelian or non-abelian
Parameters: Security parameter k and cube Zk(g) as per Theorem 18

1: [[r]]← random bits(F, k)
2: [[grgrgr]]G ←

∏
i if-else([[ri]], gi, 1G)

3: grgrgra← open([[grgrgr]]G[[a]]G)
4: a−1(grgrgr)−1 ← (grgrgra)−1

5: [[a−1]]G ← a−1(grgrgr)−1[[grgrgr]]G
6: return [[a−1]]G

Protocol 6 [BIB89]: exponentiationk([[a]]G, x) G abelian or non-abelian
Parameters: Security parameter k and cube Zk(g) as per Theorem 18

1: {[[r0,0]], [[r0,1]], . . . , [[r0,k−1]], . . . , [[rx−1,k−1]]} ← random bits(F, x · k)
2: [[grjgrjgrj]]G ←

∏
i if-else([[ri,j]], gi, 1G) for j ∈ {0, . . . , x− 1}

3: [[(grjgrjgrj)−1]]G ← inverse([[grjgrjgrj]]G) for j ∈ {0, . . . , x− 1} . using Protocol 5
4: [[bj]]G ← [[(grj−1grj−1grj−1)−1]]G[[a]]G[[(grjgrjgrj)]]G for j ∈ {0, . . . , x− 1}
5: bj ← open([[bj]]G) for j ∈ {0, . . . , x− 1}
6: b←

∏
j bj

7: [[ax]]G ← [[gr0gr0gr0]]G b [[grx−1grx−1grx−1]]G
8: return [[ax]]G

Protocol 7 exponentiationk([[a]]G, [[x]]) G abelian or non-abelian
Parameters: Security parameter k and cube Zk(g) as per Theorem 18

1: {[[b0]], . . . , [[b`x]]} ← bd([[x]])
2: [[cj]]G ← [[a]]2

j

G for j ∈ {0, . . . , `x} . using Protocol 6 with parameter k
3: [[dj]]G ← if-else([[bj]], [[cj]]G, [[1]]G) for j ∈ {0, . . . , `x}
4: [[ax]]G ←

∏
j∈{0,...,`x}[[dj]]G

5: return [[ax]]G

113

Chapter 8

Server-Assisted Hash-Based Signature
Schemes

In this chapter, we introduce the BLT family of signature schemes (named after the initials of the inventors).
The schemes combine hash function based authentication with time-stamping. As the latter can also be built
from hash functions (following the hash-then-publish model), it can be argued that hash functions are the sole
underlying cryptographic primitive. The chapter is based on the following publications:

[BLT17] Ahto Buldas, Risto Laanoja, and Ahto Truu. A server-assisted hash-based signature scheme. In
NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17. Springer, 2017.

[BLT18] Ahto Buldas, Risto Laanoja, and Ahto Truu. A blockchain-assisted hash-based signature scheme. In
NordSec 2018, Proceedings, volume 11252 of LNCS, pages 138–153. Springer, 2018.

[BFL+19] Ahto Buldas, Denis Firsov, Risto Laanoja, Henri Lakk, and Ahto Truu. A new approach to con-
structing digital signature schemes (short paper). In IWSEC 2019, Proceedings, volume 11689 of LNCS,
pages 363–373. Springer, 2019.

[BFLT20] Ahto Buldas, Denis Firsov, Risto Laanoja, and Ahto Truu. Verified security of BLT signature scheme.
In ACM SIGPLAN CPP 2020, Proceedings, pages 244–257. ACM, 2020.

8.1 Motivation and Related Work

All the digital signature schemes in wide use today (RSA [RSA78], DSA [ElG85b], ECDSA [JMV01]) are
known to be vulnerable to quantum attacks by Shor’s algorithm [Sho99]. While the best current experimental
results are still toy-sized [MLLL+12], it takes a long time for new cryptographic schemes to be accepted and
deployed, so it is of considerable interest to look for post-quantum secure alternatives already now. These con-
siderations triggered the Post-Quantum Cryptography project, announced by NIST in December 2016 [NIS16].

Error-correcting codes, lattices, and multi-variate polynomials have been used as foundations for proposed
replacement schemes [BBD09]. However, these are relatively complex structures and new constructions in
cryptography, so require significant additional scrutiny before gaining trust.

Hash functions, on the other hand, have been studied for decades and are widely believed to be quite re-
silient to quantum attacks. The best currently known quantum results against hash functions are using Grover’s
algorithm [Gro96] to find a pre-image of a given k-bit value in 2k/2 queries instead of the 2k queries needed
by a classical attacker and its adaptation by Brassard et al. [BHT98] to find a collision in 2k/3 instead of 2k/2

queries. To counter these attacks, it would be sufficient to deploy hash functions with correspondingly longer
outputs when moving from pre-quantum to post-quantum setting. The crucial point is that the attack costs remain
exponential even for quantum adversaries.

114

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Another advantage of hash function based schemes is the minimization of assumptions. It has been shown
that secure digital signatures can exist if and only if one-way and second pre-image resistant hash functions
exist [Rom90]. As the signature schemes we study in the following depend on the hash function having additional
properties, they are formally not based on minimal assumptions. However, all real-life deployments that we are
aware of implement the hash-then-sign model that relies on a collision resistant hash function in addition to a
signature scheme. Therefore, it can be argued that in practice, collision resistance should also be counted among
the minimal assumptions.

The proposed schemes are really templates that can be instantiated with different hash functions. A benefit
of this approach is that when the security of one hash function becomes insufficient (whether by advances in
cryptoanalytic techniques or in computing power, or a combination of the two), we can replace the hash function
with a stronger one and the security of the new instantiation of the signature scheme follows from the security of
the replacement hash function.

8.2 Summary

In Section 8.3 we describe the the foundations of the scheme—cryptographic hash functions and hash-and-
publish time-stamping.

In Section 8.4 we describe the scheme we call BLT-TB (for “time-bound”) that essentially consists of au-
thenticating messages with one-time keys pre-bound to fixed time slots and proving correct usage of these keys
by time-stamping the authenticators. The main drawback of the scheme is the need to pre-generate keys for all
possible signing times, which can be prohibitive for constrained devices, such as smart cards.

In Section 8.5 we propose a way to reduce the key generation costs for personal devices that are used only
occasionally. The BLT-BC scheme (for “blockchain”) makes the keys one-time and uses a blockchain-backed
validator (perhaps implemented as a consensus-based cluster) to enforce the one-time property of the signing
keys. Thus, the scheme trades savings on the client side against higher requirements on the supporting service,
both in the trust placed on the service and also the computing resources required to operate it.

In Section 8.6 we propose another way to relax the requirement to pre-bind the keys to time by developing
the concept of forward-resistant tags that combined with a backdating-resistant time-stamping service yields an
unforgeable signature scheme. We then propose several forward-resistant tag systems, in particular some that
allow dynamic binding of keys to time, and derive their security properties from those of the underlying hash
function. Based on that, we then define the BLT-OT (for “one-time”) signature scheme where each key can be
used just once, but at the time of keyholder’s choosing. The resulting scheme has competitive performance both
as a one-time scheme and also as a component of a many-time scheme.

All these signature schemes depend on access to a time-stamping service and are thus inherently server-
supported. On one hand this comes with the need to critically trust an external service for the security of the
signatures and the restriction that signing is only possible on-line. On the other hand, most practical deployments
of digital signatures in open systems need to track key revocations and are on-line even when the underlying
signature scheme theoretically supports off-line signing and the server-supported nature of our schemes also
provides a natural choke point for implementing instant key revocation and possibly enforcing other kinds of
usage policies as well.

8.3 Preliminaries

8.3.1 Hash Functions

In general, a hash function h maps arbitrary-sized input data to fixed-size output values:

h : {0, 1}∗ → {0, 1}k .

115

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Even though some actual hash functions technically are defined only for inputs up to a specific length, these
limits are so high that for all practical purposes the functions can be considered unlimited.

Hash values are often used as representatives of data that are either too large or too confidential to be used
directly. For example, in the hash-then-publish time-stamping model, a hash value of a document is published to
establish evidence of the existence of the document without disclosing its contents. Likewise, in the hash-then-
sign model, a document’s hash value is signed instead of the document itself.

To facilitate such uses, cryptographic hash functions are expected to have several additional properties, such
as one-wayness (it’s infeasible to reconstruct the input from the output), second pre-image resistance (it’s in-
feasible to change the input so that it still maps to the same output), and collision resistance (it’s infeasible to
find two distinct inputs mapping to the same output). These properties have received extensive formal treatment
in [RS04, ANPS07, AS11].

8.3.2 Hash Trees and Hash Chains

Introduced by Merkle [Mer79], a hash tree is a tree-shaped data structure built using a 2-to-1 hash function
h : {0, 1}2k → {0, 1}k. The nodes of the tree contain k-bit values. Each node is either a leaf with no children or
an internal node with two children. The value x of an internal node is computed as {x}h(xl, xr), where xl and
xr are the values of the left and right child, respectively. There is one root node that is not a child of any node.
We will use{r}T h(x1, . . . , xN) to denote a hash tree whose N leaves contain the values x1, . . . , xN and whose
root node contains r.

r = h(x1,2, x3,4)

x1,2 = h(x1, x2)

x1 x2

x3,4 = h(x3, x4)

x3 x4

r

x1,2 x3,4

x3 x4

Figure 8.1: The hash tree T h(x1, . . . , x4) and the corresponding hash chain x3 r.

In order to prove that a value xi participated in the computation of the root hash r, it is sufficient to present
values of all the sibling nodes on the unique path from xi to the root in the tree. For example, to claim that x3

belongs to the tree shown on the left in Figure 8.1, one has to present the values x4 and x1,2 to enable the verifier
to compute{x3,4}h(x3, x4), {r}h(x1,2, x3,4), essentially re-building a slice of the tree, as shown on the right in
Figure 8.1. We will use x c

 r to denote that the hash chain c links x to r in such a manner.
Intuitively, it seems obvious that if the function h is collision-resistant, the existence of such a chain whose

output equals the original r is a strong indication that x was indeed the original input. However, this result was
not formally proven until 25 years after the hash tree construct was proposed [BS04, Cor05].

8.3.3 Hash-Then-Publish Time-Stamping

Following Buldas and Saarepera [BS04], we model the hash-and-publish time-stamping service as consisting of
a repository R and an aggregation layer S (Figure 8.2). We consider the repository R to be an ideal object that
works as follows:

• The time t is initialized to 1, and all the cellsRi to ⊥.

• The queryR.time is answered with the current value of t.

• The queryR.get(t) is answered with Rt.

• On the requestR.put(x), firstRt ← x is assigned and then t← t+ 1.

116

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The aggregation layer S operates in fixed-duration rounds. During each round, S collects client requests. At the
end of the round, S aggregates the received requests x1, . . . , xN into a hash tree r ← T h(x1, . . . , xN), queries t
via a call toR.time, commits the root r of the hash tree viaR.put(r), and finally returns to each client the hash
chain a linking that client’s input x to the committed root r.

C
x

(t
,x

a
t

r t

)

(x, t, at)

S
t

rt
R

r t

V

Figure 8.2: Interactions in the hash-then-publish time-stamping between the client C, the aggregation service S,
the ideal repositoryR, and the verifier V .

A verifier V , receiving an input x and a time-stamp (t, at), first obtains rt by querying R.get(t) and then
checks that the hash chain at links the input x to rt.

To simplify presentation, we count time in aggregation rounds of the time-stamping service and use the
expression “at time t” to mean “during aggregation round t”.

The security of such schemes can be proven in a model where only the repository R is assumed to operate
correctly and the service S does not have to be trusted. We refer to [BS04, BN10, BL13, BLLT14] for detailed
analyses, including the requirements on the hash function h used by S in the general setting, and list our assump-
tions case by case in the proofs in the following sections.

8.4 Time-Stamped Scheme with Time-Bound Keys

The principal idea of our first scheme [BLT17] is to have the signer commit to a sequence of keys so that each
key is assigned a time slot when it can be used to sign messages and will transition from a signing key to a
verification key once the time slot has passed. Signing itself then consists of time-stamping the message-key pair
in order to prove that the signing operation was performed at the correct time.

8.4.1 Description of the Scheme

More formally, the procedures for key generation, signing, and verification are as follows.

Key Generation. To prepare to sign messages at times 1, . . . , T , the signer:

1. Generates T unpredictable k-bit values as signing keys: (z1, . . . , zT)← G(T, 1k).

2. Binds each key to its time slot: xi ← h(i, zi) for i ∈ {1, . . . , T}.

3. Aggregates the key bindings into a hash tree: p← T h(x1, . . . , xT).

4. Publishes the root hash p as the public key.

The resulting data structure is shown in Figure 8.3 and its purpose is to be able to extract hash chains ci such that
h(i, zi)

ci p for i ∈ {1, . . . , T}.

117

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

p

x1,2

x1

1 z1

x2

2 z2

x3,4

x3

3 z3

x4

4 z4

Figure 8.3: Computation of the public key for T = 4: z1, . . . , z4 are the private keys.

Signing. To sign message m at time t, the signer:

1. Uses the appropriate key to authenticate the message: y ← h(m, zt).

2. Time-stamps the authenticator: sends y to the time-stamping service and receives in response at such
that y at rt, where rt is the root hash of the aggregation tree built by the time-stamping service for the
aggregation round t. We assume the root hash is committed to in some reliable way, such as broadcasting
it to all interested parties, but place no other trust in the service.

3. Outputs the tuple (t, zt, ct, at), where t is the signing time, zt is the signing key for time slot t, ct is
the hash chain linking the binding (t, zt) to the signer’s public key p, and at is the hash chain from the
time-stamping service linking the message-key pair (m, zt) to the round commitment rt.

Note that the signature is composed and emitted after the time-stamping step, which makes it safe for the signer
to release the key zt as part of the signature: the time-stamping aggregation round t has ended and any future
uses of the key zt can no longer be stamped with time t.

Verification. To verify that the messagem and the signature s = (t, z, c, a) match the public key p, the verifier:

1. Checks that z was committed as signing key for time t: h(t, z)
c
 p.

2. Checks that m was authenticated with key z at time t: h(m, z)
a
 rt.

8.4.2 Implementation Considerations

Key Generation. In the description of the scheme we assumed that the signing keys z1, . . . , zT are unpre-
dictable values drawn from {0, 1}k, but left unspecified how they might be generated in practice. Obviously
they could be generated as independent truly random values, but this would be rather expensive and also would
necessitate keeping a large number of secret values over a long time. It would be more practical to generate them
pseudo-randomly from a single random seed s. There are several known ways of doing that:

• Iterated hashing: zT ← s, zi−1 ← h(zi) for i ∈ {2, . . . , T}.
This idea of generating a sequence of one-time keys from a single seed is due to Lamport [Lam81] and
has also been used in the TESLA protocol [PCTS02]. Implemented this way, our scheme would also bear
some resemblance to the Guy Fawkes protocol [ABC+98].

Note that the keys have to be generated in reverse order, otherwise the earlier keys released as signature
components could be used to derive the later ones that are still valid for signing. To be able to use the keys
in the direct order, the signer would have to either remember them all, re-compute half of the sequence on
average, or implement a traversal algorithm such as the one proposed by Schoenmakers [Sch17].

118

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

• Counter hashing: zi ← h(s, i) for i ∈ {1, . . . , T}.
With a hash function behaving as a random oracle, this scheme would generate keys indistinguishable from
truly random values, but we are not aware of any strong results on the security of practical hash functions
when used in this mode.

• Counter encryption: zi ← Es(i) for i ∈ {1, . . . , T}.
The signing keys are generated by encrypting their indices with a symmetric block cipher using the seed as
the encryption key. This is equivalent to using the cipher in the counter mode as first proposed by Diffie and
Hellman [DH79]. The security of this mode is extensively studied for all practical block ciphers. Another
benefit of this approach is that it can be implemented using standard hardware security modules where
the seed is kept in protected storage and the encryption operations are performed in a security-hardened
environment.

Time-Stamping. As already mentioned, we side-step the key state management problems [MKF+16] common
for most N -time signing schemes by making the signing keys not one-time, but time-bound instead. This in turn
raises the issue of clock synchronization.

We first note that even when the signer’s local clock is running fast, premature key release is easy to prevent
by having the signer verify the time-stamp on h(m, zt) before releasing zt.

The next issue is that the signer needs to select the key zt before computing h(m, zt) and submitting it to
time-stamping. If, due to clock drift or network latency, the time in the time-stamp received does not match t, the
signature can’t be composed. To counter clock drift and stable latency, the signer can first time-stamp a dummy
value and use the result to compare its local clock to that of the time-stamping service.

To counter network jitter, the signer can compute the message authenticators h(m, zt′) for several consecutive
values of t′, submit all of them in parallel, and compose the signature using the components whose t′ matches the
time t in the time-stamps received. Buldas et al. [BKL13] have shown that with careful scheduling the latency
can be made stable enough for this strategy even in an aggregation network with world-wide scale.

Finally, we note that time-stamping services operating in discrete aggregation rounds are particularly well
suited for use in our scheme, as they only return time-stamps once the round is closed, thus eliminating the risk
that a fast adversary could still manage to acquire a suitable time-stamp after the signer has released a key.

8.4.3 Discussion

Performance. In the following estimates, we assume the use of SHA-256 [NIS01], a common 256-bit hash
function. On small inputs, a moderate CPU core can perform about a million SHA-256 evaluations per second.1

We also assume a signing key sequence containing one key per second for a year, for a total of a bit less than
32 million, or roughly 225 keys.

Using the techniques described above, generation of T signing keys takes T applications of either a hash
function or a symmetric block cipher. Aggregating them into a public key takes 2N − 1 hashing operations.
Thus, the key generation in our example takes about 100 seconds on a single core (and is well parallelizable if
either of the counter-based generator mechanisms is used).

The resulting public key consists of just one hash value. In the private key, only the seed s has to be kept
secret. The signing keys z1, . . . , zT can be erased once the public key has been computed, and then re-generated
as needed for signing.

The hash tree T h(x1, . . . , xT) presents a space-time trade-off. It may be kept (in regular unprotected storage,
as it contains no sensitive information), taking up 2N − 1 nodes, or about 1 GB, and then the key authentication
hash chains can be just read from the tree with no additional computations needed. Alternatively, one can use
a hash tree traversal algorithm, such as the one proposed by Szydlo [Szy04], to keep only 3 log2N nodes of

1As reported by OpenSSL 1.0.2 speed test on a laptop with 2.3 GHz Intel Core i5 CPU.

119

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

the tree and spend 2 log2N hash function evaluations per chain extraction, assuming all chains are extracted
consecutively.

The size of the signature (t, zt, ct, at) is dominated by the two hash chains. The key authentication chain
consists of log2N hash values, for a total of about 800 B for our 1-year key sequence. The time-stamping chain
consists of log2M hash values, where M is the number of requests received by the time-stamping service in the
round t. Assuming the use of the KSI service described in [BKL13] operating at its full capacity of 250 requests
per round, this adds about 1 600 B. Thus we can expect signatures of less than 3 kB.

As the verification means re-computation of the hash chains, it amounts to less than a hundred hash function
evaluations.

We will compare the performance of this scheme to the state of the art in Section 8.6.3.

Security Model. The security model of our scheme is markedly different from that of the “standalone” schemes.
The correct operation of the repository R backing the time-stamping service is critical for the unforgeability of
the signatures. An adversary that can tamper with the contents ofR could back-date time-stamps and thus reuse
keys already released as components of legitimate signatures to create forgeries.

There are practical ways to mitigate this risk. For example, the repository could be based on a data structure
where each record includes a hash value of the preceding one and new records could be added by consensus
among multiple independently operated nodes, essentially implementing a distributed robust public transaction
ledger [GKL15]. This, however, poses additional engineering challenges when deploying the scheme in practice.

Also the verifiers of signatures need to be able to authenticate the responses received from the repository
when they query the round commitments.

8.5 Blockchain-Backed Scheme with One-Time Keys

The signing keys in the scheme proposed in Section 8.4 are really not one-time, but rather time-bound: every
key can be used for signing only within a specific time interval. For that reason, we will refer to the scheme
as BLT-TB (for “time-bound“) in the following. The architecture of the BLT-TB scheme can be modeled as
interactions between the following parties (Figure 8.4, left):

• The signer who uses trusted functionality in secure device D to manage private keys.

• Server S that aggregates key usage events from multiple signers in fixed-length rounds and posts the
summaries to append-only repositoryR.

• Verifier V who can verify signatures against the signer’s public key p and the round summaries rt obtained
from the repository.

Note that S and R together implement a hash-then-publish time-stamping service where neither the signer nor
the verifier needs to trust S; onlyR has to operate correctly for the scheme to be secure.

8.5.1 Design of the Scheme

One-Time Keys. The design of BLT-TB incurs quite a large overhead as keys must be pre-generated even for
time periods when no signatures are created. To avoid this inherent inefficiency, we now propose [BLT18] to
spend the keys sequentially, one-by-one, as needed.

As the first idea, we could have the signer time-stamp each signature, just as in BLT-TB. In case of a dispute,
the signature with the earlier time-stamp would win and the later one would be considered a forgery. This
would obviously make verification very difficult, but more importantly would give the signer a way to deny any
signature: before signing a document d with a key z, the signer could use the same key to privately sign some
dummy value x; when later demanded to honor the signature on d, the signer could show the signature on x and
declare the signature on d a forgery.

120

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

D

y
=
h

(m
,z
t)

a
t

=
y

r t

(m, t, zt, ct, at)

S
rt

R

r tr t

V D

y
=
h

(m
,z
i)

a
t

=
(y
,i

)

r t

(m, i, zi, ci, t, at)

S
(P, r)

Rv
rt
R

r t

r t

V

Figure 8.4: Interactions in BLT-TB (left) and BLT-BC (right): the signer uses the trusted device D to manage
private keys; the server S aggregates client requests and posts round commitments to the repository R, which
both the signing device D and the verifier V query for the commitments; in BLT-BC, the repository has an
additional validation layer Rv checking the proofs of correct operation accompanying the commitments before
accepting them for inclusion in the repository.

To prevent this, we assign every signer to a designated server which allows each key to be used only once. A
trivial solution would be to just trust the server to behave correctly. This would still not achieve non-repudiation,
as the server could collect spent keys and create valid-looking signatures on behalf of the signer.

8.5.2 Description of the Scheme

Our proposed new scheme, which we will refer to as BLT-BC (for “blockchain”), consists of the following parties
(Figure 8.4, right):

• The signer uses trusted device D to generate keys and then sign data, as in BLT-TB.

• The server S assists signers in generating signatures. S keeps a counter of spent keys for each signer and
sends updates to the repository.

• The repository performs two tasks. The validation layer Rv verifies the correctness of each operation of S
before accepting it and periodically commits the summary of current state to a public append-only storage
layerR.

• The verifier V is a relying party who verifies signatures, as in BLT-TB.

r

·

·

· ·

h(i, y)

i y

·

·

· ·

·

· ·

Figure 8.5: Server tree, showing the last key index i and the corresponding message authenticator y of the second
client only.

121

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The server maintains a hash tree with a dedicated leaf for each client (Figure 8.5). The value of the leaf is
computed by hashing the pair (i, y) where i is the index of the last spent key and y is the last message received
from the client (as detailed in Signing below).

Each public key must verifiably have just one leaf assigned to it. Otherwise, the server could set up multiple
parallel counters for a client, increment only one of them in response to client requests, and use the others for
forging signatures with keys the signer has already used and released.

One way to achieve that would be to have the server return the shape (that is, the directions to move to either
the left or the right child on each step) of the path from the root of the tree to the assigned leaf when the client
registers for service, and the client to include that shape when distributing its public key to verifiers. Another
option would be to use the bits of the public key itself as the shape. Because most possible bit sequences are not
actually used as keys, the hash tree would be a sparse one in this case.

Setup: Signer. To prepare to sign up to N messages, the signer:

1. Generates N unpredictable k-bit signing keys: (z1, . . . , zN)← G(N, 1k).

2. Binds each key to its sequence number: xi ← h(i, zi) for i ∈ {1, . . . , N}.

3. Aggregates the key bindings into a hash tree: p← T h(x1, . . . , xN).

4. Registers the public key p with the server S.

The data structure giving the public key is similar to the one in the BLT-TB scheme (Figure 8.3), and also has
the same purpose: to be able to extract the hash chains ci linking the private key bindings to the public key:
h(i, zi)

ci p for i ∈ {1, . . . , N}.

Setup: Server. Upon receiving registration request from a signer, the server dedicates a leaf in its tree and sets
i to 0 and y to an arbitrary value in that leaf.

Signing: Signer. Each signer keeps the index i of the next unused key zi in its state. To sign message m, the
signer:

1. Uses the current key to authenticate the message: y ← h(m, zi).

2. Sends the authenticator y to the server.

3. Waits for the server to return the hash chain at linking the pair (i, y) to the new published summary rt:
h(i, y)

at rt.

4. Checks that the shape of the received hash chain is correct and its output value matches the authentic rt
acquired directly from the repository.

5. If validation succeeds then outputs the tuple (i, zi, ci, t, at), where i is the key index, zi is the i-th signing
key, ci is the hash chain linking the binding (i, zi) to the public key p, and at is the hash chain linking
(i, y) to the published rt.

6. Increments its key counter: i← i+ 1.

122

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Signing: Server. Upon receiving request y′ from a signer, the server:

1. Extracts the hash chain a linking the current state of the client record (i, y) to the current root r of the
server tree: h(i, y)

a
 r.

2. Updates the client’s record from (i, y) to (i′ ← i + 1, y′) and computes the corresponding new root hash
r′ of the server tree.

3. Submits the tuple (i, y, a, r, y′, r′) to the repository for validation and publishing.

4. Waits for the repository to end the round and publish rt.

5. Uses the state of its hash tree corresponding to the published rt to extract and return to all clients with
pending requests the hash chains at linking their updated (i′, y′) records to the published rt: h(i′, y′)

at rt.

Signing: Repository. The validation layerRv of the repositoryR keeps as state the current value r∗ of the root
hash of the server tree. Upon receiving the update (i, y, a, r, y′, r′) from S, the validator verifies its correctness:

1. The claimed starting state of the server tree matches the current state of Rv: r = r∗.

2. The claimed starting state of the signer record agrees with the starting state of the server tree: h(i, y)
a
 r.

3. The update of the client record increments the counter: i′ ← i+ 1.

4. The new state of the server tree corresponds to just this one change: h(i′, y′)
a
 r′.

5. If all the above checks pass, Rv updates its own state accordingly: r∗ ← r′.

Note that the hash chain a is the same in the verification of the starting state of the signer record against the
starting state of the server tree and in the verification of the new state of the signer record against the new state
of the server tree. This ensures no other leaves of the server tree can change with this update.

Rv operates in rounds. During a round, it receives updates from the server, validates them, and updates
its own state accordingly. At the end of the round, it publishes the current value of its state as the new round
commitment rt in the append-only storageR.

Verification. To verify that the message m and the signature s = (i, z, c, t, a) match the public key p, the
verifier:

1. Checks that z was committed as the i-th signing key: h(i, z)
c
 p.

2. Retrieves the commitment rt for the round t from repositoryR.

3. Checks that the use of the key z to compute the message authenticator y ← h(m, z) matches the key index
i: h(i, y)

a
 rt.

Note that the signature is composed and sent to verifier only after the verification of rt, which makes it safe for
the signer to release the key zi as part of the signature: the server has already incremented its counter i so that
only zi+1 could be used to produce the next valid signature.

123

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

8.5.3 Implementation Considerations

Server-Supported Signing. The model of server-supported signing is a higher-level protocol not directly com-
parable to traditional signature algorithms like RSA. The model has some useful properties:

• It is possible to create a server-side log of all signing operations, so that in case of either actual or suspected
key compromise there is a complete record, making damage control and forensics manageable.

• Key revocation can be implemented by setting the client’s counter to some sentinel “infinite” value, and
the server can also return a proof of this update after it has been committed to the repository.

• The server can add custom attributes, and even trusted attributes which can’t be forged by the server itself:
cryptographic time-stamp, address, policy ID, etc.

Finally, in scenarios where non-repudiation must be provided, all traditional schemes and algorithms must be
supplemented with some server-provided functionalities like cryptographic time-stamping.

Blockchain-Backed Repository. The proposed scheme dictates that the repository must have the following
properties:

• Updates are only accepted if their proof of correctness is valid.

• All commitments are final and immutable.

• Commitments are public, and their immutability is publicly verifiable.

To minimize trust requirements on the repository, we propose to re-use the patterns used for creating blockchains.
We do not consider proof-of-work, focusing on byzantine fault tolerant state machine replication model.

Instead of full transactions, we record in the blockchain only aggregate hashes representing batches of trans-
actions. This provides two benefits: (1) the size of the blockchain grows linearly in time, in contrast with the
usual dependency on the number of transactions and storage size of transaction records; and (2) recording and
publishing only aggregate hashes ensures privacy.

When implemented as a distributed robust public transaction ledger [GKL15], no single component of the
repository needs to be trusted.

Scalable Architecture. Although presented above as a list of components, envisioned real-life deployment of
the scheme is hierarchical, as shown in Figure 8.6.

R
rt

R1
. . . Rn

S1
. . . Sn

D11

. . .
D1m

. . .
Dn1

. . .
Dnm

Figure 8.6: A scalable deployment architecture for BLT-BC: each client device Dij is served by a designated
server Si audited by validation cluster Ri; round commitments from all validation clusters are aggregated into a
meta-commitment by the repositoryR.

The topmost layer is a distributed cluster of blockchain consensus nodes, each possibly operated by an inde-
pendent “permissioned” party. The blockchain can accept inputs from multiple signing servers, each of which

124

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

may in turn serve many clients. Because of this hierarchical nature the scheme scales well performance-wise. In
terms of the amount of data, as stated earlier, the size of blocks and the number of blocks does not depend on the
number of clients and number of signatures issued.

8.5.4 Discussion

Performance. The efficiency of the new scheme for both signers and verifiers is at least on par with the state
of the art.

The performance considerations for key generation and management on the client side are similar to the BLT-
TB scheme (Section 8.4.2), except the number of private keys required is much smaller (assuming 10 signing
operations per day, just 3 650 keys are needed for a year, compared to the 32 million keys in BLT-TB) and the
effort required to generate and manage them, which was the main weakness of BLT-TB, is also correspondingly
reduced.

Like in BLT-TB, the size of the signature in the new scheme is also dominated by the two hash chains.
The key sequence membership proof contains log2N hash values, which is about 12 for the 3 650-element
yearly sequence. The blockchain membership proof has log2K hash values, where K is the number of clients
the service has. Even when the whole world (8 billion people) signs up, it’s still only about 33 hash values.
Conservatively assuming the use of 512-bit hash functions, the two hash chains add up to less than 3 kB in total.

Verification of the signature means re-computing the two hash chains and amounts to about 45 hash function
evaluations.

Admittedly, the above estimates exclude the costs of querying the blockchain to acquire the committed rt that
both the signer and the verifier need. However, that is comparable to the need to access a time-stamping service
when signing and an OCSP (Online Certificate Status Protocol) responder or a CRL (Certificate Revocation List)
when verifying signatures in the traditional PKI (Public-Key Infrastructure) setup.

Security Model. The trusted repositoryR and its implications for the security model are similar to the BLT-TB
scheme (Section 8.4.3).

In BLT-BC, the validation layer Rv is also critical for security, which obviously increases the trust base. As
discussed in previous chapter for the repository R, the security risks of introducing another trusted component
into the system can be somewhat mitigated by implementing Rv as a distributed consensus cluster, but this adds
additional engineering challenges and upkeep costs.

While the scheme also introduces state on the client side, this is mostly a usability concern and not a signif-
icant security risk. If a client loses track of its state and tries to re-use a key, the server will block the signing
attempt.

8.6 Time-Stamped Scheme with One-Time Keys

Both the BLT-TB and BLT-BC signature schemes prevent other parties from misusing keys by making each key
expire immediately after a legitimate use.

In BLT-BC, this is achieved by having a server track the first use of each key and prove the correctness of its
operation through an auditing and publishing mechanism. Thus the security of BLT-BC rests on the reliability of
the auditors and the publishing channel.

In BLT-TB, each key is explicitly bound to a time slot at the key-generation time and expires automatically
when that time slot passes. The legitimate use of a key is proven by time-stamping the message-key pair at the
correct time and the security of the scheme rests on the resilience of the time-stamping service against back-
dating attacks, which is arguably a much smaller trust base.

125

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

8.6.1 Forward-Resistant Tags

Tag Systems. To combine the efficiency of the one-time keys of BLT-BC with the smaller trust base of BLT-
TB, we can note that back-dating resistance of the time-stamp already prevents any attackers from moving the
key usage events back in time. Thus, it would be sufficient for the key binding to only prevent it from being
moved forward. Based on this observation, we introduce [BFL+19] the concept of forward-resistant tags.

Definition 22 (Tag system). By a tag system we mean a triple (Gen,Tag,Ver) of algorithms, where:

• Gen is a probabilistic key-generation algorithm that, given as input the tag range T , produces a secret key
sk and a public key pk.

• Tag is a tag-generation algorithm that, given as input the secret key sk and an integer t ∈ {1, . . . , T},
produces a tag τ ← Tag(sk, t).

• Ver is a verification algorithm that, given as input a tag τ , an integer t, and the public key pk, returns either
0 or 1, such that

Ver(Tag(sk, t), t, pk) = 1

whenever (sk, pk)← Gen(T) and 1 ≤ t ≤ T .

The above definition of a tag system is quite similar to that of a signature scheme consisting of procedures for
key generation, signing, and verification. The fundamental difference is that a signature binds the use of the
secret key to a message, while a tag binds the use of the secret key to a time.

Informally, in order to implement a forward resistant tag system, we have to bind each tag to a time t so that
the tag can’t be re-bound to a later time. As already mentioned, this notion could be seen as dual to time-stamping
that prevents back-dating.

Induced Signature Scheme. We can now formalize the signature scheme induced by a tag system and a time-
stamping repository.

Definition 23. A tag system (Gen,Tag,Ver) and a time-stamping repository R induce a one-time signature
scheme as follows:

• The signer SR(m) queries t ← R.time, creates τ ← Tag(sk, t), stores R.put((m, τ)), and then returns
(τ, t) as the signature.

• The verifier VR(m, (τ, t), pk) queries x← R.get(t), and checks that x = (m, τ) and Ver(pk, t, τ) = 1.

We use the simplistic model of the time-stamping service (omitting the aggregation layer) for convenience of
formal analysis. A more refined model would make the security reductions really complex. For example, even
for a seemingly trivial change, whereR publishes a hash h(m, τ) instead of just (m, τ), one needs non-standard
security assumptions about h such as non-malleability. In this section, we try to avoid these technicalities and
focus on the basic logic of the tag-based signature scheme.

The BLT-TB Tag System. To simplify the analysis, we omit the aggregation of individual time-bound keys
into a hash tree, and model the essence of the BLT-TB signature scheme as a tag system as follows:

• The secret key sk is a list (z1, . . . , zT) of T unpredictable values.

• The public key pk is the list (f(z1), . . . , f(zT)), where f is a one-way function.

• The tagging algorithm Tag(z1, . . . , zT ; t) outputs zt.

• The verification algorithm Ver, given as input a tag τ , an integer t, and the public key (x1, . . . , xT), checks
that 1 ≤ t ≤ T and f(τ) = xt.

126

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

The BLT-OT Tag System. We now define the BLT-OT tag system (inspired by Lamport’s one-time signa-
tures [DH76]) as follows:

• The secret key sk is a list (z0, . . . , z`−1) of ` = dlog2(T + 1)e unpredictable values.

• The public key pk is the list (f(z0), . . . , f(z`−1)), where f is a one-way function.

• The tagging algorithm Tag(z0, . . . , z`−1; t) outputs an ordered subset (zj1 , . . . , zjm) of components of the
secret key sk such that 0 ≤ j1 < . . . < jm ≤ `− 1 and 2j1 + . . .+ 2jm = t.

• The verification algorithm Ver, given as input a sequence (zj1 , . . . , zjm), an integer t, and the public key
(x0, . . . , x`−1), checks that:

1. f(zj1) = xj1 , . . . , f(zjm) = xjm ; and

2. 0 ≤ j1 < . . . < jm ≤ `− 1; and

3. 2j1 + . . .+ 2jm = t; and

4. 1 ≤ t ≤ T .

The BLT-W Tag System. We now define the BLT-W tag system (inspired by Winternitz’s idea [Mer87] for
optimizing the size of Lamport’s one-time signatures) as follows:

• The secret key sk is an unpredictable value z.

• The public key pk is fT (z), where f is a one-way function.

• The tagging algorithm Tag(z; t) outputs the value fT−t(z).

• The verification algorithm Ver, given as input a tag τ , an integer t, and the public key x, checks that
1 ≤ t ≤ T and f t(τ) = x.

8.6.2 Description of the Scheme

The signature scheme induced by the BLT-OT tag system according to Definition 23 would come with the
requirement that the signer must know in advance the time at which its request reaches the time-stamping service.
This is hard to achieve in practice, in particular for personal signing devices such as smart cards that lack built-in
clocks. To overcome this limitation, we construct the BLT-OT one-time signature scheme as follows.

Key Generation. Let ` be the number of bits that can represent any time value t when the signature may be
created (e.g. ` = 32 for POSIX time up to year 2106). The private key is generated as sk = (z0, . . . , z`−1),
where zi are unpredictable values, and the public key as pk = h(X), X = (x0, . . . , x`−1), xi = f(zi), where h
is a second pre-image resistant hash function and f a one-way function.

Public Key Distribution. To aid instant key revocation, also the identity IDc of the client and the identity IDs

of the designated time-stamping service should be distributed along with the public key (within the public key
certificate in a typical PKI-like setup). Upon receiving a revocation notice, the service stops serving the affected
client, and thus it is not possible to generate signatures using revoked keys.

127

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Signing. To sign a message m, the client:

1. Gets a time-stamp St on the record (m,X, IDc) from the time-stamping service designated by IDs.

2. Extracts the `-bit time value t from St and creates the list W = (w0, . . . , w`−1), where

• wi = zi if the i-th bit of t is 1, or

• wi = xi = f(zi) otherwise.

3. Disposes of the private key (z0, . . . , z`−1) to prevent its re-use.

4. Emits (W,St) as the signature.

Verification. To verify the signature (W,St) on the message m against (pk, IDc, IDs), the verifier:

1. Extracts time t from the time-stamp St.

2. Recovers the list X = (x0, . . . , x`−1) by computing

• xi = f(wi) if the i-th bit of t is 1, or

• xi = wi otherwise.

3. Checks that the computed X matches the public key: h(X) = pk.

4. Checks that St is a valid time-stamp issued at time t by service IDs on the record (m,X, IDc).

Using the reduction techniques from previous sections to formally prove the security of this optimized signature
scheme is complicated by both the iterated use of f and the more abstract view of the time-stamping service, and
is left as future work.

8.6.3 Discussion

The BLT-TB scheme works well for powerful devices that are constantly running and have reliable clocks.
These are not reasonable assumptions for personal signing devices such as smart cards, which have very limited
capabilities and are not used very often. Generating keys could take hours or even days of non-stop computing
on such devices. This is clearly impractical, and also wasteful as most of the keys would go unused.

The BLT-OT scheme proposed in Section 8.6.2 solves these problems at the cost of introducing state on the
client side. As the scheme is targeted towards personal signing devices, the statefulness is not a big risk, because
these devices are not backed up and also do not support parallel processing. The benefit in addition to improved
efficiency is that the device no longer needs to know the current time while preparing a signing request. Instead,
it can just use the time from the time-stamp when composing the signature.

Table 8.1: Efficiency of hash-based one-time signature schemes. We assume 256-bit hash functions, 32-bit time
values, and time-stamping hash-tree with 33 levels. Times are in hashing operations and signature sizes in hash
values. TS in BLT schemes stands for the time-stamping service call. BLT-W refers to a variation of the scheme
with Winternitz-inspired optimization, as described in Section 8.6.3

Scheme Key gen. time Sig. time Ver. time Sig. size
Lamport 1 025 1 024 513 256
Winternitz (w = 4) 1 089 1 088 1 021 68
BLT-OT 65 64 + TS 33 + 33 32 + 33
BLT-W (w = 2) 65 64 + TS 49 + 33 16 + 33

128

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

Performance as One-Time Scheme. When implemented as described in Section 8.6.2, the cost of generating
a BLT-OT key pair is ` random key generations and ` + 1 hashing operations, the cost of signing ` + 1 hashing
operations and one time-stamping service call, and the cost of signature verification at most ` + 1 hashing
operations and one time-stamp verification. In this case the private key would consist of ` one-time keys and
the public key of one hash value, and the signature would contain ` hash values and one time-stamp token.
The private storage size can be optimized by generating the one-time keys from one true random seed using a
pseudo-random generator. Then the cost of signing increases by ` operations, as the one-time keys would have
to be re-generated from the seed before signing. This version is listed as BLT-OT in Table 8.1.

Winternitz’s idea [Mer87] for optimizing the size of Lamport’s one-time signatures [DH76] can also be
applied to BLT-OT. Instead of using one-step hash chains zi → h(zi) = xi to encode single bits of t, we can
use longer chains zi → h(zi) → . . . → hn(zi) = xi and publish the value hn−j(zi) in the signature to encode
the value j of a group of bits of t. When encoding groups of w bits of t in this manner, the chains have to be
n = 2w steps long. This reduces the size of the signature by w times, but increases the costs of key generation
and signing by a bit less than 2w−1

w times and the cost of verification by a bit less than 2w−1
w times. Note that

for w = 2, only the verification cost increases by about 50%! Also note that in contrast to applying this idea to
Lamport’s signatures, in BLT-W no additional countermeasures are needed to prevent an adversary from stepping
the hash chains forward: the time in the time-stamp takes that role. This version is listed as BLT-W in Table 8.1.

To compare BLT-OT signature sizes and verification times to other schemes, we also need to estimate the
size of hash-trees built by the time-stamping service. Even assuming the whole world (8 billion people) will
use the time-stamping service in every aggregation round, an aggregation tree of 33 layers will suffice. We also
assume that in all schemes one-time private keys will be generated on-demand from a single random seed and
public keys will be aggregated into a single hash value. Therefore, the key sizes will be the same for all schemes
and are not listed in Table 8.1.

Table 8.2: Efficiency of hash-based many-time signature schemes. We assume key supply for at least 3 650
signatures, 256-bit hash functions, 32-bit time values, and time-stamping hash-tree with 33 levels. Times are in
hashing operations and signature sizes in hash values. TS in BLT schemes stands for the time-stamping service
call.

Scheme Key gen. time Sig. time Ver. time Sig. size
XMSS 897 024 8 574 1 151 79
SPHINCS ca 16 000 ca 250 000 ca 7 000 ca 1 200
BLT-TB ca 96 000 000 50 + TS 25 + 33 25 + 33
BLT-OT-N 240 900 64 + TS 45 + 33 44 + 33
BLT-W-N (w = 2) 240 900 64 + TS 61 + 33 28 + 33

Performance as Many-Time Scheme. A one-time signature scheme is not practical by itself. Merkle [Mer79]
proposed aggregating multiple public keys of a one-time scheme using a hash tree to produce so-called N -time
schemes. Assuming 10 signing operations per day, a set of 3 650 BLT-OT keys would be sufficient for a year.
The key generation costs would obviously grow correspondingly. The change in signing time would depend on
how the hash tree would be handled. If sufficient memory is available to keep the tree (which does not contain
private key material and thus may be stored in regular memory), the authenticating hash chains for individual
one-time public keys could be extracted with no extra hash computations. Signature size and verification time
would increase by the 12 additional hashing steps linking the one-time public keys to the root of the aggregation
tree. This scheme is listed as BLT-OT-N in Table 8.2, where we compare it with the following schemes:

• XMSS is a stateful scheme like BLT-OT-N; the values in Table 8.2 are computed by taking N = 212 =
4 096 and leaving other parameters as in [BDH11];

129

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

• SPHINCS is a stateless scheme and can produce an indefinite number of signatures; the values in Table 8.2
are inferred from [BHH+15] counting invocations of the ChaCha12 cipher on 64-byte inputs as equivalent
to hash function evaluations;

• The values for BLT-TB in Table 8.2 are inferred from Section 8.4.3.

Security Model. Like those of BLT-TB and BLT-BC, the security model of BLT-OT also relies on the repos-
itory R for the unforgeability of the signatures. This is in contrast with XMSS and SPHINCS, both traditional
“standalone” signature schemes.

Unlike BLT-BC, management of client-side state to track spent keys is a real security concern for BLT-OT.
Indeed, even using a private key just twice may in the worst case leak all key components and give an adversary
an easy opportunity to forge signatures on any chosen messages at any chosen time in the future. Although this is
not necessary with correct private key management, an external service similar to the validation layer of BLT-BC
may in fact provide a useful safety net to reduce this risk. Such state management concerns also apply to XMSS,
while SPHINCS, being a stateless scheme, is not affected.

A weakness of the BLT family compared to XMSS and SPHINCS is the higher requirements that the BLT
schemes place on the underlying hash function. The unforgeability proof for BLT-TB signature scheme in Chap-
ter 8.4 assumes the hash function models a random oracle, which is a very high bar.

The forward-resistance proofs of BLT-TB and BLT-OT tag systems given in Section 8.6.1 only assume one-
wayness from the underlying hash function, but these proofs cover only a small part of the whole signature
scheme. Extending the security proofs to complete signature schemes while keeping the assumptions minimal is
likely to require changes in the definitions of the schemes.

For example, the plain hash trees aggregating the one-time or time-bound key pairs into a many-time key
set will likely have to be replaced by more complicated constructs, like has already been done in XMSS and
SPHINCS. How such hardening will affect the performance of the signature schemes remains to be determined
by future research.

8.7 Conclusions and Outlook

We have proposed several hash-based server-assisted digital signature schemes. A novel design element of the
schemes is their reliance on time-stamping service as an inherent component. The performance of the new
schemes is very competitive, as indicated in Tables 8.1 and 8.2, but the reliance on time-stamping service adds
dependence on a security-critical external component.

The BLT-TB scheme described in Section 8.4 is suitable for use in server applications that need to produce
a lot of signatures. The scheme features efficient signing and verification and small signatures. Only the key
generation is quite expensive, but still tolerable on full-sized computers. The scheme also requires the signer to
have a reliable clock and direct network access, which are reasonable assumptions for servers. A benefit is that
the scheme is stateless in the sense that the key to be used is determined by the signing time and thus the signer
does not need to explicitly track spent keys and also access to the private key does not need to be synchronized
in a parallel execution environment.

In contrast, the BLT-BC and BLT-OT schemes described in Section 8.5 and Section 8.6, respectively, are
suitable for personal signing devices that are used only occasionally. In addition to small signatures and efficient
signing and verification, also key generation costs are relatively low. The price for this efficiency is the introduc-
tion of state on the client side. However, as typically personal key management devices, such as smart cards and
USB tokens, are not backed up and do not support multi-processing, the risks related to managing key state are
significantly reduced.

In the BLT-BC scheme, the correct management of the client state is additionally enforced by a supporting
server. In particular, the composition of the authenticated data structure and the blockchain-backed consensus-
based auditing layer described in Section 8.5 may be of independent interest.

130

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

A weakness of the formal analysis of the tag-based schemes in Section 8.6, in particular compared to the anal-
ysis in Section 8.4, is the simplistic modeling of the time-stamping service. Some progress towards addressing
this issue has been made in [BFLT20] and further work is ongoing.

Another limitation of the present work is that the formal security reductions are done in classical setting and
post-quantum security of the schemes is supported only indirectly, by referring to the quantum resilience of hash
functions in general.

Formal analysis in quantum setting is hindered, among other difficulties, by the fact that our signature
schemes depend on time-stamping and there is currently no well-defined notion of back-dating resistance of time-
stamping in quantum setting. There is hope, however, that the collapsing property [Unr16b, Unr16a, CBH+18]
of hash functions could be useful in moving to quantum setting.

131

Chapter 9

Conclusion

This document presented recent advances of PRIViLEDGE partners in designing privacy-preserving crypto-
graphic primitives for distributed ledgers. The formal security notions for some of these cryptographic primitives
have been illustrated by PRIViLEDGE partners in the deliverable D2.2. The partners are continuing their work
towards finding both theoretical and real-world applications of these results and improving the constructions
presented here. Follow up results will appear in deliverable D2.4.

132

Bibliography

[AAN18] Abdelrahaman Aly, Aysajan Abidin, and Svetla Nikova. Practically efficient secure distributed
exponentiation without bit-decomposition. In Sarah Meiklejohn and Kazue Sako, editors, Finan-
cial Cryptography and Data Security - 22nd International Conference, FC 2018, Nieuwpoort,
Curaçao, February 26 - March 2, 2018, Revised Selected Papers, volume 10957 of Lecture Notes
in Computer Science, pages 291–309. Springer, 2018.

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo
De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan
Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro
Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick.
Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings
of the Thirteenth EuroSys Conference, EuroSys ’18, pages 30:1–30:15, New York, NY, USA, 2018.
ACM.

[ABC+98] Ross J. Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee, Charalampos Manifavas,
and Roger M. Needham. A new family of authentication protocols. Operating Systems Review,
32(4):9–20, 1998.

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared secret
with application to the generation of shared safe-prime products. In Moti Yung, editor, Advances in
Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer
Science, pages 417–432. Springer, 2002.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
443–458. IEEE, 2014.

[ADMM16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. Commun. ACM, 59(4):76–84, 2016.

[Ank52] N. C. Ankeny. The least quadratic non residue. Annals of Mathematics, 55(1):65–72, 1952.

[ANPS07] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-property-preserving
iterated hashing: ROX. In ASIACRYPT 2007, Proceedings, volume 4833 of LNCS, pages 130–146.
Springer, 2007.

[AS11] Elena Andreeva and Martijn Stam. The symbiosis between collision and preimage resistance. In
IMACC 2011, Proceedings, volume 7089 of LNCS, pages 152–171. Springer, 2011.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual Symposium on
Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
pages 106–115. IEEE Computer Society, 2001.

133

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[BAZB19] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a
smart contract world. IACR Cryptology ePrint Archive, 2019.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption
in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In Proceedings of the IEEE Symposium on
Security & Privacy, 2018.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 757–788, 2018.

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-Quantum Cryptography.
Springer, 2009.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-
key encryption. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT, volume 2248 of
LNCS, pages 566–582. Springer, 2001.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Randomizable proofs and delegatable anonymous credentials. In Advances in Cryptol-
ogy - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings, pages 108–125, 2009.

[BCC+14] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, and Christine van Vredendaal. How to manipulate curve standards: a white
paper for the black hat. Cryptology ePrint Archive, Report 2014/571, 2014. http://eprint.
iacr.org/2014/571.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT, 2016.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for
C: verifying program executions succinctly and in zero knowledge. In Advances in Cryptology
- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part II, pages 90–108, 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings
of the IEEE Symposium on Security & Privacy, 2014.

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and Sune
Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In Proceedings
of Asiacrypt 2017, 2017.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Nearly linear-
time zero-knowledge proofs for correct program execution. IACR Cryptology ePrint Archive,
2018:380, 2018.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size zero
knowledge from linear-algebraic pcps. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 33–64, 2016.

134

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von neumann architecture. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., pages 781–796, 2014.

[BDH11] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS—A practical forward se-
cure signature scheme based on minimal security assumptions. In PQCrypto 2011, Proceedings,
volume 7071 of LNCS, pages 117–129. Springer, 2011.

[BFG13] David Bernhard, Georg Fuchsbauer, and Essam Ghadafi. Efficient signatures of knowledge and
DAA in the standard model. In Applied Cryptography and Network Security - 11th International
Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 518–533,
2013.

[BFL+19] Ahto Buldas, Denis Firsov, Risto Laanoja, Henri Lakk, and Ahto Truu. A new approach to con-
structing digital signature schemes (short paper). In IWSEC 2019, Proceedings, volume 11689 of
LNCS, pages 363–373. Springer, 2019.

[BFLT20] Ahto Buldas, Denis Firsov, Risto Laanoja, and Ahto Truu. Verified security of BLT signature
scheme. In ACM SIGPLAN CPP 2020, Proceedings, pages 244–257. ACM, 2020.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS: security
in the face of parameter subversion. In ASIACRYPT, pages 777–804, 2016.

[BFVV19] Vincenzo Botta, Daniele Friolo, Daniele Venturi, and Ivan Visconti. The rush dilemma: Attacking
and repairing smart contracts on forking blockchains. IACR Cryptol. ePrint Arch., 2019:891, 2019.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuf-
fle. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, pages 263–280, 2012.

[BGG18] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the
public parameters of the pinocchio zk-snark. In Financial Cryptography Workshops, volume 10958
of Lecture Notes in Computer Science, pages 64–77. Springer, 2018.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 913–930, 2018.

[BGM+18] Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. But why
does it work? A rational protocol design treatment of bitcoin. In Advances in Cryptology - EU-
ROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 34–65,
2018.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon, edi-
tor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10. ACM, 1988.

[BGZ16a] Iddo Bentov, Ariel Gabizon, and David Zuckerman. Bitcoin beacon. CoRR, abs/1605.04559, 2016.

[BGZ16b] Iddo Bentov, Ariel Gabizon, and David Zuckerman. Bitcoin beacon. CoRR, abs/1605.04559, 2016.

135

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[BH84] Duncan A Buell and Richard H Hudson. On runs of consecutive quadratic residues and quadratic
nonresidues. BIT Numerical Mathematics, 24(2):243–247, 1984.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza
Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS:
Practical stateless hash-based signatures. In EUROCRYPT 2015, Proceedings, Part I, volume 9056
of LNCS, pages 368–397. Springer, 2015.

[BHT98] Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free func-
tions. In LATIN’98, Proceedings, volume 1380 of LNCS, pages 163–169. Springer, 1998.

[BIB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in constant number
of rounds of interaction. In Proceedings of the eighth annual ACM Symposium on Principles of
distributed computing, pages 201–209, 1989.

[BK14a] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. IACR Cryptology
ePrint Archive, 2014:129, 2014.

[BK14b] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In CRYPTO,
pages 421–439, 2014.

[BKL13] Ahto Buldas, Andres Kroonmaa, and Risto Laanoja. Keyless signatures’ infrastructure: How to
build global distributed hash-trees. In NordSec 2013, Proceedings, volume 8208 of LNCS, pages
313–320. Springer, 2013.

[BL95] W. Bosma and H.W. Lenstra. Complete systems of two addition laws for elliptic curves. Journal
of Number Theory, 53(2):229 – 240, 1995.

[BL07] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. In Kaoru
Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on
the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, Decem-
ber 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 29–50.
Springer, 2007.

[BL13] Ahto Buldas and Risto Laanoja. Security proofs for hash tree time-stamping using hash functions
with small output size. In ACISP 2013, Proceedings, volume 7959 of LNCS, pages 235–250.
Springer, 2013.

[BLLT14] Ahto Buldas, Risto Laanoja, Peeter Laud, and Ahto Truu. Bounded pre-image awareness and the
security of hash-tree keyless signatures. In ProvSec 2014, Proceedings, volume 8782 of LNCS,
pages 130–145. Springer, 2014.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptol.,
17(4):297–319, 2004.

[BLT17] Ahto Buldas, Risto Laanoja, and Ahto Truu. A server-assisted hash-based signature scheme. In
NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17. Springer, 2017.

[BLT18] Ahto Buldas, Risto Laanoja, and Ahto Truu. A blockchain-assisted hash-based signature scheme.
In NordSec 2018, Proceedings, volume 11252 of LNCS, pages 138–153. Springer, 2018.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction
ledger: A composable treatment. In Advances in Cryptology - CRYPTO 2017 - 37th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I, pages 324–356, 2017.

136

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[BN10] Ahto Buldas and Margus Niitsoo. Optimally tight security proofs for hash-then-publish time-
stamping. In ACISP 2010, Proceedings, volume 6168 of LNCS, pages 318–335. Springer, 2010.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In EUROCRYPT, pages 409–426, 2006.

[BS04] Ahto Buldas and Märt Saarepera. On provably secure time-stamping schemes. In ASIACRYPT
2004, Proceedings, volume 3329 of LNCS, pages 500–514. Springer, 2004.

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE Sympo-
sium on Security and Privacy, pages 459–474. IEEE, 2014.

[Bur63] DA Burgess. A note on the distribution of residues and non-residues. Journal of the London
Mathematical Society, 1(1):253–256, 1963.

[BV07] Johannes A. Buchmann and Ulrich Vollmer. Binary quadratic forms - an algorithmic approach,
volume 20 of Algorithms and computation in mathematics. Springer, 2007.

[BW88] Johannes A. Buchmann and Hugh C. Williams. A key-exchange system based on imaginary
quadratic fields. J. Cryptology, 1(2):107–118, 1988.

[Can01a] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 136–145. IEEE Computer Society, 2001.

[Can01b] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Foundations of Computer Science. IEEE, 2001.

[Can18] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryp-
tology eprint archive, report 2000/067, December 2018.

[CBH+18] Jan Czajkowski, Leon Groot Bruinderink, Andreas Hülsing, Christian Schaffner, and Dominique
Unruh. Post-quantum security of the sponge construction. In PQCrypto 2018, Proceedings, vol-
ume 10786 of LNCS, pages 185–204. Springer, 2018.

[CCas08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set membership and
range proofs. In Josef Pieprzyk, editor, Advances in Cryptology — ASIACRYPT, volume 5350 of
LNCS, pages 234–252. Springer, 2008.

[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. Beleniosrf: A non-
interactive receipt-free electronic voting scheme. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages
1614–1625, 2016.

[CDHK15a] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss. Compos-
able and modular anonymous credentials: Definitions and practical constructions. In Tetsu Iwata
and Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT, volume 9453 of LNCS,
pages 262–288. Springer, 2015.

[CDHK15b] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss. Compos-
able and modular anonymous credentials: Definitions and practical constructions. In Advances in
Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part II, pages 262–288, 2015.

137

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security
with global setup. In Salil Vadhan, editor, Theory of Cryptography, volume 4392 of LNCS, pages
61–85. Springer, 2007.

[CDT19] Jan Camenisch, Manu Drijvers, and Björn Tackmann. Multi-protocol UC and its use for building
modular and efficient protocols. Cryptology eprint archive, report 2019/065, January 2019.

[CEK+16] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel Rausch. Universal
composition with responsive environments. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology – ASIACRYPT, volume 10032 of LNCS, pages 807–840. Springer, 2016.

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Proceedings
of the 2008 ACM Conference on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, pages 345–356, 2008.

[CGJ19] Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain. Founding secure computation on
blockchains. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, volume 11477 of Lec-
ture Notes in Computer Science, pages 351–380. Springer, 2019.

[CH02] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous
credential system. In ACM CCS, pages 21–30. ACM, 2002.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure
channels. In Lars R. Knudsen, editor, Advances in Cryptology — EUROCRYPT, volume 2332 of
LNCS, pages 337–351. Springer, 2002.

[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Succinct malleable
nizks and an application to compact shuffles. In Theory of Cryptography - 10th Theory of Cryp-
tography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages 100–119,
2013.

[CKLM14] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable signa-
tures: New definitions and delegatable anonymous credentials. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages 199–213, 2014.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, pages 78–96, 2006.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In ACM STOC, pages 364–369, 1986.

[CLT18] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unrestricted inner
product functional encryption modulo p. In Thomas Peyrin and Steven D. Galbraith, editors,
Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science, pages 733–764.
Springer, 2018.

[Cor05] Luis Carlos Coronado Garcı́a. Provably Secure and Practical Signature Schemes. PhD thesis,
Darmstadt University of Technology, Germany, 2005.

138

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In Yael Kalai and Leonid
Reyzin, editors, Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore,
MD, USA, November 12-15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in Com-
puter Science, pages 711–742. Springer, 2017.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. In Burton
S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO, volume 1294 of LNCS, pages 410–424.
Springer, 1997.

[CS03] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

[CS10] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In Radu
Sion, editor, Financial Cryptography and Data Security, 14th International Conference, FC 2010,
Tenerife, Canary Islands, Spain, January 25-28, 2010, Revised Selected Papers, volume 6052 of
Lecture Notes in Computer Science, pages 35–50. Springer, 2010.

[CZJ+17] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi. Solidus: Confidential
distributed ledger transactions via PVORM. In ACM CCS, pages 701–717. ACM, 2017.

[DFK+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Unconditionally
secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation.
In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of
Lecture Notes in Computer Science, pages 285–304. Springer, 2006.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

[DH79] Whitfield Diffie and Martin E. Hellman. Privacy and authentication: An introduction to cryptog-
raphy. Proc. IEEE, 67(3):397–427, 1979.

[Dia88] Persi Diaconis. Group representations in probability and statistics. Lecture notes-monograph
series, 11:i–192, 1988.

[Dix08] John D. Dixon. Generating random elements in finite groups. Electron. J. Comb., 15(1), 2008.

[DNT12] Morten Dahl, Chao Ning, and Tomas Toft. On secure two-party integer division. In Angelos D.
Keromytis, editor, Financial Cryptography and Data Security - 16th International Conference, FC
2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers, volume 7397 of
Lecture Notes in Computer Science, pages 164–178. Springer, 2012.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and
keys. In Serge Vaudenay, editor, Public Key Cryptography — PKC, volume 3386 of LNCS, pages
416–431. Springer, 2005.

[Edw07] Harold M. Edwards. A normal form for elliptic curves. BulletinAmerican Mathematical Society,
2007.

[ElG85a] Taher ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[ElG85b] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

139

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[ER65] Paul Erdös and Alfréd Rényi. Probabilistic methods in group theory. Journal d’Analyse
Mathématique, 14(1):127–138, 1965.

[Eth] Ethereum. https://www.ethereum.org/.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, pages 33–62, 2018.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based
on a single random string (extended abstract). In 31st Annual Symposium on Foundations of Com-
puter Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 308–317. IEEE
Computer Society, 1990.

[FMMO18] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design
for anonymous cryptocurrencies. IACR Cryptology ePrint Archive, 2018.

[FPS+18] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel J. Weitzner. Practical
accountability of secret processes. In 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018., pages 657–674, 2018.

[Gei10] Martin Geisler. Cryptographic protocols: theory and implementation. PhD thesis, University of
Aarhus, 2010.

[GG17] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results using blockchains.
In Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part I, pages 529–561, 2017.

[GG19] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup.
IACR Cryptology ePrint Archive, 2019:114, 2019.

[GGM14] Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous credentials. In 21st
Annual Network and Distributed System Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014, 2014.

[GGM16] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for decentralized anony-
mous payments. In Jens Grossklags and Bart Preneel, editors, Financial Cryptography and Data
Security, volume 9603 of LNCS, pages 81–98. Springer, 2016.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages 51–68, 2017.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, 2007.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II, pages 281–310, 2015.

140

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[GKM+18a] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-snarks. In CRYPTO (3), volume 10993
of Lecture Notes in Computer Science, pages 698–728. Springer, 2018.

[GKM+18b] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-snarks. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III, volume
10993 of Lecture Notes in Computer Science, pages 698–728. Springer, 2018.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

[GM17] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 473–489, 2017.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron Rivest. A digital signature scheme secure against adap-
tive chosen-message attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.

[GOS12a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge.
Journal of the ACM, 59(3), June 2012.

[GOS12b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge.
J. ACM, 59(3):11:1–11:35, 2012.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Dis-
crete Applied Mathematics, 156(16):3113–3121, 2008.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC,
Proceedings, pages 212–219. ACM, 1996.

[Gro15] Jens Groth. Efficient fully structure-preserving signatures for large messages. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology — ASIACRYPT, volume 9452 of LNCS, pages
239–259. Springer, 2015.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, pages 305–
326, 2016.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel
Smart, editor, Advances in Cryptology — EUROCRYPT, volume 4965 of LNCS, pages 415–432.
Springer, 2008.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In EUROCRYPT, pages 54–71,
2009.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, pages 99–108, 2011.

[HM16] Derek Holt and Henning Makholm. What are some Group repre-
sentation of the rubik’s cube group? StackExchange Mathemat-
ics https://math.stackexchange.com/questions/1587307/
what-are-some-group-representation-of-the-rubiks-cube-group, 2016.
[Online; accessed 23-January-2020].

141

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[Hoo12] S.J.A. Hoogh, de. Design of large scale applications of secure multiparty computation : secure
linear programming. PhD thesis, Department of Mathematics and Computer Science, 2012.

[Hum03] Patrick Hummel. On consecutive quadratic non-residues: a conjecture of issai schur. Journal of
Number Theory, 103(2):257–266, 2003.

[HWCD08] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted edwards curves
revisited. In Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, 14th International
Conference on the Theory and Application of Cryptology and Information Security, Melbourne,
Australia, December 7-11, 2008. Proceedings, volume 5350 of Lecture Notes in Computer Science,
pages 326–343. Springer, 2008.

[Hyp] Hyperledger Fabric Maintainers. Hyperledger Fabric pluggable endorse-
ment and validation. https://hyperledger-fabric.readthedocs.io/en/release-
1.4/pluggable endorsement and validation.html.

[JMV01] Don Johnson, Alfred Menezes, and Scott A. Vanstone. The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Sec., 1(1):36–63, 2001.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct computations. In
ACM CCS, pages 30–41, 2014.

[KB16a] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity for
the medium prime case. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages
543–571, 2016.

[KB16b] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity for
the medium prime case. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages
543–571, 2016.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. In IEEE Sympo-
sium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 839–858,
2016.

[Kob87] Neal Koblitz, editor. Elliptic curve cryptosystems, volume 5350 of Mathematics of Computation
48. American Mathematical Society, 1987.

[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain protocols.
IACR Cryptology ePrint Archive, 2015:1019, 2015.

[Kra15] Vlad Krasnov. Go crypto: bridging the performance gap. https://blog.cloudflare.com/go-crypto-
bridging-the-performance-gap/, May 2015.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polyno-
mials and their applications. In Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, pages 177–194. Springer, 2010.

[Lam81] Leslie Lamport. Password authentification with insecure communication. Commun. ACM,
24(11):770–772, 1981.

142

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. J. Cryp-
tology, 16(3):143–184, 2003.

[Lon19] Lipa Long. Binary quadratic forms. GitHub https://github.com/Chia-Network/
vdf-competition/blob/master/classgroups.pdf, 2019. [Online; accessed 23-
January-2020].

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In Al-
fred Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO ’90, 10th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990, Pro-
ceedings, volume 537 of Lecture Notes in Computer Science, pages 353–365. Springer, 1990.

[Luk05] András Lukács. Generating random elements of abelian groups. Random Struct. Algorithms,
26(4):437–445, 2005.

[Max13] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. bitcointalk.org, August
2013.

[MBKM] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. https://
eprint.iacr.org/2019/099.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
snarks from linear-size universal and updateable structured reference strings. IACR Cryptology
ePrint Archive, 2019:99, 2019.

[Mer79] Ralph C. Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, Stanford University,
1979.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomer-
ance, editor, Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications
of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings,
volume 293 of Lecture Notes in Computer Science, pages 369–378. Springer, 1987.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous dis-
tributed e-cash from bitcoin. In IEEE Symposium on Security and Privacy, pages 397–411. IEEE,
2013.

[MKF+16] David A. McGrew, Panos Kampanakis, Scott R. Fluhrer, Stefan-Lukas Gazdag, Denis Butin, and
Johannes A. Buchmann. State management for hash-based signatures. In SSR 2016, Proceedings,
volume 10074 of LNCS, pages 244–260. Springer, 2016.

[MLLL+12] Enrique Martı́n-López, Anthony Laing, Thomas Lawson, Roberto Alvarez, Xiao-Qi Zhou, and
Jeremy L. O’Brien. Experimental realization of Shor’s quantum factoring algorithm using qubit
recycling. Nature Photonics, 6(11):773–776, 2012.

[MNP01] Andreas Meyer, Stefan Neis, and Thomas Pfahler. First implementation of cryptographic protocols
based on algebraic number fields. In Vijay Varadharajan and Yi Mu, editors, Information Secu-
rity and Privacy, 6th Australasian Conference, ACISP 2001, Sydney, Australia, July 11-13, 2001,
Proceedings, volume 2119 of Lecture Notes in Computer Science, pages 84–103. Springer, 2001.

[MS18] Izaak Meckler and Evan Shapiro. Coda: Decentralized cryptocurrency at scale, 2018.

[Nak08a] Satoshi Nakamoto. Bitcoin: A peer-to-peer electionic cash system. unpublished, 2008., 2008.

143

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[Nak08b] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf,
2008.

[NIS01] NIST. Secure hash standard (SHS). FIPS 180-4, 2001.

[NIS16] NIST. Post-quantum cryptography. https://www.nist.gov/pqcrypto, 2016.

[NVV18] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for dis-
tributed ledgers. In Symposium on Networked Systems Design and Implementation, pages 65–80.
USENIX, 2018.

[PBF+18] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter Wuille. Confiden-
tial assets. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico
Pintore, and Massimiliano Sata, editors, Financial Cryptography and Data Security, volume 10958
of LNCS, pages 43–63. Springer, 2018.

[PCTS02] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. The TESLA broadcast authentication
protocol. CryptoBytes, 5(2):2–13, 2002.

[Ped91a] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1991, Proceedings, pages 129–140, 1991.

[Ped91b] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO, volume 576 of LNCS, pages
129–140. Springer, 1991.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical ver-
ifiable computation. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA,
USA, May 19-22, 2013, pages 238–252. IEEE Computer Society, 2013.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor,
Proceedings of the Cryptographers Track at the RSA Conference, volume 9610 of LNCS, pages
111–126. Springer, 2016.

[PS18] David Pointcheval and Olivier Sanders. Reassessing security of randomizable signatures. In Nigel
Smart, editor, Topics in Cryptology — CT-RSA, volume 10808 of LNCS, pages 319–338. Springer,
2018.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part II, pages 643–673, 2017.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct computation.
In Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan,
March 3-6, 2013. Proceedings, pages 222–242, 2013.

[quo] Quorum. https://www.goquorum.com/.

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas for prime order elliptic
curves. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture
Notes in Computer Science, pages 403–428. Springer, 2016.

144

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM
STOC, Proceedings, pages 387–394. ACM, 1990.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and collision resis-
tance. In FSE 2004, Revised Papers, volume 3017 of LNCS, pages 371–388. Springer, 2004.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[SA19] Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve based protocol: With an
application to mixnets. IACR Cryptology ePrint Archive, 2019:768, 2019.

[SABB+18] Alberto Sonnino, Mustafa Al-Bassam, Sherar Bano, Sarah Meiklejohn, and George Danezis. Co-
conut: Threshold issuance selective disclosure credentials with applications to distributed ledgers.
arXiv:1802.07344, August 2018.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
Jan 1991.

[Sch03] Daniel Schielzeth. Realisierung der elgamal-verschlüsselung in quadratischen zählkorpern (mas-
ter’s thesis). Technische Universität Berlin http://www.math.tu-berlin.de/˜kant/
publications.html, 2003.

[Sch17] Berry Schoenmakers. Explicit optimal binary pebbling for one-way hash chain reversal. In FC
2016, Revised Selected Papers, volume 9603 of LNCS, pages 299–320. Springer, 2017.

[Sch18] Berry Schoenmakers. MPyC secure multiparty computation in Python. GitHub https://
github.com/lschoe/mpyc, 2018.

[Ser77] Jean-Pierre Serre. Linear representations of finite groups, volume 42 of Graduate texts in mathe-
matics. Springer, 1977.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Review, 41(2):303–332, 1999.

[Son] Sonic reference implementation. https://github.com/zknuckles/sonic.

[SSV19] Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti. Publicly verifiable proofs from
blockchains. In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography - PKC 2019 -
22nd IACR International Conference on Practice and Theory of Public-Key Cryptography, Bei-
jing, China, April 14-17, 2019, Proceedings, Part I, volume 11442 of Lecture Notes in Computer
Science, pages 374–401. Springer, 2019.

[SSV20] Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti. Publicly verifiable zero knowledge from
(collapsing) blockchains. IACR Cryptol. ePrint Arch., 2020:1435, 2020.

[SVdV16] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-preserving
outsourcing by distributed verifiable computation. In Mark Manulis, Ahmad-Reza Sadeghi, and
Steve Schneider, editors, Applied Cryptography and Network Security - 14th International Confer-
ence, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, volume 9696 of Lecture Notes
in Computer Science, pages 346–366. Springer, 2016.

[Szy04] Michael Szydlo. Merkle tree traversal in log space and time. In EUROCRYPT 2004, Proceedings,
volume 3027 of LNCS, pages 541–554. Springer, 2004.

145

D2.3 – Improved Constructions of Privacy-Enhancing Cryptographic Primitives for Ledgers

[Tof07] T. Toft. Primitives and applications for multi-party computation. PhD thesis, Aarhus University,
2007.

[Unr16a] Dominique Unruh. Collapse-binding quantum commitments without random oracles. In ASI-
ACRYPT 2016, Proceedings, Part II, volume 10032 of LNCS, pages 166–195. Springer, 2016.

[Unr16b] Dominique Unruh. Computationally binding quantum commitments. In EUROCRYPT 2016, Pro-
ceedings, Part II, volume 9666 of LNCS, pages 497–527. Springer, 2016.

[vS13] Nicolas van Saberhagen. CryptoNote v 2.0. https://cryptonote.org/whitepaper.
pdf, October 2013.

[Wil16] Zooko Wilcox. The design of the ceremony. https://z.cash/blog/
the-design-of-the-ceremony.html, October 2016.

[Wor18] ZKProof Standards Workshop, 2018. https://zkproof.org/proceedings-snapshots/zkproof-
implementation-20180801.pdf.

[ZCa] ZCash. https://z.cash/.

146

