
DS-06-2017: Cybersecurity PPP: Cryptography

PRIViLEDGE
Privacy-Enhancing Cryptography in Distributed Ledgers

D3.2 – Design of Extended Core Protocols

Due date of deliverable: 31 December 2019
Actual submission date: 18 December 2019

Grant agreement number: 780477 Lead contractor: Guardtime AS
Start date of project: 1 January 2018 Duration: 36 months
Revision 1.0

Project funded by the European Commission within the EU Framework Programme for

Research and Innovation HORIZON 2020

Dissemination Level

PU = Public, fully open X

CO = Confidential, restricted under conditions set out in the Grant Agreement

CI = Classified, information as referred to in Commission Decision 2001/844/EC

Ref. Ares(2019)7934126 - 31/12/2019

D3.2

Design of Extended Core Protocols

Editor
Toon Segers (TUE)

Contributors
Karim Baghery (UT)

Vincenzo Botta (UNISA)
Michele Ciampi (UEDIN)
Aggelos Kiayias (UEDIN)

Berry Schoenmakers (TUE)
Toon Segers (TUE)

Björn Tackmann (IBM)
Ahto Truu (GT)

Ivan Visconti (UNISA)

Reviewers
Vincenzo Iovino (UNISA)

Toomas Krips (UT)
Panos Louridas (GRNET)

Toon Segers (TUE)
Luisa Siniscalchi (UNISA)

18 December 2019
Revision 1.0

The work described in this document has been conducted within the project PRIViLEDGE, started in January 2018.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No. 780477.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of the European
Commission.

©Copyright by the PRIViLEDGE Consortium

Contents

1 Executive Summary 1
1.1 Scope . 1

1.1.1 Ledger protocols . 1
1.1.2 Secure Multiparty Computation . 2
1.1.3 Post-quantum . 2

1.2 Impact . 2

2 UC-Secure CRS Generation for zk-SNARKs 3
2.1 Introduction . 3
2.2 Preliminaries . 5
2.3 Multi-Party CRS Generation . 8
2.4 UC-Secure CRS Generation . 12
2.5 Secure MPC for NIZKs . 14

3 On the Efficiency of Privacy-Preserving Smart Contract Systems 18
3.1 Introduction . 18
3.2 Preliminaries . 20

3.2.1 Notations . 20
3.2.2 Definitions . 21
3.2.3 COCO: a Framework for Constructing UC-secure zk-SNARKs 23

3.3 Efficient UC-secure zk-SNARKs . 23
3.3.1 Construction . 24
3.3.2 Efficiency . 25
3.3.3 Security Proof . 25

3.4 On the Efficiency of Privacy Preserving Smart Contract Systems 25

4 Bulletin Board for E-voting 28
4.1 Introduction . 28
4.2 Preliminaries . 28
4.3 Our contribution . 28

4.3.1 Attacking the liveness of the CS BB system . 29
4.3.2 A New Publishing Protocol for the CS BB System . 30

5 Asymmetric Distributed Trust 33
5.1 Introduction . 33
5.2 Preliminaries . 34
5.3 Recent Related Work . 35
5.4 Asymmetric Byzantine Quorum Systems . 36

5.4.1 Symmetric Trust . 36
5.4.2 Asymmetric Trust . 38

i

D3.2 –

5.5 Shared Memory . 40
5.5.1 Definitions . 41
5.5.2 Protocol with Authenticated Data . 41
5.5.3 Double-Write Protocol without Data Authentication 43

5.6 Broadcast . 45
5.7 Conclusion . 50

6 Proof-of-Stake Sidechains 51
6.1 Introduction . 51
6.2 Preliminaries . 54

6.2.1 Our Model . 54
6.2.2 Blockchains and Ledgers . 54
6.2.3 Underlying Proof-of-Stake Protocols . 55

6.3 Defining Security of Pegged Ledgers . 56
6.4 Implementing Pegged Ledgers . 59

6.4.1 Ad-Hoc Threshold Multisignatures . 60
6.4.2 A Concrete Asset A . 63
6.4.3 The Sidechain Construction . 65

6.5 Constructing Ad-Hoc Threshold Multisignatures . 75
6.5.1 Plain ATMS . 75
6.5.2 Multisignature-based ATMS . 75
6.5.3 ATMS From Proofs of Knowledge . 76

6.6 Security . 76
6.6.1 Assumptions . 76
6.6.2 Proof Overview . 77
6.6.3 Liveness and Persistence . 77
6.6.4 The Firewall Property and MC-Receiving Transactions 78
6.6.5 Firewall Property During Sidechain Failure . 79
6.6.6 General Firewall Property . 81

6.7 The Diffuse Functionality . 84
6.8 Adaptation to Other Proof-of-Stake Blockchains . 85

6.8.1 Ouroboros Praos and Ouroboros Genesis . 85
6.8.2 Snow White . 86
6.8.3 Algorand . 86

7 Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake 88
7.1 Introduction . 88
7.2 Protocol Intuition . 89

7.2.1 The Foundations of Genesis and Zerocash . 90
7.2.2 The Core Protocol . 90
7.2.3 Freezing Stake in Zero Knowledge . 90
7.2.4 Adaptive Corruptions . 91

7.3 The Model . 91
7.4 Tools . 93

7.4.1 Non-Interactive Zero Knowledge . 93
7.4.2 Key-private Forward-Secure Encryption . 94
7.4.3 PRFs with unpredictability under malicious keys . 96
7.4.4 Equivocal Commitments . 96

7.5 The Private Ledger . 97
7.5.1 Blinding for Forward-Secure Transactions . 99

ii

D3.2 –

7.5.2 Leakage for Leader-Based Protocols . 100
7.6 The Ouroboros-Crypsinous Protocol . 101

7.6.1 Ideal-World Transactions . 101
7.6.2 Protocol overview . 102
7.6.3 Real-world Transactions . 103
7.6.4 Interacting with the Ledger . 104
7.6.5 Transaction Validity . 106

7.7 Security Analysis . 107
7.8 Performance Estimation . 111
7.9 Hybrid World Functionalities . 112
7.10 The Simulator . 114

7.10.1 The Stage 1 Simulator . 114
7.10.2 The Stage 2 Simulator . 116

7.11 UC Specification of Ouroboros Crypsinous . 118
7.11.1 Party Initialization . 119
7.11.2 The Staking Procedure . 119
7.11.3 The Ledger Maintenance Procedure . 120
7.11.4 Submitting Transfer Transactions . 121
7.11.5 Submitting Generic Transactions . 122
7.11.6 Reading the Ledger State . 122

7.12 NP Statements . 123
7.13 Protocol Assumptions Encoded as a Wrapper . 124
7.14 Construction NIZKs via SNARKs . 125

7.14.1 Proof of UC-Emulation . 126
7.15 Key-Private Forward-Secure Encryption . 130

8 Privacy Threats Exploiting Smart Contracts and Forks 134
8.1 Attack to the Zero-Knowledge Property of GG-NIZK [GG17] 134
8.2 Attacking and Repairing Smart Contracts on Forking Blockchains 136

9 Verifiable MPC with Blockchain 143
9.1 Introduction . 143
9.2 Preliminaries . 144

9.2.1 The Notion of Outsourcing . 144
9.2.2 Secure Multiparty Computation . 145
9.2.3 Verifiable Computation with Zero-Knowledge . 145
9.2.4 Blockchain . 147

9.3 Recent Related Work in Verifiable Multiparty Computation . 147
9.3.1 Trinocchio: Verifiable Computation on Private Inputs 147
9.3.2 Geppetri: Reusable Setup for Different Computations with Adaptive zk-SNARKs 149

9.4 Verifiable MPC with Blockchain . 149
9.4.1 Optional: Use Smart Contract to Verify Correctness Proof 150
9.4.2 The Billionaires’ Problem: Solution Sketch . 151
9.4.3 Main Protocols to Compute the Top 400: Verifiable Secure Filtering and Sorting 151
9.4.4 Verifiable Secure Comparison . 152
9.4.5 The Billionaires’ Problem: Next steps and Implementation Framework 153

9.5 Conclusion . 153

iii

D3.2 –

10 Hash Based Server Assisted Signatures 154
10.1 Background . 154
10.2 Blockchain Backed Key State Management . 155
10.3 Forward-Resistant Tag Systems . 155

11 Conclusion 157

iv

Chapter 1

Executive Summary

This document presents the design of core protocols for distributed ledgers with a focus on privacy and secu-
rity. Contributions were developed by PRIViLEDGE partners during the first 24 months of the project. The
contributions presented in the following chapters include both peer-reviewed and ongoing research work.

This section briefly summarizes the contents of the subsequent chapters. Each chapter discusses a contribu-
tion’s relevance, preliminaries, new results and technical details.

1.1 Scope

The document covers three main protocol categories:

• Ledger protocols;

• Secure multiparty computation (MPC) protocols;

• Protocols in the post-quantum setting.

1.1.1 Ledger protocols

Chapter 2 formalizes universal composability (UC) security of the trusted setup of SNARKs with MPC.
Constructing efficient zk-SNARKs with minimized trust assumptions is an important research topic, as many
DLT protocols and applications rely on zk-SNARKs. This result shows that if we use the UC-secure MPC
protocol explained in Chapter 2 for CRS generation of zk-SNARK proposed in [ABLZ17], the prover and verifier
need to trust only a single party among parties of the MPC protocol. The proposed protocol can be used to
mitigate the trust in applications that use UC-secure SNARKs; e.g. Hawk [KMS+15] and Gyges [JKS16].

Chapter 3 improves the efficiency of privacy-preserving smart contract systems such as Hawk [KMS+15]
and Gyges [JKS16], by improving the efficiency of the underlying zk-SNARK. Improving the efficiency of zk-
SNARKs in these systems is relevant because the performance of these systems greatly depends on it. The
proposed construction can be of independent interest for all applications that require a UC-secure NIZK or zk-
SNARK.

Chapter 4 presents an attack against the Bulletin Board construction by Culnane and Schneider [CS14b]
where an attacker can prevent termination when less than N/3 of the N bulletin board peers are corrupted
(contrary to what is claimed in [CS14b]). Chapter 4 then proposes a scheme to mitigate this attack.

Chapter 5 presents a formal introduction of asymmetric Byzantine quorum systems, extending standard
Byzantine quorum (or consensus) systems. Furthermore, Chapter 5 presents protocols that adopt this asymmetric
quorum system, specifically for shared read-write registers and broadcasting. To illustrate its relevance: The
broadcasting protocol is, for example, relevant for “federated voting” in the public Stellar blockchain.1

1See https://www.stellar.org or https://medium.com/interstellar/understanding-the-stellar-consensus-protocol-423409aad32e for an
informal explanation of Stellar’s federated voting protocol

1

https://www.stellar.org
https://medium.com/interstellar/understanding-the-stellar-consensus-protocol-423409aad32e

D3.2 – Design of Extended Core Protocols

Chapter 6 presents a novel formalization of Proof-of-Stake (PoS) Sidechains. Then, Chapter 7 presents
a formal model for a privacy-preserving PoS-based distributed ledger in the universal composability (UC)
setting, including a protocol that realizes this new type of ledger. Both chapters present very relevant extensions
of classical PoS blockchains, addressing key pain-points of interoperability, scalability, upgradability and privacy.

Chapter 8 presents two attacks related to applications of distributed ledger technology. The first attack con-
cerns the adversarial use of smart contracts to break the zero-knowledge property of the non-interactive
zero-knowledge (NIZK) argument proposed by [GG17] without corrupting any party. The second attack con-
cerns the adversarial use of forks in blockchains in order to break the security of a smart contract that is
supposed to securely implement a two or multi-party functionality.

1.1.2 Secure Multiparty Computation

Chapter 9 introduces the notion of verifiable MPC with blockchain. Verifiable MPC allows a client (or multiple
clients) to outsource a computation in a privacy-preserving way, while enabling public verifiability of correctness.
The protocol in Chapter 9 enables a client to use verifiable input data (via cryptographic commitments), outsource
expensive computation to an off-chain network of workers (in a privacy-preserving way), verify the result on-
chain and reuse the result for other use-cases.

1.1.3 Post-quantum

Chapter 10 presents a contribution on server assisted digital signature schemes whose security is based on
hash functions. The server assisted nature of these schemes is a good match for distributed ledger systems.
According to current knowledge, hash functions are resilient to attacks by quantum computers. While formal
analysis of the new schemes in quantum setting is still ongoing, we expect them to remain secure even against
quantum adversaries, in contrast with the currently prevalent schemes based on integer factoring and discrete
logarithm problems.

1.2 Impact

The impact of these PRIViLEDGE contributions is illustrated by the fact that most have been peer-reviewed
and/or accepted at conferences very recently.2 The table below presents the outlets that have accepted these
contributions.

Contribution Outlet
UC-Secure CRS Generation for zk-SNARKs Africacrypt 2019
On the Efficiency of Privacy-Preserving Smart Contract Systems Africacrypt 2019
Bulletin Board for E-voting SCN 2018
Asymmetric Distributed Trust DISC 2019
Proof-of-Stake Sidechains IEEE Symposium on Security and Privacy 2019
Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake IEEE Symposium on Security and Privacy 2019
Hash Based Server Assisted Signatures ACM SIGPLAN CPP 2020

2For Asymetric Distributed Trust, a brief announcement was presented at DISC 2019.

2

Chapter 2

UC-Secure CRS Generation for zk-SNARKs

2.1 Introduction

A zero-knowledge argument is a cryptographic protocol between a prover and a verifier where the objective is
to prove the validity of some statement while not leaking any other information. In particular, such an argu-
ment should be sound (it should be impossible to prove false statements) and zero-knowledge (the only leaked
information should be the validity of the statement). Practical applications often require a non-interactive zero-
knowledge (NIZK) argument where the prover outputs a single message which can be checked by many different
verifiers.

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) are particularly efficient in-
stantiations of NIZK, and have thus found numerous application ranging from verifiable computation [PHGR13]
to privacy-preserving cryptocurrencies [KMS+15] and privacy-preserving smart contracts [KMS+15]. In most
of such zk-SNARKs (see, e.g., [Gro10, Lip12, GGPR13, PHGR13, DFGK14, Gro16]), the verifier’s computation
is dominated by a small number of exponentiations and pairings in a bilinear group, while the argument consists
of a small number of group elements. Importantly, a zk-SNARK exists for any NP-language.

One drawback in the mentioned pairing-based zk-SNARKs is their reliance on the strong common reference
string (CRS) model. It assumes that in the setup phase of the protocol a trusted party publishes a CRS, sampled
from some specialized distribution, while not leaking any side information. Subverting the setup phase can make
it easy to break the security, e.g., leaking a CRS trapdoor makes it trivial to prove false statements. This raises the
obvious question of how to apply zk-SNARKs in practice without completely relying on a single trusted party.
The issue is further amplified since in all of the mentioned zk-SNARKs, one has to generate a new CRS each
time the relation changes.

Reducing trust on CRS generation is indeed a long-standing open question. Several different approaches
for this are known, but each one has its own problems. Some recent papers [BCG+15, BGG17, BGM17] have
proposed efficient CRS-generation using multi-party computation protocols, where only 1 out of Np parties
(where Np denotes the number of parties participated in the MPC protocol) has to be honest, for a large class
of known zk-SNARKs (in fact, most of the efficient pairing-based zk-SNARKs belong to this class, possibly
after the inclusion of a small number of new elements to their CRSs) for which the CRS can be computed by a
fixed well-defined class CS of circuits. Following [BCG+15], we will call this class of zk-SNARKs CS-SNARKs.
However, the CRS-generation protocols of [BCG+15, BGG17, BGM17] have the following two weaknesses:

They are not secure in the universal composability (UC) setting [Can01]. Hence, they might not be secure
while running in parallel with other protocols, as is often the case in real life scenarios. Moreover, some
systems require a UC-secure NIZK [KMS+15, JKS16], but up to now their CRS is still be generated in a
standalone setting. We note that [BCG+15, BGM17] do prove some form of simulatability but not for full
UC-security. Protocol of [BGG17] is for one specific zk-SNARK.

All use the random oracle model and [BGG17, BGM17] additionally use knowledge assumptions. Non-

3

D3.2 – Design of Extended Core Protocols

falsifiable assumptions [Nao03] (e.g., knowledge assumptions) and the random oracle model are con-
troversial (in particular, the random oracle model is uninstantiable [CGH98, GK03] and thus can only be
thought of as a heuristic), and it is desirable to avoid them in situations where they are not known to cir-
cumvent impossibility results. Importantly, construction of zk-SNARKs under falsifiable assumptions is
impossible [GW11] and hence they do rely on non-falsifiable assumptions but usually not on the random
oracle model. Relying on the random oracle model in the setup phase means that the complete composed
system (CRS-generation protocol + zk-SNARK) relies on both random oracle model and non-falsifiable
assumptions. Hence, we end up depending on two undesirable assumptions rather than one.

Updatable CRS [GKM+18] is another recent solution to the problem. Essentially, this can be viewed as a
single round MPC protocol where each party needs to participate just once in the CRS computation. Current
zk-SNARKs in updatable CRS model [GKM+18,MBKM19] are still less efficient, than the state-of-the-art non-
updatable counterparts like the zk-SNARK by Groth [Gro16].

As a different approach, in order to minimize the trust of NIZKs in the setup phase, Bellare et al. [BFS16]
defined the notion of subversion-resistance, which guarantees that a security property (like soundness) holds
even if the CRS generators are all malicious. As proven in [BFS16], achieving subversion-soundness and (even
non-subversion) zero knowledge at the same time is impossible for NIZK arguments. On the other hand, one
can construct subversion-zero knowledge (Sub-ZK) and sound NIZK arguments. Abdolmaleki et al. [ABLZ17]
showed how to design efficient Sub-ZK SNARKs: essentially, a zk-SNARK can be made Sub-ZK by con-
structing an efficient public CRS-verification algorithm CV that guarantees the well-formedness of its CRS. In
particular, [ABLZ17] did this for the most efficient known zk-SNARK by Groth [Gro16] after inserting a small
number of new elements to its CRS. Fuchsbauer [Fuc18] proved that Groth’s zk-SNARK (with a slightly different
simulation) is Sub-ZK even without changing its CRS. Recently, Baghery [Bag19b] showed that one can achieve
Sub-ZK and simulation knowledge soundness in a recently proposed variation of Groth’s zk-SNARK [AB19] at
the same time.

Contribution. In [ABL+19b], we propose a new UC-secure multi-party CRS-generation protocol for CS-
SNARKs that crucially relies only on falsifiable assumptions and does not require a random oracle. Concep-
tually, the new protocol follows similar ideas as the protocol of [BCG+15], but it does not use any proofs of
knowledge. Instead, we use a discrete logarithm extractable (DL-extractable) UC commitment functionality
Fdlmcom that was recently defined by Abdolmaleki et al. [ABL+19a]1. A DL-extractable commitment scheme
allows to commit to a field element x and open to the group element gx. Since Fdlmcom takes x as an input, the
committer must know x and thus x can be extracted by the UC-simulator. As we will show, this is sufficient to
prove UC-security of the new CRS-generation protocol.

In addition, we show that the Sub-ZK SNARK of [ABLZ17] is a Sub-ZK CS-SNARK after just adding some
more elements to its CRS. We also improve the efficiency of the rest of the CRS-generation protocol by allowing
different circuits for each group, considering special multiplication-division gates, and removing a number of
NIZK proofs that are used in [BCG+15]. Like in the previous CRS-generation protocols [BCG+15, BGG17,
BGM17], soundness and zero-knowledge will be guaranteed as long as 1 out of Np parties participating in the
CRS generation is honest. If SNARK is also Sub-ZK [ABLZ17,Fuc18], then zero-knowledge is guaranteed even
if all Np parties are dishonest, given that the prover executes a public CRS verification algorithm.

Since it is impossible to construct UC commitments in the standard model [CF01], the new UC-secure
CRS-generation protocol necessarily relies on some trust assumption. The DL-extractable commitment scheme
of [ABL+19a] is secure in the registered public key (RPK) model2 that is a weaker trust model than the CRS
model, as in the CRS model all parties require to trust a single party. However, we stay agnostic to the concrete
implementation of Fdlmcom, proving the security of the CRS-generation protocol in the Fdlmcom-hybrid model.

1Note that our proposed approach can be used to generate the CRS of either non-UC-secure or UC-secure zk-SNARKs.
2In the RPK model, each party registers his public key with an authority of his choosing. It is assumed that even authorities of

untrusted parties are honest to the extent that they verify the knowledge (e.g., by using a standalone ZK proof) of the corresponding
secret key.

4

D3.2 – Design of Extended Core Protocols

Thus, the trust assumption of the CRS-generation protocol is directly inherited from the trust assumption of the
used DL-extractable commitment scheme. Constructing DL-extractable commitment schemes in a weaker model
like the random string model or the multi-string model is an interesting open question.

It is possible to realize any UC-functionality, including Fdlmcom, in even weaker common random string
model [CLOS02] or in the multi-string model [GO07]. First one could be easily set up in practice by extracting
a random string from some natural source (see [CPS07] for further details) and the second model assumes
that majority of parties generate a uniformly random string. Although current implementations of Fdlmcom in
the previous two models would be relatively inefficient compared to the RPK model implementation, it would
still be suitable for our purpose as we make only a small constant number of commitments (e.g., Groth’s zk-
SNARK [Gro16] uses five different trapdoors, and henceFdlmcom has to be called five times; moreover, [BGM17]
claims only four trapdoors are needed). Note that CRS-s of known efficient CS-SNARKs, with a few exceptions,
contain Ω(n) group elements, where n is the circuit size (e.g., in the last CRS generation of Zcash [BCG+14],
n ≈ 2 000 000 3). Hence, even a relatively inefficient DL-extractable commitment scheme (that only has to be
called once per CRS trapdoor) will not be the bottleneck in the CRS-generation protocol.

We proceed as follows. First, we describe an ideal functionality Fmcrs, an explicit multi-party version of
the CRS generation functionality. Intuitively (the real functionality is slightly more complicated), first, Np key-
generators Gi send to Fmcrs their shares of the trapdoors, s.t. the shares of the honest parties are guaranteed to
be uniformly random. Second, Fmcrs combines the shares to create the trapdoors and the CRS, and then sends
the CRS to each Gi. We propose a protocol Kmcrs that UC-realizes Fmcrs in the Fdlmcom-hybrid model, i.e.,
assuming the availability of a UC-secure realization of Fdlmcom. In Kmcrs, the parties Gi first Fdlmcom-commit
to their individual share of each trapdoor. After opening the commitments, Gi compute crs by combining their
shares with a variation of the protocol from [BCG+15]. The structure of this part of the protocol makes it possible
to publicly check that it was correctly followed.

Next, we prove that a CS-SNARK that is complete, sound, and Sub-ZK in the CRS model is also complete,
sound, and Sub-ZK in the Fmcrs-hybrid model. Sub-ZK holds even if all CRS creators were malicious, but for
soundness we need at least one honest party. We then show that the Sub-ZK secure version [ABLZ17, Fuc18]
of the most efficient known zk-SNARK by Groth [Gro16] remains sound and Sub-ZK if the CRS has been
generated by using Kmcrs. The main technical issue here is that since Groth’s zk-SNARK is not CS-SNARK
(see 2.3), we need to add some new elements to its CRS and then reprove its soundness against an adversary who
is given access to the new CRS elements. We note that Bowe et al. [BGM17] proposed a different modification
of Groth’s zk-SNARK together with a CRS-generation protocol, but under strong assumptions of random beacon
model, random oracle model, and knowledge assumptions. Role of the commitment in their case is substituted
with a random beacon which in particular means that they do not need to fix parties in the beginning of the
protocol.

We constructed a UC-secure CRS-generation protocol Kmcrs in theFdlmcom-hybrid model for any CS-SNARK
and in particular proved that a small modification of Groth’s zk-SNARK remains secure when its CRS is gener-
ated with Kmcrs. Moreover, the resulting CRS-generation protocol is essentially as efficient as the prior protocols
from [BCG+15,BGG17,BGM17]. However, (i) we proved the UC-security of the new CRS-generation protocol,
and (ii) the new protocol is falsifiable, i.e., it does not require either the random oracle model or any knowledge
assumption.

2.2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let κ ∈ N be the information-theoretic security parameter, in
practice, e.g., κ = 128. All adversaries will be stateful. For an algorithm A, let im(A) be the image of A, i.e.,
the set of of valid outputs of A, let RNDA denote the random tape of A, and let r ← RNDA denote sampling
of a randomizer r of sufficient length for A’s needs. By y ← A(x; r) we denote that A, given an input x
and a randomizer r, outputs y. We denote by negl an arbitrary negligible function, and by poly(κ) an arbitrary

3See https://www.zfnd.org/blog/conclusion-of-powers-of-tau/

5

https://www.zfnd.org/blog/conclusion-of-powers-of-tau/

D3.2 – Design of Extended Core Protocols

polynomial function. A ≈c B means that distributions A and B are computationally indistinguishable. We write
x ← D if x is sampled according to distribution D or uniformly in case D is a set. By Supp(D) we denote the
set of all elements in D that have non-zero probability.

Assume that Gi are different parties of a protocol. Following previous work [BCG+15], we will make
the following assumptions about the network and the adversary. It is possible that the new protocols can be
implemented in the asynchronous model but this is out of scope of the current paper.

Synchronicity assumptions: We assume that the computation can be divided into clearly divided rounds. As
it is well-known, synchronous computation can be simulated, assuming bounded delays and bounded time-drift.
For the sake of simplicity, we omit formal treatment of UC-secure synchronous execution, see [KMTZ13] for
relevant background.

Authentication: we assume the existence of an authenticated broadcast between the parties. In particular, (i)
if an honest party broadcasts a message, we assume that all parties (including, in the UC-setting, the simulator)
receive it within some delay, and (ii) an honest party Gj accepts a message as coming from Gi only if it was sent
by Gi.

Covertness: We assume that an adversary in the multi-party protocols is covert, i.e., it will not produce outputs
that will not pass public verification algorithms. In the protocols we write that honest parties will abort under
such circumstances, but in the proofs we assume that adversary will not cause abortions.

For pairing-based groups we will use additive notation together with the bracket notation, i.e., in group G1,
[a]1 = a [1]1, where [1]1 is a fixed generator of G1. A deterministic bilinear group generator Pgen(1κ) returns
p = (p,G1,G2,GT , ê, [1]1 , [1]2), where p (a large prime) is the order of cyclic abelian groups G1, G2, and
GT , and ê : G1 × G2 → GT is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote
[a]1 • [b]2 = ê([a]1 , [b]2); this extends to vectors in a natural way. Occasionally we write [a]z • [b]3−z for
z ∈ {1, 2} and ignore the fact that for z = 2 it should be written [b]3−z • [a]z . Let [a]? := ([a]1, [a]2). As
in [BFS16], we will implicitly assume that p is generated deterministically from κ; in particular, the choice of p
cannot be subverted.

UC Security. We work in the standard universal composability framework of Canetti [Can01] with static cor-
ruptions of parties. The UC framework defines a PPT environment machine Z that oversees the execution of
a protocol in one of two worlds. The “ideal world” execution involves “dummy parties” (some of whom may
be corrupted by an ideal adversary/simulator Sim) interacting with a functionality F . The “real world” exe-
cution involves PPT parties (some of whom may be corrupted by a PPT real world adversary A) interacting
only with each other in some protocol π. We refer to [Can01] for a detailed description of the executions, and
a definition of the real world ensemble EXECπ,A,Z and the ideal world ensemble IDEALF ,SimA,Z . A proto-
col π UC-securely computes F if there exists a PPT Sim such that for every non-uniform PPT Z and PPT A,
{IDEALF ,SimA,Z(κ, x)}κ∈N,x∈{0,1}∗ ≈c {EXECπ,A,Z(κ, x)}κ∈N,x∈{0,1}∗ .

The importance of this definition is a composition theorem that states that any protocol that is universally
composable is secure when run concurrently with many other arbitrary protocols; see [Can01] for discussions
and definitions.

CRS functionality. The CRS model UC functionality FD ,f
crs parameterized by a distribution D and a function

f intuitively works as follows. Functionality samples a trapdoor tc from D , computes crs = f(tc), and stores
crs after a confirmation from the simulator. Subsequently on each retrieval query (retrieve, sid) it responds by
sending (CRS, sid, crs). For full details see Fig. 2.1.

6

D3.2 – Design of Extended Core Protocols

FD ,f
crs is parametrized by a distribution D and a function f . It proceeds as follows, running with parties Gi and

an adversary Sim.
CRS generation: Sample tc← D ; Set crs← f(tc); Send (crsOK?, sid, crs) to Sim; If Sim returns (crsOK, sid)
then store (sid, crs).
Retrieval: upon receiving (retrieve, sid) from Gi: If (sid, crs) is recorded for some crs then send (CRS, sid, crs)
to Gi. Otherwise, ignore the message.

Figure 2.1: Functionality FD ,f
crs

Fdlmcom, parametrized byM = Zp and group Gι, interacts with G1, . . . ,GNp as follows.

Upon receiving (commit, sid, cid,Gi,Gj ,m) from Gi, where m ∈ Zp: if a tuple (sid, cid, · · ·) with the
same (sid, cid) was previously recorded, do nothing. Otherwise, record (sid, cid,Gi,Gj ,m) and send
(rcpt, sid, cid,Gi,Gj) to Gj and Sim.

Upon receiving (open, sid, cid) from Gi, proceed as follows: if a tuple (sid, cid,Gi,Gj ,m) was previously
recorded then send (open, sid, cid,Gi,Gj , y ← [m]ι) to Gj and Sim. Otherwise do nothing.

Figure 2.2: Functionality Fdlmcom for ι ∈ {1, 2}

DL-extractable UC Commitment. Abdolmaleki et al. [ABL+19a] recently proposed a discrete logarithm
extractable (DL-extractable) UC-commitment scheme. Differently from the usual UC-commitment, a committer
will open the commitment to [m]1, but the functionality also guarantees that the committer knows x. Hence, in
the UC security proof it is possible to extract the discrete logarithm of [m]1. Formally, the ideal functionality
Fdlmcom takes m as a commitment input (hence the user must know m), but on open signal only reveals [m]1.
See Fig. 2.2. We refer to [ABL+19a] for a known implementation of Fdlmcom in the RPK model.

Non-interactive zero-knowledge. Let R be a relation generator, such that R(1κ) returns a polynomial-time
decidable binary relation R = {(x,w)}. Here, x is the statement and w is the witness. We assume that κ is
explicitly deducible from the description of R. The relation generator also outputs auxiliary information ξR
that will be given to the honest parties and the adversary. As in [Gro16, ABLZ17], ξR is the value returned by
Pgen(1κ). Because of this, we also give ξR as an input to the honest parties; if needed, one can include an
additional auxiliary input to the adversary. Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language.

A (subversion-resistant) non-interactive zero-knowledge argument system [ABLZ17] Ψ forR consists of six
PPT algorithms:

CRS trapdoor generator: Ktc is a PPT algorithm that, given (R, ξR) ∈ im(R(1κ)), outputs a CRS trapdoor
tc. Otherwise, it outputs ⊥.

CRS generator: Kcrs is a deterministic algorithm that, given (R, ξR, tc), where (R, ξR) ∈ im(R(1κ)) and
tc ∈ im(Ktc(R, ξR)) \ {⊥}, outputs crs. Otherwise, it outputs ⊥. We distinguish three parts of crs: crsP
(needed by the prover), crsV (needed by the verifier), and crsCV (needed by CV algorithm).

CRS verifier: CV is a PPT algorithm that, given (R, ξR, crs), returns either 0 (the CRS is ill-formed) or 1 (the
CRS is well-formed).

Prover: P is a PPT algorithm that, given (R, ξR, crsP, x,w), where (x,w) ∈ R, outputs an argument π. Other-
wise, it outputs ⊥.

7

D3.2 – Design of Extended Core Protocols

Verifier: V is a PPT algorithm that, given (R, ξR, crsV, x, π), returns either 0 (reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, ξR, crs, tc, x), outputs an argument π.

We also define the CRS generation algorithm K(R, ξR) that first sets tc ← Ktc(R, ξR) and then outputs crs ←
Kcrs(R, ξR, tc).

Ψ is perfectly complete forR, if for all κ, (R, ξR) ∈ RANGE(R(1κ)), tc ∈ RANGE(Ktc(R, ξR))\{⊥},
and (x,w) ∈ R,

Pr [crs← Kcrs(R, ξR, tc) : V(R, ξR, crsV, x,P(R, ξR, crsP, x,w)) = 1] = 1 .

Ψ is computationally adaptively knowledge-sound for R [Gro16], if for every non-uniform PPT A, there exists
a non-uniform PPT extractor ExtA, s.t. ∀ κ,

Pr

(R, ξR)← R(1κ), (crs, tc)← K(R, ξR), r ←r RNDA,
(x, π)← A(R, ξR, crs; r),w← ExtA(R, ξR, crs; r) :

(x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈κ 0 .

Here, ξR can be seen as a common auxiliary input toA and ExtA that is generated by using a benign [?] relation
generator; we recall that we just think of ξR as being the description of a secure bilinear group.

Ψ is statistically unbounded ZK forR [Gro06], if for all κ, all (R, ξR) ∈ RANGE(R(1κ)), and all compu-
tationally unbounded A, εunb0 ≈κ εunb1 , where

εunbb = Pr[(crs, tc)← K(R, ξR) : Aob(·,·)(R, ξR, crs) = 1] .

Here, the oracle o0(x,w) returns⊥ (reject) if (x,w) 6∈ R, and otherwise it returns P(R, ξR, crsP, x,w). Similarly,
o1(x,w) returns⊥ (reject) if (x,w) 6∈ R, and otherwise it returns Sim(R, ξR, crs, tc, x). Ψ is perfectly unbounded
ZK forR if one requires that εunb0 = εunb1 .

Ψ is statistically unbounded Sub-ZK forR, if for any non-uniform PPT subverter X there exists a non-uniform
PPT ExtX, such that for all κ, (R, ξR) ∈ RANGE(R(1κ)), and computationally unbounded A, εunb0 ≈κ εunb1 ,
where

εunbb = Pr

[
r ←r RNDX, (crs, ξX)← X(R, ξR; r), tc← ExtX(R, ξR; r) :

CV(R, ξR, crs) = 1 ∧ Aob(·,·)(R, ξR, crs, tc, ξX) = 1

]
.

Here, the oracle o0(x,w) returns⊥ (reject) if (x,w) 6∈ R, and otherwise it returns P(R, ξR, crsP, x,w). Similarly,
o1(x,w) returns⊥ (reject) if (x,w) 6∈ R, and otherwise it returns Sim(R, ξR, crs, tc, x). Ψ is perfectly unbounded
Sub-ZK forR if one requires that εunb0 = εunb1 .

Intuitively the previous definition says that an argument is Sub-ZK when for any untrusted (efficient) CRS
generator X, some well-formedness condition CV(R, ξR, crs) = 1 implies that X knows a trapdoor which would
allow him to simulate the proof. Hence, to protect privacy from malicious CRS generators, the prover just needs
to verify that the CRS satisfies the CV algorithm.

Finally, a non-interactive argument system is succinct if the argument length is polynomial in κ and the
verifier runs in time polynomial in κ+ |x|.

2.3 Multi-Party CRS Generation

Recently, [BCG+15, BGG17, BGM17] proposed several multi-party CRS-generation protocols for SNARKs.
In particular, [BCG+15] proposes a specific class of arithmetic circuits CS, shows how to evaluate CS-circuits
in an MPC manner, and claims that CS-circuits can be used to compute CRS-s for a broad class of SNARKs,
which here we call them CS-SNARKs. The CRS of each CS-SNARK is an output of some CS-circuit taken into
exponent. The input of such circuit is the CRS trapdoor. In the following, we review and modify the framework
of [BCG+15] while slightly redefining the class CS and the CRS-generation protocol.

8

D3.2 – Design of Extended Core Protocols

CS-Circuits. For an arithmetic circuit C over a field F, denote by wires(C) and gates(C) the set of wires and
gates of C (each gate can have more than one output wire), and by inputs(C), outputs(C) ⊂ wires(C) the set
of input and output wires of C. There can also be wires with hard-coded constant values, but these are not
considered to be part of inputs(C). The size of C is |inputs(C)|+ |gates(C)|. For a wire w we denote the value
on the wire by w̄; this notation also extends to tuples, say, inputs(C) denotes the tuple of values of inputs(C).

For a gate g, output(g) = w is the output wire and the tuple of all input wires is denoted by inputs(g). Let gw
be the gate with w = output(gw). We consider circuits with addition and multiplication-division gates. For an
addition gate (type(g) = add), inputs(g) = (w1, . . . , wf), coeffs(g) = (a0, a1, . . . , af), and it outputs a value
w̄ = a0 +

∑f
j=1 ajw̄j . For a multdiv gate (type(g) = multdiv), inputs(g) = (w1, w2, w3), L-input(g) = w1

is the left multiplication input, R-input(g) = w2 is the right multiplication input, D-input(g) = w3 is the
division input, and coeffs(g) = a. The output wire w contains the value w̄ = aw̄1w̄2/w̄3. Previous works either
only considered multiplication gates [BCG+15] or separate multiplication and division gates [BGM17]. Using
multdiv gates can, in some cases, reduce the circuit size compared to separate multiplication and division gates.

Class CS contains F-arithmetic circuits C : Ft → Fh, such that:

• For any w ∈ inputs(C), there exists g ∈ gates(C) such that type(g) = multdiv, inputs(g) = (1, w̄, 1),
and coeffs(g) = 1. That is, each trapdoor itself should be a part of the output of the circuit. Adding those
multdiv gates corresponds to the MPC protocol combining the shares of trapdoor ts of each party to get
[tc]z .

• For any g ∈ gates(C):

– output(g) ∈ outputs(C). Hence, each gate output is a CRS element.

– If type(g) = multdiv then L-input(g) 6∈ inputs(C), R-input(g),D-input(g) ∈ inputs(C). That is,
the left multiplication input can be a constant or an output of a previous gate, the right multiplication
and division inputs have to be one of the inputs of the circuit. This allows to easily verify the
computation in the MPC. For convenience, we require further that constant value of L-input(g) can
only be 1; from computational point of view nothing changes since coeffs(g) can be any constant.

– If type(g) = add then inputs(g)∩ inputs(C) = ∅. Addition is done locally in MPC (does not require
additional rounds) with the outputs of previous gates, since outputs correspond to publicly known
CRS elements.

The sampling depth depthS of a gate g ∈ gates(C) is defined as follows:

• depthS(g) = 1 if g is a multdiv gate and L-input(g) is a constant.

• depthS(g) = max{depthS(g′) : g′ an input of g} for other multdiv gates,

• depthS(g) = bg + max{depthS(g′) : g′ an input of g} for any add gate, where (i) bg = 0 iff all the input
gates of g are add gates. (ii) bg = 1, otherwise.

Denote depthS(C) := maxg{depthS(g)}. We again defined depthS slightly differently compared to [BCG+15];
our definition emphasizes the fact that addition gates can be executed locally. Essentially, Np · depthS(gw) will
be the number of rounds that it takes to compute [w̄]z with our MPC protocol. The multiplicative depth of a
circuit (denoted by depthM(C)) is the maximum number of multiplication gates from any input to any output.
An exemplary CS-circuit is given in 2.3.

Multi-Party Circuit Evaluation Protocol. We describe the circuit evaluation protocol, similar to the one
in [BCG+15], that allows to evaluate any CS-circuits “in the exponent”. We assume there are Np parties Gi,
each having published a share [tsi,s]? ∈ F∗, for s ∈ [1 .. t]. The goal of the evaluation protocol is to output

9

D3.2 – Design of Extended Core Protocols

+

��

1 1

��1

1 1

��2

��

��1 / ��
2

1
��2 / +��

2

1
��2 ��2 ��2

g1

g3

g2

gadd

��

Figure 2.3: Example CS circuit with inputs tc1 and tc2

Figure 2.4: Algorithms Cmd, Vmd and the protocol Evalmd for ι ∈ {1, 2}.

(
[C1(tc)]1, [C2(tc)]2

)
where C1,C2 are CS-circuits and tc = (

∏
j tsj,1, . . . ,

∏
j tsj,t). This protocol constructs a

well-formed CRS, given that tc is the CRS trapdoor and [C1(tc)]1, [C2(tc)]2 are respectively all the G1 and G2

elements of the CRS. In Section 2.4, we combine the circuit evaluation protocol with a UC-secure commitment
scheme to obtain a UC-secure CRS-generation protocol. Each step in the circuit evaluation protocol is publicly
verifiable and hence, no trust is needed at all; except that to get the correct distribution we need to trust one party.

We make two significant changes to the circuit evaluation protocol compared to [BCG+15]: (i) we do not
require that C1 = C2, allowing CRS elements in G1 and G2 to be different, and (ii) instead of multiplication
gates we evaluate multdiv gates.

Let us first describe the computation of [w̄]ι for a single gate gw. For an add gate, given that all input
gates have already been computed, that is, [w̄1, . . . , w̄f]ι are already public, each Gi computes [w̄]ι = a0 +∑f

j=1 aj [w̄j]ι locally. A multdiv gate g, with inputs(g) = (b, tcs, tck) and coeffs(g) = a, can be implemented
by the Np-round protocol Evalmd from 2.4. Here, each party Gi takes as input [b]ι (the output of the preceeding
gate or just [1]ι if there is none), runs Cmd procedure on tsi,s ∈ F, tsi,k ∈ F (her shares of the trapdoor that are
also g’s inputs), and broadcasts its output. Note that [b]ι corresponds to the left multiplication, tsi,s to the right
multiplication, and tsi,k to the division input of g.

Importantly, since each party Gi published [{tsi,j}tj=1]?, everybody can verify that Gi executed Cmd correctly
by checking if Vmd([bi]ι, [bi−1]ι, a, [tsi,s, tsi,k]3−ι) = 1, where [bi]ι is Gi’s output and [bi−1]ι is her input (the
output of the party Gi−1). We assume [b0]ι = [1]ι to allow the parties to check the computations of G1. Just
running Evalmd to evaluate each multdiv gate in C would require ≈ Np · depthM(C) rounds. Next we see that
computation can be parallelized to obtain Np · depthS(C) rounds.

10

D3.2 – Design of Extended Core Protocols

Optimised Multi-Party Circuit Evaluation Protocol. Before presenting the complete (parallelised) circuit
evaluation protocol, we provide an illustrative example of how CS-circuits can be evaluated efficiently using
multiple parties. The idea behind this approach is to allow parties to evaluate the circuit not gate-by-gate but all
the gates of the same sampling depth. We say that gates are in the same layer if they have the same depthS.
Following the definition of depthS, layers are separated by add gates. That is, two gates, say g1 and g2 are in
different layers if there is an add gate gadd such that g1 (or g2) depends on gadd’s output, while the other gate does
not. In each layer, each gate is computed using only trapdoor elements and outputs from gates of some preceding
layer. Parties evaluate the layer in a round-robin manner broadcasting intermediate values which allows other
parties to verify the computation.

This is how the optimised protocol and the naive MPC protocol differ. Since naive protocol evaluates circuit
gate-by-gate, one gate’s output can be another’s input even if both share the same layer. For instance, consider
gates g1 and g3 from 2.3. There, g1’s output is g3’s input and they are both in the same layer. Since the output
of g1 is computed before g3 is evaluated, it can be used in the computation. On the other hand, in the optimised
version of circuit evaluation all gates in the same layer are evaluated at the same time, thus g3 is computed at the
same time when g1 is computed.

Example 1. Suppose we have parties G1, G2, G3 that wish to compute crs = {[tc1]?, [tc2]?, [tc2
1/tc2]1, [tc2

1/tc2 +
tc2]1}. Let us only focus on the computation of G1 elements. This is represented by a CS-circuit in Fig. 2.3 where
we have

1. a multdiv gate g1 with input values (1, tc1, 1),

2. a multdiv gate g2 with input values (1, tc2, 1),

3. a multdiv gate g3 that takes the output of g1 as L-input, the circuit’s inputs tc1 as R-input, and tc2 as
D-input, that is, the input values of g3 are (tc1, tc1, tc2), and

4. an add gate gadd that adds outputs of g2 and g3.

The parties respectively publish shares [ts1,1, ts1,2]?, [ts2,1, ts2,2]?, [ts3,1, ts3,2]?.

• In the first round, G1 broadcasts [b1g1]1 ← [ts1,1]1 for gate g1, [b1g2]1 ← [ts1,2]1 for gate g2, and [b1g3]1 ←
[ts2

1,1/ts1,2]1 for gate g3.

• In the second round, G2 broadcasts [b2g1]1 ← ts2,1 · [b1g1]1 for gate g1, [b2g2]1 ← ts2,2 · [b1g2]1 for gate g2, and
[b2g3,1]1 ← ts2,1 · [b1g3]1, [b2g3,2]1 ← (ts2,1/ts2,2) · [b2g3,1]1 for g3 (note that g3 required two computations
rather than one).

• In the third round, G3 broadcasts [b3g1]1 ← ts3,1 · [b2g1]1 for gate g1, [b3g2]1 ← ts3,2 · [b2g2]1 for gate g2,
and [b3g3,1]1 ← ts3,1 · [b2g3,2]1, [b3g3,2]1 ← (ts3,1/ts3,2) · [b3g3,1]1 for g3. For gadd each party computes
[bgadd]1 ← [b3g2]1 + [b3g3,2]1.

Finally, if we define tc1 := ts1,1·ts2,1·ts3,1 and tc2 := ts1,2·ts2,2·ts3,2, then the outputs of G3 contain [b3g1]1 =
[tc1]1, [b3g2]1 = [tc2]1, and [b3g3,2]1 = [tc2

1/tc2]1; moreover, [bgadd]1 = [tc2 + tc2
1/tc2]1. Besides addition, each

element is built up one share multiplication at a time and hence the computation can be verified with pairings,
e.g, the last output [b2g3,2]1 of G2 is correctly computed exactly when [b2g3,2]1 • [ts2,2]2 = [b2g3,1]1 • [ts2,1]2.

Motivated by the example above, we give the full and formal description of the circuit evaluation protocol.
Let Cι ∈ CS, for ι ∈ {1, 2}, and Cι,d ⊆ gates(C) be a circuit layer that contains all multdiv gates g at sampling
depth d. For any g ∈ Cι,d let ExtractPath(g,Cι,d) output the longest path (g1, . . . , gq = g) such that each
gj ∈ Cι,d, and, for j < q, output(gj) = L-input(gj+1). Intuitively, this is the path of gates in Cι,d that following
only the left inputs lead up to the gate g, say, ExtractPath(g3,C1,1) = (g1, g3) for the circuit C in 2.3. For
simplicity, we describe a multdiv gate g by a tuple ([b]ι, a, s, k) where [b]ι = [L-input(g)]ι is the left input value,
assumed already to be known by the parties, a = coeffs(g), R-input(g) = tcs, and D-input(g) = tck.

11

D3.2 – Design of Extended Core Protocols

The parties evaluate multdiv gates of the circuit in order Cι,1,Cι,2, . . . ,Cι,Dι , whereDι is the sampling depth
of Cι. After each layer Cι,d each party locally evaluates all the addition gates at depth d + 1. The evaluation
of Cι,d proceeds in a round-robin fashion. First, G1 evaluates Cι,d with her input shares ts1,k alone. Next, G2

multiplies her shares ts2,k to each output of G1. However, to make computation verifiable, if G2 is supposed
to compute [b1g · ts2,α1 · . . . ts2,αq]ι, where [b1g]ι is some output of G1, then it is done one multiplication at a
time. Namely, she outputs [b2g,1]ι = [b1g · ts2,α1]ι, [b2g,2]ι = [b2g,1 · ts2,α2]ι, . . . , [b2g,q]ι = [b2g,q−1 · ts2,αq]ι. Each
multiplication would correspond to exactly one gate in ExtractPath(g,Cι,d). The elements [b2g,1, . . . , b

2
g,q−1]ι are

used only for verification; [b2g,q]ι is additionally used by G3 to continue the computation. Each subsequent party
Gi multiplies her shares to the output of Gi−1 in a similar fashion. This protocol requires only Np · depthS(Cι)
rounds.

Let certι = (certι1, . . . , certιDι) be the total transcript (certificate) in Gι corresponding to the output of the
multi-party evaluation of Cι where certιr is the transcript in round r. Denote cert := (cert1, cert2). All gates of
depth r of Cι are evaluated by a uniquely fixed party Gi. In what follows, let i = rndplayer(r) be the index of
this party.

The complete description of evaluation and verification of a layer Cι,d is given in 2.5 with function Clayer and
Vlayer that have the following interface. First, for i = rndplayer(r) and for both ι ∈ {1, 2}, in round r to compute
[Cι,d(tc)]ι, Gi computes certιr ← Clayer(Cι,d, ι, i, r, {tsi,k}tk=1, {certιj}

r−1
j=1), given a circuit layer Cι,d, the shares

tsi,k for all t trapdoors of tck, and the transcript {certιj}
r−1
j=1 of all previous computation. Second, any party can

verify, by using the algorithm Vlayer(Cι,d, ι, i, r, {[tsi,k]3−ι}tk=1, {certιj}rj=1), that the computation of the circuit
layer Cι,d in round r has been performed correctly by Gi. In particular, Gi checks that Vlayer outputs 1 for all
rounds since Gi’s previous round before executing Clayer for her new round. Importantly, executing Vlayer does
not assume the knowledge of any trapdoors.

2.4 UC-Secure CRS Generation

We propose a functionality Fmcrs for multi-party CRS generation of any CS-SNARK. Finally, we construct a
protocol Kmcrs that UC-realizes Fmcrs in the Fdlmcom-hybrid model.

New Ideal Functionality. In Section 2.6, we define the new ideal functionality Fmcrs = Fp,Np,~C,D ,comb
mcrs for

pairing-based (since it outputs elements from Gι) multi-party CRS-generation protocol. The CRS is described
by a t-input arithmetic circuits ~C := (C1,C2) over a field F = Zp such that crs = ([C1(tc)]1, [C2(tc)]2) for
tc← D , where D is a samplable distribution over Ztp.

The trapdoor tc is constructed by combining shares tsi ∈ Supp(D) of each party Gi by a function comb. By
Supp(D) we denote the set of all elements in D that have non-zero probability. For each honest party Gi, the
ideal functionality picks tsi ← D , whereas for malicious parties we only know tsi ∈ Supp(D). The function
comb should be defined so that if there exists at least one honest party then tc ← comb(ts1, . . . , tsNp) is also
distributed accordingly to D . In such case we say that D is comb-friendly. It is true for example when comb
is point-wise multiplication and D is a uniform distribution over (Z∗p)t as, e.g., in [BCG+15, BGG17, BGM17].
This guarantees the correct distribution of crs if at least one party is honest.

We believe Fmcrs captures essentially any reasonable pairing-based multi-party CRS-generation protocol,
where the trapdoor is shared between Np parties. Note that specifying distinct honest and corrupted inputs to the
functionality is common in the UC literature, [BCNP04,KL11]. In 2, we will establish the relation between Fcrs

and Fmcrs.

New Protocol. We define the new multi-party CRS-generation protocol Kmcrs = K
p,Np,~C,D ,comb
mcrs (see 2.7) in

the Fdlmcom-hybrid model. This allows us to instantiate the protocol with any DL-extractable commitment and,
moreover, the only trust assumption that the protocol needs is the one inherited from the commitment scheme,
e.g., using construction from [ABL+19a] gives security in the RPK model. Given that Dι is the sampling depth

12

D3.2 – Design of Extended Core Protocols

Figure 2.5: Clayer and Vlayer for ι ∈ {1, 2}

Parameters: p defines a bilinear pairing, ~C = (C1,C2) contains t-input arithmetic circuits over the field Zp, D
is a distribution of trapdoor elements, and comb : (Ztp)Np → Ztp. We have parties Gi for i ∈ [1 ..Np].

Share collection phase:

• Upon receiving (sc, sid,Gi) from an honest Gi, store tsi ← D and send (sc, sid,Gi) to Sim.

• Upon receiving (sc, sid,Gi, tsi) from a dishonest Gi, if tsi ∈ supp(D), then store tsi, else abort.

Only one message from each Gi is accepted.

CRS generation phase: Once tsi is stored for each Gi:

• Compute tc← comb(ts1, . . . , tsNp).

• Set crs← ([C1(tc)]1, [C2(tc)]2) and send (CRS, sid, crs) to Sim.

• If Sim returns (CRS, ok) then send (CRS, sid, crs) to every party Gi for i ∈ [1 ..Np].

Figure 2.6: Ideal functionality Fmcrs

13

D3.2 – Design of Extended Core Protocols

of Cι, then R = Np ·max(D1, D2) is the number of rounds needed to evaluate both circuits in parallel. For the
sake of simplicity, we assume certιr is the empty string for r > Np ·Dι.

Kmcrs proceeds in rounds: (i) In round 1, each Gi gets a signal (sc, sid,Gi); parties commit to their shares of
trapdoor tc. (ii) In round 2, each party Gi gets a signal (mcrsopen, sid); parties open their shares. (iii) In round
r ∈ [3 .. R + 2], (mcrscertok, sid,Gi, r) is triggered, where i = rndplayer(r); parties jointly compute crs from
the trapdoor shares; before party Gi performs her computation, she checks if previous computation were done
correctly. (iv) In round R+ 3, each party Gi gets the signal (mcrsfinal, sid,Gi) and extracts the crs from cert.
The CRS will be output by Gi only if all the verifications succeeded.

The signals sc, mcrsopen, mcrscertok, and mcrsfinal can be sent either by a controller server or by the
internal clock of Gi. The construction uses a secure broadcast channel; thus, if a message is broadcast, then all
parties are guaranteed to receive the same message. Note that after Gj obtains (rcpt, lblijk), for i ∈ [1 ..Np], j 6=
i, k ∈ [1 .. t], she broadcasts (mcrsreceipt, lblijk) since rcpt is not broadcast.

Security. To prove UC-security of Kmcrs, we restrict Fmcrs as follows: (i) ~C = (C1,C2) such that Cι ∈ CS
for ι ∈ {1, 2}. Note that this means that for any trapdoor element tck ∈ tc, [tck]? ∈ crs. (ii) D is the uniform
distribution on (Z∗p)t, (iii) comb(ts1, . . . , tsNp) := ts1 ◦ . . . ◦ tsNp , where ◦ denotes point-wise multiplication,
and tsik is Gi’s share of tck.

Theorem 1. Kmcrs UC-realizes Fmcrs in the Fdlmcom-hybrid model with perfect security against a static ad-
versary. Formally, there exits a PPT simulator SimA such that for every static (covert) PPT adversary A and
for any non-uniform PPT environment Z , Z cannot distinguish Kmcrs composed with Fdlmcom and A from Sim
composed with Fmcrs. That is, HYBRIDFdlmcom

Kmcrs,A,Z = IDEALFmcrs,Sim
A,Z .

Sketch. To prove UC-security, we have to construct an algorithm Sim that is able to simulate behaviour of
honest parties for Z in the ideal world without knowing their real inputs. Since we are in Fdlmcom-hybrid
model, Sim simulates Fdlmcom for the malicious parties and hence learns their shares. At first, Sim picks ran-
dom shares ts′ik to simulate all the honest parties. Once the ideal functionality has received (sc, sid,Gi) from
all the honest parties and (sc, sid,Gi, tsi) for all the dishonest parties (forwarded by Sim), then Sim receives
(CRS, sid, crs) from the ideal functionality. Now, Sim fixes one honest party Gh and opens its commitments
to [ts∗hk]1 ← [tck]1/(

∏
i∈[1 ..Np]\{h} ts′ik) for [tck]1 ∈ crs and ts′ik collected through Fdlmcom. Since [tck]1 is

uniformly random, then so is [ts∗hk]1 (the same distibution as in the real protocol). With a similar strategy Sim
simulates each gate output for Gh such that the final output of the simulated protocol is crs, matching the output
of the ideal functionality.

2.5 Secure MPC for NIZKs

Next, we show that Kmcrs can be used to generate the CRS of any CS-SNARK without harming the completeness,
soundness, or (subversion) zero-knowledge properties. It could also be used to generate CRS of other primitives
which can be represented by CS-circuits, but it is especially well suited for the intricate structure of SNARK CRS.
Finally, we apply the protocol to the Sub-ZK secure version [ABLZ17, Fuc18] of the most efficient zk-SNARK
by Groth [Gro16].

NIZK in the MCRS model. Let Ψ be a NIZK argument system secure in the Fcrs-hybrid model. We show
that by instantiating Fcrs with Fmcrs, the NIZK remains complete, sound, and zero-knowledge, provided that the
adversary A controls up to Np − 1 out of Np parties. Here we require that D is comb-friendly. See Fig. 2.8 for
the high-level description of MPC protocol for the CRS generation.

Theorem 2. Let D and comb : (Supp(D))Np → Supp(D) be such that D is comb-friendly. KFmcrs
crs securely

realizes FD ,f
crs in the Fmcrs-hybrid model given (covert) A corrupts up to Np − 1 out of Np parties (i.e. CRS

generators).

14

D3.2 – Design of Extended Core Protocols

Share collection phase: Round 1: upon receiving (sc, sid,Gi), Gi does the following.
for k ∈ [1 .. t] do

1. tsik ← Z∗p;
2. for j 6= i do

• Send (commit, sid, cidijk,Gi,Gj , tsik) to Fdlmcom;

• Upon receiving (rcpt, lblijk = (sid, cidijk,Gi,Gj)), Gj broadcasts (mcrsreceipt, lblijk);

• Store stij ← (lblijk, tsik)
t
k=1;

If by the end of the round 1, Gi does not receive (mcrsreceipt, sid, cidjj′k,Gj ,Gj′) for k ∈ [1 .. t], j 6= i, j′ 6= i,
and j′ 6= j then Gi aborts.

Round 2: upon receiving (mcrsopen, sid), Gi does:
for k ∈ [1 .. t] do

1. for j 6= i do
• Send (open, sid, cidijk) to Fdlmcom;

• After receiving (open, lblijk, [ts′ijk]1), where lblijk = (sid, cidijk,Gi,Gj), from Fdlmcom, Gj stores
(lblijk, [ts′ijk]1); // Comment: If Gi is honest then tsik = ts′ijk

2. Broadcast (sbroadc,Gi, k, [tsik]1).

3. Upon receiving (sbroadc,Gi, k, [tsik]1) broadcast by Gi, Gj does the following.

• If (lblijk, [ts′ijk]1) is not stored for some [ts′ijk]1 then abort.

• Abort unless [tsik]1 = [ts′ijk]1 6= [0]1.

• If by the end of round 2, Gj has not received (sbroadc, . . .), ∀j 6= i, ∀k, then Gj aborts.

CRS generation phase: Round r = 3 to R+ 2:
upon receiving (mcrscertok, sid,Gi, r), Gi does the following, for i = rndplayer(r).

1. Extract C1,d, C2,d corresponding to round r from C1, C2;

2. for ι ∈ {1, 2} do certιr ← Clayer(Cι,d, ι, i, r, {tsi,k}tk=1, {certιj}
r−1
j=1);

3. certr ← (cert1
r , cert2

r); broadcast (mcrscert, sid, cid,Gi, r, certr);

4. Any j 6= i does after receiving (mcrscert, sid, cid,Gi, r, certr) from Gi:

• if j 6= rndplayer(r), Vlayer(C1,d, ι, i, r, {[tsi,k]3−ι}tk=1, {cert1
k}rk=1)) = 0, or

Vlayer(C2,d, ι, i, r, {[tsi,k]3−ι}tk=1, {cert2
j}rj=1)) = 0 then abort;

• Replace stored (sid, cid, r − 1, {certιj}
r−1
j=1) with (sid, cid, r, {certιj}rj=1);

If by the end of round r, for any i, Gi has not stored (mcrscert, sid, cid,Gi, r, certr) then Gi aborts.

Round R+ 3: upon receiving (mcrsfinal, sid,Gi), Gi does the following.

1. If Gi has already received this message then ignore;

2. Extract crs from {cert1
k, cert2

k}Rk=1. Write (CRS, crs) on the output tape.

Figure 2.7: The protocol Kmcrs in the Fdlmcom-hybrid model

15

D3.2 – Design of Extended Core Protocols

KFmcrs
crs proceeds as follows, running with a set {P1, . . . , PN′p} of parties, designated set {G1, . . . ,GNp} of CRS

generators, and an adversary Sim.
CRS generation: Send a signal to each Gi to execute the functionality Fmcrs. If Fmcrs returns crs then Gi stores
(sid, crs).
Retrieval: Pi sends (retrieve, sid) to each Gj : If (sid, crs) is recorded for some crs then Gj sends
(CRS, sid, crs). If all Np responses from Gj are the same, then Pi outputs (CRS, sid, crs). Else Pi aborts.

Figure 2.8: Protocol KFmcrs
crs

CRS / trapdoor: tc← (α, β, γ, δ, χ) and crs = (crsP, crsV, crsCV), where

crsP ←


[
α, β, δ, ((uj(χ)β + vj(χ)α+ wj(χ)) /δ)mj=m0+1

]
1
,[

(χi`(χ)/δ)n−2
i=0 , (uj(χ), vj(χ))mj=0

]
1
,
[
β, δ, (vj(χ))mj=0

]
2

,

crsV ←
([

((uj(χ)β + vj(χ)α+ wj(χ)) /γ)m0

j=0

]
1
, [γ, δ]2

)
,

crsCV ← ([γ, (χi)n−1
i=1 , (`i(χ))ni=1]1, [α, χ, χ

n−1]2).

Figure 2.9: CRS of Z∗ Sub-ZK SNARK from [ABLZ17]

The proof of this theorem is given in the full version of the paper. Next corollary immediately follows from
the universal composition theorem [Can01].

Corollary 1. Let Ψ be a NIZK argument that is complete, sound, computationally ZK, and computationally
Sub-ZK in the FD ,f

crs -hybrid model. By instantiating FD ,f
crs with KFmcrs

crs , the following holds:

• Ψ is complete, sound, and computationally zero-knowledge in the Fmcrs-hybrid model, given that (covert)
A corrupts up to Np − 1 out of Np parties.

• Ψ is Sub-ZK in the Fmcrs-hybrid model, even if (covert) A corrupts all Np parties.

• If D is a uniform distribution over (Z∗p)t, comb the point-wise multiplication and the CRS can be computed
by CS-circuits, then properties 1 and 1 hold in the Fdlmcom-hybrid model since Kmcrs realizes Fmcrs in that
setting.

Applying Kmcrs to Groth’s zk-SNARK. Fig. 2.9 contains the description of the CRS for the Sub-ZK version of
Groth’s zk-SNARK Z∗ as was proposed in [ABLZ17]. We have omitted the element [αβ]T that can be computed
from [α]1 and [β]2. The CRS from [ABLZ17] differs from the original CRS for Groth’s zk-SNARK [Gro16]
by the entries in crsCV which make the CRS verifiable using a CV algorithm. Here, `i(X) are Lagrange basis
polynomials and `(X) = Xn − 1, uj(X), vj(X), wj(X) are publicly-known circuit-dependent polynomials.
Due to the lack of space, we do not present other algorithms of Z∗.

We recall that to use the algorithm KFmcrs
crs the CRS has to be of the form crs = ([C1(tc)]1, [C2(tc)]2), where

Cι ∈ CS. In Fig. 2.9, the highlighted entries cannot be computed from trapdoors by a CS-circuit unless we add
crsTV = ([(wj(χ), βuj(χ), αvj(χ))mj=0, χ

n]1, [(`i(χ))ni=1, (χ
k)n−1
k=1]2) to the CRS. To obtain better efficiency we

additionally add [(`i(χ))ni=1]2 to the CRS, although they can be computed from the existing elements [
(
χk
)n−1

k=1
]2.

16

D3.2 – Design of Extended Core Protocols

However, since we are adding elements to the CRS, we also need to reprove the soundness. We do this in the full
version of the paper.

We give a brief description of the CRS-generation protocol for Z∗ without explicitly describing the circuits
C1 and C2. Without directly saying it, it is assumed that parties verify all the computations as shown in Fig. 2.7.

Share collection phase. Parties proceed as is in Fig. 2.7 to produce random and independent shares [tsi]? =
[αi, βi, γi, δi, χi]? for each Gi.

CRS generation phase. (i) On layers C1,1,C2,1 parties jointly compute [α, β, γ, δ]?, [(χk)n−1
k=1]? and [χn]1.

(ii) Each Gi locally computes [(`k(χ))nk=1]?, [(wj(χ), uj(χ))mj=0]1, and [(vj(χ))mj=0]? using [(χk)n−1
k=1]?; and also

computes [`(χ)]1 = [χn]1−[1]1. (iii) On layer C1,2, from input [`(χ)]1, parties jointly compute [(χk`(χ)/δ)n−2
k=0]1

using n − 1 multdiv gates. Moreover, they compute [(βul(χ), αvl(χ))ml=0]1. (iv) Each party computes locally
[(βul(χ) + αvl(χ) + wl(χ))ml=0]1. (v) On layer C1,3 parties compute jointly [(βul(χ) + αvl(χ) + wl(χ)/γ)m0

l=0]1
and [(βul(χ) + αvl(χ) + wl(χ)/δ)ml=m0+1]1.

The cost of the CRS generation for Z∗ can be summarised as follows: the circuits C1 and C2 have both
sampling depth 3; the multi-party protocol for computing the crs takes 3Np + 6 rounds and requires 3m +
3n + 9 multdiv gates. Note that with separate multiplication and division gates one would need 2m + 3n + 8
multiplication gates and m + n division gates which would be less efficient.

17

Chapter 3

On the Efficiency of Privacy-Preserving
Smart Contract Systems

3.1 Introduction

Eliminating the need for a trusted third party in monetary transactions, consequently enabling direct transac-
tions between individuals is one of the main achievements in the cryptocurrencies such as Bitcoin. Importantly,
it is shown that the technology behind cryptocurrencies has more potential than what is only used in direct
transactions. Different blockchain-based systems such as smart contracts [KMS+15, JKS16], distributed cloud
storages [WLB14], digital coins such as Ethereum [Woo14] are evidence of why blockchain technology offers
much more functionalities than what we can see in Bitcoin. Smart contracts belong to the popular applications of
blockchain technology that recently saw increased interest. A smart contract is a generic term denoting programs
written in cryptocurrency scripting languages, that involves digital assets and some parties. The parties deposit
assets into the contract and the contract redistributes the assets among the parties based on provisions of the
smart contract and inputs of the parties.

Different research has shown that even if payments (e.g. in Bitcoin) or interconnections (e.g. in smart con-
tracts) are conducted between pseudorandom addresses, privacy of end-users is lacking. Indeed, this mostly
arises from the nature of technology that a decentralized publicly shared ledger records list of transactions
along with related information (e.g. addresses of parties, transferred values, etc), and long-time monitoring
and some data analysis (e.g. transaction graph analysis) on this ledger usually reveals some information about
the identity of end-users. To address these concerns and provide strong privacy for end-users, several alterna-
tives to Bitcoin protocol and smart contract systems have been proposed; e.g. confidential assets [PBF+18],
privacy-preserving auditing [NVV18], privacy-preserving cryptocurrencies such as Zerocash [BCG+14] and
Monero [Noe15], privacy-preserving smart contract systems such as Hawk [KMS+15] and Gyges [JKS16].

Zerocash and Monero are two known anonymous cryptocurrencies that provide privacy for end-users. Each
of them uses different cryptographic tools to guarantee strong privacy. Monero uses ring signatures that cryp-
toeprint:2015:675 an individual from a group to provide a signature such that it is impossible to identify which
member of that group made the signature. On the other side, Zerocash uses zero-knowledge Succinct Non-
interactive Arguments of Knowledge (zk-SNARKs [Gro10, Lip12, PHGR13, BCTV13, Gro16, GM17]) to prove
the correctness of all computations inside a direct transaction, without revealing the source, destination and val-
ues of the transferred coins. In a similar technique, privacy-preserving smart contract system Hawk [KMS+15]
and criminal smart contract system Gyges [JKS16] use universally composable zk-SNARKs to provide anony-
mous interconnection and payment.

zk-SNARKs. Among various Non-Interactive Zero-Knowledge (NIZK) arguments, zk-SNARKs are one of the
most popular ones in practical systems. This is mainly because of their succinct proofs, and consequently very
efficient verification. A zk-SNARK proof allows one to efficiently verify the veracity of statements without learn-

18

D3.2 – Design of Extended Core Protocols

ing extra information about the prover. The proofs can be verified offline very quickly (in a few milliseconds) by
possibly many independent verifiers. This can be very effective in efficiency of large-scale distributed systems.
Efficiency of zk-SNARKs mainly comes from the fact that their construction relies on non-falsifiable assump-
tions (e.g. knowledge assumptions [Dam]) that allow succinct proofs and non-black-box extraction in security
proofs. On the other hand, a zk-SNARK with non-black-box extraction cannot achieve Universally Composable
Security (UC-security) which is imperative and necessary in constructing larger cryptographic systems [Can01].
Du to this fact, zk-SNAKRs cannot be directly adopted in larger systems that should guarantee UC-security.

Privacy-preserving smart contract systems. Recently, some elegant UC-based frameworks are presented
that allow to construct privacy-preserving smart contracts, including Hawk [KMS+15] and Gyges [JKS16] for
criminal smart contracts. These systems record zk-SNARK proofs on ledger, instead of public transactions
between pseudonyms, which brings stronger transactional privacy. Strictly speaking, Hawk is a system that gets
a program and compiles it to a cryptographic protocol between the contract correspondents (including users and
a manager) and the blockchain. It consists of two main blocks, where one is responsible for private money
transfers and uses a variation of Zerocash [BCG+14], while the second part handles other contract-defined
operations of the system. Similar to Zerocash, operations such as Mint, which is required in minting a new coin,
and Pour, which enables anonymous transactions, are located in the first block. On the other side, contract-
related operations such as Freeze, Compute and Finalize, that are three necessary operations defined by Hawk
for each smart contract, are addressed in the second block. More details regard to the mentioned operations
can be found in [KMS+15] 1. To achieve anonymity in the mentioned operations and payments, Hawk widely
uses zk-SNARKs to prove different statements. As the whole system intended to achieve UC-security, so they
needed to use a UC-secure zk-SNARK in the system. Additionally, since Zerocash also uses a non-UC-secure zk-
SNARK and it does not satisfy UC-security, so to make it useable in Hawk, they needed a variation of Zerocash
that uses a UC-secure zk-SNARK and also guarantees UC-security. To this aim, designers of Hawk have used
COCO framework [KZM+15a] (a framework to lift a non-UC-secure sound NIZK to a UC-secure one; COCO
stands for Composable 0-knowledge, Compact 0-knowledge; a formal description of the framework is provided
in section 3.2.3) to lift the non-UC-secure zk-SNARK used in Zerocash [BCTV13], to a UC-secure zk-SNARK,
such that the lifted scheme can be securely used in composition with the rest of system [Can01]. Then, due
to using a UC-secure zk-SNARK in Zerocash, designer of Hawk modified the structure of original Zerocash
and used the customized version in their system, which also guarantees UC-security. The lifted UC-secure
zk-SNARK frequently is used in the system and plays an essential role in the efficiency of entire system.

In the performance evaluation of Hawk [KMS+15] authors show that the efficiency of their system severely
depend on efficiency of the lifted UC-secure zk-SNARK (which is the case in Gyges [JKS16] as well). In
fact, computational complexity of both systems are dominated with complexity of the underlying UC-secure zk-
SNARK. Particularly, Kosba et al. [KMS+15] emphasize that practical efficiency is a permanent goal of Hawk’s
design, so to get the best, they also propose various optimizations. By considering this, one may ask, can we
improve efficiency of the underlying UC-secure zk-SNARKs such that the efficiency of complete systems will
be improved?

Our contribution. We show that one can improve efficiency of Hawk (and similarly Gyges) smart contract
system by improving the efficiency of underlying UC-secure zk-SNARK. We will see that one can use a similar
approach used by Kosba et al. (in Hawk [KMS+15]) and Juels et al. (in Gyges [JKS16]) and construct a
UC-secure version of Groth and Maller’s zk-SNARK [GM17] (refereed as GM zk-SNARK in the rest), that
has simpler construction and better efficiency than the ones that currently are used in the systems. To do so,
we slightly modify the construction of GM zk-SNARK by enforcing the prover to send encryption of witnesses
along with the proof, and then show that it achieves black-box simulation extractability, equivalently UC-security,
which allows to deploy in both systems to improve cryptoeprint:2015:675.

1A tutorial about the system can be found in http://cryptowiki.net/index.php?title=Privacy preserving smart contracts: Hawk project

19

http://cryptowiki.net/index.php?title=Privacy_preserving_smart_contracts:_Hawk_project

D3.2 – Design of Extended Core Protocols

Both Hawk and Gyges have used COCO framework to lift a variation of Pinocchio zk-SNARK [PHGR13]
which is deployed in Zerocash (proposed by Ben Sasson et al. [BCTV13]). Later it details we show that, as
GM zk-SNARK [GM17] has better efficiency than the mentioned variation of Pinocchio zk-SNARK, and as our
changes are lighter than the changes that are applied on Ben Sasson et al.’s zk-SNARK in Hawk [KMS+15] and
Gyges [JKS16], so we get a UC-secure zk-SNARK that has simpler construction and better efficiency than the
ones that currently are deployed in the systems. Indeed, we will see that our changes are a small part of their
changes, which leads to have less overload.

In the modified construction, we do the changes in CRS circuit level and try to keep the prover and verifier
procedure as original one that both are considerably optimized in the original construction [GM17]. We be-
lieve, new constructed UC-secure zk-SNARK can be of independent interest and it can be deployed in any large
cryptographic system that aims to guarantee UC-security and needs to use zk-SNARKs.

Discussion of UC-secure NIZKs. Most of efficient zk-SNARKs only guarantee knowledge soundness, mean-
ing that if an adversary can come up with a valid proof, there exists an extractor that can extract the witness
from the adversary. But in some cases, e.g. in signatures of knowledge SoKs [CL06], knowledge soundness
is not enough, and one needs more security guarantee. More accurately, most of zk-SNARKs are vulnerable
to the malleability attack which allows an adversary to modify an old proof to a new valid one, that is not de-
sired in some cases. To address this, the notion of simulation exractability is defined which ensures that an
adversary cannot come up with a new acceptable proof (or an argument), even if he already has seen arbi-
trary simulated proofs, unless he knows the witness. In other words, simulation extractability implies that if
an adversary, who has obtained arbitrary number of simulated proofs, can generate an acceptable new proof
for a statement, there exists an extractor that can extract the witness. Based on extraction procedure which is
categorized as Black-Box (BB) or non-Black-Box (nBB), there are various notions of simulation extractibil-
ity [Gro06,KZM+15a,GM17]. In BB extraction, there exists a black-box (universal) extractor which can extract
the witness from all adversaries, however in the nBB extraction, for each adversary there exists a particular
extractor that can extract only if it has access to the adversary’s source code and random coins. It is already ob-
served and proven that a NIZK system that achieves simulation extractibility with BB extraction, can guarantee
the UC-security [CLOS02,Gro06,GOS06].Therefore, constructing a simulation-extractable zk-SNARK with BB
extraction is equivalent to constructing a UC-secure zk-SNARK (which the proof will be only circuit succinct).
Strictly speaking, in a UC-secure NIZK the simulator of ideal-world should be able to extract witnesses without
getting access to the source code of environment’s algorithm, which this is guaranteed by BB extraction.

A known technique to achieve a simulation-extractable NIZK with BB extraction is to enforce the prover to
send the encryption of witnesses (with a public key given in the CRS) along with proof, so that in security proofs
the extractor can use the pair secret key for extraction [Gro06]. Using this technique, the proof (communication)
size will not be succinct anymore, as impossibility result in [GW11] confirms, but the verification will be efficient
yet and the extraction issue that zk-SNARKs have in the UC framework [Can01] will be solved.

3.2 Preliminaries

3.2.1 Notations

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform PPT. Let κ ∈ N be the security
parameter, say κ = 128. All adversaries will be stateful. For an algorithm A, let im(A) be the image of A, i.e.,
the set of valid outputs ofA, let RND(A) denote the random tape ofA, and let r ← RND(A) denote sampling of
a randomizer r of sufficient length forA’s needs. By y ← A(x; r) we mean given an input x and a randomizer r,
A outputs y. For algorithmsA and ExtA, we write (y ‖ y′)← (A‖ExtA)(x; r) as a shorthand for ”y ← A(x; r),
y′ ← ExtA(x; r)”. An arbitrary negligible function is shown with negl. Two computationally indistinguishable
distributions A and B are shown with A ≈c B.

In pairing-based groups, we use additive notation together with the bracket notation, i.e., in group G1, [a]1 =

20

D3.2 – Design of Extended Core Protocols

a [1]1, where [1]1 is a fixed generator of G1. A bilinear group generator BGgen(1κ) returns (p,G1,G2,GT , ê,
[1]1 , [1]2), where p (a large prime) is the order of cyclic abelian groups G1, G2, and GT . Finally, ê : G1×G2 →
GT is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2).

We bellow review Square Arithmetic Programs (SAPs) that defines NP-complete language specified by a
quadratic equation over polynomials [GM17].

Square Arithmetic Program: Any quadratic arithmetic circuit with fan-in 2 gates over a finite field Zp can be
lifted to a SAP instance over the same finite field (e.g. by considering ab = ((a + b)2 − (a − b)2)/4) [GM17].
A SAP instance contains Sp = (Zp,m0, {uj , wj}mj=0). This instance defines the following relation:

RSp =

(x,w) : x = (A1, . . . , Am0
)> ∧ w = (Am0+1, . . . , Am)>∧(∑m

j=0Ajuj(X)
)2
≡
∑m

j=0Ajwj(X) (mod `(X))


where `(X) :=

∏n
i=1(X − ωi−1) = Xn − 1 is the unique degree n monic polynomial such that `(ωi−1) = 0

for all i ∈ [1 .. n]. Alternatively, (x,w) ∈ RSp if there exists a (degree ≤ n − 2) polynomial h(X), s.t.(∑m
j=0Ajuj(X)

)2
−
∑m

j=0Ajwj(X) = h(X)`(X).

3.2.2 Definitions

We use the definitions of NIZK arguments from [Gro06,Gro16,GM17,KZM+15a]. LetR be a relation generator,
such thatR(1κ) returns a polynomial-time decidable binary relation R = {(x,w)}. Here, x is the statement and
w is the witness. We assume one can deduce κ from the description of R. The relation generator also outputs
auxiliary information ξR that will be given to the honest parties and the adversary. As in [Gro16, ABLZ17], ξR
is the value returned by BGgen(1κ). Due to this, we also give ξR as an input to the honest parties; if needed, one
can include an additional auxiliary input to the adversary. Let LR = {x : ∃w, (x,w) ∈ R} be an NP language.

As a particular case of subversion-resistant NIZK arguments defined in section 2.2, a NIZK argument system
Ψ forR consists of tuple of PPT algorithms, s.t.:

• CRS generator: K is a PPT algorithm that given (R, ξR), where (R, ξR) ∈ im(R(1κ)) outputs crs =
(crsP , crsV) and stores trapdoors of crs as τ . We distinguish crsP (needed by the prover) from crsV (needed
by the verifier).

• Prover: P is a PPT algorithm that, given (R, ξR, crsP , x,w), where (x,w) ∈ R, outputs an argument π.
Otherwise, it outputs ⊥.

• Verifier: V is a PPT algorithm that, given (R, ξR, crsV , x, π), returns either 0 (reject) or 1 (accept).

• Simulator: Sim is a PPT algorithm that, given (R, ξR, crs, τ, x), outputs an argument π.

• Extractor: Ext is a PPT algorithm that, given (RL, ξRL
, crs, x, π, τe) extracts the w; where τe is extraction

trapdoor (e.g. a secret key).

We require an argument system Ψ to be complete, computationally knowledge-sound and statistically ZK,
as in the following definitions.
Perfect Completeness [Gro16]: A non-interactive argument Ψ is perfectly complete for R, if for all κ, all
(R, ξR) ∈ RANGE(R(1κ)), and (x,w) ∈ R,

Pr [crs← K(R, ξR) : V(R, ξR, crsV, x,P(R, ξR, crsP, x,w)) = 1] = 1 .

21

D3.2 – Design of Extended Core Protocols

Computational Knowledge-Soundness [Gro16]: A non-interactive argument Ψ is computationally (adap-
tively) knowledge-sound forR, if for every NUPPT A, there exists a NUPPT extractor ExtA, s.t. for all κ,

Pr

(R, ξR)← R(1κ), (crs ‖ τ)← K(R, ξR),

r ←r RNDA, ((x, π) ‖w)← (A‖ExtA)(R, ξR, crs; r) :

(x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈κ 0 .

Here, ξR can be seen as a common auxiliary input to A and ExtA that is generated by using a benign [?]
relation generator; A knowledge-sound argument system is called an argument of knowledge.
Statistically Zero-Knowledge [Gro16]: A non-interactive argument Ψ is statistically ZK for R, if for all κ, all
(R, ξR) ∈ RANGE(R(1κ)), and for all NUPPT A, εunb0 ≈κ εunb1 , where

εb = Pr[(crs ‖ τ)← K(R, ξR) : AOb(·,·)(R, ξR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns P(R, ξR, crsP, x,w). Simi-
larly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns Sim(R, ξR, crs, x, τ). Ψ is perfect ZK
forR if one requires that ε0 = ε1.

Intuitively, a non-interactive argument Ψ is zero-knowledge if it does not leak extra information besides the
truth of the statement. Beside the mentioned properties defined in Def. 3.2.2-3.2.2, a zk-SNARK has succinct-
ness property, meaning that the proof size is poly(κ) and the verifier’s computation is poly(κ) and the size of
instance. In the rest, we recall the definitions of simulation soundness and simulation extractability that are used
in construction of UC-secure zk-SNARKs.
Simulation Soundness [Gro06]: A non-interactive argument Ψ is simulation sound for R if for all NUPPT A,
and all κ,

Pr

[
(R, ξR)← R(1κ), (crs ‖ τ)← K(R, ξR), (x, π)← Ao(.)(R, ξR, crs) :

(x, π) 6∈ Q ∧ x 6∈ L ∧ V(R, ξR, crsV, x, π) = 1

]
≈κ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s queries to o, that returns
simulated proofs.
Non-Black-Box Simulation Extractability [GM17]: A non-interactive argument Ψ is non-black-box simulation-
extractable forR, if for any NUPPT A, there exists a NUPPT extractor ExtA s.t. for all κ,

Pr

(R, ξR)← R(1κ), (crs ‖ τ)← K(R, ξR),

r ←r RNDA, ((x, π) ‖w)← (Ao(.) ‖ExtA)(R, ξR, crs; r) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈κ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s queries to o that returns sim-
ulated proofs. It is worth to mention that non-black-box simulation extractability implies knowledge soundness
(given in Def. 3.2.2), as the earlier is a strong notion of the later which additionally the adversary is allowed to
send query to the proof simulation oracle. Similarly, one can observe that non-black-box simulation extractabil-
ity implies simulation soundness (given in Def. 3.2.2) that is discussed in [Gro06] with more details.
Black-Box Simulation Extractability [KZM+15a]: A non-interactive argument Ψ is black-box simulation-
extractable forR if there exists a black-box extractor Ext that for all NUPPT A, and all κ,

Pr

(R, ξR)← R(1κ), (crs ‖ τs ‖ τe)← K(R, ξR),

(x, π)← Ao(.)(R, ξR, crs),w← Ext(R, ξR, crs, τe, x, π) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈κ 0 .

Similarly, Q is the set of simulated statement-proof pairs, and τe is the extraction trapdoor. A key note about
Def. 3.2.2 is that the extraction procedure is black-box and unlike the non-black-box case, the extractor Ext
works for all adversaries.

22

D3.2 – Design of Extended Core Protocols

3.2.3 COCO: a Framework for Constructing UC-secure zk-SNARKs

Kosba et al. [KZM+15a] have constructed a framework with several converters which the most powerful one
gets a sound NIZK and lifts to a NIZK that achieves black-box simulation extractability (defined in Def. 3.2.2),
or equivalently UC-security [Gro06]. Here we review construction of the most powerful converter that is used
by both Hawk and Gyges to construct a UC-secure zk-SNARK. Note that in this case the proofs are succinct in
the circuit size and linear in the witness size.

Construction. Given a sound NIZK, to achieve a UC-secure NIZK, COCO framework applies several changes
in all setup, proof generation and verification procedures of the input NIZK. Initially the framework defines a
new language L′ based on the language L in underlying NIZK and some new primitives that are needed for
the transformation. Let (KGene,Ence,Dece) be a set of algorithms for a semantically secure encryption scheme,
(KGens, Sigs, vfys) be a one-time signature scheme and (Comc, vfyc) be a perfectly binding commitment scheme.

Given a language L with the corresponding NP relation RL, define a new language L′ such that ((x, c, µ, pks,
pke, ρ), (r, r0,w, s0)) ∈ RL′ iff:

(c = Ence(pke,w; r)) ∧ ((x,w) ∈ RL ∨ (µ = fs0(pks) ∧ ρ = Comc(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}κ}s∈{0,1}κ is a pseudo-random function family. Now, a sound NIZK argument
system Ψ forR constructed from PPT algorithms (K,P,V,Sim,Ext) can be lifted to a UC-secure NIZK Ψ′ with
PPT algorithms (K′,P′,V′,Sim′,Ext′) as follows.

CRS and trapdoor generation K′(RL, ξRL
): Sample (crs ‖ τ) ← K(RL′ , ξRL′); (pke, ske) ← KGene(1

κ);
s0, r0 ← {0, 1}κ; ρ := Comc(s0; r0); and output (crs′ ‖ τ ′ ‖ τ ′e) := ((crs, pke, ρ) ‖ (s0, r0) ‖ ske).

Prover P′(RL, ξRL
, crs, x,w): Parse crs′ := (crs, pke, ρ); Abort if (x,w) 6∈ RL; (pks, sks) ← KGens(1

κ);
sample z0, z1, z2, r1 ← {0, 1}κ; compute c = Ence(pke,w; r1); generate π ← P(RL′ , ξRL′ , crs, (x, c, z0,
pks, pke, ρ), (r1, z1, w, z2)); sign σ ← Sigs(sks, (x, c, z0, π)); and output π′ := (c, z0, π, pks, σ).

Verifier V′(RL, ξRL
, crs′, x, π′): Parse crs′ := (crs, pke, ρ) and π′ := (c, µ, π, pks, σ); Abort if vfys(pks, (x, c, µ,

π), σ) = 0; call V(RL′ , ξRL′ , crs, (x, c, µ, pks, pke, ρ), π) and abort if it outputs 0.

Simulator Sim′(RL, ξRL
, crs′, τ ′, x): Parse crs′ := (crs, pke, ρ) and τ ′ := (s0, r0); (pks, sks) ← KGens(1

κ);
set µ = fs0(pks); sample z3, r1 ← {0, 1}κ; compute c = Ence(pke, z3; r1); generate π ← P(RL′ , ξRL′ , crs,
(x, c, µ, pks, pke, ρ), (r1, r0, z3, s0)); sign σ ← Sigs(sks, (x, c, µ, π)); and output π′ := (c, µ, π, pks, σ).

Extractor Ext′(RL, ξRL
, crs′, τ ′, x, π′): Parse π′ := (c, µ, π, pks, σ), τ ′ := ske; extract w ← Dece(ske, c);

output w.

3.3 Efficient UC-secure zk-SNARKs

In this section, we show that given a non-black-box simulation-sound NIZK, one can construct black-box
simulation-extractable NIZK by minimal changes. To do so, as an instance, we present a variation of GM
zk-SNARK [GM17] and show that it achieves black-box simulation extractability, and equivalently UC-security.
Note that the requirement that the input NIZK archives non-black-box simulation-soundness is the main rea-
son that allows us to achieve black-box simulation extractability with minimal changes. GM zk-SNARK is the
first scheme that guarantees non-black-box simulation extractablity and this is one reason that we use it in our
instantiation.

23

D3.2 – Design of Extended Core Protocols

Intuition. The goal is to present a UC-secure zk-SNARK but more efficient than UC-secure zk-SNARKs that
are lifted by COCO framework; especially more efficient than the ones that are deployed in [KMS+15, JKS16].
To do so, we slightly modify the input zk-SNARK that guarantees non-black-box simulation extractability (e.g.
GM zk-SNARK) and enforce prover P to encrypt its witnesses with a public key given in the CRS and send the
ciphertext along with the proof. In this scenario, in security proof, the secret key of encryption scheme is given
to the Ext which allows to extract witnesses in black-box manner, that is more realistic indeed. Actually this is an
already known technique to achieve black-box extraction that also is used in COCO framework. It is undeniable
that sending encryption of witnesses leads to have non-succinct proofs in witness size but still they are succinct
in the size of circuit that encodes the language and it is simpler and for particular settings more efficient than the
ones that are lifted by COCO.

3.3.1 Construction

While modifying we keep internal computation of both prover and verifier as original one, that considerably are
optimized for a SAP relation. Instead we define a new language L′ based on the language L in the input NIZK
(here GM zk-SNARK) that is embedded with encryption of witness. Strictly speaking, given a language L with
the corresponding NP relation RL, we define the following new language L′ such that ((x, c, pke), (w, r)) ∈
RL′ iff:

(c = Ence(pke,w; r)) ∧ ((x,w) ∈ RL),

where (KGene,Ence,Dece) is a set of algorithms for a semantically secure encryption scheme with keys (pke, ske).
Accordingly, the modified version of GM zk-SNARK is given in Fig. 3.1. It is worth to mention that, due to the
particular structure of new language L′, all verifications will be done inside the circuit, and interestingly verifier
and prover’s internal computations are the same as before, just prover needs to send encryption of witnesses along
with the proof. This is the key modification in removing nBB extraction (particularly knowledge-assumption
based in zk-SNARKs) and achieving BB extraction.

CRS and trapdoor generation K′(RL, ξRL
): Generate key pair (pke, ske) ← KGene(1

κ); execute CRS
generator of GM zk-SNARK and sample (crs ‖ τ) ← K(RL′ , ξRL′); output (crs′ ‖ τ ′ ‖ τ ′e) :=
((crs, pke) ‖ τ ‖ ske); where τ ′ are simulation trapdoors and τ ′e is the extraction trapdoor (key).

Prover P′(RL, ξRL
, crs′, x,w): Parse crs′ := (crs, pke); Abort if (x,w) 6∈ RL; sample r ← {0, 1}κ;

compute encryption of witnesses c = Ence(pke,w; r); execute prover P of GM zk-SNARK and
generate π ← P(RL′ , ξRL′ , crs, (x, c, pke), (w, r)); and output π′ := (c, π).

Verifier V′(RL, ξRL
, crs′, x, π′): Parse crs′ := (crs, pke) and π′ := (c, π); call verifier

V(RL′ , ξRL′ , crs, (x, c, pke), π) of GM zk-SNARK and abort if it rejects.

Simulator Sim′(RL, ξRL
, crs′, x, τ ′): Parse crs′ := (crs, pke) and τ ′ := τ ; sample z, r ← {0, 1}κ;

compute c = Ence(pke, z; r); execute simulator of GM zk-SNARK and generate π ←
Sim(RL′ , ξRL′ , crs, (x, c, pke), τ); and output π′ := (c, π).

Extractor Ext′(RL, ξRL
, crs′, τ ′, x, π′): Parse π′ := (c, π) and τ ′ := ske; extract w ← Dece(ske, c);

output w.

Figure 3.1: Transformation of GM zk-SNARK to achieve black-box simulation extractability

24

D3.2 – Design of Extended Core Protocols

3.3.2 Efficiency

With the proposed transformation the computations of prover and verifier will ba as original one, but for an
instance with larger size. The communication size will be extended to linear size but interestingly the proof
still will be succinct. Note that the linear communication size will be added to the statement. In the rest, we
particularly talk abut the performance of transformation while instantiated with Groth and Maller’s zk-SNARK.

In the lifted version of GM zk-SNARK, as the original one, proof is 2 elements from G1 and 1 element from
G2, but along with c that is encryption of witnesses. So, communication is dominated with size of c that is linear
in witness size (this can be considered as commitment in the commit-and-proof systems) but proof elements are
only 3 group elements.

As verifier is untouched, so similar to GM zk-SNARK, the verification procedure consists of checking that
the proof contains 3 appropriate group elements and checking 2 pairing product equations which in total it needs
a multi-exponentiation G1 to m0 exponents and 5 pairings.

In the setup, in result of our change, the arithmetic circuit will be slightly extended, but due to minimal
changes (a more detailed comparison is provided in Fig. 3.2), the extension is less than the case that one uses
COCO framework.

3.3.3 Security Proof

Theorem 3 (Perfect Completeness). The protocol constructed in Sec. 3.3, is a non-interactive argument of
knowledge that guarantees perfect completeness.

Proof. Proof of theorem is described in [Bag19a].

Theorem 4 (Computationally Zero-Knowledge). The protocol constructed in Sec. 3.3, is a non-interactive ar-
gument of knowledge that guarantees computational zero-knowledge.

Proof. Proof of theorem is described in [Bag19a].

Theorem 5 (Black-Box Simulation Extractability). Assuming the encryption scheme is semantically secure and
perfectly correct, the modified version of GM zk-SNARK in Sec. 3.3, satisfies black-box simulation extractability.

Proof. Proof of theorem is described in [Bag19a].

3.4 On the Efficiency of Privacy Preserving Smart Contract Systems

Both the privacy-preserving smart contract systems Hawk and Gyges [KMS+15, JKS16] frequently generate
CRS and use a UC-secure zk-SNARK to prove different statements. In Hawk author discuss that their system is
dominated by efficiency of the underlying UC-secure zk-SNARK that are achieved from a variation of Pinocchio
zk-SNARK [PHGR13] lifted by COCO framework (the same is done in Gyges as well). In the rest, we discuss
how the simplified transformation described in Sec. 3.3 can help to improve the efficiency of both smart contract
systems. Our evaluation is focused precisely on Hawk, but as Gyges also have used COCO framework, so the
same evaluation can be considered for Gyges.

On the Efficiency of Hawk. We begin evaluation of Hawk by reviewing the changes that are applied on Ben
Sasson et al.’s zk-SNARK (to get UC-security) before using it in Hawk. As discussed in Sec. 3.2.3, in order to
lift any sound NIZK to a UC-secure NIZK, COCO applies several changes in setup, proof generation and proof
verification of input NIZK. For instance, each time prover needs to generate a pair of signing/verifying keys for
a one-time secure signature scheme, encrypt the witnesses using a given public-key, and sign the generated proof
using the mentioned one-time signing key. On the other side, verifier needs to do extra verifications than the
NIZK verification.

25

D3.2 – Design of Extended Core Protocols

The modified version of Pinocchio zk-SNARK [BCTV13]
(Proof size: 8 group elements)

TRANSFORMATION WITH COCO

Changes applied on the input zk-SNARK:

- On Setup phase
• Adds a key generation for a public-key

cryptosystem
• Adds a commitment of a trapdoor

- On Prover side
• Adds encryption of witnesses
• Adds a key generation for a one-time secure

signature scheme in each run
• Adds signing the generated proof

- On Verifier side
• Adds verifying signature of proof

A UC-secure version of modified version of Pinocchio
zk-SNARK [KMS+16]

[Lip19] or [GM17]
(Proof size: 4 or 3 group elements)

Our Proposed Construction

Changes applied on the input zk-SNARK:

- On Setup phase
• Added a key generation for a public-key

cryptosystem
- On Prover side

• Added encryption of witnesses
- On Verifier side

• ___

An Efficient UC-secure Version of Input zk-SNARK

Figure 3.2: The modifications applied by COCO transformation on the modified version of Pinocchio zk-
SNARK [BCTV13] before using in Hawk system versus our changes on a simulation sound NIZK (particularly
on GM zk-SNARK, shown in Fig. 3.1) to get a UC-secure NIZK.

Table 3.1: Comparison of Ben Sasson et al.’s [BCTV13] and GM [GM17] zk-SNARKs for arithmetic circuit
satisfiability with m0 element instance, m wires, n multiplication gates. Since [GM17] uses squaring gates, so n
multiplication gates translate to 2n squaring gates. Implementations are done on a PC with 3.40 GHz Intel Core
i7-4770 CPU, in single-threaded mode, for an R1CS instance with n = 106 constraints and m = 106 variables,
of which m0 = 10 are input variables. G1 and G2: group elements, E: exponentiations and P : pairings.

zk-SNARKs CRS Length, Generation Time Proof Size Computation of P Computation of V Verification Equ.
6m+ n−m0 G1

m G2

7 G1

1 G2

6m+ n−m0 E1

m E2

m0 E1

12 P
5

[BCTV13]
&

in libsnark 104.8 seconds 287 bytes 128.6 seconds 4.2 millisec. —
m+ 4n+ 5 G1

2n+ 3 G2

2 G1

1 G2

m+ 4n−m0 E1

2n E2

m0 E1

5 P
2

[GM17]
&

in libsnark 100.4 seconds 127 bytes 116.4 seconds 2.3 millisec. —

As we discussed in Sec. 3.3, to achieve a UC-secure version of a simulation sound NIZK (in our case GM
zk-SNARK), we added a key generation procedure for a public-key cryptosystem in the setup phase, and prover
only needed to encrypt the witnesses using the public-key in CRS and then generate a proof for new language as
the original NIZK. We did not add new checking to the verifier side and it is as the non-UC-secure version.

Left side of Fig. 3.2 summarizes the modifications applied (by using COCO) on a variation of Pinocchio
zk-SNARK before using in Hawk; and right side summarizes our required changes on a simulation sound NIZK
(e.g. on [Lip19] or [GM17]) to get BB simulation extractability and equivalently UC-security. As both use
encrypting of witnesses, it seems having linear proof size on witness size currently is an undeniable issue to get
black-box extraction. So, except this unavoidable modification, we applied minimal changes in the structure of

26

D3.2 – Design of Extended Core Protocols

GM zk-SNARK to achieve a UC-secure version of it.
Additionally, Tab.3.1 compares efficiency and practical performance of Ben Sasson et al.’s [BCTV13] and

GM [GM17] zk-SNARKs from various perspectives before applying any changes. Empirical performance
reported in libsnark library for a particular instance2. Following Pinocchio scheme, Ben Sasson et al.’s zk-
SNARK [BCTV13] is constructed for the QAP relation, while Groth and Maller’s scheme works for the SAP
relation by default. As discussed in [Gro16,GM17], a SAP instance can be constructed based on a simplification
of systems on arithmetic constraints, such that all multiplication gates are replaced with squaring gates, but with
at most two times gates.

Tab. 3.1 shows that GM zk-SNARK outperforms Ben Sasson et al.’s zk-SNARK in all metrics for a circuit
with 106 gates. Beside faster running times in all algorithms, GM zk-SNARK has only 2 verification equations,
instead of 5 in [BCTV13]. By considering efficiency report in Tab.3.1, and the fact that our modifications
(summarized in Fig. 3.2) are lighter than what are applied on Ben Sasson et al.’s zk-SNARK before deploying
in Hawk system, one can observe that for circuits with smaller number of gates new UC-secure zk-SNARK will
simplify the system and would be more efficient than the one that currently is used in Hawk (similarly in Gyges).
Indeed our changes are a small part of their already applied changes, so they will have less overhead.

An important note is that GM zk-SNARK is constructed for SAP relation while the currently deployed zk-
SNARK in both smart contract systems is constructed for QAP relation. Due to this fact, with our installation
we expect to have better efficiency in circuits with smaller number of gates. In circuits with larger number of
gates, to achieve better efficiency one can use one of QAP-based schemes proposed in [Lip19, AB19, Bag19b]
that achieve zero-knowledge even their public parameters are computed maliciously.

Hawk needs to generate CRS of zk-SNARK for each smart contract and as the UC-secure zk-SNARK is
widely deployed in various operations of the system, so by substituting a zk-SNARK constructed using the
transformation discussed in Sec. 3.3, one can simplify the system and improve the efficiency of whole system.

Moreover, in the construction of the Hawk system, authors applied various effective optimizations to maxi-
mize the efficiency of underlying UC-secure zk-SNARK (Sec. V in [KMS+15]). The same techniques can work
with our new construction. For instance, it is shown that in the Finalize operation of a smart contract in Hawk,
one may use non-UC-secure zk-SNARK, which similarly in new case one can use non-UC-secure version of
GM zk-SNARK that is more efficient than the one that currently is used (compared in Tab. 3.1) and additionally
it ensures non-block-box simulation extractability. In another noticeable optimization, Kosba et al. used some
independently optimized primitives in the lifted UC-secure zk-SNARK, that had considerable effect in the prac-
tical efficiency of Hawk. Again, by reminding that our changes are a small part of the changes applied by COCO,
so a part of their optimized primitives (for encryption scheme) can be used in this case as well, but the rest can
be ignored.

2Based on reported implementation on https://github.com/scipr-lab/libsnark

27

https://github.com/scipr-lab/libsnark

Chapter 4

Bulletin Board for E-voting

4.1 Introduction

Most of the E-voting literature assumes that the election data is stored either in a single server or that there exists
a distributed ledger, typically called a bulletin board (BB). BB is typically treated as a black box and very few
works have studied special requirements and constructions of e-voting BBs in detail. For example, compared
to standard ledgers, in e-voting scenario voter might need to get back a receipt guaranteeing that their vote was
safely stored. This is especially important in e-voting systems where the bulletin board is not public to everyone
and voter has no way to directly check that the vote was stored.

4.2 Preliminaries

One of the most promising of the existing candidates is the bulletin board construction by Culnane and Schnei-
der [CS14b]. We studied their protocol and in doing so notice some vulnerabilities. Most importantly, we showed
that given that less than N/3 of the N bulletin board peers are corrupted, the protocol might not terminate. This
contrary to the claims in their paper.

We proposed the first cryptographic security definition for e-voting bulletin boards which is captured in two
properties: (i) confirmable liveness – meaning that BB protocol will eventually terminate and an any honest voter
will be provided with a valid receipts, and (ii) (confirmable) persistence – it is impossible to remove items from
BB and items can be posted only through legitimate posting procedure. Then, taking Culnane and Schneider’s
protocol as a basis, we proposed a new BB protocol satisfying this security definition. We proved that it tol-
erates any number less than N/3 out-of N corrupted bulletin board peers both for persistence and confirmable
liveness, against a computationally bounded general Byzantine adversary. Furthermore, persistence can also be
made confirmable, in the sense that any malicious behavior can be detected via a verification mechanism, if we
distribute the audit board (this is where the output of the BB protocol is eventually stored) as a replicated service
with honest majority.

4.3 Our contribution

Our contribution was made in [KKL+18] and it has two main parts.
First, we point out an attack against the scheme presented in [CS14b]. Second, we propose a scheme that

fixes this problem. The main idea is that malicious peers are forced to either reveal themselves in which case
they can be ignored, or to behave benignly.

28

D3.2 – Design of Extended Core Protocols

4.3.1 Attacking the liveness of the CS BB system

As informally argued in [CS14a, Sec. 8] (the full version of [CS14b]), the liveness in CS can be achieved if
one of the following conditions hold: 1) all the peers are following the protocol honestly and are online, 2) a
threshold of tc < Nc/3 peers is malicious, but all users are honest, or 3) the more general condition that not all
users are honest and the malicious peers may choose any database in their capability, but do not change their
database once it has been fixed, and will not send different databases to different peers. The argument is that one
can easily detect in practice if malicious peers send different databases to different peers.

We demonstrate an attack against the Confirmable Liveness of CS in our framework. Although our attack
falls outside the threat model of [CS14b], it reveals that the presumed “fear of detection” that justifies the said
threat model, and especially the more general condition 3) described above, is not rigorously addressed. In
particular, we show that the liveness adversary may choose to split the honest peers into two groups, and yet
not be detected by being consistent w.r.t. to the peers in the same group. This way, the adversary manages a
liveness breach, while the honest IC peers cannot detect the attack relying on the protocol guidelines and their
local views. As a result, our attack shows that the original description of CS must be enhanced with an explicit
detection mechanism against any deviation from the IC consensus protocol specifications, in order for the threat
model in [CS14b] to be properly justified. On the other hand, as we describe in Section 4.3.2 and prove in
[KKL+18], enhancing CS with our novel Publishing protocol completely overcomes such issues, by achieving
Confirmable Liveness even against a general Byzantine adversary.

Description of the liveness attack. Our attack works under fault tolerance thresholdNc > 3tc (where tc denotes
the threshold of malicious peers), as required in [CS14b], and consists of the steps below.

STEP 1: Let p be a period where the set of honestly posted items is non-empty. For simplicity, we assume
that there is a single honest user Uh who broadcasts xh to all IC peers Pi, i ∈ [Nc], and obtains a valid receipt
rec[xh].

STEP 2: A malicious user Uc deviates from broadcasting and sends xc to all tc corrupted peers andNc−2tc
honest peers. Denote the latter set of honest Nc − 2tc peers by Hin. The malicious peers engage in the Posting
protocol by interacting only with the peers in Hin. Observe that even if tc honest peers do not participate in the
post request of xc, the collaboration of tc+(Nc−2tc) = Nc−tc peers is enough so that Uc obtains a valid receipt
rec[xc], yet (p, xc) ∈ Bi,p only for honest peers Pi ∈ Hin. Denote byHout the tc honest peers s.t. xc 6∈ Bi,p.

STEP 3: Another malicious user Ûc deviates from broadcasting and, likeUc, sends item x̂c to all tc corrupted
peers and the Nc − 2tc honest peers in Hin. However, now the malicious peers do not engage in the Posting
protocol, so the peers inHin do not suffice for a receipt for x̂c.

STEP 4: When Publishing protocol starts, the honest peers in Hin and Hout engage in the Optimistic pro-
tocol by sending their signed local records Rch := {(p, xh), (p, xc)} and Rh := {(p, xh)} respectively. From
their side, the malicious peers sign their records as Rc,ĉh := {(p, xh), (p, xc), (p, x̂c)}. As a result, none of the
three recordsRh,Rch andRc,ĉh is signed by at least Nc− tc peers (recall that |Hin| = Nc− 2tc and |Hout| = tc).
Therefore, the malicious peers force all honest peers to engage in the Fallback protocol.

STEP 5: During Fallback, all honest peers exchange their collection of signatures. At this step, each peer in
Hin sends to each peer inHout (i) its signature on (p, xc), (p, xh) and (p, x̂c) and (ii) the tc signatures on (p, xc)
that it received from the malicious peers. This way, each peer in Hout receives (Nc − 2tc) + tc = Nc − tc
signatures on (p, xc) but only Nc − 2tc signatures on (p, x̂c), so it updates its local record to Rch. Malicious
peers send their signatures on (p, xc), (p, xh) and (p, x̂c) only to the peers in Hin. Therefore, each peer collects
(Nc − 2tc) + tc = Nc − tc signatures on (p, x̂c) and updates its local record toRc,ĉh .

STEP 6: When the Fallback round above is completed, all peers restart the Optimistic protocol. However,
now the peers in Hin and Hout send their signed local records Rc,ĉh and Rch respectively. The malicious peers
resend their recordsRc,ĉh only to the peers inHin, which now haveNc− tc signatures onRc,ĉh . Thus, they finalize
their engagement in the Publishing protocol for period p by sending their TSS shares forRc,ĉh to the AB.

STEP 7: After forcing the peers in Hin to termination, the malicious peers become inert. This causes the
peers in Hout to remain pending for a new Fallback round that no other peer will follow. Moreover, the AB can

29

D3.2 – Design of Extended Core Protocols

not obtain Nc − tc TSS shares on some agreed record, and thus it can not publish anything. This violates the
property (bb.2) in [CS14b], which dictates that since xh is an honestly posted item that has a receipt, it must be
published to the AB. Thus, liveness is breached.

4.3.2 A New Publishing Protocol for the CS BB System

We present a new Publishing protocol that, when combined with the CS Posting protocol, results in a BB system
that achieves Confirmable Liveness in a partially synchronous and Persistence in an asynchronous model, against
a general Byzantine adversary, assuming a threshold of tc < Nc/3 corrupted IC peers. Persistence can also be
Confirmable, if we distribute the AB subsystem such that no more than tw < Nw/2 out of the Nw AB peers are
corrupted, as in [?]. Namely, the distributed AB runs as a replication service; data posting is done by broadcasting
to all AB peers, while data reading is done by honest majority.

The public parameters params include the identities of the IC and AB peers, the description of DS,TSS
(described in [KKL+18]), a collision resistant hash function (CRHF) Hκ(·), and all public and verification keys.
All peers know consecutive periods p = [Tbegin,p, Tend,p], as well as the following moments per period p: (a) a
moment Tbarrier,p ∈ (Tbegin,p, Tend,p), when item collection stops and the Publishing protocol is initiated; (b) a
moment Tpublish,p ∈ (Tbarrier,p, Tend,p), where the AB peers publish their records for period p, and (c) a moment
Trequest,p ∈ (Tbarrier,p, Tpublish,p), where IC peers force exchange of information to finalize their records. For
each period p, the phases of the Publishing protocol are as follows:

� Initialization phase: each IC peer Pi initializes the following vectors:
(i). Its direct view of local records, denoted by Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉: namely, it sets B̃i,j,p ← ⊥, for
j 6= i, and B̃i,i,p ← Bi,p.
(ii). For every j ∈ [Nc] \ {i}, its indirect view of local records as provided by Pj , denoted by Viewi,j,p :=
〈B̃i

j,1,p, . . . , B̃
i
j,Nc,p

〉, by setting Viewi,j,p ← 〈⊥, . . . ,⊥〉.
(iii). A variable vector 〈bi,1, . . . , bi,Nc〉, where bi,j is a value in {?, 0, 1} that expresses the opinion of Pi on the
validity of Pj’s behavior. Initially, bi,i is fixed to 1, while for j 6= i, bi,j is set to the “pending” value ‘?’. When
Pi fixes bi,j to 1/0 for all j ∈ [Nc], it engages in the Finalization phase described shortly.
(iv). A vector 〈di,1, . . . , di,Nc〉, where di,j is the number of Pi’s (direct or indirect) views that agree on Pj’s
record. Initially, di,j = 0, for j 6= i, and di,i = 1.

� Collection phase: upon initialization, Pi signs its local recordBi,p, followed by a tag RECORD, and broadcasts(
(RECORD, Bi,p), σski(RECORD, Bi,p)

)
to all IC peers. Then, Pi updates its direct and indirect views of other IC

peers’ records and fixes its opinion bit for their behavior, depending on the number of consistent signed messages
it receives on each peer’s record. In particular,

– When Pi receives a message
(
(RECORD, Ri,j,p), σskj (RECORD, Ri,j,p)

)
signed by peer Pj that was never

received before, then it acts as follows: if Ri,j,p is formatted as a non-⊥ record and the “opinion” bit bi,j is not
fixed (i.e. bi,j = ‘?’), then it checks if vfypkj

(
(RECORD, Ri,j,p), σskj (RECORD, Ri,j,p)

)
= 1. If the latter holds,

then Pi operates according to either of the following two cases:
1. If B̃i,j,p 6= ⊥, then it marks Pj as malicious, that is, it sets B̃i,j,p ← ⊥ and fixes bi,j to 0. Observe that since
Pj is authenticated (except from some negl(κ) error), it is safe for Pi to mark Pj as malicious, as an honest peer
would never send two different versions of its local records.

2. If B̃i,j,p = ⊥, then Pi updates Viewi,p as B̃i,j,p ← Ri,j,p, and Viewi,j,p as B̃i
j,j,p ← Ri,j,p and increases the

di,j by 1. Next, it signs and re-broadcasts to all IC peers the received message in the format
(
Vi,j , σski(Vi,j)

)
,

where Vi,j :=
(
(VIEW, j), ((RECORD, B̃i,j,p), σskj (RECORD, B̃i,j,p))

)
. Upon fixing bi,j to 1/0, Pi ignores any

further message for the record of Pj .
– When Pi receives a message

(
Vk,j , σskk(Vk,j)

)
signed by peer Pk for some peer Pj different than Pi and

Pk, where Vk,j =
(
(VIEW, j), ((RECORD, Rk,j,p), σskj (RECORD, Rk,j,p))

)
, and the message was never received

before, then it acts as follows: if Rk,j,p is formatted as a non-⊥ record and bi,j = ‘?’, then it executes verification
vfypkk(Vk,j , σskk(Vk,j)). If vfypkk(Vk,j , σskk(Vk,j)) = 1, then Pi operates according to either of the following
two cases:

30

D3.2 – Design of Extended Core Protocols

1. If vfypkj

(
(RECORD, Ri,j,p), σskj (RECORD, Ri,j,p)

)
= 0 or B̃i

k,j,p 6= ⊥, then Pi sets B̃i,k,p ← ⊥, fixes the
bit bi,k to 01.

2. If vfypkj

(
(RECORD, Ri,j,p), σskj (RECORD, Ri,j,p)

)
= 1 and B̃i

k,j,p = ⊥, then Pi updates Viewi,k,p by setting

B̃i
k,j,p ← Rk,j,p. and Viewi,p as shown below:

(C.1). If for every k′ ∈ [Nc] \ {i} such that B̃i
k′,j,p 6= ⊥, it holds that B̃i

k′,j,p = B̃i
k,j,p := B̃i

j,p (i.e. all non-⊥ records
for j agree on some record B̃i

j,p), then it increases the value of di,j by 1. Moreover, if di,j = tc + 1, (i.e., there are
tc + 1 matching non-⊥ records) and B̃i,j,p = ⊥, then it updates as B̃i,j,p ← B̃i

j,p and fixes the bit bi,j to 1.
(C.2). If there is a k′ ∈ [Nc] such that B̃i

k′,j,p 6= ⊥ and B̃i
k,j,p 6= B̃i

k′,j,p, then it updates as B̃i,j,p ← ⊥ and fixes the
bit bi,j to 0.

In either case, upon fixing bi,j , Pi ignores any further message for Pj’s record2.
– When its local clock Clock[Pi] reaches Trequest,p, Pi broadcasts a request message

(
(REQUEST VIEW, j),

σski(REQUEST VIEW, j)
)
, for every Pj that it has not yet fixed the opinion bit bi,j . This step is executed to ensure

that Pi will eventually fix its opinion bits for all IC peers. Upon receiving Pi’s request, Pk replies with a sig-
nature for a response message

(
Wk,j , σskk(Wk,j)

)
, where Wk,j :=

(
(RESPONSE VIEW, j), ((RECORD, Rk,j,p),

σskj (RECORD, Rk,j,p))
)
. Note that here Rk,j,p may be ⊥, reflecting the Pk’s lack of direct view for Pj’s record.

For every Pj that Pi has broadcast
(
(REQUEST VIEW, j), σski(REQUEST VIEW, j)

)
, Pi waits until it collects

Nc − tc − 1 distinct valid signed responses. During this wait, it ignores any message in a format other than(
Wk,j , σskk(Wk,j)

)
or
(
(REQUEST VIEW, j), σskk(REQUEST VIEW, j)

)
. When Nc − tc − 1 distinct valid re-

sponses are received, it parses the collection of the Nc − tc − 1 responses and its current direct view of Pj’s
record, B̃i,j,p, to update B̃i,j,p and fix bi,j as follows:

(R.1). If B̃i,j,p 6= ⊥, and all responses for non-⊥ records are at least tc and all match B̃i,j,p, then Pi fixes bi,j to 1.
(R.2). If B̃i,j,p = ⊥, and all responses for non-⊥ records are at least tc + 1 and all refer to the same record denoted as
B̃i

j,p, then Pi sets B̃i,j,p ← B̃i
j,p and fixes bi,j to 1.

(R.3). Otherwise, Pi sets B̃i,j,p ← ⊥ and fixes bi,j to 0.

In any case, upon fixing bi,j , Pi ignores any further message for Pj’s record 3. At the end of the Collection
phase, Pi will have fixed bi,j for all j ∈ [Nc].
� Finalization phase: having fixed bi,1 . . . , bi,Nc and updated its direct view Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉,
peer Pi proceeds as follows: for every pair (p, x) ∈

⋃
j:B̃i,j,p 6=⊥ B̃i,j,p, Pi defines the set Ni,p(x) that denotes

the number of IC peers that, according to its view, have included (p, x) in their records. Formally, we write
Ni,p(x) := #{j ∈ [Nc] : (p, x) ∈ B̃i,j,p}. Then, Pi updates its original record Bi,p as follows:

(F.1). If (p, x) /∈ Bi,p, but Ni,p(x) ≥ tc + 1, then it adds (p, x) in Bi,p.
(F.2). If (p, x) ∈ Bi,p, but Ni,p(x) < tc + 1, then it removes (p, x) from Bi,p.

In any other case, Bi,p becomes unchanged4. As shown in Lemma 3 in [KKL+18], at the end of the Finalization
phase, all honest peers have included all honestly posted items for which a receipt has been generated in their
local records. Then, they advance to the Publication phase described below.

1Observe that it is safe for Pi to mark Pk as a malicious, since an honest Pk would neither send two non-⊥ views for Pj , nor accept
an invalid signature from Pj .

2The security of DS ascertains Pi that with 1− negl(κ) probability, only if Pj is malicious, two non-equal records can be valid under
Pj’s verification key. Thus, in case (C.2), Pi can safely fix the bit bi,j to 0.

3Since there are Nc− tc ≥ tc+1 honest peers, Pi will obtain at least tc+1 all matching non-⊥ views for every honest’ peers record
(including its own). Thus, in case (R.3), Pi can safely fix bi,j to 0 if it receives inconsistent non-⊥ views or less than tc + 1 matching
non-⊥ views for Pj .

4In case (F.2), removal is a safe action for Pi, as every honestly posted item for which a receipt has been generated, is stored in the
records of at least Nc− 2tc ≥ tc+1 honest peers during the Posting protocol. Thus, Ni,p(x) < tc+1 implies that either (i) (p, x) was
maliciously posted, or (ii) a receipt for (p, x) was not generated.

31

D3.2 – Design of Extended Core Protocols

� Publication phase: each peer Pi threshold signs its record Bi,p, as it has been updated during the Final-
ization phase, by threshold signing each item in Bi,p individually. Formally, ShareSig(tski, (p,Bi,p)) :=⋃

(p,x)∈Bi,p ShareSig(tski, (p, x)). Then, Pi broadcasts the message
(
(p,Bi,p),ShareSig(tski, (p,Bi,p))

)
to all

peers AB1, . . . , ABNw of the AB subsystem.
In turn, each peer ABj , j ∈ [Nw] receives and records threshold signature shares for posted items. For

every item (p, x) that ABj receives Nc − tc valid signatures shares (k, σk)k∈S , where S is a subset of Nc − tc
IC peers, it adds (p, x) to its record Bp[j], initialized as empty, and computes a TSS signature on (p, x) as
TSign(tsk, (p, x)) ← Combine

(
pk,pk1, . . . ,pkNc , (p, x), (k, σk)k∈S

)
. Upon finalizing Bp[j], ABj executes

the following steps:

1. It sets TSign(tsk, (p,Bp[j])) :=
⋃

(p,x)∈Bp[j] TSign(tsk, (p, x)) and when its local clock Clock[ABj]
reaches Tpublish,p, it publishes the signed record

ABreceipt[p,Bp[j]] :=
(
(p,Bp[j]),TSign(tsk, (p,Bp[j]))

)
.

2. By the time that the period p ends (i.e., Clock[ABj] = Tend,p), for k ∈ [Nw] \ {j}, it performs a read
operation onABk and reads its record for period p denoted byBp[j, k] (possibly empty). Then, it publishes
the hash Hκ

(
Bp[j, k]

)
of the read record.

The VerifyPub algorithm. Let Prec[p] be the set of all periods preceding p. The total view of ABj at some
moment T during period p, denoted by Lpub,j,T , is the union of the published BB records Bp̃[j] for all periods
p̃ ∈ Prec[p].

On input
(
〈Lpub,j,T 〉j∈[Nw], params

)
, the algorithm VerifyPub outputs accept iff for every j ∈ [Nw] and

every p̃ ∈ Prec[p] the following hold:

(a). More than Nw/2 AB peers that agree on the consistency of the data that ABj publishes (including ABj).
Formally, there is a subset Ij ⊆ [Nw] such that |Ij | > Nw/2 and ∀k ∈ Ij \ {j} : Hκ

(
Bp̃[k, j]

)
=

Hκ

(
Bp̃[j]

)
.

(b). For every (p̃, x) ∈ Bp̃[j], it holds that TVf
(
pk,
(
p̃, x),TSign(tsk, (p̃, x)

))
= 1 .

An item belongs in the published data of the whole AB system by moment T , denoted by Lpub,T , if it appears
on more than half of the AB peers. Formally,

Lpub,T :=
⋃

p̃∈Prec[p]

{
(p̃, x)

∣∣∣#{j ∈ [Nw] : (p̃, x) ∈ Bp̃[j]
}
> Nw/2

}
.

Complexity of the new Publishing protocol. Our protocol has a constant number of rounds per period, where
the size of transmitted messages is equal to the signature on records of items posted on the said period. In partic-
ular, the Collection phase has cubic (∼ (Nc)

3) communication complexity (the IC peers exchange their views),
while the Publication phase has quadratic (∼ Nc ·Nw) communication complexity (the IC peers broadcast their
updated records to the AB peers). Overall, the complexity of the new Publishing protocol matches the one of
the original CS system, as in general, the Floodset algorithm must run in Nc − tc + 1 rounds, where in each
round a full quadratic communication for mutual information exchange is required.

32

Chapter 5

Asymmetric Distributed Trust

5.1 Introduction

Byzantine quorum systems [MR98] are a fundamental primitive for building resilient distributed systems from
untrusted components. Given a set of nodes, a quorum system captures a trust assumption on the nodes in terms
of potentially malicious protocol participants and colluding groups of nodes. Based on quorum systems, many
well-known algorithms for reliable broadcast, shared memory, consensus and more have been implemented;
these are the main abstractions to synchronize the correct nodes with each other and to achieve consistency
despite the actions of the faulty, so-called Byzantine nodes.

Traditionally, trust in a Byzantine quorum system for a set of processes P has been symmetric. In other
words, a global assumption specifies which processes may fail, such as the simple and prominent threshold
quorum assumption, in which any subset of P of a given maximum size may collude and act against the protocol.
The most basic threshold Byzantine quorum system, for example, allows all subsets of up to f < n/3 processes
to fail. Some classic works also model arbitrary, non-threshold symmetric quorum systems [MR98, HM00], but
these have not actually been used in practice.

However, trust is inherently subjective. De gustibus non est disputandum. Estimating which processes will
function correctly and which ones will misbehave may depend on personal taste. A myriad of local choices in-
fluences one process’ trust in others, especially because there are so many forms of “malicious” behavior. Some
processes might not even be aware of all others, yet a process should not depend on unknown third parties in a
distributed collaboration. How can one model asymmetric trust in distributed protocols? Can traditional Byzan-
tine quorum systems be extended to subjective failure assumptions? How do the standard protocols generalize
to this model?

In this chapter, we answer these questions and introduce models and protocols for asymmetric distributed
trust. We formalize asymmetric quorum systems for asynchronous protocols, in which every process can make
its own assumptions about Byzantine faults of others. We introduce several protocols with asymmetric trust that
strictly generalize the existing algorithms, which require common trust.

Our formalization takes up earlier work by Damgård et al. [DDFN07] and starts out with the notion of a
fail-prone system that forms the basis of a symmetric Byzantine quorum system. A global fail-prone system for
a process set P contains all maximal subsets of P that might jointly fail during an execution. In an asymmetric
quorum system, every process specifies its own fail-prone system and a corresponding set of local quorums.
These local quorum systems satisfy a consistency condition that ranges across all processes and a local availabil-
ity condition, and generalize symmetric Byzantine quorum system according to Malkhi and Reiter [MR98].

Interest in consensus protocols based on Byzantine quorum systems has surged recently because of their
application to permissioned blockchain networks [CV17, ABB+18]. Typically run by a consortium, such dis-
tributed ledgers often use Byzantine-fault tolerant (BFT) protocols like PBFT [CL02] for consensus that rely on
symmetric threshold quorum systems. The Bitcoin blockchain and many other cryptocurrencies, which triggered
this development, started from different assumptions and use so-called permissionless protocols, in which every-

33

D3.2 – Design of Extended Core Protocols

one may participate. Those algorithms capture the relative influence of the participants on consensus decisions
by an external factor, such as “proof-of-work” or “proof-of-stake.”

A middle ground between permissionless blockchains and BFT-based ones has been introduced by the
blockchain networks of Ripple (https://ripple.com) and Stellar (https://stellar.org). Their stated model for achiev-
ing network-level consensus uses subjective trust in the sense that each process declares a local list of processes
that it “trusts” in the protocol.

Consensus in the Ripple blockchain (and for the XRP cryptocurrency on the XRP Ledger) is executed by its
validator nodes. Each validator declares a Unique Node List (UNL), which is a “list of transaction validators a
given participant believes will not conspire to defraud them;” but on the other hand, “Ripple provides a default
and recommended list which we expand based on watching the history of validators operated by Ripple and third
parties” [Rip19]. Many questions have therefore been raised about the kind of decentralization offered by the
Ripple protocol. This debate has not yet been resolved.

Stellar was created as an evolution of Ripple that shares much of the same design philosophy. The Stellar
consensus protocol [Maz16] powers the Stellar Lumen (XLM) cryptocurrency and introduces federated Byzantine
quorum systems (FBQS); these bear superficial resemblance with our asymmetric quorum systems but differ
technically. Stellar’s consensus protocol uses quorum slices, which are “the subset of a quorum that can convince
one particular node of agreement.” In an FBQS, “each node chooses its own quorum slices” and “the system-
wide quorums result from these decisions by individual nodes” [Ste15]. However, standard Byzantine quorum
systems and FBQS are not comparable because (1) an FBQS when instantiated with the same trust assumption
for all processes does not reduce to a symmetric quorum system and (2) existing protocols do not generalize to
FBQS.

Understanding how such ideas of subjective trust, as manifested in the Ripple and Stellar blockchains, relate
to traditional quorum systems is the main motivation for this work. Our contributions are as follows:

• We introduce asymmetric Byzantine quorum systems formally in Section 5.4 as an extension of standard
Byzantine quorum systems and discuss some of their properties.

• In Section 5.5, we show two implementations of a shared register, using asymmetric Byzantine quorum
systems. The register implements single-writer, multi-reader regular semantics, which means that while
only a single party can write to the register, multiple readers read the register and their results must be
consistent in that after one reader obtains a newer value, no other reader will obtain an older value.

• We examine broadcast primitives in the Byzantine model with asymmetric trust in Section 5.6. In particu-
lar, we define and implement Byzantine consistent and reliable broadcast protocols. The latter primitive is
related to a “federated voting” protocol used by Stellar consensus [Maz16].

Before presenting the technical contributions, we state our system model in Section 5.2 and discuss related work
in more detail in Section 5.3.

5.2 Preliminaries

Processes. We consider a system of n processes P = {p1, . . . , pn} that communicate with each other. The pro-
cesses interact asynchronously with each other through exchanging messages. The system itself is asynchronous,
i.e., the delivery of messages among processes may be delayed arbitrarily and the processes have no synchro-
nized clocks. Every process is identified by a name, but such identifiers are not made explicit. A protocol for P
consists of a collection of programs with instructions for all processes. Protocols are presented in a modular way
using the event-based notation of Cachin et al. [CGR11].

Functionalities. A functionality is an abstraction of a distributed computation, either a primitive that may be
used by the processes or a service that they will provide. Every functionality in the system is specified through

34

https://ripple.com
https://stellar.org

D3.2 – Design of Extended Core Protocols

its interface, containing the events that it exposes to protocol implementations that may call it, and its properties,
which define its behavior. A process may react to a received event by changing their state and triggering further
events.

There are two kinds of events in an interface: input events that the functionality receives from other abstrac-
tions, typically to invoke its services, and output events, through which the functionality delivers information or
signals a condition a process. The behavior of a functionality is usually stated through a number of properties or
through a sequential implementation.

We assume there is a low-level functionality for sending messages over point-to-point links between each
pair of processes. In a protocol, this functionality is accessed through the events of “sending a message” and
“receiving a message”. Point-to-point messages are authenticated, delivered reliably, and output in first-in-first-
out (FIFO) order among processes [HT93, CGR11].

Executions and faults. An execution starts with all processes in a special initial state; subsequently the pro-
cesses repeatedly trigger events, react to events, and change their state through computation steps. Every execu-
tion is fair in the sense that, informally, processes do not halt prematurely when there are still steps to be taken
or events to be delivered (see the standard literature for a formal definition [Lyn96]).

A process that follows its protocol during an execution is called correct. On the other hand, a faulty process
may crash or even deviate arbitrarily from its specification, e.g., when corrupted by an adversary; such processes
are also called Byzantine. We consider only Byzantine faults here and assume for simplicity that the faulty
processes fail right at the start of an execution.

Idealized digital signatures. A digital signature scheme provides two operations, signi and verifyi. The in-
vocation of signi specifies a process pi and takes a bit string m ∈ {0, 1}∗ as input and returns a signature
σ ∈ {0, 1}∗ with the response. Only pi may invoke signi. The operation verifyi takes a putative signature σ
and a bit string m as parameters and returns a Boolean value with the response. Its implementation satisfies that
verifyi(σ,m) returns TRUE for any i ∈ {1, . . . , n} and m ∈ {0, 1}∗ if and only if pi has executed signi(m) and
obtained σ before; otherwise, verifyi(σ,m) returns FALSE. Every process may invoke verify.

5.3 Recent Related Work

Damgård et al. [DDFN07] introduce asymmetric trust in the context of synchronous protocols for secure dis-
tributed computation by modeling process-specific fail-prone systems. They state the consistency property of
asymmetric Byzantine quorums and claim (without proof) that the B3 property, a specific condition on the size
of the fail-prone sets that we describe further in Section 5.4.2, is required for implementing a synchronous
broadcast protocol in this setting. However, they do not formalize quorum systems nor discuss asynchronous
protocols.

The Ripple consensus protocol is run by an open set of validator nodes. The protocol uses votes, similar to
standard consensus protocols, whereby each validator only communicates with the validators in its UNL. Each
validator chooses its own UNL, which makes it possible for anyone to participate, in principle, similar to proof-
of-work blockchains. Early literature suggested that the intersection of the UNLs for every two validators should
be at least 20% of each list [SYB14], assuming that also less than one fifth of the validators in the UNL of every
node might be faulty. An independent analysis by Armknecht et al. [AKM+15] later argued that this bound must
be more than 40%. A recent technical paper of Chase and MacBrough [CM18, Thm. 8] concludes, under the
same assumption of f < n/5 faulty nodes in every UNL of size n, that the UNL overlap should actually be at
least 90%.

However, the same paper also derives a counterexample to the liveness (meaning that the network delivers
transactions) of the Ripple consensus protocol [CM18, Sec. 4.2] as soon as two validators don’t have “99%
UNL overlap.” By generalizing the example, this essentially means that the protocol can get stuck unless all
nodes have the same UNL. According to the widely shared understanding in the field of distributed systems,

35

D3.2 – Design of Extended Core Protocols

though, a protocol needs to satisfy safety (“nothing bad happens”, e.g. no two honest nodes have inconsistent
views) and liveness (“something good happens”, e.g. the protocol makes progress) because achieving only one of
these properties is trivial. Chase and MacBrough therefore present a devastating verdict on the merit of Ripple’s
protocol.

The Stellar consensus protocol (SCP) also features open membership and lets every node express its own set
of trusted nodes [Maz16]. Generalizing from Ripple’s flat lists of unique nodes, every node declares a collection
of trusted sets called quorum slices, whereby a slice is “the subset of a quorum convincing one particular node of
agreement.” A quorum in Stellar is a set of nodes “sufficient to reach agreement,” defined as a set of nodes that
contains one slice for each member node. The quorum choices of all nodes together yield a federated Byzantine
quorum systems (FBQS). The Stellar white paper states properties of FBQS and protocols that build on them.
However, these protocols do not map to known protocol primitives in distributed computing. The shortcomings
of the Ripple protocol to not apply to Stellar; however, no comprehensive and independent analysis of the Stellar
protocol has been published.

Garcı́a-Pérez and Gotsman [GG18] build a link from FBQS to existing quorum-system concepts by investi-
gating a Byzantine reliable broadcast abstraction in an FBQS. They show that the federated voting protocol of
Stellar [Maz16] is similar to Bracha’s reliable broadcast [Bra87] and that it implements a variation of Byzantine
reliable broadcast on an FBQS for executions that contain, additionally, a set of so-called intact nodes.

The paper [GG18], however, uses the FBQS concept of Mazières [Maz16] that is at odds with the usual notion
of a Byzantine quorum system in the sense that it does not reduce to a symmetric quorum system for symmetric
trust choices. In contrast, we show in the following sections that a natural extension of a symmetric Byzantine
quorum system suffices for implementing various protocol primitives with asymmetric trust. We explain, in
particular, how to implement the prominent register abstraction with asymmetric trust and investigate multiple
broadcast primitives. In particular, Stellar’s federated voting protocol and the Byzantine reliable broadcast over
an FBQS as described by Garcı́a-Pérez and Gotsman [GG18], can be shown as straightforward generalizations
of Byzantine reliable broadcast with symmetric trust.

A lot of recent work on consensus is in relation with blockchains and other distributed ledger technologies.
Two consensus methods that have gained significant visibility there are proof-of-work, which is used by Bitcoin
and several other blockchain platforms such as Ethereum, as well as proof-of-stake, which is favored by many
newer blockchain platforms such as Cardano or Algorand. On a high-level, the main difference between those
systems and asymmetric quorum systems is the type of trust assumptions: In proof-of-work, everyone assumes
that the majority of computing power in the network is controlled by honest parties; in proof-of-stake, everyone
assumes that the majority of stake is controlled by honest parties. By contrast, asymmetric quorum systems
allow parties to explicitly specify which other parties they trust; this different type of assumption is suitable
for different types of networks. In a nutshell, proof-of-work and proof-of-stake seem suitable for large-scale,
“anonymous” networks, whereas asymmetric quorum systems seem more suitable for smaller-scale networks in
which the participants know of each other’s existence.

5.4 Asymmetric Byzantine Quorum Systems

5.4.1 Symmetric Trust

Quorum systems are well-known in settings with symmetric trust. As demonstrated by many applications to
distributed systems, ordinary quorum systems [NW98] and Byzantine quorum systems [MR98] play a crucial
role in formulating resilient protocols that tolerate faults through replication [CBPS10]. A quorum system typ-
ically ensures a consistency property among the processes in an execution, despite the presence of some faulty
processes.

For the model with Byzantine faults, Byzantine quorum systems have been introduced by Malkhi and Re-
iter [MR98]. This notion is defined with respect to a fail-prone system F ⊆ 2P , a collection of subsets of P ,
none of which is contained in another, such that some F ∈ F with F ⊆ P is called a fail-prone set and contains

36

D3.2 – Design of Extended Core Protocols

all processes that may at most fail together in some execution [MR98]. A fail-prone system is the same as the
basis of an adversary structure, which was introduced independently by Hirt and Maurer [HM00].

A fail-prone system captures an assumption on the possible failure patterns that may occur. It specifies
all maximal sets of faulty processes that a protocol should tolerate in an execution; this means that a protocol
designed for F achieves its properties as long as the set F of actually faulty processes satisfies F ∈ F .

Definition 1 (Byzantine quorum system [MR98]). A Byzantine quorum system for F is a collection of sets of
processes Q ⊆ 2P , where each Q ∈ Q is called a quorum, such that no quorum is contained in another quorum
and the following properties hold:

Consistency: The intersection of any two quorums contains at least one process that is not faulty, i.e.,

∀Q1, Q2 ∈ Q, ∀F ∈ F : Q1 ∩Q2 6⊆ F.

Availability: For any set of processes that may fail together, there exists a disjoint quorum in Q, i.e.,

∀F ∈ F : ∃Q ∈ Q : F ∩Q = ∅.

The above notion is also known as a Byzantine dissemination quorum system [MR98] and allows a protocol
to be designed despite arbitrary behavior of the potentially faulty processes. The notion generalizes the usual
threshold failure assumption for Byzantine faults [PSL80], which considers that any set of f processes are equally
likely to fail.

Similarly to the threshold case, where n > 3f processes overall are needed to tolerate f faulty ones in many
Byzantine protocols, Byzantine quorum systems can only exist if not “too many” processes fail.

Definition 2 (Q3-condition [MR98, HM00]). A fail-prone system F satisfies the Q3-condition, abbreviated as
Q3(F), whenever it holds

∀F1, F2, F3 ∈ F : P 6⊆ F1 ∪ F2 ∪ F3.

In other words, Q3(F) means that no three fail-prone sets together cover the whole system of processes. A
Qk-condition can be defined like this for any k ≥ 2 [HM00].

The following lemma considers the bijective complement of a process set S ⊆ 2P , which is defined as
S = {P \ S|S ∈ S}, and turns F into a Byzantine quorum system.

Lemma 1 ([MR98, Theorem 5.4]). Given a fail-prone system F , a Byzantine quorum system for F exists if
and only if Q3(F). In particular, if Q3(F) holds, then F , the bijective complement of F , is a Byzantine quorum
system.

The quorum system Q = F is called the canonical quorum system of F . According to the duality between
Q and F , properties of F are often ascribed toQ as well; for instance, we sayQ3(Q) holds if and only ifQ3(F).

Survivor sets and core sets. Junqueira, Marzullo, and coauthors [JM03, JMHD10] consider generic quorum
systems beyond threshold failure models and introduce the notions of a survivor set and a core set.

A survivor set S for F is a maximal set of processes such that there exists an execution with worst-case
failures in which no member of S fails. More formally, S ⊆ P is a survivor set if and only if there exists F ∈ F
such that P \ F = S. Note that according to our definition of F , every S like this is maximal and satisfies also
that for all S′ ⊆ P with S (S′ and all F ∈ F it holds that P \ F 6⊆ S′. For example, under a threshold failure
assumption where any f processes may fail, every set of n− f processes is a survivor set. A survivor set system
S is the maximal collection of all survivor sets in the sense that no set in S is contained in another. Observe that
the survivor set system S is the bijective complement of the fail-prone system F ; according to Lemma 1, S is
therefore also a Byzantine quorum system.

37

D3.2 – Design of Extended Core Protocols

A core set C for F is a minimal set of processes that contains at least one correct process in every execution.
More precisely, C ⊆ P is a core set whenever (1) for all F ∈ F , it holds (P \ F) ∩ C 6= ∅ (and, equivalently,
C 6⊆ F) and (2) for all C ′ (C, there exists F ∈ F such that (P \ F) ∩ C ′ = ∅ (and, equivalently, C ′ ⊆ F).
In other words, since F corresponds directly to S , we can also say that C is a core set if and only if it intersects
with every survivor set and is minimal with respect to that property. With the threshold failure assumption, every
set of f + 1 processes is a core set. A core set system C is the minimal collection of all core sets, in the sense that
no set in C is contained in another. Junqueira et al. [JMHD10, Theorem 1] show that survivor sets and core sets
are dual and can be characterized in terms of each other. In particular, they show (1) that a core set can also be
defined as a process set that intersects with every survivor set and is minimal with respect to that property, and
(2) that a survivor set is equivalent to a process set that intersects with every core set and is minimal with respect
to that property.

5.4.2 Asymmetric Trust

In our model with asymmetric trust, every process is free to make its own trust assumption and to express this
with a fail-prone system. Hence, an asymmetric fail-prone system F = [F1, . . . ,Fn] consists of an array of fail-
prone systems, where Fi denotes the trust assumption of pi. One often assumes pi 6∈ Fi for practical reasons,
but this is not necessary. This notion has earlier been formalized by Damgård et al. [DDFN07].

For a system A ⊆ 2P , let A∗ denote the collection of all subsets of the sets in A, that is, A∗ = {A′|A′ ⊆
A,A ∈ A}.

Definition 3 (Asymmetric Byzantine quorum system). An asymmetric Byzantine quorum system for F is an array
of collections of sets Q = [Q1, . . . ,Qn], where Qi ⊆ 2P for i ∈ [1, n]. The set Qi ⊆ 2P is called the quorum
system of pi and any set Qi ∈ Qi is called a quorum (set) for pi. It satisfies:

Consistency: The intersection of two quorums for any two processes contains at least one process for which
both processes assume that it is not faulty, i.e., for all i, j ∈ [1, n]

∀Qi ∈ Qi, ∀Qj ∈ Qj ,∀Fij ∈ Fi∗ ∩ Fj∗ : Qi ∩Qj 6⊆ Fij .

Availability: For any process pi and any set of processes that may fail together according to pi, there exists a
disjoint quorum for pi in Qi, i.e., for all i ∈ [1, n]

∀Fi ∈ Fi : ∃Qi ∈ Qi : Fi ∩Qi = ∅.

The existence of asymmetric quorum systems can be characterized with a property that generalizes the Q3-
condition for the underlying asymmetric fail-prone systems as follows.

Definition 4 (B3-condition). An asymmetric fail-prone system F satisfies the B3-condition, abbreviated as
B3(F), whenever it holds for all i, j ∈ [1, n] that

∀Fi ∈ Fi,∀Fj ∈ Fj , ∀Fij ∈ Fi∗ ∩ Fj∗ : P 6⊆ Fi ∪ Fj ∪ Fij

The following result is the generalization of Lemma 1 for asymmetric quorum systems; it was stated by
Damgård et al. [DDFN07] without proof. As for symmetric quorum systems, we use this result and say that
B3(Q) holds whenever the asymmetric Q consists of the canonical quorum systems for F and B3(F) holds.

Theorem 2. An asymmetric fail-prone system F satisfies B3(F) if and only if there exists an asymmetric quorum
system for F.

Proof. Suppose that B3(F). We let Q = [Q1, . . . ,Qn], where Qi = Fi is the canonical quorum system of Fi,
and show that Q is an asymmetric quorum system. Indeed, let Qi ∈ Qi, Qj ∈ Qj , and Fij ∈ Fi∗ ∩ Fj∗ for any
i and j. Then Fi = P \Qi ∈ Fi and Fj = P \Qj ∈ Fj by construction, and therefore, Fi ∪Fj ∪Fij 6= P . This

38

D3.2 – Design of Extended Core Protocols

means there is some pk ∈ P \ (Fi ∪ Fj ∪ Fij). This implies in turn that pk ∈ Qi ∩Qj but pk /∈ Fij and proves
the consistency condition. The availability property holds by construction of the canonical quorum systems.

To show the reverse direction, let Q be a candidate asymmetric Byzantine quorum system for F that satisfies
availability and assume towards a contradiction that B3(F) does not hold. We show that consistency cannot be
fulfilled for Q. By our assumption there are sets Fi, Fj , Fij in F such that Fi ∪ Fj ∪ Fij = P , which is the same
as P \ (Fi ∪ Fj) ⊆ Fij . The availability condition for Q then implies that there are sets Qi ∈ Qi and Qj ∈ Qj
with Fi ∩Qi = ∅ and Fj ∩Qj = ∅. Now for every pk ∈ Qi ∩Qj it holds that pk /∈ Fi ∪ Fj by availability and
therefore pk ∈ P \ (Fi ∪ Fj). Taken together this means that Qi ∩Qj ⊆ P \ (Fi ∪ Fj) ⊆ Fij . Hence, Q does
not satisfy the consistency condition and the statement follows.

Kernels. Given a symmetric Byzantine quorum system Q, we define a kernel K as a set of processes that
overlaps with every quorum and that is minimal in this respect. Formally, K ⊆ P is a kernel of Q if and only if

∀Q ∈ Q : K ∩Q 6= ∅

and
∀K ′ (K : ∃Q ∈ Q : K ∩Q = ∅.

The kernel system K of Q is the set of all kernels of Q.
For example, under a threshold failure assumption where any f processes may fail and the quorums are all

sets of
⌈n+f+1

2

⌉
processes, every set of

⌊n−f+1
2

⌋
processes is a kernel.

The definition of a kernel is related to that of a core set by Junqueira et al. [JMHD10], who characterize
quorum systems through survivor sets instead of fail-prone sets. A core set C ⊆ P is a set of parties that
intersects with all survivor sets P \ F , for F ∈ F . This means that, given a fail-prone system F , the kernel of
the canonical quorum system Q = F is the same as the core-set system for the fail-prone system F .

Let F = [F1, . . . ,Fn] be an asymmetric fail-prone system and Q = [Q1, . . . ,Qn] an asymmetric quorum
system for F. An asymmetric kernel system for Q is the array K = [K1, . . . ,Kn] that consists of the kernel
systems for all processes in P; a set Ki ∈ Ki is called a kernel for pi.

Asymmetric survivor, core, and double-core sets. Let F = [F1, . . . ,Fn] be an asymmetric fail-prone system.
An asymmetric survivor set system S is an array of collections of sets [S1, . . . ,Sn] such that each Si is a survivor
set system for the fail-prone system Fi. We say that a set Si ∈ Si is a survivor set for pi.

Analogously, an asymmetric core set system C is an array of collections of sets [C1, . . . , Cn] such that each Ci
is a core set system for the fail-prone system Fi. We call a set Ci ∈ Ci a core set for pi.

Naı̈ve and wise processes. The faults or corruptions occurring in a protocol execution with an underlying
quorum system imply a set F of actually faulty processes. However, no process knows F and this information is
only available to an observer outside the system. With a traditional quorum system Q designed for a fail-prone
set F , the guarantees of a protocol usually hold as long as F ∈ F . Recall that such protocol properties apply to
correct processes only but not to faulty ones.

With asymmetric quorums, we further distinguish between two kinds of correct processes, depending on
whether they considered F in their trust assumption or not. Given a protocol execution, the processes are there-
fore partitioned into three types:

Faulty: A process pi ∈ F is faulty.

Naı̈ve: A correct process pi for which F 6∈ Fi∗ is called naı̈ve.

Wise: A correct process pi for which F ∈ Fi∗ is called wise.

The naı̈ve processes are new for the asymmetric case, as all processes are wise under a symmetric trust
assumption. Protocols for asymmetric quorums cannot guarantee the same properties for naı̈ve processes as for
wise ones, since the naı̈ve processes may have the “wrong friends.”

39

D3.2 – Design of Extended Core Protocols

Guilds. If too many processes are naı̈ve or even fail during a protocol run with asymmetric quorums, then
protocol properties cannot be ensured. A guild is a set of wise processes that contains at least one quorum
for each member; its existence ensures liveness and consistency for typical protocols. This generalizes from
protocols for symmetric quorum systems, where the correct processes in every execution form a quorum by
definition. (A guild represents a group of influential and well-connected wise processes, like in the real world.)

Definition 5 (Guild). Given a fail-prone system F, an asymmetric quorum system Q for F, and a protocol
execution with faulty processes F , a guild G for F satisfies two properties:

Wisdom: G is a set of wise processes:
∀pi ∈ G : F ∈ Fi∗.

Closure: G contains a quorum for each of its members:

∀pi ∈ G : ∃Qi ∈ Qi : Qi ⊆ G.

Superficially a guild seems similar to a “quorum” in the Stellar consensus protocol [Maz16], but the two
notions actually differ because a guild contains only wise processes and Stellar’s quorums do not distinguish
between naı̈ve and wise processes.

Observe that for a specific execution, the union of two guilds is again a guild, since the union consists only
of wise processes and contains again a quorum for each member. Hence, every execution with a guild contains a
unique maximal guild Gmax.

Example. We define an example asymmetric fail-prone system FA on P = {p1, p2, p3, p4, p5}. The notation
Θn
k(S) for a set S with n elements denotes the “threshold” combination operator and enumerates all subsets of
S of cardinality k. W.l.o.g. every process trusts itself. The diagram below shows fail-prone sets as shaded areas
and the notation n

k in front of a fail-prone set stands for k out of the n processes in the set.

FA:

F1 = Θ4
1({p2, p3, p4, p5})

F2 = Θ4
1({p1, p3, p4, p5})

F3 = Θ2
1({p1, p2}) ∗Θ2

1({p4, p5})
F4 = Θ4

1({p1, p2, p3, p5})
F5 = {{p2, p4}}

2
1

4
1

4
1

2
1

4
1

F1

F2

F3

F4

F5

p2 p3 p4 p5p1

The operator ∗ for two sets satisfies A ∗ B = {A ∪B|A ∈ A, B ∈ B}.
As one can verify in a straightforward way, B3(FA) holds. Let QA be the canonical asymmetric quorum

system for FA. Note that since FA contains the fail-prone systems of p3 and p5 that permit two faulty processes
each, this fail-prone system cannot be obtained as a special case of Θ5

1({p1, p2, p3, p4, p5}). When F = {p2, p4},
for example, then processes p3 and p5 are wise and p1 is naı̈ve.

5.5 Shared Memory

This section illustrates a first application of asymmetric quorum systems: how to emulate shared memory, repre-
sented by a register. Maintaining a shared register reliably in a distributed system subject to faults is perhaps the
most fundamental task for which ordinary, symmetric quorum systems have been introduced, in the models with
crashes [Gif79] and with Byzantine faults [MR98].

40

D3.2 – Design of Extended Core Protocols

5.5.1 Definitions

Operations and precedence. For the particular shared-object functionalities considered here, the processes
interact with an object Λ through operations provided by Λ. Operations on objects take time and are represented
by two events occurring at a process, an invocation and a response. The history of an execution σ consists of
the sequence of invocations and responses of Λ occurring in σ. An operation is complete in a history if it has a
matching response.

An operation o precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o
completes before o′ is invoked in σ. A sequence of events π preserves the real-time order of a history σ if for
every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are concurrent if neither one of
them precedes the other. A sequence of events is sequential if it does not contain concurrent operations. An
execution on a shared object is well-formed if the events at each process are alternating invocations and matching
responses, starting with an invocation.

Semantics. A register with domainX provides two operations: write(x), which is parameterized by a value x ∈
X and outputs a token ACK when it completes; and read, which takes no parameter for invocation but outputs a
value x ∈ X upon completion.

We consider a single-writer (or SW) register, where only a designated process pw ∈ P may invoke write, and
permit multiple readers (or MR), that is, every process may execute a read operation. The register is initialized
with a special value x0, which is written by an imaginary write operation that occurs before any process invokes
operations. We consider regular semantics under concurrent access [Lam86]; the extension to other forms of
concurrent memory, including an atomic register, proceeds analogously.

It is customary in the literature to assume that the writer and reader processes are correct; with asymmetric
quorums we assume explicitly that readers and writers are wise. We illustrate below why one cannot extend the
guarantees of the register to naı̈ve processes.

Definition 6 (Asymmetric Byzantine SWMR regular register). A protocol emulating an asymmetric SWMR
regular register satisfies:

Liveness: If a wise process p invokes an operation on the register, p eventually completes the operation.

Safety: Every read operation of a wise process that is not concurrent with a write returns the value written by the
most recent, preceding write of a wise process; furthermore, a read operation of a wise process concurrent
with a write of a wise process may also return the value that is written concurrently.

5.5.2 Protocol with Authenticated Data

In Algorithm 1, we describe a protocol for emulating a regular SWMR register with an asymmetric Byzantine
quorum system, for a designated writer pw and a reader pr ∈ P . The protocol uses data authentication imple-
mented with digital signatures. This protocol is the same as the classic one of Malkhi and Reiter [MR98] that
uses a Byzantine dissemination quorum system and where processes send messages to each other over point-to-
point links. The difference lies in the individual choices of quorums by the processes and that it ensures safety
and liveness for wise processes.

In the register emulation, the writer pw obtains ACK messages from all processes in a quorum Qw ∈ Qw;
likewise, the reader pr waits for a VALUE message carrying a value/timestamp pair from every process in a
quorum Qr ∈ Qr of the reader.

The function highestval(S) takes a set of timestamp/value pairs S as input and outputs the value in the pair
with the largest timestamp, i.e., v such that (ts, v) ∈ S and ∀(ts′, v′) ∈ S : ts′ < ts ∨ (ts′, v′) = (ts, v). Note that
this v is unique in Algorithm 1 because pw is correct. The protocol uses digital signatures, modeled by operations
signi and verifyi, as introduced earlier.

41

D3.2 – Design of Extended Core Protocols

Algorithm 1 Emulation of an asymmetric SWMR regular register (process pi).
State

wts: sequence number of write operations, stored only by writer pw
rid: identifier of read operations, used only by reader
ts, v, σ: current state stored by pi: timestamp, value, signature

upon invocation write(v) do // only if pi is writer pw
wts← wts + 1
σ←$ signw(WRITE‖w‖wts‖v)
send message [WRITE,wts, v, σ] to all pj ∈ P
wait for receiving a message [ACK] from all processes in some quorum Qw ∈ Qw

upon invocation read do // only if pi is reader pr
rid← rid + 1
send message [READ, rid] to all pj ∈ P
wait for receiving messages [VALUE, rj , tsj , vj , σj] from all processes in some Qr ∈ Qr such that

rj = rid and verifyw(σj ,WRITE‖w‖ts‖vj)
return highestval({(tsj , vj)|j ∈ Qr}

upon receiving a message [WRITE, ts′, v′, σ′] from pw do // every process
if ts′ > ts then

(ts, v, σ)← (ts′, v′, σ′)
send message [ACK] to pw

upon receiving a message [READ, r] from pr do // every process
send message [VALUE, r, ts, v, σ] to pr

Theorem 3. Algorithm 1 emulates an asymmetric Byzantine SWMR regular register.

Proof. First we show liveness for wise writer pw and reader pr, respectively. Since pw is wise by assumption,
F ∈ Fw∗, and by the availability condition of the quorum system there isQw ∈ Qw with F∩Qw = ∅. Therefore,
the writer will receive sufficiently many [ACK] messages and the write will return. As pr is wise, F ∈ Fr∗, and
by the analogous condition, there is Qr ∈ Qr with F ∩Qr = ∅. Because pw is correct and by the properties of
the signature scheme, all responses from processes pj ∈ Qr satisfy the checks and read returns.

Regarding safety, it is easy to observe that any value output by read has been written in some preceding or
concurrent write operation, and this even holds for naı̈ve readers and writers. This follows from the properties of
the signature scheme; read verifies the signature and outputs only values with a valid signature produced by pw.

We now argue that when both the writer and the reader are wise, then read outputs a value of either the last
preceding write or a concurrent write and the protocol satisfies safety for a regular register. On a high level, note
that F ∈ Fw∗ ∩ Fr∗ since both are wise. So if pw writes to a quorum Qw ∈ Qw and pr reads from a quorum
Qr ∈ Qr, then by consistency of the quorum system Qw ∩Qr 6⊆ F because pw and pr are wise. Hence, there is
some correct pi ∈ Qw ∩Qr that received the most recently written value from pw and returns it to pr.

Example. We show why the guarantees of this protocol with asymmetric quorums hold only for wise readers
and writers. Consider QA from the last section and an execution in which p2 and p4 are faulty, and therefore p1

is naı̈ve and p3 and p5 are wise. A quorum for p1 consists of p1 and three processes in {p2, . . . , p5}; moreover,
every process set that contains p3, one of {p1, p2} and one of {p4, p5} is a quorum for p3.

We illustrate that if naı̈ve p1 writes, then a wise reader p3 may violate safety. Suppose that all correct
processes, especially p3, store timestamp/value/signature triples from an operation that has terminated and that
wrote x. When p1 invokes write(u), it obtains [ACK] messages from all processes except p3. This is a quorum
for p1. Then p3 runs a read operation and receives the outdated values representing x from itself (p3 is correct

42

D3.2 – Design of Extended Core Protocols

but has not been involved in writing u) and also from the faulty p2 and p4. Hence, p3 outputs x instead of u.
Analogously, with the same setup of every process initially storing a representation of x but with wise p3 as

writer, suppose p3 executes write(u). It obtains [ACK] messages from p2, p3, and p4 and terminates. When p1

subsequently invokes read and receives values representing x, from correct p1 and p5 and from faulty p2 and p4,
then p1 outputs x instead of y and violates safety as a naı̈ve reader.

Since the sample operations are not concurrent, the implication actually holds also for registers with only
safe semantics.

5.5.3 Double-Write Protocol without Data Authentication

This section describes a second protocol emulating an asymmetric Byzantine SWMR regular register. In contrast
to the previous protocol, it does not use digital signatures for authenticating the data to the reader. Our algorithm
generalizes the construction of Abraham et al. [ACKM06] and also assumes a only finite number of write oper-
ations occur (FW-termination). Furthermore, this algorithm illustrates the use of asymmetric core set systems in
the context of an asymmetric-trust protocol. In a nutshell, the difference to the setting in Section 5.5.2 is that,
without digital signatures, a reader has no direct way of telling whether a particular message returned by a replica
was actually written by the honest writer. Therefore, the reader requires that at least a core set of replicas (i.e. a
set including at least one honest replica) returns consistent values.

Theorem 4. Algorithm 2 emulates an asymmetric Byzantine SWMR regular register, provided there are only
finitely many write operations.

Proof. We first establish safety when the writer pw and the reader pr are wise. In that case, F ∈ Fw∗ ∩ Fr∗.
During in a write operation, pw has received PREACK and ACK messages from Qw ∈ Qi and Q′w ∈ Qi,
respectively, and for all Qr ∈ Qr it holds that Qw ∩Qr 6⊆ F and Q′w ∩Qr 6⊆ F .

We now argue that any pair (ts∗, v∗) returned by pr was written by pw either in a preceding or a concurrent
write. From the condition on the core set Cr and (ts∗, v∗) it follows that at least one correct process exists in Cr
that stores (ts∗, v∗) as a pre-written or as a written value. Thus, the pair was written by pw before.

Next we argue that for every completed write(v∗) operation, in which pw has sent [WRITE,wts, v∗], and
for any subsequent read operation that selects (ts∗, v∗) and returns v∗, it must hold wts ≤ ts∗. Namely, the
condition on Qr implies that ts∗ ≥ tsk for all pk ∈ Qr. By the consistency of the quorum system, it holds that
Q′w ∩Qr 6⊆ F , so there is a correct process p` ∈ Q′w ∩Qr that has sent ts` to pr. Then ts∗ ≥ ts` ≥ wts follows
because the timestamp variable of p` only increases.

The combination of the above two paragraphs implies that for read operations that are not concurrent with
any write, the pair (ts∗, v∗) chosen by read was actually written in the immediately preceding write. If the read
operation occurs concurrently with a write, then the pair (ts∗, v∗) chosen by read may also originate from the
concurrent write. This establishes the safety property of the SWMR regular register.

We now show liveness. First, if pw is wise, then there exists a quorum Qw ∈ Qw such that Qw ∩ F = ∅.
Second, any correct process will eventually receive all [PREWRITE,wts, v] and [WRITE,wts, v] messages sent
by pw and process them in the correct order by the assumption of FIFO links. This means that pw will receive
[PREACK] and [ACK] messages, respectively, from all processes in one of its quorums, since at least the processes
in Qw will eventually send those.

Liveness for the reader pr is shown under the condition that pr is wise and that the read operation is concur-
rent with only finitely many write operations. The latter condition implies that there is one last write operation
that is initiated, but does not necessarily terminate, while read is active.

By the assumption that pw is correct and because messages are received in FIFO order, all messages of that
last write operation will eventually arrive at the correct processes. Notice also that pr simply repeats its steps
until it succeeds and returns a value that fulfills the condition. Hence, there is a time after which all correct
processes reply with VALUE messages that contain pre-written and written timestamp/value pairs from that last
operation. It is easy to see that there exist a core set and a quorum for pr that satisfy the condition and the reader

43

D3.2 – Design of Extended Core Protocols

Algorithm 2 Double-write emulation of an asymmetric SWMR regular register (process pi).
State

wts: sequence number of write operations, stored only by writer pw
rid: identifier of read operations, used only by reader
pts, pv, ts, v: current state stored by pi: pre-written timestamp and value, written timestamp and value

upon invocation write(v) do // only if pi is writer pw
wts← wts + 1
send message [PREWRITE,wts, v] to all pj ∈ P
wait for receiving a message [PREACK] from all processes in some quorum Qw ∈ Qw

send message [WRITE,wts, v] to all pj ∈ P
wait for receiving a message [ACK] from all processes in some quorum Qw ∈ Qw

upon invocation read do // only if pi is reader pr
rid← rid + 1
send message [READ, rid] to all pj ∈ P

upon receiving a message [VALUE, rj , ptsj , pvj , tsj , vj] from pj such that // only if pi is reader pr
rj = rid ∧

(
ptsp = tsp + 1 ∨ (pts, pv) = (ts, v)

)
do

readlist[j]← (ptsj , pvj , tsj , vj)
if there exist ts∗, v∗, a core set Cr ∈ Cr for pr, and a quorum Qr ∈ Qr for pr such that

Cr ⊆
{
pk|readlist[k] = (ptsk, pvk, tsk, vk) ∧

(
(ptsk, pvk) = (ts∗, v∗) ∨ (tsk, vk) = (ts∗, v∗)

)}
and

Qr =
{
pk|readlist[k] = (ptsk, pvk, tsk, vk)
∧
(
(tsk < ts∗) ∨ (ptsk, pvk) = (ts∗, v∗) ∨ (tsk, vk) = (ts∗, v∗)

)}
then

return v∗
else

send message [READ, rid] to all pj ∈ P

upon receiving a message [PREWRITE, ts′, v′] from pw such that ts′ = pts + 1 ∧ pts = ts do
(pts, pv)← (ts′, v′)
send message [PREACK] to pw

upon receiving a message [WRITE, ts′, v′] from pw such that ts′ = pts ∧ v′ = pv do
(ts, v)← (ts′, v′)
send message [ACK] to pw

upon receiving a message [READ, r] from pr do
send message [VALUE, r, pts, pv, ts, v] to pr

44

D3.2 – Design of Extended Core Protocols

returns. In conclusion, the algorithm emulates an asymmetric regular SWMR register, where liveness holds only
for finitely many write operations.

5.6 Broadcast

This section shows how to implement two broadcast primitives tolerating Byzantine faults with asymmetric
quorums. Recall from the standard literature [HT93,CBPS10,CGR11] that reliable broadcasts offer basic forms
of reliable message delivery and consistency, but they do not impose a total order on delivered messages (as
this is equivalent to consensus). The Byzantine broadcast primitives described here, consistent broadcast and
reliable broadcast, are prominent building blocks for many more advanced protocols.

With both primitives, the sender process may broadcast a message m by invoking broadcast(m); the broad-
cast abstraction outputs m to the local application on the process through a deliver(m) event. Moreover, the
notions of broadcast considered in this section are intended to deliver only one message per instance. Every
instance has a distinct (implicit) label and a designated sender ps. With standard multiplexing techniques one
can extend this to a protocol in which all processes may broadcast messages repeatedly [CGR11].

Byzantine consistent broadcast. The simplest such primitive, which has been called (Byzantine) consistent
broadcast [CGR11], ensures only that those correct processes which deliver a message agree on the content of
the message, but they may not agree on termination. In other words, the primitive does not enforce “reliability”
such that a correct process outputs a message if and only if all other correct processes produce an output. The
events in its interface are denoted by c-broadcast and c-deliver: the broadcast is initiated by the sender issuing
the event c-broadcast, and all receivers (upon successful operation) output the event c-deliver. (For more details,
see Algorithm 3.)

The change of the definition towards asymmetric quorums affects most of its guarantees, which hold only for
wise processes but not for all correct ones. This is similar to the definition of a register in Section 5.5.

Definition 7 (Asymmetric Byzantine consistent broadcast). A protocol for asymmetric (Byzantine) consistent
broadcast satisfies:

Validity: If a correct process ps c-broadcasts a message m, then all wise processes eventually c-deliver m.

Consistency: If some wise process c-delivers m and another wise process c-delivers m′, then m = m′.

Integrity: For any message m, every correct process c-delivers m at most once. Moreover, if the sender ps is
correct and the receiver is wise, then m was previously c-broadcast by ps.

The following protocol is an extension of “authenticated echo broadcast” [CGR11], which goes back to
Srikanth and Toueg [ST87]. It is a building block found in many Byzantine fault-tolerant protocols with greater
complexity. The adaptation for asymmetric quorums is straightforward: Every process considers its own quo-
rums before c-delivering the message.

Theorem 5. Algorithm 3 implements asymmetric Byzantine consistent broadcast.

Proof. For the validity property, it is straightforward to see that every correct process sends [ECHO,m]. Accord-
ing to the availability condition for the quorum systemQi of every wise process pi and because F ⊆ Fi for some
Fi ∈ Fi, there exists some quorum Qi for pi of correct processes that echo m to pi. Hence, pi c-delivers m.

To show consistency, suppose that some wise process pi has c-delivered mi because of [ECHO,mi] messages
from a quorum Qi and another wise pj has received [ECHO,mj] from all processes in Qj ∈ Qj . By the con-
sistency property of Q it holds Qi ∩ Qj 6⊆ F ; let pk be this process in Qi ∩ Qj that is not in F . Because pk is
correct, pi and pj received the same message from pk and mi = mj .

45

D3.2 – Design of Extended Core Protocols

Algorithm 3 Asymmetric Byzantine consistent broadcast protocol with sender ps (process pi)
State

sentecho← FALSE: indicates whether pi has sent ECHO
echos← [⊥]N : collects the received ECHO messages from other processes
delivered← FALSE: indicates whether pi has delivered a message

upon invocation c-broadcast(m) do
send message [SEND,m] to all pj ∈ P

upon receiving a message [SEND,m] from ps such that ¬sentecho do
sentecho← TRUE
send message [ECHO,m] to all pj ∈ P

upon receiving a message [ECHO,m] from pj do
if echos[j] = ⊥ then

echos[j]← m

upon exists m 6= ⊥ such that {pj ∈ P|echos[j] = m} ∈ Qi and ¬delivered do
delivered← TRUE
output c-deliver(m)

The first condition of integrity is guaranteed by using the delivered flag; the second condition holds because
because the receiver is wise, and therefore the quorum that it uses for the decision contains some correct processes
that have sent [ECHO,m] with the message m they obtained from ps according to the protocol.

Example. We illustrate the broadcast protocols using a six-process asymmetric quorum system QB , defined
through its fail-prone system FB . In FB , as shown below, for p1, p2, and p3, each process always trusts itself,
some other process of {p1, p2, p3} and one further process in {p1, . . . , p5}. Process p4 and p5 each assumes that
at most one other process of {p1, . . . , p5}may fail (excluding itself). Moreover, none of the processes p1, . . . , p5

ever trusts p6. For p6 itself, the fail-prone sets consist of p1 and one process of {p2, p3, p4, p5}.

FB:

F1 = Θ3
2({p2, p4, p5}) ∗ {{p6}}

F2 = Θ3
2({p3, p4, p5}) ∗ {{p6}}

F3 = Θ3
2({p1, p4, p5}) ∗ {{p6}}

F4 = Θ4
1({p1, p2, p3, p5}) ∗ {{p6}}

F5 = Θ4
1({p1, p2, p3, p4}) ∗ {{p6}}

F6 = {{p1}} ∗Θ4
1({p2, p3, p4, p5})

3
2

3
2

3
2

4
1

4
1

F1

F2

F3

F4

F6

p2 p3 p4 p6p1 p5

F5

4
1

It is easy to verify that B3(FB) holds; hence, let QB be the canonical quorum system of FB . Again, there is
no reliable process that could be trusted by all and QB is not a special case of a symmetric threshold Byzantine
quorum system. With F = {p1, p5}, for instance, processes p3 and p6 are wise, p2 and p4 are naı̈ve, and there is
no guild.

Consider an execution of Algorithm 3 with sender p∗4 and F = {p∗4, p∗5} (we write p∗4 and p∗5 to denote that
they are faulty). This means processes p1, p2, p3 are wise and form a guild because {p1, p2, p3} is a quorum for
all three; furthermore, p6 is naı̈ve.

46

D3.2 – Design of Extended Core Protocols

p1 : [ECHO, x]→ P p1 : c-deliver(x)

p2 : [ECHO, u]→ P p2 : no quorum of [ECHO] in Q2

p3 : [ECHO, x]→ P p3 : no quorum of [ECHO] in Q3

p∗4 :

{
[SEND, x]→ p1, p3

[SEND, u]→ p2, p6
p∗4 :

{
[ECHO, x]→ p1

[ECHO, u]→ p6

p∗5 :

{
[ECHO, x]→ p1

[ECHO, u]→ p6

p6 : [ECHO, u]→ P p6 : c-deliver(u)

Hence, p1 receives [ECHO, x] from {p1, p3, p
∗
4, p
∗
5} ∈ Q1 and c-delivers x, but the other wise processes do not

terminate. The naı̈ve p6 gets [ECHO, u] from {p2, p
∗
4, p
∗
5, p6} ∈ Q6 and c-delivers u 6= x.

Byzantine reliable broadcast. In the symmetric setting, consistent broadcast has been extended to (Byzantine)
reliable broadcast in a well-known way to address the disagreement about termination among the correct pro-
cesses [CGR11]. This primitive has the same interface as consistent broadcast, except that its events are called
r-broadcast and r-deliver instead of c-broadcast and c-deliver, respectively.

A reliable broadcast protocol also has all properties of consistent broadcast, but satisfies the additional totality
property stated next. Taken together, consistency and totality imply a notion of agreement, similar to what is also
ensured by many crash-tolerant broadcast primitives. Analogously to the earlier primitives with asymmetric
trust, our notion of an asymmetric reliable broadcast, defined next, ensures agreement on termination only for
the wise processes, and moreover only for executions with a guild. Also the validity of Definition 7 is extended
by the assumption of a guild. Intuitively, one needs a guild because the wise processes that make up the guild are
self-sufficient, in the sense that the guild contains a quorum of wise processes for each of its members; without
that, there may not be enough wise processes.

Definition 8 (Asymmetric Byzantine reliable broadcast). A protocol for asymmetric (Byzantine) reliable broad-
cast is a protocol for asymmetric Byzantine consistent broadcast with the revised validity condition and the
additional totality condition stated next:

Validity: In all executions with a guild, if a correct process ps c-broadcasts a message m, then all processes in
the maximal guild eventually c-deliver m.

Totality: In all executions with a guild, if a wise process r-delivers some message, then all processes in the
maximal guild eventually r-deliver a message.

The protocol of Bracha [Bra87] implements reliable broadcast subject to Byzantine faults with symmetric
trust. It augments the authenticated echo broadcast from Algorithm 3 with a second all-to-all exchange, where
each process is supposed to send READY with the payload message that will be r-delivered. When a process
receives the same m in 2f + 1 READY messages, in the symmetric model with a threshold Byzantine quorum
system, then it r-delivers m. Also, a process that receives [READY,m] from f + 1 distinct processes and has not
yet sent a READY chimes in and also sends [READY,m]. These two steps ensure totality.

For asymmetric quorums, the conditions of a process pi receiving f + 1 and 2f + 1 equal READY messages,
respectively, generalize to receiving the same message from a kernel for pi and from a quorum for pi. Intuitively,
the change in the first condition ensures that when a wise process pi receives the same [READY,m] message
from a kernel for itself, then this kernel intersects with some quorum of wise processes. Therefore, at least one
wise process has sent [READY,m] and pi can safely adopt m. Furthermore, the change in the second condition
relies on the properties of asymmetric quorums to guarantee that whenever some wise process has r-delivered m,

47

D3.2 – Design of Extended Core Protocols

Algorithm 4 Asymmetric Byzantine reliable broadcast protocol with sender ps (process pi)
State

sentecho← FALSE: indicates whether pi has sent ECHO
echos← [⊥]N : collects the received ECHO messages from other processes
sentready← FALSE: indicates whether pi has sent READY
readys← [⊥]N : collects the received READY messages from other processes
delivered← FALSE: indicates whether pi has delivered a message

upon invocation r-broadcast(m) do
send message [SEND,m] to all pj ∈ P

upon receiving a message [SEND,m] from ps such that ¬sentecho do
sentecho← TRUE
send message [ECHO,m] to all pj ∈ P

upon receiving a message [ECHO,m] from pj do
if echos[j] = ⊥ then

echos[j]← m

upon exists m 6= ⊥ such that {pj ∈ P|echos[j] = m} ∈ Qi and ¬sentready do // a quorum for pi
sentready← TRUE
send message [READY,m] to all pj ∈ P

upon exists m 6= ⊥ such that {pj ∈ P|readys[j] = m} ∈ Ki and ¬sentready do // a kernel for pi
sentready← TRUE
send message [READY,m] to all pj ∈ P

upon receiving a message [READY,m] from pj do
if readys[j] = ⊥ then

readys[j]← m

upon exists m 6= ⊥ such that {pj ∈ P|readys[j] = m} ∈ Qi and ¬delivered do
delivered← TRUE
output r-deliver(m)

then enough correct processes have sent a [READY,m] message such that all wise processes eventually receive a
kernel of [READY,m] messages and also send [READY,m].

Applying these changes to Bracha’s protocol results in the asymmetric reliable broadcast protocol shown in
Algorithm 4. Note that it strictly extends Algorithm 3 by the additional round of READY messages, in the same
way as for symmetric trust. For instance, when instantiated with the symmetric threshold quorum system of
n = 3f + 1 processes, of which f may fail, then every set of f + 1 processes is a kernel.

In Algorithm 4, there are two conditions that let a correct pi send [READY,m]: either when receiving a
quorum of [ECHO,m] messages for itself or after obtaining a kernel for itself of [READY,m]. For the first case,
we say pi sends READY after ECHO; for the second case, we say pi sends READY after READY.

Lemma 6. In any execution with a guild, there exists a unique m such that whenever a wise process sends a
READY message, it contains m.

Proof. Consider first all READY messages sent by wise processes after ECHO. The fact that Algorithm 4 extends
Algorithm 3 achieving consistent broadcast, combined with the consistency property in Definition 7 implies
immediately that the lemma holds for READY messages sent by wise processes after ECHO.

For the second case, consider the first wise process pi which sends [READY,m′] after READY. From the
protocol it follows that all processes in some kernel Ki ∈ Ki, which triggered pi to send [READY,m′], have sent

48

D3.2 – Design of Extended Core Protocols

[READY,m′] to pi. Moreover, according to the definition of a kernel, Ki overlaps with all quorums for pi. Since
there exists a guild in the execution, at least one of the quorums for pi consists exclusively of wise processes.
Hence, some wise process pj has sent [READY,m′] to pi. But since pi is the first wise process to send READY

after READY, it follows that pj sent [READY,m′] after ECHO; therefore, m′ = m from the proof in the first case.
Continuing this argument inductively over all READY messages sent after READY by wise processes, in the order
these were sent, shows that all those messages contain m and establishes the lemma.

Theorem 7. Algorithm 4 implements asymmetric Byzantine reliable broadcast.

Proof. Recall that the validity property assumes there exists a guild G. Since the sender ps is correct and accord-
ing to asymmetric quorum availability, every wise process pi in G eventually receives a quorum of [ECHO,m]
messages for itself, containing the messagem from ps. According to the protocol, pi therefore sends [READY,m]
after ECHO unless sentready = TRUE; if this is the case, however, pi has already sent [READY,m] after READY as
ensured by Lemma 6. Hence, every process in G eventually sends [READY,m]. Then every process in G receives
a quorum for itself of [READY,m] and r-delivers m, as ensured by the properties of a guild and by the protocol.

To establish the totality condition, suppose that some wise process pi has r-delivered a message m. Then
it has obtained [READY,m] messages from the processes in some quorum Qi ∈ Qi. Consider any other wise
process pj . Since pi and pj are both wise, it holds F ∈ Fi∗ and F ∈ Fj∗, which implies F ∈ Fi∗ ∩ Fj∗. Then,
the set K = Qi \ F intersects every quorum of pj by quorum consistency and is a kernel for pj by definition.
Since K consists only of correct processes, all of them have sent [READY,m] also to pj and pj eventually sends
[READY,m] as well. This implies that all wise processes eventually send [READY,m] to all processes. Every
process in Gmax therefore receives a quorum for itself of [READY,m] and r-delivers m, as required for totality.

The consistency property follows immediately from the preceding argument and from Lemma 6, which
implies that all wise processes deliver the same message.

Finally, integrity holds because of the delivered flag in the protocol and because of the argument showing
validity together with Lemma 6.

Example. Consider again the protocol execution with QB introduced earlier for illustrating asymmetric con-
sistent broadcast. Recall that F = {p∗4, p∗5}, the set {p1, p2, p3} is a guild, and p6 is naı̈ve. The start of the
execution is the same as shown previously and omitted. Instead of c-delivering x and u, respectively, p1 and p6

send [READY, x] and [READY, u] to all processes:

. . . p1 : [READY, x]→ P p1 : r-deliver(x)

. . . p2 : no quorum p2 : [READY, x]→ P p2 : r-deliver(x)

. . . p3 : no quorum p3 : [READY, x]→ P p3 : r-deliver(x)

. . . p∗4 : −

. . . p∗5 : −

. . . p6 : [READY, u]→ P p6 : no double-core set

Note that the kernel systems of processes p1, p2, and p3 are K1 = {{p1}, {p3}}, K2 = {{p1}, {p2}}, and
K3 = {{p2}, {p3}}. Hence, when p2 receives [READY, x] from p1, it sends [READY, x] in turn because {p1} is a
kernel for p2, and when p3 receives this message, then it sends [READY, x] because {p2} is a kernel for p3.

Furthermore, since {p1, p2, p3} is the maximal guild and contains a quorum for each of its members, all
three wise processes r-deliver x as implied by consistency and totality. The naı̈ve p6 does not r-deliver anything,
however.

Remarks. Asymmetric reliable broadcast (Definition 8) ensures validity and totality only for processes in the
maximal guild. On the other hand, an asymmetric consistent broadcast (Definition 7) ensures validity also for
all wise processes. We leave it as an open problem to determine whether these guarantees can also be extended
to wise processes for asymmetric reliable broadcast and the Bracha protocol. This question is equivalent to
determining whether there exist any wise processes outside the maximal guild.

49

D3.2 – Design of Extended Core Protocols

Another open problem concerns the conditions for reacting to READY messages in the asymmetric reliable
broadcast protocol. Already in Bracha’s protocol for the threshold model [Bra87], a process (1) sends its own
READY message upon receiving f+1 READY messages and (2) r-delivers an output upon receiving 2f+1 READY

messages. These conditions generalize for arbitrary, non-threshold quorum systems to receiving messages (1)
from any set that is guaranteed to contain at least one correct process and (2) from any set that still contains at
least one process even when any two fail-prone process sets are subtracted. In Algorithm 4, in contrast, a process
delivers the payload only after receiving READY messages from one of its quorums. But such a quorum (e.g.,⌈n+f+1

2

⌉
processes) may be larger than a set in the second case (e.g., 2f + 1 processes). It remains interesting

to find out whether this discrepancy is necessary.

5.7 Conclusion

The symmetric trust assumption underlying existing protocols in the area of Byzantine fault tolerant protocols
does not accurately model the actual trust relationships in reality. In this chapter, we extended the theoretical
model for Byzantine quorum systems of Malkhi and Reiter, which models the traditional trust model, to an
asymmetric trust model. We initiated the analysis of tasks in this model by providing protocols for shared
memory and broadcast, which are based on the traditional protocols from the symmetric setting but adapted to
the asymmetric trust assumptions.

Future research will address the design of further protocols in this trust model, especially Byzantine fault
tolerant consensus which is needed as a basis of blockchain protocols in the permissioned setting.

50

Chapter 6

Proof-of-Stake Sidechains

6.1 Introduction

Blockchain protocols and their most prominent application so far, cryptocurrencies like Bitcoin [Nak08], have
been gaining increasing popularity and acceptance by a wider community. While enjoying wide adoption, there
are several fundamental open questions remaining to be resolved that include (i) Interoperability: How can dif-
ferent blockchains interoperate and exchange assets or other data? (ii) Scalability: How can blockchain protocols
scale, especially proportionally to the number of participating nodes? (iii) Upgradability: How can a deployed
blockchain protocol codebase evolve to support a new functionality, or correct an implementation problem?

The main function of a blockchain protocol is to organise application data into blocks so that a set of nodes
that evolves over time can arrive eventually to consensus about the sequence of events that took place. The
consensus component can be achieved in a number of ways, the most popular is using proof-of-work [DN92]
(cf. [Nak08, GKL15]), while a promising alternative is to use proof-of-stake (cf. [Mic16, KRDO17, BPS16,
DGKR18]). Application data typically consists of transactions indicating some transfer of value as in the case
of Bitcoin [Nak08]. The transfer of value can be conditioned on arbitrary predicates called smart contracts such
as, for example, in Ethereum [But14, Woo14].

The conditions used to validate transactions depend on local blockchain events according to the view of each
node and they typically cannot be dependent on other blockchain sessions. Being able to perform operations
across blockchains, for instance from a main blockchain such as Bitcoin to a “sidechain” that has some enhanced
functionality, has been frequently considered a fundamental technology enabler in the blockchain space.1

Sidechains, introduced in [BCD+14], are a way for multiple blockchains to communicate with each other
and have one react to events in the other. Sidechains can exist in two forms. In the first case, they are simply a
mechanism for two existing stand-alone blockchains to communicate, in which case any of the two blockchains
can be the sidechain of the other and they are treated as equals. In the second case, the sidechain can be a “child”
of an existing blockchain, the mainchain, in that its genesis block, the first block of the blockchain, is somehow
seeded from the parent blockchain and the child blockchain is meant to depend on the parent blockchain, at least
during an initial bootstrapping stage.

A sidechain system can choose to enable certain types of interactions between the participating blockchains.
The most basic interaction is the transfer of assets from one blockchain to another. In this application, the nature
of the asset transferred is retained in that it is not transformed into a different class of asset (this is in contrast to a
related but different concept of atomic swaps). As such, it maintains its value and may also be transferred back.
The ability to move assets back and forth between two chains is sometimes referred to as a 2-way peg. Provided
the two chains are both secure as individual blockchains, a secure sidechain protocol construction allows this
security to be carried on to cross-chain transfers.

A secure sidechain system could be of a great value vis-à-vis all three of the pressing open questions in
blockchain systems mentioned above. Specifically:

1See e.g., https://blockstream.com/technology/ and [BCD+14].

51

https://blockstream.com/technology/

D3.2 – Design of Extended Core Protocols

Interoperability. There are currently hundreds of cryptocurrencies deployed in production. Transferring
assets between different chains requires transacting with intermediaries (such as exchanges). Furthermore, there
is no way to securely interface with another blockchain to react to events occurring within it. Enabling sidechains
allows blockchains of different nature to communicate, including interfacing with the legacy banking system
which can be made available through the use of a private ledger.

Scalability. While sidechains were not originally proposed for scalability purposes, they can be used to
off-load the load of a blockchain in terms of transactions processed. As long as 2-way pegs are enabled, a
particular sidechain can offer specialization by, e.g., industry, in order to avoid requiring the mainchain to handle
all the transactions occurring within a particular economic sector. This provides a straightforward way to “shard”
blockchains, cf. [LNZ+16, KJG+18, ZMR18].

Upgradability. A child sidechain can be created from a parent mainchain as a means of exploring a new
feature, e.g., in the scripting language, or the consensus mechanism without requiring a soft, hard, or velvet
fork [KMZ17, ZSJ+18]. The sidechain does not need to maintain its own separate currency, as value can be
moved between the sidechain and the mainchain at will. If the feature of the sidechain proves to be popular,
the mainchain can eventually be abandoned by moving all assets to the sidechain, which can become the new
mainchain.

Given the benefits listed above for distributed ledgers, there is a pressing need to address the question of
sidechain security and feasibility, which so far, perhaps surprisingly, has not received any proper formal treat-
ment.

Our contributions. First, we formalize the notion of sidechains by proposing a rigorous cryptographic defini-
tion, the first one to the best of our knowledge. The definition is abstract enough to be able to capture the security
for blockchains based on proof-of-work, proof-of-stake, and other consensus mechanisms.

A critical security feature of a sidechain system that we formalise is the firewall property in which a catas-
trophic failure in one of the chains, such as a violation of its security assumptions, does not make the other chains
vulnerable providing a sense of limited liability.2 The firewall property formalises and generalises the concept
of a blockchain firewall which was described in high level in [BCD+14]. Informally the blockchain firewall sug-
gests that no more money can ever return from the sidechain than the amount that was moved into it. Our general
firewall property allows relying on an arbitrary definition of exactly how assets can correctly be moved back and
forth between the two chains, we capture this by a so-called validity language. In case of failure, the firewall
ensures that transfers from the sidechain into the mainchain are rejected unless there exists a (not necessarily
unique) plausible history of events on the sidechain that could, in case the sidechain was still secure, cause the
particular transfers to take place.

Second, we outline a concrete exemplary construction for sidechains for proof-of-stake blockchains. For con-
ciseness our construction is described with respect to a generic PoS blockchain consistent with the Ouroboros
protocol [KRDO17] that underlies the Cardano blockchain, which is currently one of the largest pure PoS
blockchains by market capitalisation,3 nevertheless we also discuss how to modify our construction to operate
for Ouroboros Praos [DGKR18], Ouroboros Genesis [BGK+18], Snow White [BPS16] and Algorand [Mic16].

We prove our construction secure using standard cryptographic assumptions. We show that our construction
(i) supports safe cross-chain value transfers when the security assumptions of both chains are satisfied, namely
that a majority of honest stake exists in both chains, and (ii) in case of a one-sided failure, maintains the firewall
property, thus containing the damage to the chains whose security conditions have been violated.

2To follow the analogy with the term of limited liability in corporate law, a catastrophic sidechain failure is akin to a corporation
going bankrupt and unable to pay its debtors. In a similar fashion, a sidechain in which the security assumptions are violated may not
be able to cover all of its debtors. We give no assurances regarding assets residing on a sidechain if its security assumptions are broken.
However, in the same way that stakeholders of a corporation are personally protected in case of corporate bankruptcy, the mainchain is
also protected in case of sidechain security failures. Our security will guarantee that each incoming transaction from a sidechain will
always have a valid explanation in the sidechain ledger independently of whether the underlying security assumptions are violated or not.
A simple embodiment of this rule is that a sidechain can return to the mainchain at most as many coins as they have been sent to the
sidechain over all time.

3See https://coinmarketcap.com.

52

https://coinmarketcap.com

D3.2 – Design of Extended Core Protocols

A critical consideration in a sidechain construction is safeguarding a new sidechain in its initial “bootstrap-
ping” stage against a “goldfinger”4 type of attack [KDF13]. Our construction features a mechanism we call
merged-staking that allows mainchain stakeholders who have signalled sidechain awareness to create sidechain
blocks even without moving stake to the sidechain. In this way, sidechain security can be maintained assuming
honest stake majority among the entities that have signaled sidechain awareness that, especially in the bootstrap-
ping stage, are expected to be a large superset of the set of stakeholders that maintain assets in the sidechain.

Our techniques can be used to facilitate various forms of 2-way peggings between two chains. As an il-
lustrative example we focus on a parent-child mainchain-sidechain configuration where sidechain nodes follow
also the mainchain (what we call direct observation) while mainchain nodes need to be able to receive cryp-
tographically certified signals from the sidechain maintainers, taking advantage of the proof-of-stake nature of
the underlying protocol. This is achieved by having mainchain nodes maintain sufficient information about the
sidechain that allows them to authenticate a small subset of sidechain stakeholders that is sufficient to reliably
represent the view of a stakeholder majority on the sidechain. This piece of information is updated in regular
intervals to account for stake shifting on the sidechain. Exploiting this, each withdrawal transaction from the
sidechain to the mainchain is signed by this small subset of sidechain stakeholders. To minimise overheads we
batch this authentication information and all the withdrawal transactions from the sidechain in a single message
that will be prepared once per “epoch” (in this document we denote each interval with the term epoch). We will
refer to this signaling as cross-chain certification.

In greater detail, adopting some terminology from [KRDO17], the sidechain certificate is constructed by
obtaining signatures from the set of so-called slot leaders of the last Θ(k) slots of the previous epoch, where k is
the security parameter. Subsequently, these signatures will be combined together with all necessary information
to convince the mainchain nodes (that do not have access to the sidechain) that the sidechain certificate is valid.

We abstract the notion of this trust transition into a new cryptographic primitive called ad-hoc threshold
multisignatures (ATMS) that we implement in three distinct ways. The first one simply concatenates signatures
of elected slot leaders. While secure, the disadvantage of this implementation is that the size of the sidechain
certificate is Θ(k) signatures. An improvement can be achieved by employing multisignatures and Merkle-tree
hashing for verification key aggregation; using this we can drop the sidechain-certificate size to Θ(r) signatures
where r slot leaders do not participate in its generation; in the optimistic case r � k and thus this scheme can be
a significant improvement in practice. Finally, we show that STARKs and bulletproofs [BBHR18,BBB+18] can
be used to bring down the size of the certificate to be optimally succinct in the random oracle model. We observe
that in the case of an active sidechain (e.g., one that returns assets at least once per epoch) our construction with
succinct sidechain certificates has optimal storage requirements in the mainchain.
Related work. Sidechains were first proposed as a high level concept in [BCD+14]. Notable proposed imple-
mentations of the concept are given in [Szt15, Ler16]. In these works, no formal proof of security is provided
and their performance is sometimes akin to maintaining the whole blockchain within the sidechain, limiting
any potential scalability gains. There have been several attempts to create various cross-chain transfer mech-
anisms including Polkadot [Woo16], Cosmos [Buc16], Blockstream’s Liquid [DPW+16] and Interledger [TS].
These constructions differ in various aspects from our work including in that they focus on proof-of-work or
private (Byzantine) blockchains, require federations, are not decentralized and — in all cases — lack a for-
mal security model and analysis. Threshold multi-signatures were considered before, e.g., [LHL94], without
the ad-hoc characteristic we consider here. A related primitive that has been considered as potentially useful
for enabling proof-of-work (PoW) sidechains (rather than PoS ones) is a (non-interactive) proof of proof-of-
work [KLS16, KMZ17]; nevertheless, these works do not give a formal security definition for sidechains, nor
provide a complete sidechain construction. We reiterate that while we focus on PoS, our definitions and model
are fully relevant for the PoW setting as well.

4An example of goldfinger attack is one in which the adversary tries to create long forks in order to show that the blockchain is
insecure. In this way the adversary can decrease the value of the coins in terms of FIAT currency.

53

D3.2 – Design of Extended Core Protocols

6.2 Preliminaries

6.2.1 Our Model

We employ the model from [DGKR18], which is in turn based on [KRDO17] and [GKL17]. The formalization
we use below captures both synchronous and semi-synchronous communication; as well as both semi-adaptive
and fully adaptive corruptions.

Protocol Execution

We divide time into discrete units called slots. Players are equipped with (roughly) synchronized clocks that
indicate the current slot: we assume that any clock drift is subsumed in the slot length. Each slot slr is indexed
by an integer r ∈ {1, 2, . . .}. We consider a UC-style [Can01] execution of a protocol Π, involving an environ-
ment Z , a number of parties Pi, functionalities that these parties can access while running the protocol (such as
the DDiffuse used for communication, described below), and an adversary A. All these entities are interactive
algorithms. The environment controls the execution by activating parties via inputs it provides to them. The
parties, unless corrupted, respond to such activations by following the protocol Π and invoking the available
functionalities as needed.

(Semi-)Adaptive Corruptions.

The adversary influences the protocol execution by interacting with the available functionalities, and by corrupt-
ing parties. The adversary can only corrupt a party Pi if it is given permission by the environment Z running
the protocol execution (captured as a special message from Z to A). Upon receiving permission from the en-
vironment, the adversary corrupts Pi after a certain delay of Λ slots, where Λ is a parameter of our model. In
particular, if Λ = 0 we talk about fully adaptive corruptions and the corruption is immediate. The model with
Λ > 0 is referred to as allowing Λ-semi-adaptive corruptions (as opposed to the static corruptions model, where
parties can only be corrupted before the start of the execution). A corrupted party Pi will relinquish its entire
state to A; from this point on, the adversary will be activated in place of the party Pi.

(Semi-)Synchronous Communication.

We employ the “Delayed Diffuse” functionality DDiffuse∆ given in [DGKR18] to model (semi-)synchronous
communication among the parties. It allows each party to diffuse a message once per round, with the guarantee
that it will be delivered to all other parties in at most ∆ slots (the delay within this interval is under adversarial
control). The adversary can also read and reorder all messages that are in transit, as well as inject new messages.
We provide a detailed description of the functionality DDiffuse∆ in Section 6.7 for completeness.

We refer to the setting where honest parties communicate via DDiffuse∆ as the ∆-semi-synchronous setting
and sometimes omit ∆ if it is clear from the context. The special case of ∆ = 0 is referred to as the synchronous
setting.

Clearly, the above model is by itself too strong to allow us to prove any meaningful security guarantees for the
executed protocol without further restrictions (as it, for example, does not prevent the adversary from corrupting
all the participating parties). Therefore, in what follows, we will consider such additional assumptions, and will
only provide security guarantees as long as such assumptions are satisfied. These assumptions will be specific to
the protocol in consideration, and will be an explicit part of our statements.5

6.2.2 Blockchains and Ledgers

A blockchain (or a chain) (denoted e.g. C) is a sequence of blocks where each one is connected to the previous
one by containing its hash.

5As an example, we will be assuming that a majority of a certain pool of stake is controlled by uncorrupted parties.

54

D3.2 – Design of Extended Core Protocols

Blockchains (and in general, any sequences) are indexed using bracket notation. C[i] indicates the ith block,
starting from C[0], the genesis block. C[−i] indicates the ith block from the end, with C[−1] being the tip of the
blockchain. C[i : j] indicates a subsequence, or subchain of the blockchain starting from block i (inclusive) and
ending at block j (exclusive). Any of these two indices can be negative. Omitting one of the two indexes in the
range addressing takes the subsequence to the beginning or the end of the blockchain, respectively. Given blocks
A and Z in C, we let C{A : Z} denotes the subchain obtained by only keeping the blocks from A (inclusive) to
Z (exclusive). Again any of these two blocks can be omitted to indicate a subchain from the beginning or to the
end of the blockchain, respectively. In blockchain protocols, each honest party P maintains a currently adopted
chain. We denote CP [t] the chain adopted by party P at slot t.

A ledger (denoted in bold-face, e.g. L) is a mechanism for maintaining a sequence of transactions, often
stored in the form of a blockchain. In this document, we slightly abuse the language by letting L (without
further qualifiers) interchangeably refer to the algorithms used to maintain the sequence, and all the views of
the participants of the state of these algorithms when being executed. For example, the (existing) ledger Bitcoin
consists of the set of all transactions that ever took place in the Bitcoin network, the current Unspent Transaction
Output (UTXO) set, as well as the local views of all the participants.

In contrast, we call a ledger state a concrete sequence of transactions tx1, tx2, . . . stored in the stable part
of a ledger L, typically as viewed by a particular party. Hence, in every blockchain-based ledger L, every fixed
chain C defines a concrete ledger state by applying the interpretation rules given as a part of the description of L
(for example, the ledger state is obtained from the blockchain by dropping the last k blocks and serializing the
transactions in the remaining blocks). We maintain the typographic convention that a ledger state (e.g. L) always
belongs to the bold-face ledger of the same name (e.g. L). We denote by LP [t] the ledger state of a ledger
L as viewed by a party P at the beginning of a time slot t, and by ĽP [t] the complete state of the ledger (at
time t) including all pending transactions that are not stable yet. For two ledger states (or, more generally, any
sequences), we denote by � the prefix relation.

Recall the definitions of persistence and liveness of a robust public transaction ledger given in the most recent
version of [GKL17]:

Persistence. For any two honest parties P1, P2 and two time slots t1 ≤ t2, it holds LP1 [t1] � ĽP2 [t2].

Liveness. If all honest parties in the system attempt to include a transaction tx then, at any slot t after u slots
(called the liveness parameter), any honest party P , if queried, will report tx ∈ LP [t].

For a ledger L that satisfies persistence at time t, we denote by L∪[t] (resp. L∩[t]) the sequence of transactions
that are seen as included in the ledger by at least one (resp., all) of the honest parties. Finally, length(L) denotes
the length of the ledger L, i.e., the number of transactions it contains.

6.2.3 Underlying Proof-of-Stake Protocols

For conciseness we present our construction on a generic PoS protocol based on Ouroboros PoS [KRDO17]. As
we outline in Section 6.8, our construction can be easily adapted to other provably secure proof-of-stake proto-
cols: Ouroboros Praos [DGKR18], Ouroboros Genesis [BGK+18], Snow White [BPS16], and Algorand [Mic16].
While a full understanding of all details of these protocols is not required to follow our work, an overview of
Ouroboros is helpful to follow the main body of this part of the document. We provide this high-level overview
here, and point an interested reader to Section 6.8 for details on the other protocols.

Ouroboros.

The protocol operates (and was analyzed) in the synchronous model with semi-adaptive corruptions. In each
slot, each of the parties can determine whether she qualifies as a so-called slot leader for this slot. The event of
a particular party becoming a slot leader occurs with a probability proportional to the stake controlled by that
party and is independent for two different slots. It is determined by a public, deterministic computation from the

55

D3.2 – Design of Extended Core Protocols

stake distribution and so-called epoch randomness (we will discuss shortly where this randomness comes from)
in such a way that for each slot, exactly one leader is elected.

If a party is elected to act as a slot leader for the current slot, she is allowed to create, sign, and broadcast
a block (containing transactions that move stake among stakeholders). Parties participating in the protocol are
collecting such valid blocks and always update their current state to reflect the longest chain they have seen so
far that did not fork from their previous state by too many blocks into the past.

Multiple slots are collected into epochs, each of which contains R ∈ N slots. The security arguments
in [KRDO17] require R ≥ 10k for a security parameter κ; we will consider R = 12k as additional 2k slots in
each epoch will be useful for our construction. Each epoch is indexed by an index j ∈ N. During an epoch j, the
stake distribution that is used for slot leader election corresponds to the distribution recorded in the ledger up to
a particular slot of epoch j−1, chosen in a way that guarantees that by the end of epoch j−1, there is consensus
on the chain up to this slot. (More concretely, this is the latest slot of epoch j − 1 that appears in the first 4k out
of its total R slots.) Additionally, the epoch randomness ηj for epoch j is derived during the epoch j − 1 via a
guaranteed-output delivery coin tossing protocol that is executed by the epoch slot leaders, and is available after
10k slots of epoch j − 1 have passed (we refer to [KRDO17] for more details).

In our treatment, we will refer to the relevant parts of the above-described protocol as follows:

GetDistr(j) returns the stake distribution SDj to be used for epoch j, as recorded in the chain up to slot 4k of
epoch j − 1;

GetRandomness(j) returns the randomness ηj for epoch j as derived during epoch j − 1;

ValidateConsensusLevel(C) checks the consensus-level validity of a given chain C: it verifies that all block
hashes are correct, signatures are valid and belong to eligible slot leaders;

PickWinningChain(C, C) applies the chain-selection rule: from a set of chains {C} ∪ C it chooses the longest
one that does not fork from the current chain C more than k blocks in the past;

SlotLeader(U, j, sl,SDj , ηj) determines whether a party U is elected a slot leader for the slot sl of epoch j,
given stake distribution SDj and randomness ηj .

Moreover, the function EpochIndex (resp. SlotIndex) always returns the index of the current epoch (resp. slot),
and the event NewEpoch (resp. NewSlot) denotes the start of a new epoch (resp. slot). Since we use these
functions in a black-box manner, our construction can be readily adapted to PoS protocols with a similar structure
that differ in the details of these procedures.

Ouroboros was shown in [KRDO17] to achieve both persistence and liveness under the following assump-
tions: (1) synchronous communication; (2) 2R-semi-adaptive corruptions; (3) majority of stake in the stake
distribution for each epoch is always controlled by honest parties during that epoch.

6.3 Defining Security of Pegged Ledgers

In this section we give the first formal definition of security desiderata for a system of pegged ledgers (popularly
often called sidechains). We start by conveying its intuition and then proceed to the formal treatment.

We consider a setting where a set of parties run a protocol maintaining n ledgers L1,L2, . . . ,Ln, each
of the ledgers potentially carrying many different assets. (This protocol might of course be a combination of
subprotocols for each of the ledgers.) For each i ∈ [n], we denote by Ai the security assumption required by Li:
For example, Ai may denote that there has never been a majority of hashing power (or stake in a particular asset,
on this ledger or elsewhere) under the control of the adversary; that a particular entity (in case of a centralized
ledger) was not corrupted; and so on. We assume that all Ai are monotone in the sense that once violated,
they cannot become true again. Formally, Ai is a sequence of events Ai[t] for each time slot t that satisfy
¬Ai[t]⇒ ¬Ai[t+ 1] for all t.

56

D3.2 – Design of Extended Core Protocols

There is an a priori unlimited number of (types of) assets, each asset representing e.g. a different cryptocur-
rency. For simplicity we assume that assets of the same type are fungible, but our treatment easily covers also
non-fungible assets. We will allow specific rules of behavior for each asset (called validity languages), and each
asset behaves according to these rules on each of the ledgers where it is present.

We will fix an operator merge(·) that merges a set of ledger states L = {L1, L2, . . . , Ln} into a single ledger
state denoted by merge(L). We will discuss concrete instantiations of merge(·) later, for now simply assume that
some canonical way of merging all ledger states into one is given.

Informally, at any point t during the execution, our security definition only provides guarantees to the subset
S of ledgers that have their security assumptions Ai[t] satisfied (and hence are all considered uncorrupted). We
require that:

- each ledger in S individually maintains both persistence and liveness;

- for each asset A, when looking at the sequence of all A-transactions σ that occurred on the ledgers in S
(sequentialized via the merge operator), there must exist a hypothetical sequence of A-transactions τ that
could have happened on the compromised ledgers, such that the merge of σ and τ would be valid according
to the validity language of A.

We now proceed to formalize the above intuition.

Definition 9 (Assets, syntactically valid transactions). For an asset A, we denote by TA the valid transaction set
of A, i.e., the set of all syntactically valid transactions involving A. For a ledger L we denote by TL the set of
transactions that can be included into L. For notational convenience, we define TA,L , TA ∩ TL. Let Assets(L)
denote the set of all assets that are supported by L. Formally, Assets(L) , {A : TA,L 6= ∅}.

We assume that each transaction pertains to a particular asset and belongs to a particular ledger, i.e., for
distinct A1 6= A2 and L1 6= L2, we have that TA1 ∩ TA2 = ∅ and TL1 ∩ TL2 = ∅. However, our treatment can be
easily generalized to alleviate this restriction.

We now generically characterize the validity of a sequence of transactions involving a particular asset. This
is captured individually for each asset via a notion of an asset’s validity language, which is simply a set of words
over the alphabet of this asset’s transactions. The asset’s validity language is meant to capture how the asset is
mandated to behave in the system. Let ε denote the empty sequence and ‖ represent concatenation.

Definition 10 (Asset validity language). For an asset A, the asset validity language of A is any language VA ⊆ T ∗A
that satisfies the following properties:

1. Base. ε ∈ VA.

2. Monotonicity. For any w,w′ ∈ T ∗A we have w 6∈ VA ⇒ w ‖w′ 6∈ VA.

3. Uniqueness of transactions. Words from VA never contain the same transaction twice: for any tx ∈ TA
and any w1, w2, w3 ∈ T ∗A we have w1 ‖ tx ‖w2 ‖ tx ‖w3 6∈ VA.

The first condition in the definition above is trivial, the second one mandates the natural property that if a
sequence of transactions is invalid, it cannot become valid again by adding further transactions. Finally, the
third condition reflects a natural “uniqueness” property of transactions in existing implementations. While not
necessary for our treatment, it allows for some simplifications.

The following definition allows us to focus on a particular asset or ledger within a sequence of transactions.

Definition 11 (Ledger state projection). Given a ledger state L, we call a projection of L with respect to a set X
(and denote by πX (L)) the ledger state that is obtained from L by removing all transactions not in X . To simplify
notation, we will use πA and πI as a shorthand for πTA and π⋃

i∈I TLi
, denoting the projection of the transactions

of a ledger state with respect to particular asset A or a particular set of individual ledger indices. Naturally, for
a language V we define the projected language πX (V) := {πX (w) : w ∈ V}, which contains all the sequences
of transactions from the original language, each of them projected with respect to X .

57

D3.2 – Design of Extended Core Protocols

The concept of effect transactions below captures ledger interoperability at the syntactic level.

Definition 12 (Effect Transactions). For two ledgers L and L′, the effect mapping is a mapping of the form
effectL→L′ : TL → (TL′ ∪ {⊥}). A transaction tx′ = effectL→L′(tx) 6= ⊥ is called the effect transaction of the
transaction tx.

Intuitively, for any transaction tx ∈ TL, the corresponding transaction effectL→L′(tx) ∈ TL′ ∪{⊥} identifies
the necessary effect on ledger L′ of the event of the inclusion of the transaction tx into the ledger L. With
foresight, in an implementation of a system of ledgers where a “pegging” exists, the transaction effectL→L′(tx)
has to be eventually valid and includable in L′ in response to the inclusion of tx in L. Additionally, throughout
the document we assume that an effect transaction is always clearly identifiable as such, and its corresponding
“sending” transaction can be derived from it; our instantiation does have this property.

We use a special symbol ⊥ to indicate that the transaction tx does not necessitate any action on L′ (this will
be the case for most transactions). We will now be interested mostly in transactions that do require an action on
the other ledger.

Definition 13 (Cross-Ledger Transfers). For two ledgers L and L′ and an effect mapping effectL→L′(·), we
refer to a transaction in TL that requires some effect on L′ as a (L,L′)-cross-ledger transfer transaction (or
cross-ledger transfer for short). The set of all cross-ledger transfers is denoted by T cl

L,L′ ⊆ TL, formally T cl
L,L′ ,

{tx ∈ TL : effectL→L′(tx) 6= ⊥}.

Given ledger states L1, L2, . . . , Ln, we need to consider a joint ordered view of the transactions in all these
ledgers. This is provided by the merge operator. Intuitively, merge allows us to create a combined view of
multiple ledgers, putting all of the transactions across multiple ledgers into a linear ordering. We expect that even
if certain ledgers are missing from its input, merge is still able to produce a global ordering for the remaining
ledgers. With foresight, this ability of the merge operator will enable us to reason about the situation when
some ledgers fail: In that case, the respective inputs to the merge function will be missing. The merge function
definition below depends on the effect mappings, we keep this dependence implicit for simpler notation.

Definition 14 (Merging ledger states). The merge(·) function is any mapping taking a subset of ledger states
L ⊆ {L1, L2, . . . , Ln} and producing a ledger state merge(L) such that:

1. Partitioning. The ledger states in L are disjoint subsequences of merge(L) that cover the whole sequence
merge(L).

2. Topological soundness. For any i 6= j such that Li, Lj ∈ L and any two transactions tx ∈ Li and tx′ ∈ Lj ,
if tx′ = effectLi→Lj (tx) then tx precedes tx′ in merge(L).

We will require that our validity languages are correct in the following sense.

Definition 15 (Correctness of VA). A validity language VA is correct with respect to a mapping merge (·), if for
any ledger states L , (L1, . . . , Ln) such that πA (merge (L)) ∈ VA, indices i 6= j, and any cross-ledger transfer
tx ∈ Li ∩ T cl

Li,Lj
such that effectLi→Lj (tx) = tx′ 6= ⊥ is not in Lj , we have

πA
(
merge

(
L1, . . . , Li, . . . , Lj ‖ tx′, . . . , Ln

))
∈ VA .

The above definition makes sure that if a cross-ledger transfer of an asset A is included into some ledger
Li and mandates an effect transaction on Lj , then the inclusion of this effect transaction will be consistent with
VA. Note that this does not yet guarantee that the effect transaction will indeed be included into Lj , this will be
provided by the liveness of Lj required below.

We are now ready to give our main security definition. In what follows, we call a system-of-ledgers protocol
any protocol run by a (possibly dynamically changing) set of parties that maintains an evolving state of n ledgers
{Li}i∈[n].

58

D3.2 – Design of Extended Core Protocols

Definition 16 (Pegging security). A system-of-ledgers protocol Π for {Li}i∈[n] is pegging-secure with liveness
parameter u ∈ N with respect to:

- a set of assumptions Ai for ledgers {Li}i∈[n],

- a merge mapping merge (·),

- validity languages VA for each A ∈
⋃
i∈[n] Assets(Li),

if for all PPT adversaries, all slots t and for St , {i : Ai[t] holds}we have that except with negligible probability
in the security parameter:

Ledger persistence: For each i ∈ St, Li satisfies the persistence property.

Ledger liveness: For each i ∈ St, Li satisfies the liveness property parametrized by u.

Firewall: For all A ∈
⋃
i∈St Assets(Li),

πA
(
merge

({
L∪i [t] : i ∈ St

}))
∈ πSt(VA) .

Intuitively, the firewall property above gives the following guarantee: If the security assumption of a par-
ticular sidechain has been violated, we demand that the sequence of transactions σ that appears in the still
uncompromised ledgers is a valid projection of some word from the asset validity language onto these ledgers.
This means that there exists a sequence of transactions τ that could have happened on the compromised ledgers,
such that it would “justify” the current state of the uncompromised ledgers as a valid state. Of course, we don’t
know whether this sequence τ actually occurred on the compromised ledger, however, given that this ledger itself
no longer provides any reliable state, this is the best guarantee we can still offer to the uncompromised ledgers.

Looking ahead, when we define a particular validity language for our concrete, fungible, constant-supply
asset, we will see that this property will translate into the mainchain maintaining “limited liability” towards the
sidechain: the amount of money transferred back from the sidechain can never exceed the amount of money that
was previously moved towards the sidechain, because no plausible history of sidechain transactions can exist that
would justify such a transfer.

6.4 Implementing Pegged Ledgers

We present a construction for pegged ledgers that is based on Ouroboros PoS [KRDO17], but also applicable to
other PoS systems such as Snow White [BPS16] and Algorand [Mic16] (for a discussion of such adaptations, see
Section 6.8). Our protocol will implement a system of ledgers with pegging security according to Definition 16
under an assumption on the relative stake power of the adversary that will be detailed below.

The main challenge in implementing pegged ledgers is to facilitate secure cross-chain transfers. We consider
two approaches to such transfers and refer to them as direct observation or cross-chain certification. Consider
two pegged ledgers L1 and L2. Direct observation of L1 means that every node of L2 follows and validates L1; it
is easy to see that this enables transfers from L1 to L2. On the other hand, cross-chain certification of L2 means
that L1 contains appropriate cryptographic information sufficient to validate data issued by the nodes following
L2. This allows transfers of assets from L2, as long as they are certified, to be accepted by L1-nodes without
following L2. The choice between direct observation and cross-chain certification can be made independently
for each direction of transfers between L1 and L2, any of the 4 variants is possible (cf. Figure 6.1).

Another aspect of implementing pegged ledgers in the PoS context is the choice of stake distribution that
underlies the PoS on each of the chains. We again consider two options, which we call independent staking and
merged staking. In independent staking, blocks on say L1 are “produced by” coins from L1 (in other words, the
block-creating rights on L1 are attributed based on the stake distribution recorded on L1 only). In contrast, with

59

D3.2 – Design of Extended Core Protocols

Figure 6.1: Deployment options for PoS Sidechains.

merged staking, blocks on L1 are produced either by coins on L1, or coins on L2 that have, via their staking key,
declared support of L1 (but otherwise remain on L1); see Figure 6.1. Also here, all 4 combinations are possible.

In our construction we choose an exemplary configuration between two ledgers L1 and L2, so that direct
observation is applied to L1, cross-chain certification to L2, independent-staking in L1 and merged staking in
L2. As a result, all stakeholders in L2 also keep track of chain development on L1 (and hence run a full node for
L1) while the opposite is not necessary, i.e., L1 stakeholders can be oblivious of transactions and blocks being
added to L2. This illustrates the two basic possibilities of pegging and can be easily adapted to any other of the
configurations between two ledgers in Figure 6.1.

In order to reflect the asymmetry between the two chains in our exemplary construction we will refer to L1

as the “mainchain” MC, and to L2 as the “sidechain” SC. To elaborate further on this concrete asymmetric
use case, we also fully specify how the sidechain can be initialized from scratch, assuming that the mainchain
already exists.

The pegging with the sidechain will be provided with respect to a specific asset of MC that will be created
on MC. Note that MC as well as SC may carry additional assets but for simplicity we will assume that staking
and pegging is accomplished only via this single primary asset.

The presentation of the construction is organized as follows. First, in Section 6.4.1 we introduce a novel
cryptographic primitive, ad-hoc threshold multisignature (ATMS), which is the fundamental building block for
cross-chain certification. Afterwards, in Section 6.4.3 we use it as a black box to build secure pegged ledgers
with respect to concrete instantiations of the functions merge and effect and a validity language VA for asset A
given in Section 6.4.2. Finally, we discuss specific instantiations of ATMS in Section 6.5.

6.4.1 Ad-Hoc Threshold Multisignatures

We introduce a new primitive, ad-hoc threshold multisignatures (ATMS), which borrow properties from mul-
tisignatures and threshold signatures and are ad-hoc in the sense that signers need to be selected on the fly from
an existing key set. In Section 6.4.3 we describe how ATMS are useful for periodically updating the “anchor of
trust” that the mainchain parties have w.r.t. the sidechain they are not following.

ATMS are parametrized by a threshold t. On top of the usual digital signatures functionality, ATMS also
provide a way to: (1) aggregate the public keys of a subset of these parties into a single aggregate public key
avk; (2) check that a given avk was created using the right sequence of individual public keys; and (3) aggregate
t′ ≥ t individual signatures from t′ of the parties into a single aggregate signature that can then be verified using
avk, which is impossible if less than t individual signatures are used.

The definition of an ATMS is given below.

Definition 17. A t-ATMS is a tuple of algorithms Π = (PGen,Gen,Sig,Ver,AKey,ACheck,ASig,AVer)
where:

PGen(1κ) is the parameter generation algorithm that takes the security parameter 1κ and returns system pa-
rameters P .

Gen(P) is the key-generation algorithm that takes P and produces a public/private key pair (vki, ski) for the
party invoking it.

60

D3.2 – Design of Extended Core Protocols

Sig(ski,m) is the signature algorithm as in an ordinary signature scheme: it takes a private key and a message
and produces a (so-called local) signature σ.

Ver(m, pki, σ) is the verification algorithm that takes a public key, a message and a signature and returns true
or false.

AKey(VK) is the key aggregation algorithm that takes a sequence of public keys VK and aggregates them into
an aggregate public key avk.

ACheck(VK, avk) is the aggregation-checking algorithm that takes a public key sequence VK and an aggregate
public key avk and returns true or false, determining whether VK were used to produce avk.

ASig (m,VK, 〈(vk1, σ1), · · · , (vkd, σd)〉) is the signature-aggregation algorithm that takes a message m, a
sequence of public keys VK and a sequence of d pairs 〈(vk1, σ1), · · · , (vkd, σd)〉 where each σi is a local
signature on m verifiable by vki and each vki is in a distinct position within VK, ASig combines these
into a multisignature σ that can later be verified with respect to the aggregate public key avk produced
from VK (as long as d ≥ t, see below).

AVer(m, avk, σ) is the aggregate-signature verification algorithm that takes a message m, an aggregate public
key avk, and a multisignature σ, and returns true or false.

Definition 18 (ATMS correctness). Let Π be a t-ATMS scheme initialized with P ← PGen(1κ), let (vk1, sk1),
· · · , (vkn, skn) be a sequence of keys generated via Gen(P), let VK be a sequence containing (not neces-
sarily unique) keys from the above and avk be generated by invoking avk ← AKey(VK). Let m be any
message and let 〈(vk1, σ1), · · · , (vkd, σd)〉 be any sequence of key/signature pairs provided that d ≥ t and
every vki appears in a unique position in the sequence VK, where σi is generated as σi = Sig(ski,m). Let
σ ← ASig (m,VK, 〈(vk1, σ1), · · · , (vkd, σd)〉). The scheme Π is correct if for every such message and se-
quence the following hold:

1. Ver(m, vki, σi) is true for all i;

2. ACheck(VK, avk) is true;

3. AVer(m, avk, σ) is true.

We define the security of an ATMS in the definition below, via a cryptographic game given in Algorithm 1.

Definition 19 (Security). A t-ATMS scheme Π = (PGen,Gen,Sig,Ver,AKey,ACheck,ASig,AVer) is se-
cure if for any PPT adversary A and any polynomial p there exists some negligible function negl such that
Pr[ATMSΠ,A(κ, p(κ)) = 1] < negl(κ) .

The quantity q in the ATMS game counts how many keys the adversary is in control of among her chosen keys
keys which will be used for aggregate-signature verification. The sequence keys can contain both adversarially-
generated keys as well as some of the keys VK honestly generated by the challenger. The variable q counts the
number of adversarially controlled keys in keys. This includes those keys in keys for which the adversary has
obtained a signature for the message in question (through the use of the oracle Osig(·)) or which the adversary
has corrupted completely (through the use of the oracleOcor(·)), as well as those keys which have been generated
by the adversary herself and therefore are not in VK.

It is straightforward to see that if Π is a secure ATMS, then the tuple (PGen,Gen,Sig,Ver) is a EUF-CMA-
secure signature scheme.

Looking ahead, note that since the AKey algorithm is only invoked with the public keys of the participants,
it can be invoked by anyone, not just the parties who hold the respective secret keys, as long as the public
portion of their keys is published. Furthermore, notice that the above games allow the adversary to generate
more public/private key pairs of their own and combine them at will.

Having defined the ATMS primitive, we will now describe a sidechain construction that uses it. Concrete
instantiations of the ATMS primitive are presented in Section 6.5.

61

D3.2 – Design of Extended Core Protocols

Algorithm 1 The ATMS game

1: function ATMS(κ, p)
2: VK ← ε;SK ← ε;Qsig ← ∅;Qcor ← ∅
3: P ← PGen(1κ)

4: (m,σ, avk, keys)← AOgen,Osig(·,·),Ocor(·) (P)
5: q ← 0
6: for vk in keys do
7: if vk /∈ VK ∨ vk ∈ Qsig[m] ∪Qcor then
8: q ← q + 1
9: end if

10: end for
11: return AVer(m, avk, σ) ∧ ACheck(keys, avk) ∧ q < t
12: end function
13: function Ogen

14: (vk, sk)← Gen(P)
15: VK ← VK‖ vk
16: SK ← SK‖ sk
17: return vk
18: end function
19: function Osig(i,m)
20: Qsig[m]← Qsig[m] ∪ {VK[i]}
21: return Sig(SK[i],m)
22: end function
23: function Ocor(i)
24: Qcor ← Qcor ∪ {VK[i]}
25: return SK[i]
26: end function

62

D3.2 – Design of Extended Core Protocols

6.4.2 A Concrete Asset A

We now present an example of a simple fungible asset with fixed supply, which we denote A, and describe its
validity language VA. This will be the asset (and validity language) considered in our construction and proof.
While VA is simple and natural, it allows us to exhibit the main features of our security treatment and illustrate
how it can be applied to more complex languages such as those capable of capturing smart contracts; we omit
such extensions in this version. Note that our language is account-based, but a UTXO-based validity language
can be considered in a similar manner.

Instantiating VA.

The validity language VA for the asset A considers two ledgers: the mainchain ledger L0 , MC and the
sidechain ledger L1 , SC. For this asset, every transaction tx ∈ TA has the form tx = (txid, lid, (send, sAcc),
(rec, rAcc), v, σ), where:

• txid is a transaction identifier that prevents replay attacks. We assume that txid contains sufficient infor-
mation to identify lid by inspection and that this is part of syntactic transaction validation.

• lid ∈ {0, 1} is the ledger index where the transaction belongs.

• send ∈ {0, 1} is the index of the sender ledger Lsend and sAcc is an account on this ledger, this is the
sender account. For simplicity, we assume that sAcc is the public key of the account.

• rec ∈ {0, 1} is the index of the recipient ledger Lrec and rAcc is an account (again represented by a public
key) on this ledger, this is the recipient account. We allow either Lsend = Lrec, which denotes a local
transaction, or Lsend 6= Lrec, which denotes a remote transaction (i.e., a cross-ledger transfer).

• v is the amount to be transferred.

• σ is the signature of the sender, i.e. made with the private key corresponding to the public key sAcc on the
plaintext (txid, (send, sAcc), (rec, rAcc), v).

The correctness of lid is enforced by the ledgers, i.e., for both i ∈ {0, 1} the set TA,Li only contains transactions
with lid = i. Note that although we sometimes notationally distinguish between an account and the public key
that is associated with it, for simplicity we will assume that these are either identical or can always be derived
from one another (this assumption is not essential for our construction).

The membership-deciding algorithm for VA is presented in Algorithm 2. It processes the sequence of trans-
actions (tx1, tx2, . . . , txm) given to it as input in their order. Assuming transactions are syntactically valid, the
function verifies for each transaction txi the freshness of txid, validity of the signature, and availability of suffi-
cient funds on the sending account. For an intra-ledger transaction (i.e., one that has send = rec), these are all
the performed checks.

More interestingly, VA also allows for cross-ledger transfers. Such transfers are expressed by a pair of trans-
actions in which send 6= rec. The first transaction appears in lid = send, while the second transaction appears
in lid = rec. The two transactions are identical except for this change in lid (this is the only exception to the
txid-freshness requirement). Every receiving transaction has to be preceded by a matching sending transaction.
Cross-chain transactions have to, similarly to intra-ledger transactions, conform to laws of balance conservation.

Note that VA does not require that every “sending” cross-ledger transaction on the sender ledger is matched
by a “receiving” transaction on the receiving ledger. Hence, if the asset A is sent from ledger Lsend but has not
yet arrived on Lrec then validity for this asset is not violated. All the validity language ensures is that appending
the sidechain receive transaction to the rec will eventually be a valid way to extend the receiving ledger, as long
as the sidechain send transaction has been included in send.

63

D3.2 – Design of Extended Core Protocols

Algorithm 2 The transaction sequence validator (membership-deciding algorithm for VA).

1: function valid-seq(~tx)
2: BALANCE ← Initial stake distribution; seen← ∅
3: . Traverse transactions in order
4: for tx ∈ ~tx do
5: . Destructure tx into its constituents
6: (txid, lid, (send, sAcc), (rec, rAcc), v, σ)← tx
7: if ¬valid(σ) then
8: return false
9: end if

10: if lid = send then
11: . Replay protection
12: if seen[txid] 6= 0 then
13: return false
14: end if
15: . Law of conservation
16: if BALANCE[send][sAcc]− v < 0 then
17: return false
18: end if
19: else
20: . The case lid = rec 6= send
21: if seen[txid] 6= 1 then
22: return false
23: end if
24: . Cross-ledger validity
25: tx′ ← effect−1

L(1−lid)→Llid
(tx)

26: if tx′ has not appeared before then
27: return false
28: end if
29: end if
30: if seen[txid] = 0 then
31: . Update sender balance when money departs
32: BALANCE[send][sAcc] −= v
33: end if
34: . Update receiver balance when money arrives
35: if (seen[txid] = 0 ∧ send = rec)∨

(seen[txid] = 1 ∧ send 6= rec) then
36: BALANCE[rec][rAcc] += v
37: end if
38: seen[txid]+ = 1
39: end for
40: return true
41: end function

64

D3.2 – Design of Extended Core Protocols

31 6 7

MC

epoch jadopt

activation period

epoch jstart

2 4 5SC

stable blocks R - 4k 4k

Figure 6.2: Our sidechain construction. Blocks are shown as rectangles. Adjacent blocks connect with straight
lines. Squiggly lines indicate some blocks are omitted. MC is at the top, SC at the bottom. Epochs are separated
by dashed lines. ejadopt is the epoch of first signalling; ejstart is the activation epoch. Blocks of interest: 1. The
first block signalling SC awareness; 2. The SC genesis block; 3. A txsend transaction for a deposit; 4. A
txrec transaction for a deposit; 5. A txsend transaction for withdrawal; 6. A sc cert transaction signalling trust
transition within SC and certifying pending withdrawals; 7. A txrec transaction for withdrawal, certified in a
sc cert transaction e.g. in block 6.

Instantiating effectLi→Lj .

For the simple asset A outlined above, every cross-ledger transfer is a “sending” transaction tx with Llid =
Lsend 6= Lrec appearing in Lsend, and its effect transaction is a “receiving” transaction tx′ with Llid = Lrec 6=
Lsend in Lrec that is otherwise identical (except for the different lid′ = 1−lid). Hence, we define effectLsend→Lrec(tx) =
tx′ exactly for all these transactions and no other.

Instantiating merge(·).

It is easy to construct a canonical function merge(·) once we see its inputs not only as ledger states (i.e., sequences
of transactions) but we also exploit the additional structure of the blockchains carrying those ledgers. The
canonical merge of the set of ledger states L is the lexicographically minimum topologically sound merge, in
which transactions of ledger Li are compared favourably to transactions in Lj if i < j. However, note that the
construction we provide below will work for any topologically sound merge function.

One can easily observe the following statement.

Proposition 8. The validity language VA is correct (according to Definition 15) with respect to the merge
function defined above.

6.4.3 The Sidechain Construction

We now describe the procedures for running a sidechain in the configuration outlined at the beginning of this
section: with independent staking on MC and merged staking on SC; direct observation of MC and cross-chain
certification of SC. We describe the sidechain’s creation, maintenance, and the way assets can be transferred to
it and back. The protocol we describe below is quite complex, we hence choose to describe different parts of the
protocol in differing levels of detail. This level is always chosen with the intention to allow the reader to easily
fill in the details. A graphical depiction of our construction that can serve as a reference is given in Figure 6.2.

65

D3.2 – Design of Extended Core Protocols

Notation.

Where applicable, we denote the analogues of the mainchain objects on the sidechain with an additional overline.
In our pseudocode, we use the statement “post tx to L” to refer to the action of broadcasting the transaction tx
to the maintainers of the ledger L so that they include it in the ledger eventually as prescribed by the protocol.
Unless indicated otherwise, we also denote by MC (resp. SC) the current ledger state of the ledger MC (resp.
SC) as viewed by the party executing the protocol. Similarly, we denote by CMC (resp. CSC) the currently held
chain corresponding to the ledger MC (resp. SC). Hence, for example MC always represents the state stored in
the stable part of the chain CMC.

Helper Transactions and Data.

The construction uses a set of helper transactions which can be included in both blockchains, but do not get re-
ported in the respective ledgers. These helper transactions store the appropriate metadata which is implementation-
specific and allow the pegging functionality to be maintained. The transaction types sidechain support, side-
chain certificate, sidechain success and sidechain failure, whose nature will be detailed later, are of this kind.
Moreover, our concrete implementation of pegged ledgers extends certain transactions with additional infor-
mation (such as Merkle-tree inclusion proofs) that are, for convenience, understood to be stripped off these
transactions when the blockchain is interpreted as a ledger.

Initialization.

The creation of a new sidechain SC starts by any of the stakeholders of the mainchain adopting the code that
implements the sidechain. This action does not require the stakeholders to put stake on the sidechain but merely
to run the code to support it (e.g. by installing a pluggable module into their client software). In the following
this is referred to as “adopting the sidechain” and captured by the predicate SidechainAdoption. The adoption
is announced at the mainchain by a special transaction detailed below. Each sidechain is identified by a unique
identifier idSC.

Let jadopt denote the epoch on MC when the first adoption transaction has appeared; the sidechain SC – if
its activation succeeds as discussed below – will start at the beginning of some later epoch jstart and will have
its slots and epochs synchronized with MC. The software module implementing the sidechain comes with a set
of deterministic rules describing the requirements for the successful activation of the sidechain, as well as for
determining jstart. These rules are sidechain-specific and are captured in a predicate ActivationSuccess and a
function ActivationEpoch, respectively. One typical such example is the following: the sidechain starts at the
beginning of MC-epoch jstart for the smallest jstart that satisfies: (i) jstart − jadopt > c1; (ii) at least c2-fraction
of stake on MC is controlled by stakeholders that have adopted SC; for some constants c1,c2. Additionally, if
such a successful activation does not occur until a failure condition captured by a predicate ActivationFailure is
met (e.g. until a predetermined period of c3 > c1 epochs has passed), the sidechain initialization is aborted.

The activation process then follows the steps outlined below, the detailed description is given in Algorithm 3).
First, every stakeholder Ui of MC (holding a key pair (vk, sk)) that supports the sidechain posts a special

transaction [SIDECHAIN SUPPORT, idSC, vk, vk
′], signed by sk into the mainchain. Here vk′ is a public key

from an ATMS key pair freshly generated by Ui; its role is explained in Section 6.4.3 below.
If the sidechain activation succeeds, then during the first slot of epoch jstart the stakeholders of MC that

support SC construct the genesis block G = (idSC,SDjstart , η̄jstart , H(idSC, ηjstart),P, avkjstart) for SC where
H is hash function. ηjstart is the randomness for leader election on MC in epoch jstart (derived on MC in epoch
jstart − 1). It is reused to compute the initial sidechain randomness η̄jstart as well, further η̄j′ for j′ > jstart
are determined independently on SC using the Ouroboros coin-tossing protocol.6 Furthermore, P and avkjstart

are public parameters and an aggregated public key of an ATMS scheme; their creation and role is discussed in
6This can be interpreted as using MC to implement the setup functionality needed to bootstrap SC.

66

D3.2 – Design of Extended Core Protocols

Algorithm 3 Sidechain Initialization procedures.

The algorithm is run by every stakeholder U that adopted the sidechain. We denote by (vk, sk) its public and
private keys.

1: upon SidechainAdoption(idSC) do
2: sidechain state[idSC]← initializing
3: (vk′, sk′)← Gen(P)
4: σ ← Sigsk[SIDECHAIN SUPPORT, idSC, vk, vk

′]
5: post [SIDECHAIN SUPPORT, idSC, vk, vk

′, σ] to MC
6: end upon
7: upon MC.NewEpoch() do
8: j ←MC.EpochIndex()
9: if sidechain state[idSC] = initializing then

10: if ActivationFailure() then
11: sidechain state[idSC]← failed
12: post sidechain failure(idSC) to MC
13: else if ActivationSuccess() then
14: sidechain state[idSC]← initialized
15: jstart ← ActivationEpoch()
16: Post sidechain success(idSC) to MC
17: end if
18: end if
19: if sidechain state[idSC] = initialized ∧ j = jstart then
20: η̄jstart ← H(idSC, ηjstart)
21: VKjstart ← 2k last slot leaders of ejstart in SC
22: avkjstart ← AKey(VKjstart)
23: G←

(
idSC, SDjstart , η̄jstart ,P, avkjstart

)
24: CSC ← (G)
25: end if
26: end upon

67

D3.2 – Design of Extended Core Protocols

Section 6.4.3 below. Note that G is defined mostly for notational compatibility, as SDjstart is empty at this point
anyway. G can be constructed as soon as ηjstart is known and stable.

The stakeholders that adopted SC post into MC a transaction sidechain success(idSC) to signify that SC
has been initialized. If the sidechain creation expires, then, after the first block of the next epoch after expiration
occurs, the stakeholders of MC that supported SC post the transaction sidechain failure(idSC) to MC. We
assume that both predicates ActivationSuccess and ActivationFailure can be evaluated based on the state of MC
only, and hence spurious success/failure transactions will be considered invalid.

Maintenance.

Once the sidechain is created, both the mainchain and the sidechain need to be maintained by their respective set
of stakeholders (detailed below) running their respective instance of the Ouroboros protocol.

In the case of the mainchain, the maintenance procedure is given in Algorithm 4. This algorithm is run
by all stakeholders controlling stake that is recorded on the mainchain. Each stakeholder, on every new slot,
collects all the candidate MC-chains from the network (modelled via the Diffuse functionality) and filters
them for both consensus-level validity (using MC.ValidateConsensusLevel) and transaction validity (using the
VERIFIERMC predicate given in Algorithm 5). Out of the remaining valid chains, he chooses his new state CMC

via PickWinningChain. Then the stakeholder evaluates whether he is an eligible leader for this slot, basing its
selection on the stake distribution SDj and randomness ηj , which are determined once per epoch in accordance
with the Ouroboros protocol. If the stakeholder finds out he is a slot leader, he creates a new block B by in-
cluding all transactions currently valid with respect to CMC (as per the predicate VERIFYTXMC given also in
Algorithm 5), appends it to the chain CMC and diffuses the result7 for other parties to adopt.

The maintenance procedure for SC is similar, hence we only describe here how it differs from Algorithm 4.
Most importantly, it is executed by all stakeholders who have adopted SC, irrespectively of whether they own
any stake on SC. Recall that the slots and epochs of the SC-instance of Ouroboros are aligned with the slots
and epochs of MC.

The first difference is that all ocurrences of MC and CMC are naturally replaced by SC and CSC, re-
spectively. This also means that the validity of received chains (resp. transactions), determined on line 13
(resp. 21), is decided based on predicate VERIFIERSC(·,CMC) (resp. VERIFYTXSC(·)) instead of the pred-
icate VERIFIERMC(·) (resp. VERIFYTXMC(·)). Additionally, note that VERIFYTXSC must be called with a
sequence of transactions containing both the transactions in SC as well as the transactions in MC interspersed
and timestamped, similarly to the way done in Line 2 of Algorithm 7. This is straightforward to implement, as
the sidechain maintainers also directly observe the mainchain. The predicates VERIFYTXSC and VERIFIERSC

are given in Algorithms 6 and 7, respectively.
Second, instead of the stake distribution SDj determined on line 6, a different distribution SD

∗
j is determined

to be used for slot leader selection in the j-th epoch of the sidechain. The distribution SD
∗

contains all stake
belonging to stakeholders that have adopted SC, irrespectively of whether this stake is located on MC or SC
(we call such stake SC-aware). It can be obtained by combining the distribution SD as recorded in SC with
the distribution of SC-aware stake on MC (which is known to SC-maintainers via direct observation of MC).
Note that the distribution used for epoch j reflects the stake distribution of SC-aware stake in the past, namely
by slot 4k of epoch j−1, just as in MC. Naturally, this also implies that the fourth parameter for the SlotLeader
predicate on line 17 is SD

∗
j instead of SDj .

Finally, the block construction procedure on line 23 is adjusted so that in the last 2k slots of each epoch, the
created blocks on the sidechain also contain an additional ATMS signature of a so-called sidechain certificate
(how this certificate is constructed and used will be described below). Hence, whenever sl mod R > 10k,

7As in [KRDO17, DGKR18], we simplify our presentation by diffusing the complete chains, although a practical implementation
would only diffuse the block B.

68

D3.2 – Design of Extended Core Protocols

Algorithm 4 Mainchain maintenance procedures.

The algorithm is run by every stakeholder U with stake on MC in every epoch j ≥ jstart, sk denotes the secret
key of U . An analogous mainchain-maintaining procedure was running also before jstart and is omitted.

1: upon MC.NewSlot() do
2: sl←MC.SlotIndex()
3: . First slot of a new epoch
4: if sl mod R = 1 then
5: j ←MC.EpochIndex()
6: SDj ←MC.GetDistr(j)
7: ηj ←MC.GetRandomness(j)
8: end if
9: C ← chains received via Diffuse

10: . Consensus-level validation
11: Cvalid ← Filter(C,MC.ValidateConsensusLevel)
12: . Transaction-level validation
13: Cvalidtx ← Filter(Cvalid, VERIFIERMC(·))
14: . Apply chain selection rule
15: CMC ←MC.PickWinningChain(CMC, Cvalidtx)
16: . Decide slot leadership based on SDj and ηj
17: if MC.SlotLeader(U, j, sl,SDj , ηj) then
18: prev← H(CMC[−1])
19: ~txstate ← transaction sequence in CMC

20: ~tx← current transactions in mempool
21: ~txvalid ← VERIFYTXMC(~txstate ‖ ~tx)[|~txstate| :]
22: σ ← Sigsk(prev, ~txvalid)
23: B ← (prev, ~txvalid, σ)
24: CMC ← CMC ‖B
25: Diffuse(CMC)
26: end if
27: end upon

69

D3.2 – Design of Extended Core Protocols

Algorithm 5 The MC verifier.

1: function VERIFYTXMC(~tx)
2: bal← initial stake; avk ← initial aggregate key
3: seen← ∅; pool← 0; pfs mtrs← ∅; pfs used← ∅
4: for tx ∈ ~tx do
5: if type(tx) = sc cert then
6: (m,σ)← tx
7: if ¬AVer(m, avk, σ) then
8: continue
9: end if

10: (txs root, avk′)← m
11: avk ← avk′

12: pfs mtrs[txs root]← true
13: else
14: (txid, lid, (send, sAcc), (rec, rAcc), v, σ)← tx
15: m← (txid, lid, (send, sAcc), (rec, rAcc), v)
16: if ¬Ver(m, sAcc, σ) ∨ seen[txid] 6= 0 then
17: continue
18: end if
19: if lid = send then
20: if bal[sAcc]− v < 0 then
21: continue
22: end if
23: bal[sAcc] −= v
24: else if send 6= rec then
25: π ← tx.π
26: (mtr, inclusion pf)← π
27: if π ∈ pfs used ∨mtr 6∈ pfs mtrs∨ ¬MTR-VER(mtr, inclusion pf) then
28: continue
29: end if
30: end if
31: if lid = rec then
32: bal[rAcc] += v
33: end if
34: if send 6= rec then
35: if lid = send then
36: pool −= v
37: else
38: pool += v
39: end if
40: end if
41: end if
42: seen← seen ‖ tx
43: end for
44: return seen
45: end function
46: function VERIFIERMC(Cmc)
47: ~tx← ∅
48: for B ∈ Cmc do
49: for tx ∈ B do
50: ~tx← ~tx ‖ tx
51: end for
52: end for
53: return ~tx 6= VERIFYTXMC(~tx)
54: end function

70

D3.2 – Design of Extended Core Protocols

line 23 is replaced by B ← (prev, ~txvalid, σ, σsc certj+1) where σsc certj+1 = Sigsk(sc certj+1), j is the current
epoch index and sc certj+1 is the sidechain certificate that we formally describe in Algorithm 12). The role of

Algorithm 9 Constructing sidechain certificate sc cert.

The algorithm is run by every SC-maintainer at the end of each epoch, j denotes the index of the ending epoch.

1: function ConstructSCCert(j)
2: T ← last 4k slots of ej−1 and first R− 4k slots of ej
3: ~tx← transactions included in SC during T
4: pendingj+1 ←

{
tx ∈ ~tx : tx.send 6= tx.rec

}
5: VKj+1 ← keys of last 2k SC slot leaders in ej+1

6: avkj+1 ← AKey(VKj+1)
7: m←

(〈
pendingj+1

〉
, avkj+1

)
8: VKj ← keys of last 2k SC slot leaders for ej
9: σj+1 ← ASig

(
m, {(vki, σi)}di=1 ,VKj

)
10: sc certj+1 ← (

〈
pendingj+1

〉
, avkj+1, σj+1)

11: return sc certj+1

12: end function

the certificate produced by the end of epoch j − 1 to be included in MC at the beginning of epoch j (denoted
sc certj) is to attest all the withdrawals that had their sending transactions included into SC in either the last 4k
slots of ej−2 or the first R− 4k slots of ej−1. More details are given later.

Depositing to SC.

Once SC is initialized, cross-chain transfers to it can be made from MC. A cross-chain transfer operation in
this case consists of two transactions txsend and txrec that both have send = MC, rec = SC, and all other fields
are also identical, except that each txi for i ∈ {send, rec} contains lid = i. The sending transaction txsend is
meant to be included in MC, while the receiving transaction txrec is meant to be included in SC.

Whenever a stakeholder on MC that has adopted SC wants to transfer funds to SC, she diffuses txsend
with the correct receiving account on SC and the desired amount. Honest slot leaders in MC include these
transactions into their blocks just like any intra-chain transfer transactions. Maintainers of MC keep account
of a variable poolSC, initially set to zero. Whenever a txsend is included into MC, they increase poolSC by the
amount of this transaction.

When txsend becomes stable in MC (i.e., appears in MC, this happens at most 2k slots after its inclusion), the
stakeholder creates and diffuses the corresponding txrec which credits the respective amount of coins to rAcc in
SC, to be included into SC. In practice, this is akin to a coinbase transaction, as the money was not transferred
from an existing SC account.

Note that depositing from MC to SC is relatively fast; it merely requires a reliable inclusion of txsend into
MC and consequently of txrec into SC, as guaranteed by the liveness of the underlying Ouroboros instances.
The depositing algorithm code is shown in Algorithm 10.

Withdrawing to MC.

The withdrawal operation is more cumbersome than the depositing operation since not all nodes of MC have
adopted (i.e., are aware of and follow) the sidechain SC. As transactions, the withdrawals have the same structure
as deposits, consisting of txsend and txrec, with the only difference that now they both have send = SC and
rec = MC. The sending transaction will be handled in the same way as in the case of deposits, but the receiving
transaction requires a different certificate-based treatment, as detailed below.

71

D3.2 – Design of Extended Core Protocols

Algorithm 10 Depositing from MC to SC.

The algorithm is run by a stakeholder U in control of the secret key sk corresponding to the account sAcc on
MC.

1: function Send(sAcc, rAcc, v)
2: txid

$← {0, 1}k
3: σ ← Sigsk (txid,MC, (MC, sAcc), (SC, rAcc), v)
4: txsend ← (txid,MC, (MC, sAcc), (SC, rAcc), v, σ)
5: post txsend to MC
6: end function
7: function Receive(txid, sAcc, rAcc, v)
8: wait until txsend ∈ MC
9: σ ← Sigsk (txid,SC, (MC, sAcc), (SC, rAcc), v)

10: txrec ← (txid,SC, (MC, sAcc), (SC, rAcc), v, σ)
11: post txrec to SC
12: end function

Whenever a stakeholder in SC wishes to withdraw coins from SC to MC, she creates and diffuses the
respective transaction txsend with the correct transfer details as before. If txsend is included in a block that
belongs in one of the first R− 4k slots of some epoch then let jsend denote the index of this epoch, otherwise let
jsend denote the index of the following epoch. The stakeholder then waits for the end of the epoch ejsend to pass
and ejsend+1 to begin.

At the beginning of ejsend+1, a special transaction called sidechain certificate sc certjsend+1 is generated by
the maintainers of SC. It contains: (i) a Merkle-tree commitment to all withdrawal transactions txsend that were
included into SC during last 4k slots of epoch jsend − 1 and the first R − 4k slots of epoch jsend (as these all
are already stable by slot R − 2k of epoch jsend); (ii) other information allowing the maintainers of MC to
inductively validate the certificate in every epoch. The construction of sc cert is detailed below, for now assume
that the transaction provides a proof that the included information about withdrawal transactions is correct. The
transaction sc cert is broadcast into the MC network to be included into MC at the beginning of ejsend+1 by the
first honest slot leader.

The stakeholder who wishes to withdraw their money into MC now creates and diffuses the transaction txrec
to be included in MC. This transaction is only included into MC if it is considered valid, which means: (1)
it is properly signed; (2) it contains a Merkle inclusion proof confirming its presence in some already included
sidechain certificate; (3) its amount is less or equal to the current value of poolSC. If included, MC-maintainers
decrease the value of poolSC by the amount of this transaction. The code of the withdrawal algorithm is illus-
trated in Algorithm 11.

The certificate transaction.

We now describe the construction of the sc cert transaction, also called the sidechain certificate, formally de-
scribed in Algorithm 12). The role of the certificate produced by the end of epoch j − 1 to be included in MC
at the beginning of epoch j (denoted sc certj) is to attest all the withdrawals that had their sending transactions
included into SC in either the last 4k slots of ej−2 or the first R− 4k slots of ej−1. To maintain a chain of trust
for the MC maintainers that cannot verify these transactions by observing SC, we make use of ad-hoc threshold
multisignatures introduced in Section 6.4.1. Namely, the sc certj transaction also contains an aggregate key
avkj of an ATMS, and is signed by the previous aggregate key avkj−1 included in sc certj−1.

sc certj is generated by SC-maintainers and contains:

72

D3.2 – Design of Extended Core Protocols

Algorithm 11 Withdrawing from SC to MC.

The algorithm is run by a stakeholder U in control of the secret key sk corresponding to the account sAcc on
SC.

1: function Send(sAcc, rAcc, v) . Send v from sAcc on SC to rAcc on MC

2: txid
$← {0, 1}k

3: σ ← Sigsk (txid,SC, (SC, sAcc), (MC, rAcc), v)
4: txsend ← (txid,SC, (SC, sAcc), (MC, rAcc), v, σ)
5: post txsend to SC
6: end function
7: function Receive(txid, sAcc, rAcc, v)
8: wait until txsend ∈ CSC

9: j′ ← epoch where CSC contains txsend
10: if (txsend included in slot sl ≤ R− 4 of ej′) then
11: jsend ← j′

12: else
13: jsend ← j′ + 1
14: end if
15: wait until sc certjsend+1 ∈ CMC

16: π ← Merkle-tree proof of txsend in sc certjsend+1

17: σ ← Sigsk (txid,MC, (SC, sAcc), (MC, rAcc), v, π)
18: txrec ← (txid,MC, (SC, sAcc), (MC, rAcc), v, π, σ)
19: post txrec to MC
20: end function

Algorithm 12 Constructing sidechain certificate sc cert.

The algorithm is run by every SC-maintainer at the end of each epoch, j denotes the index of the ending epoch.

1: function ConstructSCCert(j)
2: T ← last 4k slots of ej−1 and first R− 4k slots of ej
3: ~tx← transactions included in SC during T
4: pendingj+1 ←

{
tx ∈ ~tx : tx.send 6= tx.rec

}
5: VKj+1 ← keys of last 2k SC slot leaders in ej+1

6: avkj+1 ← AKey(VKj+1)
7: m←

(〈
pendingj+1

〉
, avkj+1

)
8: VKj ← keys of last 2k SC slot leaders for ej
9: σj+1 ← ASig

(
m, {(vki, σi)}di=1 ,VKj

)
10: sc certj+1 ← (

〈
pendingj+1

〉
, avkj+1, σj+1)

11: return sc certj+1

12: end function

73

D3.2 – Design of Extended Core Protocols

• The epoch index j.

• The pending transactions from SC to MC. Let ~tx be the sequence of all transactions which are included
in SC during either the last 4k slots of ej−2 or the first R− 4k slots of ej . All transactions in ~tx that have
SC = send 6= rec = MC are picked up and combined into a list pendingj (sorted in the same order as in
SC). Let

〈
pendingj

〉
denote a Merkle-tree commitment to this list.

• The new ATMS key avkj . The key is created from the public keys of the slot leaders of the last 2k slots
of the epoch j, using threshold k+ 1. Hence, it allows to verify whether a particular signature comes from
k + 1 out of these 2k keys.

• Signature valid with respect to avkj−1.

The full sc certj is therefore a tuple
(
〈pendingj〉, avkj , σj

)
, where σj is an ATMS signature on the preceding

elements that verifies using avkj−1.
The certificate sc certj+1 is constructed as follows: Both the stake distribution SD

∗
j+1 and the SC-randomness

η̄j+1 (and hence also the slot leader schedule for SC in epoch j + 1) are determined by the states of the
blockchains MC and SC by the end of slot 10k of epoch j. Therefore, during the last 2k slots of epoch j,
the 2k elected slot leaders for these slots can already include a (local) signature on (their proposal of) sc certj+1

into the blocks they create. Given the deterministic construction of sc certj+1, all valid blocks ending up in the
part of SC-chain belonging to the last 2k slots of epoch j will contain a local signature on the same sc certj+1,
and by the chain growth property of the underlying blockchain, there will be at least k + 1 of them. Therefore,
any party observing SC can now combine these signatures into an ATMS that can be later verified using the
ATMS key avkj , it can hence create the complete certificate sc certj+1 and serve it to the maintainers of MC
for inclusion.

Transitioning trust.

As already outlined above, our construction uses ATMS to maintain the authenticity of the sidechain certificates
from epoch to epoch. We now describe this inductive process in greater detail.

Initially, during the setup of the sidechain, P ← PGen(1κ) is ran. Stakeholders generate their keys by
invoking (ski, vki)← Gen(P). In case Gen(·) is a probabilistic algorithm, it is run in a derandomized fashion
with its coins fixed to the output of a PRNG that is seeded by H(ats init, ηjstart) where “ats init” is a fixed label
and H is a hash function. This ensures that P will be uniquely determined and will still be unpredictable. We
note that this process is only suitable for ATMS that employ public-coin parameters; our ATMS constructions in
Section 6.5 are only of this type.

For the induction base, P is published as part of the Genesis block G. Each time an MC stakeholder Ui
posts the sidechain support message to MC, he also includes an ATMS key vki. Subsequently, when the SC
is initialized, the stake distribution SD

∗
jstart is known to the MC participants. Hence, based on SD

∗
jstart and η̄jstart ,

these can determine the last 2k slot leaders of epoch jstart in SC, we will refer to them as the jstart-th trust
committee. (In general, the j-th trust committee for j ≥ jstart will be the set of last 2k slot leaders in epoch
j.) SC-maintainers (that also follow MC) can also determine the jstart-th trust committee and therefore create
avkjstart from their public keys and insert it into the genesis block G of SC. They can also serve it as a special
transaction to the MC-maintainers to include into the mainchain. The correctness of avkjstart can be readily
verified by anyone following the mainchain using the procedure ACheck of the used ATMS.

For the induction step, consider an epoch j > jstart and assume that there exists an ATMS key of the previous
epoch avkj−1, known to the mainchain maintainers. Every honest SC slot leader among the last 2k slot leaders
of SC epoch j−1 will produce a local signature sji on the messagem = (j, 〈pendingj〉, avkj) using their private
key skj−1

i by running Sig(skj−1
i ,m), and include this signature into the block they create. The rest of the SC

maintainers will verify that the epoch index, avkj and 〈pendingj〉 are correct (by ensuring ACheck(VKj , avkj)
is true for VK denoting the public keys of the last 2k slot leaders on SC for epoch j, and by recomputing the

74

D3.2 – Design of Extended Core Protocols

Merkle tree commitment 〈pendingj〉) and that sji is valid by running Ver(m, vkj−1
i , sji), otherwise the block

is considered invalid. Thanks to the chain growth property of the underlying Ouroboros protocol, after the
last 2k slots of epoch j − 1 the honest sidechain maintainers will all observe at least k + 1 signatures among
the {sji : i ∈ [2k]} desired ones. They then combine all of these local signatures into an aggregated ATMS
signature σj ← ASig(m, {(sji , vk

j−1
i)}, keysj). This combined signature is then diffused as part of sc certj on

the mainchain network. The mainchain maintainers verify that it has been signed by the sidechain maintainers
by checking that AVer(m, avkj−1, σj) evaluates to true and include it in a mainchain block. This effectively
hands over control to the new committee.

6.5 Constructing Ad-Hoc Threshold Multisignatures

In this section we give several ways to instantiate the ATMS primitive. We order them by increasing succinctness
but also increasing complexity.

6.5.1 Plain ATMS

Given a EUF-CMA-secure signature scheme, combining signatures and keys can be implemented by plain con-
catenation. Subsequently, combined verification requires all signatures to be verified individually. This illustrates
that the ATMS primitive is easy to realize if no concern is given to succinctness. The size of these aggregate
signatures and aggregate keys is quadratic in the security parameter κ: for the aggregate key 2k individual keys
of size κ bits each are concatenated (with k = Θ(κ)), while the aggregate signature consists of at least k + 1
individual signatures of size κ bits.

6.5.2 Multisignature-based ATMS

The previous construction can be improved by employing an appropriate multisignature scheme. In the con-
struction below, we consider the multisignature scheme ΠMGS from [Bol03]. We make use of a homomorphic
property of this scheme: any d individual signatures σ1, . . . , σd created using secret keys belonging to (not nec-
essarily unique) public keys vk1, . . . , vkd can be combined into a multisignature σ =

∏d
i=1 σi that can then be

verified using an aggregated public key avk =
∏d
i=1 vki.

Our multisignature-based t-ATMS construction works as follows: the procedures PGen, Gen, Sig and Ver
work exactly as in ΠMGS. Given a set S, denote by 〈S〉 a Merkle-tree commitment to the set S created in
some arbitrary, fixed, deterministic way. Procedure AKey, given a sequence of public keys VK = {vki}ni=1

returns avk = (
∏n
i=1 vki, 〈VK〉). Since AKey is deterministic, ACheck(VK, avk) simply recomputes it to

verify avk. ASig takes the message m, d pairs of signatures with their respective public keys {σi, vki}di=1 and
n− d additional public keys {v̂ki}n−di=1 and produces an aggregate signature

σ =

(
d∏
i=1

σi, {v̂ki}n−di=1 , {πv̂ki}
n−d
i=1

)
(6.1)

where π
v̂ki

denotes the (unique) inclusion proof of v̂ki in the Merkle commitment
〈
{vki}di=1 ∪ {v̂ki}

n−d
i=1

〉
.

Finally, the procedure AVer takes a message m, an aggregate key avk, and an aggregate signature σ parsed as
in (6.1), and does the following: (a) verifies that each of the public keys v̂ki indeed belongs to a different leaf in
the commitment 〈VK〉 in avk using membership proofs π

v̂ki
; (b) computes avk′ by dividing the first part of avk

by
∏n−d
i=1 v̂ki; (c) returns true if and only if d ≥ t and the first part of σ verifies as a ΠMGS-signature under avk′.

Note that the scheme ΠMGS requires vki to be accompanied by a (non-interactive) proof-of-possession (POP)
[RY07] of the respective secret key. This POP can be appended to the public key and verified when the key is
communicated in the protocol. For conciseness, we omit these proofs-of-knowledge from the description (but
we include them in the size calculation below).

75

D3.2 – Design of Extended Core Protocols

Asymptotic Complexity. This provides an improvement in our use case over the plain scheme: In the opti-
mistic case where each of the 2k committee members create their local signatures, both the aggregate key avk
and the aggregate signature σ are linear in the security parameter, which is optimal. If r < k of the keys do
not provide their local signatures, the construction falls back to being quadratic in the worst case if r = k − 1.
However, for the practically relevant case where r � k and almost all slot leaders produced a signature, this
construction is clearly preferable.

Concrete space requirements. Concrete signature sizes in this scheme for practical parameters could be as
follows. We set k = 2160 (as is done in the Cardano implementations of [KRDO17]) and for the signature
of [Bol03] we have in bits: |vki| = 272, |σi| = 528 (N. Di Prima, V. Hanquez, personal communication,
16 Mar 2018), with |vki + POP | = |vki| + |σi| = 800 bits where POP represents the size of the proof of
possession. Assuming 256-bit hash function is used for the Merkle tree construction, the size of the data which
needs to be included in MC in the optimistic case during an epoch transition is |avk| + |σ| + |〈pending〉| =
|vki+POP |+2|H(·)|+ |σi| = 800+512+528 = 1840 bits per epoch. In a case where 10% of participants fail
to sign, the size will be |avk|+ |σ| = |vki +POP |+ 2|H(·)|+ |σi|+ 0.1 · 2 ·k(|vki +POP |+ log(k)|H(·)) =
800 + 512 + 528 + 432 · (500 + 12 · 256) = 1544944, or about 190 KB per epoch (which is approximately 5
days).

6.5.3 ATMS From Proofs of Knowledge

While the aggregate signatures construction seems sufficient for practice, it still requires a sc cert transaction
that is in the worst case quadratic in the security parameter. The approach below, based on proofs of knowledge,
improves on that.

We define avk ← AKey(VK) to be the root of a Merkle tree that has VK at its leaves. Let Sig,Ver come
from any secure signature scheme. In our ATMS, the local signature is equal to si = Sig(ski,m), where
ski is the secret key that corresponds to the vki verification key. Letting S′ = {si} be the signatures gener-
ated by a sequence VK′ containing keys in VK, the ASig(VK, S′,m) algorithm reconstructs the Merkle tree
from VK and determines the membership proof πi for each vki ∈ VK′. Regarding the non-interactive argu-
ment of knowledge, the statement of interest is (avk,m) with witness {πi, (si, vki)}i∈S′ such that for all i we
have that Ver(vki,m, si) = 1 and πi is a valid Merkle tree proof pointing to a unique leaf for every i. πi
demonstrates that vki is in avk. We also require |S′| ≥ t. It is possible to construct succinct proofs for this
statement using SNARKs [BCCT12] or even without any trusted setup using e.g., STARKs [BSBHR17] or Bul-
letproofs [BBB+18] in the Random Oracle model [BR93]. In both cases the actual size of the resulting signature
will be at most logarithmic in k, while in the case of STARKs the verifier will also have time complexity loga-
rithmic in k.

6.6 Security

In this section we give a formal argument establishing that the construction from Section 6.4 achieves pegging
security of Definition 16.

6.6.1 Assumptions

Let Ahm(L)[t] denote the honest-majority assumption for an Ouroboros ledger L. Namely, Ahm(L)[t] postulates
that in all slots t′ ≤ t, the majority of stake in the stake distribution used to sample the slot leader for slot t′ in L is
controlled by honest parties (note that the distribution in question is SD and SD

∗
for MC and SC, respectively).

Specifically, the adversary is restricted to (1− ε)/2 relative stake for some fixed ε > 0.
The assumption AMC we consider for MC is precisely AMC[t] , Ahm(MC)[t], while the assumption

ASC for SC is ASC[t] , AMC[t] ∧ Ahm(SC)[t]. The reason that ASC[t] ⇒ AMC[t] is that SC uses merged

76

D3.2 – Design of Extended Core Protocols

staking and hence cannot provide any security guarantees if the stake records on MC get corrupted. It is worth
noting that it is possible to program SC to wean off MC and switch to independent staking; in such case the
assumption for SC will transition to Ahm(SC) (now with respect to SD) after the weaning slot and the two
chains will become sidechains of each other.

Remark 1. We note that the assumption of honest majority in the distribution out of which leaders are sampled
is one of two related ways of stating this requirement. The distribution from which sampling is performed
corresponds to the actual stake distribution near the end of the previous epoch. Hence, the actual stake may have
since shifted and may no longer be honest. Had we wanted to formulate this assumption in terms of the actual
(current) stake distribution, we would have to state two different assumptions: (1) that the current actual stake
has honest majority with some gap σ; and (2) that the rate of stake shifting is bounded by σ for the duration of
(roughly) 2 epochs. From these two assumptions, one can conclude that the distribution from which leaders are
elected is currently controlled by an honest majority. The latter approach was taken for example in [KRDO17].

6.6.2 Proof Overview

Proving our construction secure requires some case analysis. We summarize the intuition behind this endeavour
before we proceed with the formal treatment.

The proof of Theorem 16 that shows that our construction from Section 6.4 has pegging security with over-
whelming probability will be established as follows. We will borrow the fact that our construction achieves
persistence and liveness from the original analysis [KRDO17] and state them as Lemma 9. The main challenge
will be to establish the firewall property, which is done in Lemma 15. These properties together establish pegging
security as required by Definition 16.

To show that the firewall property holds, we perform a case analysis, looking at the two cases of interest:
when both MC and SC are secure (i.e., when AMC ∧ ASC holds), and when only MC is secure while the
security assumption of SC has been violated. As discussed above, the case where SC is secure and the security
of MC has been violated cannot occur per definition of AMC and ASC, and so examining this case is not
necessary.

First, we examine the case where both MC and SC are secure, but only concern ourselves with direct
observation transactions, or transactions that can be verified without relying on sidechain certificates. We show
that such transactions will always be correctly verified in this case.

Next, we establish that, when only MC is secure, it is impossible for the MC maintainers to accept a view
inconsistent with the validity language, and hence the firewall property is maintained in the case of a sidechain
failure.

Finally, the heart of the proof is a computational reduction (using the above partial results) showing how,
given an adversary that breaks the firewall property, there must exist a receiving transaction on MC which
breaks the validity of the scheme. Given such a transaction, we can construct an adversary against either the
security of the underlying ATMS scheme or the collision resistance of the underlying hash function.

6.6.3 Liveness and Persistence

We begin by stating the persistence and liveness guarantees of our construction, they both follow directly from
the guarantees shown for the standalone Ouroboros blockchain in [KRDO17].

Lemma 9 (Persistence and Liveness). Consider the construction of Section 6.4 with the assumptions ASC,AMC.
For all slots t, if ASC[t] (resp. AMC[t]) holds, then SC (resp. MC) satisfies persistence and liveness up to slot
t with overwhelming probability in k.

We now restate the Common Prefix property of blockchains for future reference. If the Common Prefix
property holds, then Persistence can be derived along the lines of [KRDO17].

77

D3.2 – Design of Extended Core Protocols

Definition 20 (Common Prefix). For every honest party P1 and P2 both maintaining the same ledger (i.e., either
both maintaining MC, or both maintaining SC) and for every slot r1 and r2 such that r1 ≤ r2 ≤ t, let C1 be the
adopted chain of P1 at slot r1 and C2 be the adopted chain of P2 at slot r2. The k-common prefix property for
slot t states that C2[: |C1[: −k]|] = C1[: −k].

6.6.4 The Firewall Property and MC-Receiving Transactions

Recall that the transactions in TA can be partitioned into several classes with different validity-checking pro-
cedures. First, there are local transactions (where send = rec = lid) and sending transactions (with lid =
send 6= rec). Then we have receiving transactions (with send 6= rec = lid), which can be split into SC-receiving
transactions (send 6= rec = lid = SC) and MC-receiving transactions (send 6= rec = lid = MC).

As the lemma below observes, if a transaction violates the firewall property in a certain situation, it must be
a MC-receiving transaction.

Lemma 10. Consider an execution of the protocol of Section 6.4 at slot t in which MC and SC satisfy persis-
tence. Suppose

L = merge
(
{L∪MC[t], L∪SC[t]}

)
6∈ VA

and suppose that St = {SC,MC}. Let L′ be the minimum prefix of L such that L′ 6∈ VA. Then L′ 6= ε and
tx , L′[−1] is an MC-receiving transaction.

Proof. The base property of the validity language implies L′ 6= ε, hence tx exists. Due to the minimality of L′,
Algorithm 2 returns false for L′ but true for L′[: −1]. Since it processes transactions sequentially, it must return
false during the processing of tx. Suppose for contradiction that tx is not an MC-receiving transaction; let us
call such a transaction direct in this proof.

Algorithm 2 can output false while processing a direct transaction in the following cases: (a) in Line 17 when
there is a Conservation Law violation; (b) in Line 8 when there is a signature validation failure; (c) in Line 13
when tx is a replay of a previous transaction; (d) in Line 22 when tx is a replay, or (e) in Line 27 when the
pre-image transaction has not yet been processed. Hence, tx falls under one of these violations.

Due to persistence and the definition of L∪MC[t] and L∪SC[t], there exists an MC maintainer PMC and an
SC maintainer PSC, such that LPMC

MC [t] = L∪MC[t] and LPSC
SC [t] = L∪SC[t], respectively. Due to the partitioning

property of merge, tx will be in L
Plid(tx)

lid(tx) [t]. We separately consider the two possibilities for lid(tx).
Case 1: lid(tx) = MC. In this case, the only violations that a direct tx can attain are (a), (b) and (c), as

the cases (d) and (e) for lid(tx) = MC do not pertain to a direct transaction. PMC has reported LPMC
MC [t] as

its adopted state, hence LPMC
MC [t] is a fixpoint of VERIFYTXMC (as VERIFYTXMC checks for a fixpoint). The

execution of VERIFYTXMC included every transaction in LPMC
MC [t]. Therefore, VERIFYTXMC has accepted every

transaction in every iteration until the last iteration, which processes tx. Consider, now, what happened in the
last iteration of the execution of VERIFYTXMC. In that iteration, VERIFYTXMC checks the validity of σ, the
Conservation Law, and transaction replay. In all cases (a), (b) and (c), VERIFYTXMC will reject tx. But this
could not have happened, as LPMC

MC [t] is a fixpoint, and we have a contradiction.
Case 2: lid(tx) = SC. Let Cmc and Csc be the MC and respectively SC chain adopted by PSC at slot t

(and recall that PSC maintains both chains). Let Cmc
′ be the chain adopted by PMC at slot t. As before,

ANNOTATETXSC(Cmc,Csc) must be a fixpoint of VERIFYTXSC (as VERIFYTXSC checks for a fixpoint). As
in the previous case, tx cannot violate (a), (b), (c) and in this case nor (d), as this would constitute a fixpoint
violation. Hence tx is an effect transaction and we will examine whether tx constitutes a violation of (e).

Let tx−1 , effect−1
MC→SC(tx). Since tx is accepted by VERIFYTXSC on input ANNOTATETXSC(Cmc,Csc),

we deduce that there exists some block B ∈ Cmc[: −k] with tx−1 ∈ B. But Cmc
′[: −k] is the longest stable

chain among MC maintainers (due to L∪MC[t] = LPMC
MC [t]), hence Cmc[: −k] is its prefix. Therefore B ∈

Cmc
′[: −k]. Hence, tx−1 ∈ LPMC

MC [t]. Due to the partioning property of merge, tx−1 must appear in the output

of merge
(
{LPMC

MC [t], LPSC
SC [t]}

)
. Due to the topological soundness of merge, tx−1 must appear before tx in

78

D3.2 – Design of Extended Core Protocols

merge
(
{LPMC

MC [t], LPSC
SC [t]}

)
. Hence, it cannot be the case that (e) is violated, as the pre-image transaction

exists.

6.6.5 Firewall Property During Sidechain Failure

We now turn our attention to the case where the sidechain has suffered a “catastrophic failure” and so St =
{MC}. We describe why a catastrophic failure in the sidechain does not violate the firewall property. To do
this, we need to illustrate that, given a transaction sequence L which is accepted by the MC verifier, we can “fill
in the gaps” with transactions from SC in order to produce a new transaction sequence ~tx which is valid with
respect to VA.

We prove this constructively in Lemma 12. The construction of such a sequence is described in Algorithm 13.
The algorithm accepts a transaction sequence L ⊆ TMC valid according to VERIFIERMC and produces a trans-
action sequence ~tx ∈ VA satisfying πMC(~tx) = L, as desired.

The algorithm works by mapping each tx ∈ L to one or more transactions in ~tx. The mapping is done by call-
ing plausibility-map(tx) for each transaction individually. Hence each transaction in ~tx has a specific preimage
transaction in L, which can be shared by other transactions in ~tx. The mapping is performed as follows. If tx is a
local transaction, then it is simply copied over, otherwise some extra transactions are included. Specifically, if it’s
an sending transaction tx, then first tx is included, and subsequently the funds are recovered by a corresponding
transaction tx1 on SC, the effect transaction of tx. The funds are afterwards moved to a pool address poolpk by
a transaction tx2. (Note that for this, we assume that the receiving account public key has a correspnding private
key, as this key is needed to sign tx2. As we are only demonstrating the existence of ~tx, Algorithm 13 does not
need to be efficient and so assuming the existence of the private key is sufficient.) On the other hand, if it is an
(MC-)receiving transaction tx, the reverse procedure is followed. First, the funds are collected by tx2 from the
pool address poolpk and moved into the SC address which will be used for the upcoming remote transaction.
Then tx1 moves the funds out of SC so that they can be collected by the corresponding tx on MC. In the first
case, the transaction sequence is (tx, tx1, tx2) and in the second case the sequence is (tx2, tx1, tx). Note that, in
both cases, tx and tx1 are identical, except for the fact that tx is recorded on MC while tx1 is recorded on SC;
the latter is the effect (or pre-image, respectively) of the former.

The simple intuition behind this construction is that, in the plausible history ~tx produced by Algorithm 13,
the account poolpk is holding all the money of the sidechain. More specifically, the balance that is maintained
in the variable balances[SC][poolpk] is identical to the pool variable maintained by the MC verifier. This
invariant is made formal in Lemma 11.

Lemma 11 (Plausible balances). Let L ∈ T ∗A,MC and ~tx← plausible(L). Consider an execution of Algorithm 2
on ~tx and an execution of VERIFIERMC on L. Let tx ∈ L. Call pooltx the value of the pool variable main-
tained by VERIFIERMC prior to processing tx in its main for loop; call balances[SC][poolpk]tx the value of
the balances[SC][poolpk] variable prior to the iteration of its main for loop which processes the first item of
plausibility-map(tx). For all tx ∈ L, the following invariant will hold: pooltx = balances[SC][poolpk]tx.

Proof. By direct inspection of the two algorithms, observe that the balances[SC][poolpk] are updated by Al-
gorithm 2 only when send(txa) 6= rec(txa). The balances are increased when send(txa) = MC (due to
tx2 ∈ plausibility-map(tx) at Line 19 of Algorithm 13) and decreased when send(txa) = SC (due to tx2 ∈
plausibility-map(tx) at Line 25 of Algorithm 13). Exactly the same accounting is performed by VERIFIERMC

when the respective tx is processed.

We now prove the correctness of Algorithm 13 in Lemma 12.

Lemma 12 (Plausibility). For all L ∈ T ∗A,MC, if VERIFYTXMC(L) = L then ~tx ← plausible(L) will satisfy
~tx ∈ VA.

79

D3.2 – Design of Extended Core Protocols

Algorithm 13 The plausible transaction sequence generator.

1: (poolsk,poolpk)← Gen(1λ)
2: function plausible(L)
3: ~tx← ε
4: for tx ∈ L do
5: ~tx← ~tx ‖plausibility-map(tx)
6: end for
7: return ~tx
8: end function
9: function plausibility-map(tx)

10: . Destructure tx into its constituents
11: (txid, lid, (send, sAcc), (rec, rAcc), v, σ)← tx
12: if send = rec then
13: return (tx)
14: end if
15: if send = MC then
16: tx1 ← effectMC→SC(tx)
17: Construct a valid σ2 using the private key corresponding to rAcc
18: Generate a fresh txid2

19: tx2 ←
(
txid2,SC, (SC, rAcc), (SC,poolpk), v, σ2

)
20: return (tx, tx1, tx2)
21: end if
22: if send = SC then
23: Construct a valid σ2 using poolsk
24: Generate a fresh txid2

25: tx2 ←
(
txid2,SC, (SC,poolpk), (SC, sAcc), v, σ2

)
26: tx1 ← effect−1

SC→MC(tx)
27: return (tx2, tx1, tx)
28: end if
29: end function

Proof. Suppose for contradiction that ~tx 6∈ VA and let ~tx
′ be the minimum prefix of ~tx such that ~tx

′ 6∈ VA.
From the validity language base property we have that ~tx

′ 6= ε and so it must have at least one element. Let
tx , ~tx

′
[−1] and let txL ∈ L be the input to plausibility-map which caused tx to be included in ~tx in the

execution of plausible in Algorithm 13. Since Algorithm 2 processes transactions sequentially, and by the
minimality of ~tx

′, it must return false when tx is processed.
We distinguish the following cases for txL:
Case 1: Local transaction: send(txL) = rec(txL). Then tx = txL and send(tx) = lid(tx). Since L is a

fixpoint of VERIFYTXMC, tx must (a) have a valid signature σ, (b) not be a replay transaction, and (c) respect
the Conservation Law. As txL is a local transaction satisfying all of (a), (b) and (c), therefore ~tx

′ ∈ VA, which is
a contradiction.

Case 2: Sending transaction: send(txL) = MC and rec(txL) = SC. In this case, let (txL, tx1, tx2) =
plausibility-map(txL). If tx = txL, then tx is a sending transaction and we can apply the same reasoning to
argue that it will respect properties (a), (b) and (c). But those are the only violations for which Algorithm 2 can
reject an sending transaction, and hence ~tx

′ ∈ VA, which is a contradiction.
If tx = tx1, then Algorithm 2 must return true. To see this, consider the cases when Algorithm 2 returns

false: (d) a replay failure in Line 22, which cannot occur as txL has been accepted by VERIFYTXMC and so
VERIFYTXMC must have seen txL only once while Algorithm 2 must be seeing it for exactly the second time; or

80

D3.2 – Design of Extended Core Protocols

(e) a mismatch failure in Line 22 which cannot occur as tx1 is constructed identical to txL.
If tx = tx2 then send(tx) = rec(tx). This transaction cannot cause Algorithm 2 to return false. To see this,

consider the cases when Algorithm 2 returns false: (a) a signature failure in Line 8 cannot occur because σ2 was
constructed correctly and the signature scheme is correct; (b) a replay failure in Line 13 cannot occur because
txid2 is fresh; (c) a conservation failure in Line 17 cannot occur because the immediately preceding transaction
~tx
′
[−2] supplies sufficient balance.
Case 3: Receiving transaction: send(txL) = SC and rec(txL) = MC. In this case, let (tx2, tx1, txL) =

plausibility-map(txL). The argument for tx = txL and tx = tx1 is as in Case 2. For the case of tx =
tx2, the same argument as before holds for a signature validity and for replay protection. It suffices to show
that the conservation law is not violated. This is established in Lemma 11 by the invariant that pooltxL =
balances[SC][poolpk]txL that holds prior to processing tx2, as it is the first transaction of a triplet produced by
plausibility-map. As VERIFYTXMC(L) = L then therefore pooltxL − v ≥ 0 and so balances[SC][poolpk]txL −
amount ≥ 0 and Algorithm 2 returns true.

All three cases result in a contradiction, concluding the proof.

Lemma 13 (SC failure firewall). Consider any execution of the construction of Section 6.4 in which persistence
holds for MC. For all slots t such that St = {MC} we have that

merge({L∪MC[t]}) ∈ π{MC}(VA) .

Proof. From the assumption that persistence holds, there exists some MC party P for which LPMC[t] =
L∪MC[t]. Additionally, merge({L∪MC[t]}) = L∪MC[t] due to the partitioning property. It suffices to show
that there exists some ~tx ∈ VA such that π{MC}(~tx) = LPMC[t]. Let ~tx ← plausible(LPMC[t]). We have
VERIFIERMC(LPMC[t]) = true, so apply Lemma 12 to obtain that ~tx ∈ VA.

To see that π{MC}(~tx) = LPMC[t], note that Algorithm 13 for input L includes all tx ∈ L in the same order
as in its input. Furthermore, all tx ∈ ~tx such that tx 6∈ L have lid(tx) = SC and so are excluded from the
projection.

6.6.6 General Firewall Property

In preparation for establishing the full firewall property, we state the following simple technical lemma.

Lemma 14 (Honest subsequence). Consider any set S of 2k consecutive slots prior to slot t in an execution
of an Ouroboros ledger L such that Ahm(L)[t] holds. Then k + 1 slots of S are honest, except with negligible
probability.

Proof sketch. If the adversary controlled at least k out of any 2k consecutive slots, he could use them to pro-
duce an alternative k-blocks long chain for this interval without any help from the honest parties, resulting in a
violation of common prefix and hence persistence (cf. Lemma 9).

We are now ready to prove our key lemma, showing that our construction satisfies the firewall property.

Lemma 15 (Firewall). For all PPT adversaries A, the construction of Section 6.4 with a secure ATMS and
a collision-resistant hash function satisfies the firewall property with respect to assumptions AMC,ASC with
overwhelming probability in k.

Proof. Let A be an arbitrary PPT adversary against the firewall property, and Z be an arbitrary environment for
the execution of A. We will construct the following PPT adversaries:

1. A1 is an adversary against ATMS.

2. A2 is a collision adversary against the hash function.

81

D3.2 – Design of Extended Core Protocols

We first describe the construction of these adversaries.

The adversary A1. A1 simulates the execution of A and Z and of two populations of maintainers for two
blockchains, MC and SC, which run the protocol Π (either the MC or the SC-maintainer part respectively)
and spawns parties according to the mandates of the environment Z as follows. For all parties that are spawned
as MC maintainers, A1 generates keys internally by invoking the Gen algorithm of the ATMS scheme. For all
parties that are spawned as SC maintainers, A1 uses the oracle Ogen to produce the public keys vki.

Whenever A requests that a (block or transaction) signature in SC is created, A1 invokes its oracle Osig to
obtain the respective signature to provide toA. WhenA requests that a MC signature is created,A1 uses its own
generated private key to sign by invoking the Sig algorithm of the ATMS scheme. If A requests the corruption
of a certain party P ∗, then A1 reveals P ∗’s private key to A as follows: If P ∗ is a MC maintainer, then the
secret key is directly available to A1, so it is immediately returned. Otherwise, if P ∗ is a SC maintainer, then
A1 obtains the secret key of P ∗ by invoking the oracle Ocor.

For every time slot t of the execution, A1 inspects all pairs (PMC, PSC) of honest parties such that PMC

is a MC maintainer and PSC is a SC maintainer such that LPMC
MC [t] = L∪MC[t] and LPSC

SC [t] = L∪SC[t] (if such
parties exist). Let L1 = LPMC

MC [t] and L2 = LPSC
SC [t]. The adversary obtains the stable portion of the honestly

adopted chain, namely C1 = CPMC [t][: −k] and the transactions included in C1, namely L′1 (note that L′1 6= L1

if L′1 contains certificate transactions). A1 examines whether L = merge(L1, L2) 6∈ VA, to deduce whether A
has succeeded. Note that both the evaluation of merge on arbitrary states and the verification of inclusion in
VA are efficiently computable and hence A1 can execute them. If A1 is not able to find such a time slot t and
parties PMC, PSC, it returns FAILURE (in the latter part of this proof, we will argue that all A1 failures occur
with negligible probability conditioned on the event that A is successful, unless A2 is successful).

Otherwise it obtains the minimum t for which this holds and the L for this t. Because of the base property of
the validity language, we have that ε ∈ VA and therefore L 6= ε. Let L∗ be the minimum prefix of L such that L∗ 6∈
VA and let tx = L∗[−1]. If tx has send(tx) 6= SC or lid(tx) 6= MC, then A1 returns FAILURE. Now therefore
send(tx) = SC and lid(tx) = MC (and so tx ∈ L1). Hence, tx references a certain certificate transaction, say
tx′. Due to the algorithm executed by MC maintainers for validation, we will have that tx′ ∈ L′1{: tx}.

Let ~tx
∗ be the subsequence of L′1 containing all certificate transactions up to and including tx′. We will argue

that there must exist some ATMS forgery among one of the certificate transactions in ~tx
∗. A1 looks at every

transaction sc certj ∈ ~tx
∗ (and note that it will correspond to a unique epoch ej). sc certj contains a message

m = (j, 〈pendingj〉, avkj) and a signature σj . A1 extracts the epoch ej in which sc certj was confirmed in
C1 (and note that we must have j > 0). A1 collects the public keys elected for the last 2k slots of epoch
ej−1 according to the view of PSC into a set keysj−1 and similarly for keysj . A1 collects the pending cross-
chain transactions of ej−1 according to the view of PSC into pending′j , and creates the respective Merkle-tree
commitment

〈
pending′j

〉
. A1 checks whether the following certificate violation condition holds:

AVer(m, avkj−1, σj) ∧ ACheck(keysj−1, avk
j−1) ∧

(
¬ACheck(keysj , avk

j) ∨ 〈pendingj〉 6= 〈pending′j〉
)

(6.2)
where avkj−1 is extracted from sc certj−1 according to the view of PSC, unless j = 1 in which case avk0 is
known. If the condition (6.2) holds for no j then A1 returns FAILURE, otherwise it denotes by j∗ the minimum
j for which (6.2) holds and outputs the tuple (m,σj∗ , avk

j∗−1, keysj
∗−1).

The adversary A2. Like A1, A2 simulates the execution of A including two populations of maintainers
and spawns parties according to the mandates of the environment Z . For all these parties, A2 generates keys
internally. When A requests that a transaction is created, A2 provides the signature with its respective private
key. If A requests the corruption of a certain party, say P ∗, then A2 provides the respective private key to A.

For every time slot t of the execution, A2 inspects all pairs of honest parties such that PMC is a MC
maintainer and PSC is a SC maintainer such that LPMC

MC [t] = L∪MC[t] and LPSC
SC [t] = L∪SC[t] and obtains the

variables L1, L2,C1, L
′
1 as before. A2 examines whether L = merge(L1, L2) 6∈ VA, to deduce whether A has

succeeded. If A2 is not able to find such a time slot t and parties PMC, PSC, it returns FAILURE. Let tx be as

82

D3.2 – Design of Extended Core Protocols

in A1. If send(tx) 6= SC or lid(tx) 6= MC, then A2 returns FAILURE. Then tx references a certain certificate
transaction sc certj = (j, 〈pendingj〉, avkj , σj) and uses a Merkle tree proof π which proves the inclusion of
tx in pendingj . If sc certj 6∈ L′1, then A2 returns FAILURE. When sc certj was accepted by PSC, pendingj
included a set of transactions ~tx in the view of PSC. If tx ∈ ~tx, thenA2 returns FAILURE. Otherwise, the Merkle
tree 〈pendingj〉 was constructed from ~tx, but a proof-of-inclusion π for tx 6∈ ~tx was created. From this proof,A2

extracts a hash collision and returns it.

Probability analysis. Define the following events:

• SC-FORGE[t]: A is successful at slot t, i.e., πA (merge({L∪i [t] : i ∈ St})) 6∈ πSt(VA).

• ATMS-FORGE: A1 finds an index j∗ for which the condition (6.2) occurs.

• HASH-COLLISION: A2 finds a hash function collision.

Note that ledger states in the protocol only contain A-transactions, hence πA is the identity function and SC-FORGE[t]
is equivalent to merge ({L∪i [t] : i ∈ St}) 6∈ πSt(VA). We will now show that for every t, the probability
Pr[SC-FORGE[t]] is negligible. We distinguish two cases:

Case 1: St = {MC,SC}. In this case Persistence holds for both MC and SC, and πSt is the identity
function. We deal with this case in two successive claims (both implicitly conditioning on being in Case 1). First
we show that, if SC-FORGE[t] occurs, then one of ATMS-FORGE, HASH-COLLISION occurs. Therefore applying
a union bound, we will have that:

Pr[SC-FORGE[t]] ≤ Pr[ATMS-FORGE] + Pr[HASH-COLLISION] .

Second, we show that Pr[ATMS-FORGE] is negligible (and the negligibility of Pr[HASH-COLLISION] follows
from our assumption that the hash function is collision resistant).

Claim 1a: SC-FORGE[t]⇒ ATMS-FORGE ∨ HASH-COLLISION.
Because persistence holds in both MC and SC, we know that there exist two parties PMC, PSC such that at slot
t we have that LPMC

MC [t] = L∪MC[t] and LPSC
SC [t] = L∪SC[t], respectively. Therefore SC-FORGE[t] implies

merge({LPMC
MC [t],LPSC

SC [t]}) 6∈ VA .

Let tx, tx′ be as in the definition ofA1. By Lemma 10 and using MC and SC persistence, tx will exist and be an
MC-receiving transaction. Hence, send(tx) = SC and rec(tx) = lid(tx) = MC. Therefore, tx′ will also exist.
If A1 finds the index j∗ for which (6.2) is satisfied, then ATMS-FORGE has occured and the claim is established,
so let us assume otherwise. Hence, for each certificate sc certj containing a messagem = (j, 〈pendingj〉, avkj),
it holds that(

AVer(m, avkj−1, σj) ∧ ACheck(keysj−1, avk
j−1)

)
⇒
(
ACheck(keysj , avk

j) ∧ 〈pendingj〉 = 〈pending′j〉
)
.

(6.3)
Therefore, we have a chain of certificates, each of which is signed with a valid key avkj−1 and attests to the
validity of the next key avkj . For all of these certificates, AVer(m, avkj−1, σj) holds, as it has been verified by
PMC. Furthermore, by an induction argument (where the base case comes from the construction of avk0 and
the induction step follows from (6.3)) we have ACheck(keysj−1, avk

j−1) as well.
As tx′ is a certificate transaction which appears last in the above chain (with some index sc certk), the

above implication also holds for tx′, and so does its premise AVer(m, avkk−1, σk)∧ACheck(keysk−1, avk
k−1).

Therefore, the conclusion of the implication 〈pendingk〉 = 〈pending′k〉 holds. However, the sending transaction
corresponding to tx has been proven to belong to the Merkle Tree 〈pendingk〉 (as verified by PMC), but does not
belong to pending′k (by the selection of tx). This constitutes a Merkle Tree collision, which translates to a hash
collision. The construction of A2 outputs exactly this collision, and in this case we deduce that A2 is successful
and HASH-COLLISION follows.

83

D3.2 – Design of Extended Core Protocols

Claim 1b: Pr[ATMS-FORGE] is negligible.
Suppose that ATMS-FORGE occurs. We will argue that, in this case, A1 will have computed an ATMS forgery,
which is a negligible event by the assumption that the used ATMS is secure.

From the assumption that ATMS-FORGE has occurred, at epoch ej we have that AVer(m, avkj−1, σj) and
ACheck(keysj−1, avk

j−1), but ¬ACheck(keysj , avk
j) or 〈pendingj〉 6= 〈pending′j〉. From Lemma 14 and

using Ahm(SC)[t], we deduce that in the last 2k slots of epoch ej−1, at least k + 1 must be honest. Since ej
is the earliest epoch in which this occurs, this means that keysj−1 corresponds to the last 2k slot leaders of
epoch ej−1, and all honest parties agree on the same 2k slot leaders. Hence, in the ATMS game, the number of
keys in keys corrupted by the adversary through the use of the oracle Ocor(·) is less than k. Furthermore, since
¬ACheck(keysj , avk

j) or 〈pendingj〉 6= 〈pending′j〉, the message m contains either an invalid future aggregate
key, an invalid Merkle Tree root of outgoing cross-chain transactions, or both. Hence, no honest party will sign
the message m for this epoch and therefore |Qsig[m]| = 0. Hence q < k, and A1 wins the ATMS security game.

Case 2: St 6= {MC,SC}. If MC 6∈ St then, since AMC[t]⇒ ASC[t], we have St = ∅ and ¬SC-FORGE[t],
as ε ∈ VA by the base property. It remains to consider the case St = {MC}. Using MC persistence, by
Lemma 13 we obtain merge({L∪MC[t]}) ∈ π{MC}(VA), and hence SC-FORGE[t] did not occur.

From the two above cases, we conclude that for every t, Pr[SC-FORGE[t]] ≤ negl. As the total number of
slots is polynomial, we have shown that with overwhelming probability, we have that for all slots t and for all
A ∈

⋃
i∈St Assets(Li), πA (merge ({L∪i [t] : i ∈ St})) ∈ πSt(VA), concluding the proof.

Lemmas 9 and 15 together directly imply the following theorem.

Theorem 16 (Pegging Security). Consider the synchronous setting as defined in Section 6.2.1 with 2R-semiadaptive
corruptions as defined in Section 6.2.1. The construction of Section 6.4 using a secure ATMS and a collision
resistant hash function is pegging secure with liveness parameter u = 2k with respect to assumptions AMC and
ASC defined above, and merge, effect and VA defined in Section 6.4.2.

Supplementary Material

6.7 The Diffuse Functionality

In the model described in Section 6.2.1 we employ the “Delayed Diffuse” functionality of [DGKR18], which we
now describe in detail for completeness. The functionality is parameterized by ∆ ∈ N and denoted DDiffuse∆.
The functionality executes one step (round) per slot. DDiffuse∆ interacts with the environment Z , stakeholders
U1, . . . , Un and adversary A, working as follows for each round: DDiffuse∆ maintains an incoming string for
each party Pi that participates. A party, if activated, can fetch the contents of its incoming string, hence it behaves
as a mailbox. Furthermore, parties can give an instruction to the functionality to diffuse a message. Activated
parties can diffuse once per round.

When the adversary A is activated, it can: (a) read all inboxes and all diffuse requests and deliver messages
to the inboxes in any order; (b) for any message m obtained via a diffuse request and any party Pi, A may move
m into a special string delayedi instead of the inbox of Pi. A can decide this individually for each message and
each party; (c) for any party Pi, A can move any message from the string delayedi to the inbox of Pi.

At the end of each round, the functionality ensures that every message that was either (a) diffused in this
round and not put to the string delayedi or (b) removed from the string delayedi in this round is delivered to the
inbox of party Pi. If a message currently present in delayedi was originally diffused ∆ slots ago, the functionality
removes it from delayedi and appends it to the inbox of party Pi.

Upon receiving (Create, U, C) from the environment, the functionality spawns a new stakeholder with chain
C as its initial local chain (as in [KRDO17, DGKR18]).

84

D3.2 – Design of Extended Core Protocols

6.8 Adaptation to Other Proof-of-Stake Blockchains

Our construction can be adapted to work with other provably secure proof-of-stake blockchains discussed in
Section 6.2.3: Ouroboros Praos [DGKR18], Ouroboros Genesis [BGK+18], Snow White [BPS16], and Algo-
rand [Mic16]. Here we assume some familiarity with the considered protocols and refer the interested reader to
the original papers for details.

6.8.1 Ouroboros Praos and Ouroboros Genesis

These protocols [DGKR18, BGK+18] are strongly related and differ from each other only in the chain-selection
rule they use, which is irrelevant for our discussion here, hence we consider both of the protocols simultane-
ously. Ouroboros Praos was shown secure in the semi-synchronous model with fully adaptive corruptions (cf.
Section 6.2.1) and this result extends to Ouroboros Genesis. Despite sharing the basic structure with Ouroboros,
they differ in several significant points which we now outline.

The slot leaders are elected differently: Namely, each party for each slot evaluates a verifiable random
function (VRF, [DY05]) using the secret key associated with their stake, and providing as inputs to the VRF both
the slot index and the epoch randomness. If the VRF output is below a certain threshold that depends on the
party’s stake, then the party is an eligible slot leader for that slot, with the same consequences as in Ouroboros.
Each leader then includes into the block it creates the VRF output and a proof of its validity to certify her
eligibility to act as slot leader. The probability of becoming a slot leader is roughly proportional to the amount
of stake the party controls, however now it is independent for each slot and each party, as it is evaluated locally
by each stakeholder for herself. This local nature of the leader election implies that there will inevitably be
some slots with no, or several, slot leaders. In each epoch j, the stake distribution used in Praos and Genesis
for slot leader election corresponds to the distribution recorded in the ledger up to the last block of epoch j − 2.
Additionally, the epoch randomness ηj for epoch j is derived as a hash of additional VRF-values included into
blocks from the first two thirds of epoch j−1 for this purpose by the respective slot leaders. Finally, the protocols
use key-evolving signatures for block signing, and in each slot the honest parties are mandated to update their
private key, contributing to their resilience to adaptive corruptions.

Ouroboros Praos was shown [DGKR18] to achieve persistence and liveness under weaker assumptions than
Ouroboros, namely: (1) ∆-semi-synchronous communication (where ∆ affects the security bounds but is un-
known to the protocol); (2) majority of the stake is always controlled by honest parties. In particular, Ouroboros
Praos is secure in face of fully adaptive corruptions without any corruption delay. Ouroboros Genesis provides
the same guarantees as Praos, as well as several other features that will not be relevant for our present discusion.
Construction of Pegged Ledgers. The main difference compared to our treatment of Ouroboros would be in the
construction of the sidechain certificate (cf. Section 6.4.3). The need for a modification is caused by the private,
local leader selection using VRFs in these protocols, which makes it impossible to identify the set of slot leaders
for the suffix of an epoch at the beginning of this epoch, as done for Ouroboros.

The sidechain certificate included in MC at the beginning of epoch j would hence contain the following, for
parameters Q and T specified below:

1. the epoch index;

2. a Merkle commitment to the list of withdrawals as in the case of Ouroboros;

3. a Merkle commitment to the SC stake distribution SDj ;

4. a list of Q public keys;

5. Q inclusion proofs (with respect to SDj−1 contained in the previous certificate) and Q VRF-proofs certi-
fying that these Q keys belong to slot leaders of Q out of the last T slots in epoch j − 1;

6. Q signatures from the above Q public keys on the above; these can be replaced by a single aggregate
signature to save space on MC.

85

D3.2 – Design of Extended Core Protocols

The parameters Q and T have to be chosen in such a way that with overwhelming probability, there will be
a chain growth of at least Q blocks during the last T slots of epoch j − 1, but the adversary controls Q slots in
this period only with negligible probability (and hence at least one of the signatures will have to come from an
honest slot leader). The existence of such constants for T = Θ(k) was shown in [BGK+18].

While the above sidechain certificate is larger (and hence takes more space on MC) than the one we propose
for Ouroboros, a switch to Ouroboros Praos or Genesis would also bring several advantages. First off, both
constructions would give us security in the semi-synchronous model with fully adaptive corruptions (as shown
in [DGKR18, BGK+18]), and the use of Ouroboros Genesis would allow newly joining players to bootstrap
from the mainchain genesis block only—without the need for a trusted checkpoint—as discussed extensively
in [BGK+18].

6.8.2 Snow White

The high-level structure of Snow White execution is similar to the protocols we have already discussed: it
contains epochs, committees that are sampled for each epoch based on the stake distribution recorded in the
blockchain prior to that epoch, and randomness used for this sampling produced by hashing special nonce values
included in previous blocks. Hence, our construction can be adapted to work with Snow White-based blockchains
in a straightforward manner.

6.8.3 Algorand

Algorand does not aim for the so-called eventual consensus. Instead it runs a full Byzantine Agreement protocol
for each block before moving to the next block, hence blocks are immediately finalized. Consider a setting with
MC and SC both running Algorand. The main difficulty to address when constructing pegged ledgers is the
continuous authentication of the sidechain certificate constructed by SC-maintainers for MC (other aspects,
such as deposits from MC to SC work analogously to what we described above). As Algorand does not have
epochs, and creating and processing a sidechain certificate for each block is overly demanding, a natural choice
is to introduce a parameter R and execute this process only once every R blocks. Namely, every R blocks, the
SC-maintainers produce a certificate that the MC-maintainers insert into the mainchain. This certificate most
importantly contains:

1. a Merkle commitment to the list of withdrawals in the most recent R-block period;

2. a Merkle commitment to the full, most recent stake distribution SDj on SC;

3. a sufficient number of signatures from a separate committee certifying the above information, together
with proofs justifying the membership of the signature’s creators in the committee.

This additional committee is sampled from SDj−1 (the stake distribution committed to in the previous sidechain
certificate) via Algorand’s private sortition mechanism such that the expected size of the committee is large
enough to ensure honest supermajority (required for Algorand’s security) translates into a strong honest majority
within the committee. Note that the sortition mechanism also allows for a succinct proof of membership in the
committee. The members of the committee then insert their individual signatures (signing the first two items in
the certificate above) into the SC blockchain during the period of R blocks preceding the construction of the
certificate. All the remaining mechanics of the pegged ledgers are a direct analogy of our construction above.

86

D3.2 – Design of Extended Core Protocols

Algorithm 6 The SC transaction verifier.

1: function VERIFYTXSC(~tx)
2: bal[MC]← Initial MC stake
3: bal[SC]← Initial SC stake
4: mc outgoing tx← ∅; seen← ∅
5: for tx ∈ ~tx do
6: (txid, lid, (send, sAcc), (rec, rAcc), v, σ, t)←

tx
7: m← (txid, lid, (send, sAcc), (rec, rAcc), v)
8: if¬Ver(sAcc,m, σ) ∨ seen[txid] 6= 0 then
9: continue

10: end if
11: if lid = send then
12: if bal[send][sAcc]− v < 0 then
13: continue
14: end if
15: if lid = MC ∧ send 6= rec then
16: mc outgoing tx[txid]← t+ 2k
17: end if
18: end if
19: if lid = rec then
20: if send 6= rec then
21: . Effect pre-image tx immature
22: if t < mc outgoing tx[txid] then
23: continue
24: end if
25: end if
26: bal[rec][rAcc] += v
27: end if
28: if lid = send then
29: bal[send][sAcc] −= v
30: end if
31: seen← seen ‖ tx
32: end for
33: return seen
34: end function

Algorithm 7 The SC verifier.
1: function VERIFIERSC(Csc,Cmc)
2: ~tx← ANNOTATETXSC(Csc,Cmc)
3: return ~tx 6= VERIFYTXSC(~tx)
4: end function

Algorithm 8 The SC transaction annotation.
1: function ANNOTATETXSC(Csc,Cmc)
2: ~tx← ∅
3: for each time slot t do
4: ~tx

′ ← ε
5: if Csc has a block generated at slot t then
6: B ←

the block in Csc generated at t
7: for tx ∈ B do
8: ~tx

′ ← ~tx
′ ‖ tx

9: end for
10: end if
11: if Cmc has a block generated at slot t then
12: B ←

the block in Cmc generated at t
13: for tx ∈ B do
14: ~tx

′ ← ~tx
′ ‖ tx

15: end for
16: end if
17: for tx ∈ ~tx

′ do
18: . Mark the time of each tx in ~tx

′

19: tx.t← t
20: end for
21: ~tx← ~tx ‖ ~tx

′

22: end for
23: return ~tx
24: end function

87

Chapter 7

Ouroboros Crypsinous: Privacy-Preserving
Proof-of-Stake

7.1 Introduction

A significant limitation of traditional blockchain protocols, such as the Bitcoin, is the fact that the transaction
ledger is a public resource and thus information about the way the transaction issuers operate may be leaked
to an adversary. This consideration was acknowledged early on and Bitcoin itself [Nak08] includes a number
of measures to mitigate transaction privacy loss. Namely users produce a new pseudonymous address for each
payment received and addresses from the same wallet can be selected to be indistinguishable from addresses
from different wallets. Still, the information available in the blockchain itself is susceptible to analysis and it has
been demonstrated early on that significant information can be extracted by clustering the Bitcoin transaction
“graph”, see e.g., [RS13, MPJ+16].

This state of affairs motivated the development of privacy enhancing and privacy-preserving techniques for
distributed ledgers. First, methods such as CoinJoin [Max13] and CoinShuffle [RMK14] were proposed as
mechanisms to reduce the effectiveness of de-anonymization techniques based on tracing and clustering. Sub-
sequently redesigned cryptocurrencies were put forth that attempted to introduce stronger privacy-enhancing
techniques by design in the distributed ledger protocol. These included Zerocash [BCG+14] and Monero which
is based on Cryptonote [vS13]. We note that despite their enhanced privacy characteristics, some leakage
still exists in these protocols (even if we exclude leakage on the network layer, which is an issue orthogonal
to what these protocols study including the present work). This can be exploited as demonstrated in recent
works [KFTS17,MSH+18,KYMM18]. The above privacy-enhancing techniques primarily focused on the trans-
action processing layer of the distributed ledger leaving the consensus back-end mechanism largely the same.

Concurrently with these developments however, another line of research works in blockchain design focused
on resolving fundamental issues with the energy consumption requirements of the underlying proof-of-work
(PoW) mechanism of Bitcoin. In particular, this lead to a sequence of works in proof-of-stake (PoS) blockchain
protocols that include Algorand [Mic16], Ouroboros [KRDO17], Ouroboros Praos [DGKR18], Ouroboros Gen-
esis [BGK+18], Sleepy-Consensus [PS17], and Snow White [BPS16]. PoS blockchain protocols alleviate the
requirement to perform proof-of-work by solving computationally hard puzzles. Instead, they refer to the stake
that each participant possesses as reported in the blockchain and, through cryptographic means, elect the next
participant to extend the transaction ledger (who is commonly referred as the next leader or even slot leader
when the execution time is divided in slots.) PoS protocols have been touted as the next important advance in
real-world distributed ledger systems and a number of well-known cryptocurrencies are in the process of incor-
porating them into their deployed systems including Ethereum with the Casper protocol [Zam17] and Cardano
with Ouroboros [Com18].

The above state of affairs raises an important open question: is it possible to build a PoS-based privacy
enhanced distributed ledger? This is the main motivation of this work where we tackle this problem and answer

88

D3.2 – Design of Extended Core Protocols

the question in the affirmative.
Our results. We propose a new formal model for a PoS-based privacy-preserving distributed ledger in

the universal composition (UC) setting, [Can01], and a new protocol that realizes it, Ouroboros Crypsinous.1

Our protocol analysis with respect to the basic properties of consistency and liveness is inspired by Ouroboros
Genesis, [BGK+18], a recent (non-private) PoS blockchain protocol formally analyzed in the UC setting. Our
protocol provides the first formally analysed PoS-based privacy-enhanced blockchain protocol. Moreover, for
the first time our protocol achieves simulation-based privacy that is even universally composable, as well as
forward-secure, i.e., it ensures that privacy (as well as consistency and liveness) are preserved independently of
any other protocols running concurrently with our ledger implementation, and even under adaptive corruption.

It is worth noting that PoS and transaction privacy is, seemingly, a contradiction in terms: issuing a block by
proof-of-stake fundamentally leaks information about the issuer and the state of the ledger. We circumvent the
contradiction by designing a new privacy-enhancing PoS operation that, roughly speaking, extends the SNARK
machinery of “transaction pouring” in Zerocash to a setting where coins evolve without loosing their value,
enabling on the way a proof of stake-eligibility that does not leak any additional information.

The design has several subtleties since a critical consideration in the PoS setting is tolerating adaptive cor-
ruptions: this ensures that even if the adversary can corrupt parties in the course of the protocol execution in an
adaptive manner, it does not gain any non-negligible advantage by e.g., re-issuing past PoS blocks. In non-private
PoS protocols such as Algorand [Mic16] and Ouroboros Genesis [BGK+18] this is captured by employing for-
ward secure signatures. In the context of our protocol however, a more sophisticated combination of key-private
forward-secure encryption—a new encryption primitive which we formally define and realize—and an evolving
coins mechanism is required to achieve the same level of security. Intuitively, the reason is that we need to ensure
that past coins received provide no significant advantage to the adversary when it corrupts an active stakeholder.
We note that the naı̈ve approach of simply paying oneself with a new coin does not work here, as the same coin
should be able to be elected multiple times in a sequence of PoS invocations without leaving any evidence in the
ledger.

Our private ledger formalization is also of independent interest since it captures for the first time the concept
of a privacy enhanced transaction ledger in the UC-setting which is generally applicable to both the PoW and
PoS settings. Interestingly, we observe that the latter case requires a slightly expanded adversarial interface that
allows a sampling of the stakeholder distribution per unit of time (referred to as “slot”). (A similar sampling
can be also observed in Bitcoin, but since miner privacy is not considered a prime requirement this was never
formalized.) Adversarial sampling captures the fact that in the PoS setting traffic analysis is possible based
merely on the frequency one entity issues a PoS block. Our formal model ensures that this is the only privacy
leakage that will be incurred during the execution of the protocol. A secondary formalization contribution is
the concept of UC key-private forward-secure encryption which, even though the two relevant properties were
studied independently, a UC functionality capturing both has never appeared until our work.

We note that our work is concurrent, and independent, of another paper on privacy-preserving proof-of-stake
by Ganesh et al. [GOT18]. This work focuses on constructing a generic, privacy-preserving leadership election,
given a list of commitments to each party’s stake. Our work by contrast focuses on ensuring the proof of stake
leadership election can run with a provably secure, privacy-preserving transaction scheme. Notably, Zerocash
cannot immediately be used with the system of [GOT18], as it does not maintain a list of stake commitments –
indeed, such a list would appear to reveal more about the shift in funds than Zerocash does, such as how long an
account has seen no changes.

7.2 Protocol Intuition

To begin with, we give a high-level sketch of the Ouroboros Crypsinous protocol in this Section, to aid in un-
derstanding the more formal break-down of the protocol in Section 7.6, and to introduce core concepts. We

1The word “Crypsinous” is Greek and refers to a person who is mindful of their privacy. We thank Konstantinos Mitropoulos for
suggesting it to us.

89

D3.2 – Design of Extended Core Protocols

will first sketch the design of two protocols we are building on – Ouroboros Genesis [BGK+18], and Zero-
cash [BSCG+14]. We will discuss how these can be combined, and the issues that arise through this combination.
Finally, we will sketch how we have resolved these issues.

7.2.1 The Foundations of Genesis and Zerocash

Ouroboros Genesis [BGK+18], divides time into discrete slots. At protocol start, parties are assigned initial
stake in the system. Typically, only the relative amount of such stake is considered, i.e. how much each party
holds out of the total stake. By protocol-external means, the distribution of this stake may shift over time, e.g.
by users trading it amongst each other. Each slot, users have a probability proportional2 to their relative stake to
be “elected” as a leader of the slot. In practice, this relies on a pseudo-random value being below a user-specific
target. Such leaders may then create a new block, and sign it with a proof of leadership eligibility. In order
to prevent so-called “grinding attacks”, in which parties attempt the leadership election arbitrarily often with
different accounts, transferring themselves the funds, Genesis divides time further into epochs. In each epoch,
the distribution of stake considered for leadership is fixed, and the pseudo-random values used to determine it
can only be predicted once the epoch starts.

Zerocash [BSCG+14] achieves complete transactional privacy in a distributed ledger setting, through the
use of non-interactive zero-knowledge (NIZK) proofs. It represents monetary value through coins, which can
be created, and spent once. Crucially, it prevents double-spends, and ensures value is preserved, while at the
same time preventing the creation and spending of a coin from being linked. A transfer allows spending two
coins, and creating two new coins of the same combined value. This closely mirrors the simplest form of Bitcoin
transactions. Each party holds a secret key used to spend coins. This secret key is simply a random string, and
its corresponding public key is a hash of the secret key. When creating a new coin, it is created for a public
key. Specifically, a nonce is randomly selected for the new coin, and the transaction creating it commits to the
coins public key, nonce, and value. All such created commitments are kept in a protocol-wide Merkle tree. To
spend a coin, a party makes a zero-knowledge proof of two things: First, the protocol-wide Merkle tree contains
a commitment to it, and second, the spender knows the preimage of the public key. This by itself would allow
double spends, so Zerocash reveals a coins serial number, which is defined as a PRF of the secret key and the
coin’s nonce. The transfer finally proves in zero-knowledge that the transaction is zero-sum.

7.2.2 The Core Protocol

The core principle of Ouroboros Crypsinous is combining the strengths of both the Ouroboros Genesis and
Zerocash protocols. In particular, we note that while Ouroboros Genesis assumes the distribution of stake to be
public, this fact is only used in verifying that leaders of a slot met the appropriate target. To remove this intrinsic
leakage, we have parties hold Zerocash-style coins, with each coin being separately considered for leadership.
As in Ouroboros Genesis, each coin is eligible to be a leader if a pseudorandom value meets some target. Instead
of revealing the coins value, however, in Crypsinous parties produce a NIZK proof of this, as well as proving
that the respective coin is unspent. This also forces us to explicitly model the transaction system by which stake
is allowed to shift – as the stake distribution is no longer simply supplied to every party by the environment, it is
necessary to make explicit how it is derived. For this reason, the core Crypsinous protocol includes a Zerocash-
like transaction system.

7.2.3 Freezing Stake in Zero Knowledge

The security argument of Ouroboros Genesis relies on parties not being able to manipulate whether or not they
won a leadership election. Specifically, it assumes the distribution of stakeholders to be fixed before the random-
ness for the same epoch is decided. Likewise, the set of coins that are eligible for a slot in the leadership election
is fixed in Ouroboros Crypsinous. The protocol maintains this frozen set of coins, Clead, separately to the set

2We note that although it is not technically linear, this is a close approximation.

90

D3.2 – Design of Extended Core Protocols

of coins usable for spending, Cspend. In practice, as coins are anonymously as sets of commitments and serial
numbers, and as any reuse of a serial number would lead to some privacy leakage, we represent them through
two sets of commitments, Clead and Cspend, and one set of serial numbers, S. In creating the leadership proofs, a
coins serial number is revealed. As it may later be spent, this would lead to some privacy leakage. To mitigate
this, we instead evolve the coin in the leadership transaction. This new, evolved coin can then be spent, and used
in further leadership proofs, the latter being possible as it is derived deterministically from the former coin, which
does not allow influencing the probability of it being elected in the remainder of the epoch. We note that as this
design inherently destroys the old coin, it is important that even leadership transactions of different branches of
the chain are imported and validated.

7.2.4 Adaptive Corruptions

As Ouroboros Genesis is secure in the adaptive corruption model, it seems natural that privacy results should be
possible in the same model. The construction described so far, is not directly secure against adaptive corruptions.
An adversary could, after corrupting a party, attempt to create leadership proofs of past slots with the newly
corrupted party. Further, we note that – in the UC framework – a non-committing encryption would be needed
for the ciphertexts in the Zerocash style transactions, as with a committing encryption, the simulator would be
unable to produce ciphertexts that stand up to inspection after corruption.

We solve the former issue, by adding a cheap key-erasure scheme into the NIZK for leadership proofs.
Specifically, parties have a Merkle tree of secret keys, the root of which is hashed to create the corresponding
public key. The Merkle tree roots acts like a Zerocash coin secret key, and can be used to spend coins. For
leadership however, parties also must prove knowledge of a path in the Merkle tree to a leaf at the index of the
slot they are claiming to lead. After a slot passes, honest parties erase their preimages of this part of that path in
the tree. As the size of this tree is linear with the number of slots, we allow parties to keep it small, by restricting
its size. Keys therefore are associated with their creating time, by committing to this in the corresponding public
key. While this does mean keys can expire, we note parties can trivially refresh them, and further will sketch in
Section 7.8 that this is a rare occurrence for practical parameters. We emphasize that parties are able to spend
and refresh keys, even when expired.

While we could easily present Ouroboros Crypsinous using non-committing encryption, known realizations
of this primitive are not efficient enough for this purpose in practice. Instead, we take advantage of our protocols
network assumptions, which include an upper bound on message delivery, ∆max. This allows us to utilize forward
secure encryption instead of non-committing encryption, under the assumption that corruption is “delayed” by
∆max. This delay is modeled by restricting adversarial access to the forward secure encryption secret key at time
τ to the key for time τ + ∆max.

7.3 The Model

Following the recent line of works proving composable security of blockchain ledgers [BMTZ17, BGK+18] we
provide our protocol and security proof in Canetti’s universal composition (UC) framework [Can01]. In this
section we discuss the main components of the real-world execution, including the hybrid functionalities that
the protocol uses. We discuss the ideal world, and in particular the private transaction ledger functionality in
Section 7.5. We assume that the reader is familiar with simulation-based security and has basic knowledge of the
UC framework. We provide all the aspects of the execution model from [BMTZ17,BGK+18] that are needed for
our protocol and proof, but omit some of the low-level details and refer the more interested reader to these works
wherever appropriate. We note that for obtaining a better abstraction of reality, some of our hybrids are described
as global (GUC) setups [CDPW07]. The main difference of such setups from standard UC functionalities is that
the former are accessible by arbitrary protocols and, therefore, allow the protocols to share their (the setups’)
state. The low-level details of the GUC framework—and the extra points which differentiate it from UC—are
not necessary for understanding our protocols and proofs; we refer the interested reader to [CDPW07] for these

91

D3.2 – Design of Extended Core Protocols

details. We will use sid as a session identifier throughout the paper.
Protocol participants are represented as parties—formally Interactive Turing Machine instances (ITIs)—in a

multi-party computation. We assume a central adversary A who corrupts stakeholders and uses them to attack
the protocol. The adversary is adaptive, i.e., can corrupt additional stakeholders at any point and depending on
his current view of the protocol execution. We cast our protocols in the partially synchronous communication
version of UC proposed in [BMTZ17]: parties have access to a global clock setup, denoted by GCLOCK, and can
communicate over a network of authenticated multicast channels with a bounded delay ∆ denoted by F∆

N-MC.
Every honest party can send a message thought F∆

N-MC to all other honest parties but the adversary can delay its
delivery to any honest party by a number of rounds of his choice but no greater than ∆. Honest receivers cannot
tell when a message will arrive as they know neither when the message was sent nor the delay ∆. As in the
case of Bitcoin, cf. [GKL17, PSS17, BGK+18], our protocol is implicitly aware of an overestimate ∆max of the
actual (unknown) network delay ∆. However, this ∆max is not used in the message passing; instead the protocol
proceeds in an optimistic manner once messages are received (after at most ∆ rounds from sending) and ∆max is
only used in the staking procedure to determine the leader(s) of each slot.

Similarly to [BMTZ17,BGK+18], for UC realization in such a globally synchronized setting, the target ideal
functionality, i.e., the ledger, needs to keep track of the number of activations that an honest party gets—so that it
can enforce in the ideal world the same pace of the clock as in the real world. This is achieved by describing the
protocol so that it has an (implicit) predictable behavior of clock interactions for any given activation pattern—
which the ideal functionality can (and will) mimic. We refer to [BMTZ17] for details.

We adopt the dynamic availability model implicit in [BMTZ17] which was fleshed out in [BGK+18]. We
next sketch its main components: All functionalities, protocols, and global setups have a dynamic party set, i.e.,
they all include special instructions allowing parties to register, deregister, and allowing the adversary to learn
the current set of registered parties. Additionally, global setups allow any other setup (or functionality) to register
and deregister with them, and they also allow other setups to learn their set of registered parties.

Utilizing the full dynamic availability model results in separating the honest parties in the following cate-
gories: offline parties are honest parties that are deregistered from the network functionality. Parties which are
not offline are separated into two (sub-)categories, called (fully) online—parties which are registered with all
their setups and ideal resources—and (online but) stalled—parties that are registered with their local network
functionality, but are unregistered with at least one of the global setups. Each of these (non-offline) subclasses
is further split into two subcategories along the lines of the classification of [BMTZ17]: those that have been
in a non-offline state for more that Delay rounds—where Delay is a ledger parameter—are synchronized,
whereas the remainder are de-synchronized. Our protocol makes use of the following hybrid functionalities
from [BGK+18]. (The ideal world execution makes access to the global setups presented below and the private
ledger functionality which is presented in Section 7.5.)

The global clock functionality GCLOCK which keeps track of the current (global) round and reports it to
any party that requests it. The round advances whenever all honest (currently registered) parties and func-
tionalities inform GCLOCK that they are finished with their current round’s actions (note that this is not a
communication round).
The bounded-delay authenticated channels network F∆

N-MC described above.
The genesis block generation and distribution functionality FINIT, which captures the assumption that all
parties (old and new) agree on the first, so-called genesis block. In fact, this functionality is slightly different
from the one in [BGK+18] as the blocks in our work have a different structure to ensure privacy. Concretely,
In Ouroboros-Genesis this block includes the keys, signatures, and original stake distribution of the parties
that are around at the beginning of the protocol. Here, for each stakeholder registered at the beginning of the
protocol, FINIT records his keys and initial coin commitments in the genesis block; this block is distributed
to anyone who requests it in any future round. As in [BGK+18] we assume wlog that the global time is
τ = 0 in the genesis round. We refer to Section 7.9 for a description of our new genesis block functionality.
A global random oracle GRO for abstracting hash function queries. As typically in cryptographic proofs
the queries to hash function are modeled by assuming access to a random oracle: Upon receiving a query

92

D3.2 – Design of Extended Core Protocols

(EVAL, sid, x) from a registered party, if x has not been queried before, a value y is chosen uniformly at
random from {0, 1}κ (for security parameter κ) and returned to the party (and the mapping (x, y) is internally
stored). If x has been queried before, the corresponding y is returned. As in [BGK+18] we capture this by a
global random oracle (GRO), i.e., a global setup that behaves as above.

To ensure privacy of transactions, we need to equip our model with a couple of extra functionalities not
present in previous works. For instance, the (non-private) Ouroboros protocol-line [DGKR18, BGK+18] relies
on verifiable random functions and key-evolving signatures to ensure security of the lottery which defines slot
leaders and prevent double spending in the presence of an adaptive adversary.

In our protocol we cannot use signatures to authenticate coins/transactions as we need to keep the spent
amount and the identities of the receiver private. For this reason we introduce key-private forward secure en-
cryption and non-interactive zero-knowledge proofs (NIZKs). Our protocol will be described as having access to
hybrid-functionalities for these primitives. These functionalities along with their implementation from a common
reference string (CRS) and their security proofs are described in Section 7.4. To our knowledge no definition
of key-private forward secure encryption or an implementation thereof has been suggested. In fact, for reasons
discussed below (see Section 7.4.2) an implementation of this primitive against fully adaptive adversaries might
be impossible without additional setup assumptions. Instead, here we make an assumption about the (in)ability
of the adversary to quickly read keys of newly corrupted parties and prove the security of our protocols under this
assumption. Proving impossibility of the primitive against a fully adaptive adversary (or providing a protocol for
it) is an interesting future direction.

Finally, our construction will make use of non-interactive equivocal commitments and pseudo-random func-
tions (PRFs). Construction of both these primitives exists assuming a CRS under standard hardness assumption,
e.g., hardness of the DDH (Decision Diffie Hellman) problem.
Remark 1: (Assumptions on the environment/adversary as functionality wrappers.) The security statements about
implementation of ledgers are typically conditional. E.g., the Bitcoin ledger is proved secure assuming the ma-
jority of the system’s hashing power is honest, and the Ouroboros (Genesis) ledger is implemented assuming the
majority of the stake is held by honest parties. These assumptions can be easily described by explicitly restricting
the class of environments and adversaries, but this would sacrifice the universal composability of the statement.
We follow the paradigm of [BMTZ17] to capture these assumptions without compromizing composability: In-
stead of explicitly restricting the adversary and environment, we introduce a functionality wrapper that wraps
the functionalities that the protocol accesses and forces the required assumptions on the adversary/environment.
We refer to [BMTZ17] for a more detailed discussion. As a forward pointer, the wrapper used in our security
statements is sketched in Section 7.13. As this wrapper only becomes relevant for interpreting our main theorems
(Theorem 17 and 18) it might be easier for the first-time reader to postpone parsing it until then.

7.4 Tools

In this section we describe the main tools used by Ouroboros Crypsinous: non-interactive zero-knowledge proofs
(NIZKs), key-private forward secure encryption, maliciously-unpredictable PRFs (MUPRFs), and equivocal
commitments. We describe ideal functionalities capturing NIZK and key-private forward-secure encryption,
and refer to their UC implementations in Sec 7.14 and 7.15. Ouroboros Crypsinous is described and proved se-
cure assuming hybrid access to these ideal functionalities and its security when these functionalities are replaced
by their implementations will follow directly from the universal composition theorem.

Further, we define the properties satisfied by MUPRFs and equivocal commitments.

7.4.1 Non-Interactive Zero Knowledge

We utilize the Non-Interactive Zero Knowledge functionalityFNIZK and protocol of [KZM+15b] , (for complete-
ness, FNIZK is described in detail in Section 7.9). This functionality allows generating proofs π that a statement

93

D3.2 – Design of Extended Core Protocols

x is in a given NP language L, with a witness w. We use the “weak” functionality suggested, which permits an
adversary to generate new proofs for already proven statements.

We note that while [KZM+15b] provides a construction, it is only shown to satisfy game-based properties.
We formally prove its security in the UC setting assuming a CRS in Section 7.14.

NIZKs can be used for signature-like behaviour by embedding the messages that are to be signed in the
statements of simulation-extractable NIZKs, constructing in this way a signature of knowledge [GM17] (SoK).
In particular, we note that witnesses used to generate proofs in Ouroboros Crypsinous will contain the party’s
secret key, and the proved statement commits to the party’s public key. As a result, the NIZK used in Ouroboros
Crypsinous has similar unforgeability properties as standard signatures.

7.4.2 Key-private Forward-Secure Encryption

To guarantee the forward-privacy of transactions, a forward-secure encryption scheme [CHK03] is necessary to
hide information sent encrypted to a party’s long-term encryption secret key. Note that traditional forward-secure
encryption is insufficient, as it would leak information about the recipient of a transaction. To preserve the recip-
ient’s anonymity in Crypsinous transactions, we therefore require key-privacy as well [BBDP01]. Furthermore,
as the simulator must create simulated ciphertexts, which it may later need to reveal the message of, encryption in
the UC setting needs to be non-committing to withstand adaptive corruptions. Interestingly, however, there are no
existing encryption schemes that simultaneously achieve key-privacy, forward-security, and the non-commitment
property.

We overcome the above limitation by introducing a slightly weakening the above security requirements
and only requiring forward-security with a time-sensitive non-committing property: Informally, only messages
addressed to a time window of size ∆max into the future are protected. As it turns out, this weaker notion is
sufficient for our purposes. Even for this notion, however, it is not evident how to efficiently realise such an
encryption in the UC setting. To understand the issue, it is useful to recall how we can realize non-interactive
non-committing encryption via erasures. The idea is to have parties update their keys once the message is
received. More concretely, a message is encrypted at round τ and sent over to the receiver so that it can be
decrypted with key sk ENC

τ . Upon receiving it, the receiver can decrypt it (using sk ENC
τ), and immediately update

the key to sk ENC
τ ′ for the next round (and erase sk ENC

τ). This way the link between the ciphertext and the key is
eliminated by the time the adversary corrupts the receiver.

The above approach clearly fails if the channel has any delay, as in out setting, as this gives the adversary
a window of opportunity of size ∆, and bounded only by ∆max, to attack during which the message is already
being transmitted but has not yet been received by the recipient. This makes erasures useless in this window (if
correctness is to be maintained).

To bypass the above issue, we make an assumption on the adversary’s adaptiveness which, roughly, implies
that the adversary cannot immediately access the secret key of a newly corrupted party. Specifically, we assume
that the adversary corrupting a party with key sk ENC

τ at time τ does not receive sk ENC
τ , but rather the key sk ENC

τ+∆max
,

which this party would hold in time τ+∆max, if it were allowed to properly update its key. We emphasize that this
is a milder assumption than that of delayed party-corruption which underlines the security of [KRDO17,BPS16].
Indeed, in these works the adversary is forbidden from accessing the entire state of a corrupted party for a certain
number of rounds after corruption; instead, here we only restrict his access to the present keys, and we even give
the adversary an outlook, already upon corruption, of how the key will look in the near future.

To enforce the above restriction without affecting the universal composability of our statements, we use
a technical trick inspired by [BMTZ17, DGHM13] (related to the wrappers used in Remark 1.): Concretely,
we introduce an ideal functionality which captures this restriction/assumption. This functionality, denoted by
FKEYMEM, stores keys upon request from parties, and updates them every round using a one-way function Update;
when an honest party requests a key it has submitted in the past, the functionality sends it the current key.
However, when the adversary asks for a key (on behalf of a corrupted party) FKEYMEM first applies Update ∆max
times, and returns the updated key to the adversary.

94

D3.2 – Design of Extended Core Protocols

Note that the direct way of enforcing the assumption would be to limit all our statements to only apply to a
restricted class of adversaries. For reasons similar to the discussion in Remark 1 above, this would immediately
imply that universal composition no longer holds.3 As an added bonus from using the above functionality-based
approach for restricting the adversary, our treatment ensures that the restriction is localized to the encryption
functionality; thus, if someone comes up with an instantiation of the encryption functionality against a fully
adaptive adversary, or protocol would immediately be secure against such an adversary. The FKEYMEM function-
ality is specified below.

FKEYMEM is parameterized by its corruption delay ∆max, and a memory update function Update. It maintains
a memory Mp for each party Up, initialized to ε, as well as a flag isInitp for each party Up, initialized to ⊥.
We write Update∆

max to mean “apply Update ∆max times.”

On receiving a message (Init, sid,M ′) from Up: If isInitp = ⊥, let Mp ←M ′; isInitp ← >.

On receiving a message (Get, sid) from Up: If isInitp = >, return Mp if Up is honest, otherwise return
Update∆

max(Mp).

On receiving a message (Update, sid) from Up: If isInitp = >, update Mp ← Update(Mp).

Functionality FKEYMEM

The UC functionality for key-private and forward-secure encryption, FFWENC, is described in detail in Ap-
pendix 7.9, and the accompanying construction is described below.

We extend the notion of forward-secure encryption (FSE) with a notion of key privacy, described in detail
in Definition 21 below. While this definition itself is novel, it is possible to combine existing schemes to satisfy
it. In particular, [CHK03] constructs FSE from hierarchical identity-based encryption (HIBE). Their scheme,
paired with the anonymous HIBE construction of [BW06] satisfies our requirements of key-privacy as we will
argue below.

For the argument of key privacy, the FSE from HIBE construction in [CHK03] is straightforward, with
the ciphertexts simply being the underlying HIBE scheme’s ciphertexts. The core argument of the anonymity
of [BW06], is the indistinguishability of ciphertexts from random group elements – and therefore their indepen-
dence of the encrypting identity (cf. [BW06, Lemmas 8& 9]. We note that the ciphertexts’ pseudo-randomness
implies a stronger notion than just anonymity – the ciphertext also does not reveal any information about the
HIBE public key. In particular, as ciphertexts are indistinguishable, our enhanced security game given in Defini-
tion 21 is satisfied. The game, as well as the subsequent UC construction, can be found in Section 7.15.

This construction’s time and space complexity is logarithmic to the number of time slots. As the number
of slots is by necessity less than 2κ, the use of this forward-secure encryption has a linear increase in cost with
respect to the security parameter compared to standard encryption.

Key-Private Forward-Security Against Chosen Ciphertext Attacks

Definition 21. A key-evolving public-key encryption scheme is key-privately forward-secure against chosen
ciphertext attacks (kp-fs-CCA) if any PPT adversary has only negligible advantage |2 · Pr[b′ = b] − 1| in the
following game:
Setup: For each party Up ∈ P , run (pkp, sk0

p)
$← Gen(1κ, N). The adversary receives all public keys pkp.

Further, a bit b← {0, 1} is selected, but not revealed to the adversary.
Attack: The adversary issues multiple challenge(j, (U0,m0), (U1,m1)) queries, multiple corrupt(i, Up) queries,
and multiple decrypt(k, c, Up) queries, where Up, U0, U1 ∈ P , and 0 ≤ i ≤ N ; 0 ≤ j ≤ N ; k ≤ N . Further,

3One could attempt to prove a tailored, weaker, and non-universal composition theorem that would apply only to the restricted class
of adversaries considered in our encryption-scheme’s security proof. But this is not in the spirit of our treatment which explicitly aims at
fully-composable (UC) protocols, and it is also rendered unnecessary using our trick above.

95

D3.2 – Design of Extended Core Protocols

if a corrupt query is made for some party a challenge query is also made for, then the corresponding i must be
greater than the corresponding j. corrupt queries may be issued only once for each party.

• corrupt(i, Up) is answered with sk ip , Upd(. . .Upd(sk0
p, 1), . . . , i).

• challenge(j, (U0,m0), (U1,m1)) is answered by responding with c = EncpkUb
(j,mb), and (j, c, U0) and

(j, c, U1) are recorded as challenges.

• decrypt(k, c, Up) is answered with ⊥ if (k, c, Up) is recorded as a challenge. Otherwise, it is answered
with Decskkp(k, c∗).

Guess: The adversary outputs a guess b′ ∈ {0, 1}, and wins the game iff b′ = b.

7.4.3 PRFs with unpredictability under malicious keys

Consider a PRF family {fk}k∈K such that fk : X → Y for all k ∈ K. The usual PRF security requires that any
PPT distinguisher D with an oracle cannot tell the difference between an oracle fk(·), for a randomly selected
k and a truly random function over X → Y . The definition can be ported to the random oracle setting where
both the function fk as well as the distinguisher D have access to a random oracle H(·). Unpredictability under
malicious key generation, is an additional property that, intuitively, suggests the function does not have any “bad
keys” that can eliminate the entropy of the input, a concept introduced in [DGKR18]. In the random oracle
model, the property can be expressed as follows: for any PPT A and x ∈ X,T ∈ N, the probability of the event
Pr[fk(x) < T |x 6∈ QH] equals T/2κ where A(1κ) = k, and QH is the set of queries of A to H .

We will employ the following construction. Let H : {0, 1}∗ → 〈g〉 be a function mapping to a cyclic
group generated by g with a compact representation. We use an elliptic curve group based on the “elligator”
curves [BHKL13] that have the property that a uniform element over 〈g〉 is indistinguishable from a random κ-
bit string. We then define fk(m) 7→ H(m)k for k 6= 0 and we show that it is a PRF with unpredictability under
malicious key generation from X to {0, 1}κ. Indeed observe first that 〈gk, H(m), H(m)k〉 is a DDH triple over
the group 〈g〉. Thus, by the DDH assumption and the random oracle model, we can substitute all queries to the
PRF by random group elements. Now observe that by the encoding properties of the curve these elements can
be substituted by random strings over {0, 1}κ. Regarding the unpredictability under malicious key generation
observe that in the random oracle model, Pr[H(x)k < T] ≤

∑
y<T Pr[H(x)k = y] = T · Pr[H(x) = y1/k] ≤

T/2κ in the conditional space x 6∈ QH .

7.4.4 Equivocal Commitments

We make use of a standard non-interactive equivocal commitment scheme, which is secure in the CRS model
assuming hardness of discrete logarithms (cf. [DG03]). For self-containment we include a high-level description,
including some notation used in our proofs below.

Specifically, we will assume the existence of six algorithms, Initcomm, Comm, DeComm, Înitcomm, Ĉomm,
and Equiv. Initcomm generates a public key pk COMM which is given as an argument to Comm and DeComm and
will be part of the parameterization of the CRS functionality. In addition to satisfying the traditional commitment
properties, of binding, hiding, and correctness, the scheme also satisfies equivocality. Specifically, Înitcomm

provides an equivocation key in addition to pk COMM. This equivocation key “breaks” the binding property –
Ĉomm can generate a commitment without a message, and Equiv can later create a witness matching any message
for this commitment. We note that we do not require additional common properties, such as extraction or non-
malleability, as these are provided by other components of Ouroboros Crypsinous’ design, in particular the NIZK
functionality.

We write (cm, r)← Comm(m) to create the commitment cm for messagem, and DeComm(cm,m, r) = >
if the decommitment to m and r verifies. Likewise, we write cm ← Ĉomm(ek) for simulating a commitment
with equivocation key ek , and r ← Equiv(ek , cm,m) to equivocate, where DeComm(cm,m, r) = >. In all
these, we leave the public key pk COMM implicit, as it is assumed to be globally known via the CRS.

96

D3.2 – Design of Extended Core Protocols

7.5 The Private Ledger

We next provide the complete description of the private ledger functionality that, as we prove, is implemented by
Ouroboros Crypsinous. To describe how privacy is captured in the Crypsinous ledger, we first recall how submit-
ted transactions are stored in the original—non-private—ledger from [BMTZ17, BGK+18]: When a transaction
tx is submitted, the ledger creates—and stores in the buffer—an annotated version of the transaction tx, denoted
as BTX := (tx, txid, τL, Us), which includes several useful metadata: txid is a unique identifier for this trans-
action, τL is the clock value when the transaction is received, and Us is the ID of the party that submitted the
transaction. Note that this metadata is used for internal bookkeeping and is not necessarily included in the state
of the ledger when (and if) the transaction makes it there. In fact, whether or not this data is included in the state
is mandated by the Blockify function of [BMTZ17, BGK+18], a parameter to the private ledger. Nonetheless, in
the non-private ledger case, the metadata is handed also to the simulator whenever a transaction is given to him.

Privacy of Crypsinous is captured by the following modifications: First, transactions returned from the func-
tionality are blinded by a function BlindTx which is a parameter of a functionality. This function hides any
information a party should not see from the ledger state, while state validation operates over the entire, non-
blinded state. Further, we parameterize the private ledger with a general purpose leakage algorithm, Lkg, which
may additionally leak any function of the ledger state to the adversary.

As a technicality, as the BlindTx function must be applied to “blockified” states, however the structure of
these is not known in general, an additional “state blinding” algorithm is accepted as a parameter, which we
require to behave equivalently to first blinding all transactions, then passing them to Blockify. Intuitively, for any
given state state, Blind(P, ids, state) returns state with every transaction tx replaced by BlindTx(state,P, ids, tx).
In particular, where β , map(BlindTx(state,P, ids)), we require that:

Blind

P, Blockify(~tx1) ‖
. . . ‖

Blockify(~tx`)

 =
Blockify(β(~tx1)) ‖

. . . ‖
Blockify(β(~tx`))

BlindA is defined the same as Blind, but with calls to BlindTx replaced with calls to BlindTxA .

GPL is parameterized by seven algorithms, Validate, ExtendPolicy, Blockify, Lkg, BlindTx, Blind, and
predict-time, along with three parameters: windowSize,Delay ∈ N, and
C1 := {(U1, s1), . . . , (Un, sn)}. These parameters are all publicly known. The functionality manages
variables state, NxtBC, buffer, τL, and ~τstate, as described in [BMTZ17, BGK+18], as well as a sequence of
generated IDs, ids. The variables are initialized as follows: state := ~τstate := NxtBC := ids := ε,
buffer := ∅, τL = 0.

The functionality maintains the set of registered parties P , the (sub-)set of honest partiesH ⊆ P , and the
(sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition of de-synchronized from
above). The sets P,H,PDS are all initially set to ∅. When a new honest party is registered at the ledger, if it
is registered with the clock and the global RO already, then it is added to the party setsH and P and the
current time of registration is also recorded; if the current time is τL > 0, it is also added to PDS . Similarly,
when a party is de-registered, it is removed from P (and therefore also from PDS orH). The ledger
maintains the invariant that it is registered (as a functionality) to the clock wheneverH 6= ∅. Finally, during
registration, (GENERATE, sid, COIN) is run once, and Up is replaced with the resulting id in C1. Further, the
registration procedure returns id.
For each party Up ∈ P the functionality maintains a pointer ptp (initially set to 1) and a current-state view
statep := ε (initially set to empty). We refer to the vector pt1, . . . ,ptn as ~pt. The functionality also keeps
track of the timed honest-input sequence (cf. [BMTZ17]) in a vector ~ITH (initially ~ITH := ε).

Functionality GPL

97

D3.2 – Design of Extended Core Protocols

Handling initial stakeholders: If during round τ = 0, the ledger did not received a registration from each
initial stakeholder, i.e., (Up, sp) ∈ C1, the functionality halts.

Upon receiving any input I from any party or from the adversary, send (CLOCK-READ, sidC) to GCLOCK;
upon receiving response (CLOCK-READ, sidC , τ) set τL := τ and do the following if τ > 0 (otherwise,
ignore input):

1. Let P̂ ⊆ PDS denote the set of de-synchronized honest parties that have been registered (continuously)
since time τ ′ < τL − Delay. Set PDS := PDS \ P̂ .

2. If I was received from an honest party Up ∈ P:

(a) If I = (SUBMIT, sid, tx), set ~ITH := ~ITH ‖ ((SUBMIT, sid,BlindTxA(state,P \ H, ids, tx)), Up, τL);
else set ~ITH := ~ITH ‖ (I, Up, τL)

(b) Compute ~N = (~N1, . . . , ~N`) := ExtendPolicy(~ITH , state,NxtBC,buffer, ~τstate) and if ~N 6= ε set
state := state ‖Blockify(~N1) ‖ . . . ‖Blockify(~N`) and ~τstate := ~τstate ‖ τ `L, where
τ `L := τL ‖ . . . ‖ τL.

(c) For each BTX ∈ buffer: if Validate(BTX, state,buffer, ~pt,H, ids) = 0 then delete BTX from buffer.
Also, reset NxtBC := ε.

(d) If there exists Uj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set
ptk := |state| for all Uk ∈ H \ PDS .

3. If the calling party Up is stalled (according to the definition above), then no further actions are taken.
Otherwise, depending on the above input I and its sender’s ID, GPL executes the corresponding code from
the following list:

– Submitting a transaction:
If I = (SUBMIT, sid, tx) and is received from a party Up ∈ P or from A (on behalf of a corrupted party
Up) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Up).

(b) If Validate(BTX, state,buffer, ~pt,H, ids) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (SUBMIT,BlindTxA(state,P \ H, ids,BTX)) to A.

– Generating IDs:
If I = (GENERATE, sid, tag) is received from a party Up ∈ P , query the adversary with
(GENERATE, sid, Up, tag), denoting the response id. Ensure the response is unique for tag and not
equal to ⊥, and record ids← ids ‖ (Up, tag, id). Return id.

– Reading the state:
If I = (READ, sid) is received from a party Up ∈ P then set statep := state|min{ptp,|state|} and return
(READ, sid,Blind({Up} , ids, statep)) to the requestor. If the requestor is A then send (BlindA(P \ H,
ids, state),map(BlindTxA(state,P \ H), ids,buffer),Lkg(state,buffer, τL), ~ITH) to A.

– Maintaining the ledger state:
If I = (MAINTAIN-LEDGER, sid) is received by an honest party Up ∈ P and (after updating ~ITH as
above) predict-time(~ITH) = τ̂ > τL then send (CLOCK-UPDATE, sidC) to GCLOCK. Else send I to A.

– The adversary proposing the next block:
If I = (NEXT-BLOCK, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

98

D3.2 – Design of Extended Core Protocols

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid, τL, Uj) ∈ buffer with ID txid = txidi then set
listOfTxid := listOfTxid ‖ txidi.

(c) Finally, set NxtBC := NxtBC ‖ (hFlag, listOfTxid) and output (NEXT-BLOCK, ok) to A.

– The adversary setting state-slackness:
If I = (SET-SLACK, (Ui1 , p̂ti1), . . . , (Ui` , p̂ti`)), with {Upi1 , . . . , Upi`} ⊆ H \ PDS is received from
the adversary A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for every
j ∈ [`] and return (SET-SLACK, ok) to A.

(b) Otherwise set ptij := |state| for all j ∈ [`].

– The adversary setting the state for desychronized parties:
If I = (DESYNC-STATE, (Ui1 , state′i1), . . . , (Ui` , state′i`)), with {Ui1 , . . . , Ui`} ⊆ PDS is received
from the adversary A, set stateij := state′ij for each j ∈ [`] and return (DESYNC-STATE, ok) to A.

7.5.1 Blinding for Forward-Secure Transactions

In order to define blinding on transactions, we first define transactions as consisting of a vector of subtransactions,
denoted tx , (stx1, stx2, . . . , stx`). Each subtransaction consists of a recipient public key pk r, and an arbitrary
message x, that is stx , (pk r, x). In this context, pk r is either a public key, generated by a party with an
GENERATE query, or the special symbol PUBLIC, denoting the subtransaction is publicly readable. We do not
leak the entire annotated transaction to the adversary. Instead, the adversary is shown a modified vector tx,
with subtransactions addressed to honest parties replaced with ⊥. While we do not go into the detail of transfer
transactions here, we also replace components referring to already spent coins – for honest parties or adversarial
– with ⊥. This guarantees forward privacy of past transactions, as even on corruption, the adversary cannot
retrieve this information. Concretely, we define blinding functions BlindSTx and BlindTx, described below,
which hide parts of the ledger from read requests.

BlindTx takes as input the full ledger state state, an annotated transaction BTX = (tx, txid, τL, Us), a set of
parties P , and the set of generated ids ids. It returns a vector consisting only of the components of the transaction
that are readable by some party Up ∈ P . An adversarial version of BlindTx, BlindTxA , additionally returns the
time of submission, τL, and the submitter Us4. Below, we make use of the commonly used higher-order function
map, which applies a function to a list element-wise.

function BlindSTx(state,P, ids, (pk , stx))
b← 0
if stx is not a change subtransaction then

b← 1
end if
if stx is a receipt subtransaction of an already spent coin then

b← 1
end if
if pk 6= PUBLIC ∨ pk not owned by Up ∈ P then

b← 0
end if
if b ∨ stx is a receipt subtransaction for an adversarial coin then

return (pk , stx)

4If we assumed an anonymous broadcast, the submitter would not be needed to be leaked, i.e., the requirement of leaking the submitter
is strictly due to network leakage.

99

D3.2 – Design of Extended Core Protocols

else

return (⊥, |stx|)
end if

end function

BlindTx(state,P, ids, (tx, txid, ·, ·)) , map(BlindSTx(state,P, ids), tx),

txid)

BlindTxA(state,P, ids, (tx, txid, τL, Us)) , (map(BlindSTx(state,P, ids),

tx), txid, τL, Us)

7.5.2 Leakage for Leader-Based Protocols

In our system, we permit the leakage Lkglead, which effectively simulates the protocols leadership election,
and leaks the winning party. Specifically, for each time τ , the adversary receives a set of parties that won the
leadership election. This set is selected by sampling a random coin for each party, weighted by their stake using
the same algorithm as in Ouroboros Praos [DGKR18]. We note that while this leakage is protocol-specific,
it follows a general principle of leaking the elected leaders in a protocol. Specifically, honest parties will be
selected by Lkglead with the probability of them winning a leadership election in Ouroboros Crypsinous. This
probability is the same as in Ouroboros Genesis, and is the function φf of their stake, where φf is the independent
aggregation function described in [DGKR18, BGK+18].

In addition to this, we note Zerocash-style protocols will allow an adaptively corrupting adversary to compute
the serial number of coins it sent to an honest party after corrupting them. As the serial number is by necessity
committing, the simulator must know when such adversarially sent coins are spent, to ensure the consistency of
the simulation. For this reason, we also leak the points adversarially sent coins are spent.

The Lkglead algorithm maintains a record of past leaks, Lτ for each past time τ . This is to ensure the
adversary is limited in accessing the leakage function for past slots.

procedure Lkglead(state,buffer, τ)
if Lτ is recorded then return Lτ
Determine ep, the epoch for the time slot τ .
Determine τep, the time at which the stakeholder distribution for the epoch ep was frozen.
Let L← ∅
for each party Up do

Determine the valid coins of Up in stateτep .
Determine Up’s relative stake αUp .
With probability of φf (αUp), add Up to L.

end for
for each adversarially generated coin c do

if c was spent in state or buffer then
Let tx be the transaction it was spent in
Let i be the index of the coin in the transaction
Let S ← S ∪ {(tx, i)}

end if
end for
Record Lτ ← L, and return L, S

Algorithm Lkglead for GPL

100

D3.2 – Design of Extended Core Protocols

end procedure

In a preliminary step of our analysis we also utilize a leakage function leaking all information, Lkgid. This
is effectively the identity function, simply returning the parameters state, buffer, and τ passed to it. With
this leakage the private ledger effectively becomes a standard ledger from [BMTZ17, BGK+18], with a stricter
interface to the environment, as the simulator still receives all information it would with the standard non-private
ledger.

7.6 The Ouroboros-Crypsinous Protocol

In this section we provide a detailed description of our protocol Ouroboros-Crypsinous as a (G)UC protocol. The
protocol has a similar structure as Ouroboros-Genesis [BGK+18], but differs considerably in the leaderelection,
and the processing of transactions. As already discussed, the protocol assumes access to a global random oracle
and clock, and functionalities for network, encryption, and NIZK.

7.6.1 Ideal-World Transactions

Before we delve into the protocol details, we note that unlike many other ledger protocols, we assign mean-
ing to transactions, and this meaning, while more precisely defined later on, is helpful to understand the high-
level design. Specifically, we consider ideal-world transactions starting with (PUBLIC, TRANSFER) to be trans-
fer transactions. While it may appear sufficient to have ideal-world transfers appear as something like “give
0.05 of Alice’s stake to Bob”, our realization of transfers using a Zerocash-like [BCG+14] design introduces
some subtleties that need to be reflected in the ideal world. Specifically, we will require parties to spec-
ify which coins they are attempting to spend. Specifically, as in Zerocash, two coins are burned, and two
coins created, in any transfer. As a special case, as our protocol has no other minting functionality, we al-
low a zero-value coin to be burned in place of the second coin. Formally, the transactions have the following
form: ((PUBLIC, TRANSFER), (pk r, c4), (pks, c1, c2, c3)), where ci are ID/value pairs. This can be interpreted
as “transfer the coins c1 and c2 to coins c3 and c4.” It is worth noting that c3, while being a newly created coin,
is not included in the component addressed to pk r. It should be seen as a means of returning “change” from
a transaction, corresponding to its real-world usage of Bitcoin and Zerocash transactions, and should therefore
also be addressed to the sending party. The validation predicate ensures the total value is preserved across the
transfer, and that an ID is only spent by its generating party. IDs must originate from the ledgers GENERATE

interface, otherwise they are treated as invalid.
In the real world, the design looks slightly different, following the approach of Zerocash [BCG+14]. Specifi-

cally, parties locally maintain, for each coin c, nonces, ρc, and commitment openings, rc, to their coins. In order
to spend a coin, they reveal the deterministically derived serial number, snc, as well as prove the existence of a
valid commitment, cmc, somewhere in a Merkle tree of coin commitments. Like Zerocash, newly created coins
are encrypted with the recipient party’s public key, and the sending party is unable to spend them as it would
require the recipient’s private key to correctly generate the coin’s serial number. One key difference is the design
of addresses, corresponding to the Ideal-world IDs. Parties will generate a new coin public/secret key pair when
given a GENERATE query, and will update their secret key after spending a coin with it.

To become a leader at a time τ , parties must prove knowledge of a path in a local Merkle tree of secret keys
sk COIN, labeled with τ . This path is then erased by the party, to ensure leadership proofs cannot be re-made for
past slots. This Merkle tree is created during key generation, with the coin’s public key being derived from the
Merkle tree’s root, and the time of key generation. Each leaf is a PRF of the previous leaf, to reduce storage
costs. We employ standard space/time trade-offs by keeping the top of the tree stored, and recomputing parts of
the bottom of the tree as needed. It is parameterized by the number of leaves R, which we leave as a system
parameter, although we note it could also be defined per-user.

101

D3.2 – Design of Extended Core Protocols

A users public key is derived from the root of the Merkle tree, root, and the time it was created, τ . It is
eligible for leadership so long as there are still paths in the tree to prove the existence of, after which the coin
must be refreshed, by spending it. We stress that this is a rare occurrence, as the assumption of honest majority
relies on coins not only being held by honest parties, but also being eligible for leadership.

The protocol will take ideal transactions as an input, and construct a corresponding Zerocash-style transaction
in the real world. This transaction is then broadcast as usual in a blockchain protocol. On a READ request,
the irrelevant information is not returned, and only the information corresponding to the original ideal-world
transaction is returned back to the requester. In addition to transfers, we note that other types of transaction are
accepted in the ideal world. We note that these are not validated, however, making the real-world equivalent far
simpler to construct. Specifically, we encrypt each subtransaction with the public key of the party it is addressed
to. On a READ request, the ciphertexts that the requesting party can decrypt are decrypted, and all others are
replaced with ⊥.

7.6.2 Protocol overview

The protocol Ouroboros-Crypsinous assumes as hybrids a network F∆
N-MC, a non-interactive-zero-knowledge

scheme FNIZK, a forward-secure encryption scheme FFWENC, a global clock GCLOCK, a global random oracle
GRO, a non-interactive equivocal commitment protocol, and a CRS used by the commitment protocol, to supply
the commitment public key, FCRS.

The protocol execution proceeds in disjoint, consecutive time intervals called slots. As in Ouroboros Genesis,
slots correspond directly to rounds given by GCLOCK. In each slot sl, the parties execute a staking procedure to ex-
tend the blockchain. This proceeds similarly to Ouroboros Genesis, electing leaders to slots, with modifications
to avoid revealing more information about the leader than necessary. We note that due to network-level attacks,
the adversary is able to guess with good probability which party is the leader. Further, due to serial numbers be-
ing revealed, and being committing, an the simulator must know when coins whose serial number the adversary
could guess after corruption – specifically those sent by the adversary itself – were spent. This additional leakage
can be avoided if by a paranoid party, by it immediately transferring coins to itself on receipt. Further, it is only
an issue for parties which may be corrupted. In a hypothetical setting where the adversary could commit to not
corrupting a party, this party would no longer have leakage of this kind. Similar to Ouroboros-Genesis, time
is also divided into larger units, called epochs, with the distribution of stake considered for leadership purposes
being frozen for each epoch.

We specify a concrete transaction system, based on Zerocash [BCG+14]. Parties hold coins with inherent
value, and a fixed total value across the system (a restriction imposed for simplifying the analysis. Adding block
rewards would be a straightforward extension). The Ouroboros Genesis leadership election is performed on a
per-coin basis, with each coin competing separately. If any of a party’s coins win the election, the party proceeds
to generate a new block, extending their current chain. The block itself is generated as in Ouroboros-Genesis,
although the validity of it is proved differently. Specifically, FNIZK is used to produce a signature of knowledge
of a coin that won the leadership election during a given slot. This proof is done in a Zerocash style, and involves
renewing the coin in question. Specifically, the Zerocash serial number of the leading coin is revealed, and a new
coin of the same value is minted. We also refer to this proof, together with its auxiliary information such as the
spent serial number and newly created coin commitment, as a leadership transaction.

We note that Ouroboros-Genesis requires the stakeholder distribution to be frozen to prevent grinding
attacks. In order to allow a coin to be used for leadership proofs multiple times in an epoch, we introduce a new
resistance mechanism against attacks of this type: The newly generated coins in leadership transactions have
their nonce deterministically derived from the nonce of the old coin. The leadership test itself utilizes only this
nonce from the coin as a seed – it follows that the leadership test for the derived coin is fixed along with the
randomness of the epoch.

Once a block is created, the party broadcasts the new chain, extended with this block. Further, the party
broadcasts the leadership transaction separately, in order to ensure the newly created coin will eventually be
valid, even if the consensus does not adopt the broadcast chain.

102

D3.2 – Design of Extended Core Protocols

A chain proposed by any party might be adopted only if it satisfies the following two conditions: (1) it is valid
according to a well defined validation procedure, and (2) the block corresponding to each slot has a signature of
knowledge from a coin winning the corresponding slot.

To ensure the second property we need the implicit slot-leader lottery to provide its winners (slot lead-
ers) with a certificate/proof of slot-leadership. For this reason, we implement the slot-leader election as fol-
lows: Each party Up checks, for each of their coins c, whether or not it is a slot leader, by locally evaluating a
maliciously-unpredictable pseudo-random function, as described in Section 7.4.3, with entropy supplied by the
epoch randomness ηep, by being evaluated at the slot index sl and ηep, seeded with the “winning coin’s secret
key” rootc ‖ ρc. ηep is generated similarly to Ouroboros Genesis – it is initially supplied through the CRS, then
for subsequence epochs, it is sampled in a maliciously unpredictable way from “randomness contributions” ρ
provided by slot leaders over the course of the previous epoch.

Specifically, we will use the MUPRF construction of Section 7.4.3, for a given groupG. If the MUPRF output
y is below a certain threshold Tc—which depends on c’s stake—then Up is an eligible slot leader; furthermore,
he can generate a signature of knowledge of a valid coin which satisfies these conditions. In particular, each
new block broadcast by a slot leader contains a NIZK proof π, signing the rest of the block content, with the
knowledge of the nonce ρc, sk COIN

c,sl for the slot sl the leadership transaction is for,, proving that the nonce and
secret key correspond to some unspent coin commitment cmc. The leadership transaction also evolves the coin
that wins leadership – this is done in order to establish adaptive security, and is done by updating the coin nonce
used: ρc′ = PRFevl

rootc(ρc). A new coin, in the same value, with this updated – and, crucially, deterministic –
nonce is created, and committed in the transaction. In particular, parties erase ρc, and only maintain ρc′ after the
leadership proof is generated.

We note that, as in Ouroboros-Genesis, it is possible for multiple, or no party to be a leader of any given
slot. Our protocol behaves identically to Genesis in this regard, and we utilize the same chain selection rule in
our protocol.

We next turn to the formal specification of the protocol Ouroboros-Crypsinous. We note that our party
management is identical to that of Ouroboros Genesis, and our protocol description follows the same modu-
lar design as Ouroboros Genesis. For brevity we will not re-state parts of the genesis protocol which remain
unmodified, and we will leave precise UC specification of protocol components to Appendix 7.11.

7.6.3 Real-world Transactions

Before giving the formal specification we introduce some necessary terminology and notation. Each party U
stores a local blockchain CUploc—Up’s local view of the blockchain.5 Such a local blockchain is a sequence
of blocks Bi (i > 0) where each B ∈ Cloc has the following format: B = (txlead, st); where txlead =
(LEAD, ~stxref, stxproof), and stxproof = (cmc′ , snc, ep, sl, ρ, h, ptr, π). Here, st is the encoded data of this block,
h is the hash of the same data, sl and ep are the slot and epoch the block is for, respectively, (cmc′ , rc′) =
Comm(pk COIN ‖ τ ‖ vc ‖ ρc′) is the commitment of the newly-created coin, and snc = PRFsn

rootCOIN
sk

(ρc) is the

serial number of the coin c, which is revealed to demonstrate the coin has not been spent. We define ρ = µsk
COIN
sl ,

where µ is GRO evaluated at NONCE ‖ ηep ‖ sl; ρ is the randomness contribution to the next epoch’s randomness,
ptr is the hash of the previous block, and π is a NIZK proof of the statement LEAD (defined in Section 7.12). The
component ~stxref consists of a (typically empty) vector of reference leadership transactions. These are processed
before the leadership transaction itself is processed, and serve to allow successive leadership proofs with the
same coin, even when the selected chain switches.

Ouroboros Crypsinous handles three kinds of transactions: Leadership transactions, such as the above txlead,
transfer transactions txxfer, and general-purpose transactions. Each of these is handled separately. The trans-
fer transactions and general-purpose transactions correspond directly to ideal-world transactions with the same
behaviour. Leadership transactions by contrast exist only in the real world.

5For brevity, wherever clear from the context we omit the party ID from the local chain notation, i.e., write Cloc instead of CUloc.

103

D3.2 – Design of Extended Core Protocols

General-purpose transactions in the ideal world consist of a vector of subtransactions, addressed either to
everyone (PUBLIC), or a specific party. The corresponding real-world transaction is a vector of the same sub-
transactions, which are either directly the content of the ideal world transaction, in the case of a transaction
addressed to PUBLIC, or an encryption of the content using FFWENC, to the party specified as the recipient. Upon
reading the state, parties attempt to decrypt ciphertexts, and failing that, replace it with ⊥. To disambiguate
transactions, we prefix generic transactions with the label GENERIC.

The implementation of transfer transactions is more involved, as we not only want to guarantee their privacy,
but also their validity. To achieve this, we replace transaction which fall into the permissible ideal-world for-
mat – which we recall, is txidealxfer = ((PUBLIC, TRANSFER), (pk r, (id4, v4)), (pks, (id1, v1), (id2, v2), (id3, v3)))
– with a cryptographic construction hiding the respective information. We define a real transfer transaction to
be: txrealxfer = (TRANSFER, stxproof, cr), where stxproof = ({cmc3 , cmc4} , {snc1 , snc2} , τ, root, π), and cr is a
FFWENC-encryption for the slot the transaction was submitted of stxrcpt = (ρc3 , rc3 , vc3) to pk r. Similar to lead-
ership transactions, (cmc3 , rc3) = Comm(pk COIN

pks
‖ τ ‖ vc3 ‖ ρc3), and (cmc4 , rc4) = Comm(pk COIN

pkr
‖ τ ‖ vc4 ‖ ρc4);

snc1 and snc2 are revealed to spend the coins c1 and c2 respectively, and π proves the statement XFER (defined
in Section 7.12), specifically proving the existence of cmc1 and cmc2 , in the Merkle tree of coin commitments
with the root root, as well as various consistency properties. The use of FFWENC implies that parties will not
be able to decrypt ciphertexts addressed to them indefinitely, however they are still required to respond with the
corresponding ideal-world information to READ requests. As a result, when a transfer transaction is first seen
and decrypted, the corresponding ideal world transaction is locally stored. Further, parties maintain locally the
information needed to spend coins they own – specifically (pk COIN

c , ρc, rc, vc).

7.6.4 Interacting with the Ledger

At the core of the Ouroboros Crypsinous protocol is the process that allows parties to maintain the ledger. There
are three types of processes that are triggered by three different commands provided that the party is already
registered to all its local and global functionalities.

The command (SUBMIT, sid, tx) is used for sending a new transaction to the ledger. The party maps tx to a
corresponding txreal, which is stored in the parties’ local transaction buffer, and multicast to the network.
The command (GENERATE, sid) is used for creating a new address, which can be used by other parties to
transfer funds to this current party.
The command (READ, sid) is used for the environment to ask for a read of the current ledger state. On

receipt, the party maps each transaction ~st
dk

to its ideal-world equivalent, and returns this ideal-world chain.
The command (MAINTAIN-LEDGER, sid) triggers the main ledger update. A party receiving this command
first fetches from its network all information relevant for the current round, then it uses the received informa-
tion to update its local info—i.e., asks the clock for the current time τ , updates its epoch counter ep, its slot
counter sl, and its (local view of) stake distribution parameters, accordingly; finally it invokes the staking
procedure unless it has already done so in the current round. If this is the first time that the party processes
a (MAINTAIN-LEDGER, sid) message then before doing anything else, the party invokes an initialization
protocol to receive the initial information it needs to start executing the protocol—in particular the genesis
block.

The relevant sub-processes involved in handling these queries are detailed in the following sections. After intro-
ducing each of these basic ingredients, we conclude with a technical overview of the main ledger maintenance
protocol LedgerMaintenance, a detailed specification of the protocol ReadState for answering requests to
read the ledger’s state, and a detailed specification of the protocols SubmitXfer and SubmitGeneric.

Party Initialization A party that has been registered with all its resources and setups becomes operational by
invoking the initialization protocol Initialization-Crypsinous upon processing its first command. As a first step
the party receives its encryption key from FFWENC. It receives any initial stake it may have as a single coin from
FINIT. Subsequently, protocol Initialization-Crypsinous proceeds as in Ouroboros-Genesis, although it does

104

D3.2 – Design of Extended Core Protocols

not register any keys. This is managed instead by the ledgers GENERATE interface. The precise description of
the initialization can be found in Section 7.11.

The Staking Procedure The next part of the ledger-maintenance protocol is the staking procedure which is used
for the slot leader to compute and send the next block. A partyUp is an eligible slot leader for a particular slot sl in
an epoch ep if, one of Up’s coins, c, is both eligible for leadership in ep, and a PRF-value depending on sl and the
coin nonce ρc and secret key sk COIN

τ , is smaller than a threshold value Tc. We discuss when a coin is considered
eligible for leadership, and how its threshold is determined. A coin is eligible for leadership depending on when,
and how, its corresponding commitment entered the chain. Specifically, if its corresponding commitment was
created in a transfer transaction, it is valid in a similar way as transactions are considered for leadership in an
epoch: If it is sufficiently old by the time the epoch starts, it is taken as part of the snapshot fixing the stake
distribution for ep. Commitments originating from leadership transactions are always immediately eligible for
leadership, as their nonce and secret key are deterministically derived. It is possible, although unusual, for the
leadership transaction a coin originates from to not be present in the chain the party is currently attempting to
extend. In this case, the coin is still eligible, as the originating leadership transaction will be added to ~stxref.

Each coin c’s value vc induces a relative stake for the coin, αc. We use the same function φf (αc) to determine
the probability of a coin winning the leadership election, with the corresponding threshold, Tc = ord(G)φf (αc).
Due to the independent aggregation property of φf , the probability of a party winning the leadership election in
Crypsinous and in Genesis is initially the same, regardless of how it is split between coins. One key difference,
however, is that when a coin is transferred in Crypsinous, it is no longer eligible for leadership. As a direct
consequence, any stake transferred during an epoch must be considered adversarial for the given epoch.

The technical description of the staking procedure can be found in Section 7.11.2. It evaluates two district
MUPRFs for each eligible coin. If the output of one of these is under the target for some coin, the party is a slot
leader, and continues to create a new block B from their current transaction buffer. Aside of the main contents,
the party assembles a leadership transaction and assigns it to the block. This transaction includes a NIZK proof
of leadership – specifically of the statement LEAD – and acts as a signature of knowledge over the block content,
as well as the pointer to the previous block. An updated blockchain Cloc containing the new block B is finally
multicast over the network.

From the staking procedure we construct the ledger maintenance protocol, which in addition to attempting
to stake on each block, monitors incoming transactions and chains, decrypts ciphertexts where possible, updates
the parties local state by adding received coins, records received messages, and performs the chain selection
of [BGK+18]. The full description can be found in Section 7.11.3

Submitting Transactions Transactions submitted to the Ouroboros Crypsinous protocols are, as previously
discussed, first mapped to corresponding real-world transactions, which then get handled as standard ledger
transactions by being broadcast over a multicast network, and assembled into blocks. Specifically, transfer
transactions are mapped to Zerocash-like transactions, where only the first coin received to a given address it
spent, and other transactions are mapped into encrypted components. The submitting procedure for transfer
transactions is described in Section 7.11.4, and that for generic transaction in Section 7.11.5.

Reading the State The last command related to the interaction with the ledger is the read command (READ, sid)
that is used to read the current contents of the state. Note that in the ideal world, the result of issuing such a
command is for the ledger to output a (long enough prefix) of the ideal-world state of the ledger, with parts the
party does not have access to being hidden. As the format of real-world transactions differs, we need to invert the
map from real transactions to the corresponding ideal transactions. For generic transactions, this is a little tricky,
as the use of forward-secure encryption implies that the information associated with the transaction in the ideal
world is erased in the real world. To circumvent this, parties maintain a log, recording information necessary to
reconstruct the ideal-world representation of the transaction. The full description of this reconstruction can be
found in Section 7.11.6.

105

D3.2 – Design of Extended Core Protocols

7.6.5 Transaction Validity

Transaction validity again differs in the real and ideal world, as the transactions themselves differ.

Ideal World Validation The ideal world validation predicate validates only transfer transactions. It is parame-
terized by the initial distribution of coins C1. It maintains, for each ID, an ordered sequence of received values,
the ID’s owner, and a flag marking whether the ID has already been used for spending. For each transfer trans-
action validated, first its format is enforced. Next, it asserts that v1 + v2 = v3 + v4. It checks that the IDs of c1

and c2 have indeed received transfer of value v1 and v2 respectively (and, if the IDs and value are equal, have
received at least two transfers of that value). If there is ambiguity as to which coins to spend, those received
first are spent. As a special case, if the ID of c2 is ⊥, and v2 = 0, it is always valid.6 It is further checked that
the coins the party is trying to spend are “old enough”, specifically, they must be in the parties local view of the
ledger state. (The validation predicate has access to the parties state pointer). If the sending party is honest, we
further restrict it to only spending coins to which it owns the ID. Further, honest parties must address stxchng to
their own public key – i.e. the first value generated by (GENERATE, sid, ID) by the party. If the sending party
is corrupted, it may spend the coins of other corrupted parties, as well as arbitrary received values. If other
transactions in the buffer attempt to spend the same coins, and the transaction is honest, it is also rejected – as in
this case the party is attempting to double spend and de-anonymize themselves.

Finally, if the transaction is valid, a new receipt of a value of v3 is recorded for c3, and respectively with v4,
and c4. The values spent are erased from the values lists of c1 and c2’s IDs, and their “spent” flags are set (with
the exception of the id ⊥).

Real-world Validation The real-world validation predicate maintains three sets, the sets of coin commitments
Cspend, Clead for spending and leadership respectively, initialized to the initial set of coin commitments C1, and
the set of spent serial numbers S, initialized to ∅. A chain is validated transaction by transaction. Leadership
transactions and transfer transactions are both validated, other transactions are ignored. A leadership transaction
is valid iff all leadership transactions in ~stxref are valid adopted leadership transactions, and the NIZK proof is
valid with respect to the Merkle root of the current tree, with these adopted transactions inserted, as well as ηep,
and it has a greater slot number than the previous slot. Further, the serial number sn revealed in it must not be
in the current S. The root used must either be the root of the predecessor block, or the root of a past leadership
transaction’s Merkle tree, with only this transactions commitment added to the tree. Finally, ptr must be the hash
of the previous block, and h must be the hash of the remaining transactions. After it is successfully validated,
S← S ∪ {sn}, Clead ← Clead ∪ {cm}, Cspend ← Cspend ∪ {cm}.

Transfer transactions are likewise validated by checking the NIZK proof with respect to the public transaction
component. Further, it is checked that root was at some point the root of Cspend, and that {sn1, sn2} ∩ S = ∅.
If so, the effect is updating S ← S ∪ {sn1, sn2}, and Cspend ← Cspend ∪ {cm, cm3}. Finally, at the start of an
epoch, old enough spending coins are allowed for leadership proofs: Clead ← Clead ∪ Cspend

t−k , where Cspend
t−k is

the set of spending coin commitments k slots before the start of the epoch.
If a leadership transaction is included normally in a block, or included in ~stxref (i.e. it is not this block’s

leadership transaction), it is considered an adopted leadership transaction. The validity criteria for these are
different, requiring only that the proof is valid, the serial numbers are unspent, and the Merkle root was a valid
root for Clead at some point. The effects of the transaction remain the same, although is is no longer the leader of
a block. A block’s transactions are validated prior to the leadership transaction, as this may depend on adopted
leadership transactions. The Merkle tree root of Clead of any adopted leadership transactions chain’s is saved and
preserved. These are valid for other leadership transactions in the same epoch. Specifically, they are also valid
for the leadership transaction of the block it is contained in.

Generic transactions are valid if and only if they do not start with the symbol (PUBLIC, TRANSFER).

6This permits parties with only one coin to spend it.

106

D3.2 – Design of Extended Core Protocols

7.7 Security Analysis

We split our security analysis of Ouroboros-Crypsinous into two parts: In a first, warm-up part, we show that
Ouroboros-Crypsinous realizes a “non-private” version of GPL – specifically, we show that it realizes GPL with
Lkg set to the identity function Lkgid; i.e. the ledger leaks its entire content to the simulator, described in detail
in Section 7.10. We argue that the simulator S1 can simulate any real-world attacks on Ouroboros-Crypsinous
against a non-private GPL. This first part already proves that our protocol satisfies all the properties of the public
ledger, including chain quality, common prefix, and chain growth. In a second part, we argue that in addition
to the above, it also satisfied privacy. This is done by instantiating Lkg to Lkglead, in which only the leaders of
a given slot are leaked. For this case we provide a simulator S2 who is able, with access only to this restricted
leakage to simulate the outputs of S1. generate a view which is indistinguishable from S1.

Theorem 17. Ouroboros-Crypsinous, in the (WPoS
OC (FLLEAD

NIZK ,F
LXFER
NIZK,FFWENC,F∆

N-MC),GRO,GCLOCK)-hybrid
world, UC-emulates GPL with Lkg = Lkgid, under the DDH assumption.7

Proof (sketch). The backbone of the proof of Theorem 17 is similar to the security proof of Ouroboros Gen-
esis [BGK+18] with some surgical modifications; in particular, in Step 1 we argue that the usage of NIZKs,
nonces, and key-private forward-secure encryption, can replace the usage of forward secure signatures, and in
Step 2 we argue that the usage of NIZKs and MUPRFs can replace the usage of VRFs in Genesis. In a nutshell,
this allows us to argue in Step 3 argue that leadership transactions in Crypsinous can be used to replace leadership
proofs in Genesis. This allows us to leverage the security analysis from Ouroboros Genesis [BGK+18] in Step 4
for proving that Crypsinous implements, at the very least, a non-private version of the ledger.

Transactions submitted to Crypsinous are pre-processed, before being handled as a Genesis transaction would
be, and on reading from the ledger, this pre-processing is partially inverted. This inversion being only partial
is what will later be used to establish the privacy properties of Crypsinous. In Step 5, we establish that this
pre- and post-processing has the same effect as blinding a transaction in the ideal world, and that the validation
predicate of Ouroboros-Crypsinous – which is run only against pre-processed transactions – is equivalent to
its ideal-world counterpart. Finally, in Step 6, we argue that combined, these properties demonstrate realisation
of GPL with Lkg = Lkgid.

Step 1. The security properties guaranteed by FKES, and used in [BGK+18], are those of forward-secure un-
forgeability, correctness, and authenticity. A proof of LEAD gives the former two properties, and a notion of
authenticity that is different to FKES, but sufficient for how it is used in [BGK+18]. Non-malleable NIZKs, such
as the ones used in our construction, can be interpreted as “signing” their public inputs with the knowledge of a
witness [GM17]. In particular, if the witness itself contains a secret key known only to one party, a NIZK over
such a witness effectively acts as a signature. In Ouroboros Crypsinous, the usage of sk COIN in the witness for
leadership proof effectively acts as a signature over the rest of the block, providing unforgeability, and correct-
ness guarantees. Further, as the statement LEAD has the same conditions as a leadership proof in [BGK+18],
the desired authenticity property is also satisfied. This is not sufficient to emulate FKES, however using sk COIN

s l
and ρc in the witness rectifies this. As honest parties update both sk COIN

s l and ρc after the proof, and sk COIN
s l

and ρc are necessary to generate a new proof for the same slot, the adversary will be unable to create leadership
proof for past slots. While this is effective only so long as sk COIN

s l and ρc cannot be retrieved from elsewhere.
sk COIN
s l is generated locally by an honest party, is never communicated by it (except to FNIZK, which guarantees

its secrecy), and is erased by the honest party in the same slot.

Step 2. The property of VRF provability is directly captured by the correctness of NIZKs, and that of uniqueness
is directly captured by non-malleability. Pseudorandomness is directly supplied by the security under malicious
key generation of MUPRFs. Two VRF calls are embedded in the NIZK; the VRF used to generate the randomness

7We will be working under this assumption throughout the rest of the security analysis, and will typically leave it implicit. We will
also be assuming the binding (under discrete log, which is implied by DDH), and hiding of our commitments, and the pseudo-randomness
of our PRFs implicitly.

107

D3.2 – Design of Extended Core Protocols

contribution ρ, and the VRF used to check the target. While in Ouroboros Crypsinous the latter is not publicly
revealed, it is still present, and is verified by a verification of the NIZK. The NIZK is not as flexible as the VRF,
in that it cannot be used to generate arbitrary VRF proofs at any time, however this is simply as the verification is
stricter. The NIZK inputs in Ouroboros Crypsinous depend on the coin secret key, while in Ouroboros Genesis,
they depend on the party’s secret key. As Ouroboros Genesis anticipates parties acting as multiple parties in the
protocol, we can simply consider each Crypsinous coin as one Genesis party.

Step 3. A leadership transaction in Ouroboros-Crypsinous can be made only if a coin passes the same threshold
check as in Ouroboros-Genesis. Due to the independent aggregation property of the threshold function, the
probability of this happening for a party holding a specific value of (honest) stake is equal in Crypsinous and
Genesis. Furthermore, the NIZK ensures the impossibility of creating a leadership transaction without winning
this election in Crypsinous, while the VRF validation, and block validity check enforce the same property in
Genesis. The mechanism of “adopted” leadership transaction ensures this property is preserved, even by a party
selecting a new local chain.

Due to the equivalent output distribution of VRFs and PRFs in Genesis and Crypsinous respectively, the
randomness contribution ρ is also equivalent.

Step 4. Given we can replace leadership proofs with leadership transactions in the GLEDGER proof of [BGK+18],
the rest of the proof can be carried out the same for Ouroboros-Crypsinous. This establishes that, Ouroboros-Crypsinous
effectively runs an internal ledger. While the transactions posted to this ledger are not directly those posted to
Ouroboros-Crypsinous itself, we will establish their relationship, and that this corresponds directly to the dif-
ference between the public and private ledger.

Step 5. Submitted transactions are pre-processed before being sent to the network, and transactions from the
network are post-processed on a READ request in Ouroboros-Crypsinous. For brevity, we will refer to the
former mapping as f , and the latter as f−1

Up
. We define consistency of this mapping to be two the following two

properties things: First, a validation predicate – specifically instantiated to that of Ouroboros-Crypsinous –
over the mapped transactions must exists that holds if and only if the ideal-world validation predicate over the
original transactions holds. Second, f−1

Up
◦f = BlindTx({Up}) – i.e. READ requests return the same as f−1

Up
of the

READ in the mapped ledger. Specifically, as the real-world validation predicate already operates on the mapped
transactions, this predicate should behave the same as the ideal-world predicate over the original transactions.

For generic transactions, this is straightforward: subtransactions addressed to PUBLIC are preserved, and not
affected by the mapping. Subtransactions addressed to a party Up are encrypted with pk ENC

p in the real world, and
each party attempts to decrypt them on the inverse mapping. Specifically, subtransactions addressed to any other
party will fail to decrypt, and be replaced with ⊥, while subtransactions which are correctly encrypted, will be
replaced with (pkp,M), where M is the originally encrypted plaintext. This matches the behaviour of BlindTx
exactly. Finally, the validation predicate is always true for generic transactions in the ideal world, and is only
false for generic transactions that start with TRANSFER in the real world – which have no ideal world equivalent,
and should cannot be created by honest parties.

Transfer transactions This leaves us with the consistency of mappings for transfer and leadership transactions.
In addition to being standard transactions, transfer transactions induce a stakeholder distribution. They are
intrinsically linked with leadership transactions in the real world, so we will consider these as well. The ledgers,
both real and ideal, can be read as a sequence of transfer-, and in the real world leadership- transactions. We will
prove by induction that validity is equivalent in the real and ideal world, as well as that the inverse mapping of
the real-world transaction is the ideal transaction. First, we note the induction hypothesis: For every vector of
transfer and (in the real world) leadership transactions in the real and ideal worlds, two sets of valid coins are
induced: a) The set of valid ideal-world coins, where each coin has a party, ID (which the simulator sets to be
the coin public key pk COIN

c), and value, and b) The set of valid real-world coins, which have the same attributes,
as well as an associated coin secret key sk COIN, a nonce ρc, and a commitment randomness rc. The induction
hypothesis is that these sets are equivalent, i.e. the ideal set is equal to the real set without the secret key, nonce

108

D3.2 – Design of Extended Core Protocols

and randomness, and that in the vector of transactions, the same transfer transactions were considered valid in
both worlds.

As a base case, this is guaranteed by FINIT, which creates the same distribution of coins in the real world as
was given in the ideal world, selecting random ρc and rc values. In the induction step, we increase the real-world
transaction vector by one transaction. There are four cases, depending on whether the transaction is honest or
adversarial, and whether it is a transfer, or leadership transaction. We will consider the honest cases first.

Honest leadership In the case of an honest leadership transaction, the transaction is valid in the real world, as
honest parties would not post an invalid transaction. It spends a coin, and recreates a coin of the same value. This
is reflected by updating the set of real-world coins by replacing ρc and, rc with new values ρc′ , and rc′ . Trivially,
this maintains the induction hypothesis.

Honest transfers In the case of an honest transfer transaction, the ideal world transaction is valid iff the two
spent coins were the first coins received at an ID owned by the sending party, the transaction is zero-sum, and the
address of the “change” coin is also owned by the same party. If these conditions do not hold, the honest party
would ignore the request in the real world. If they do, the honest party is, by induction hypothesis, guaranteed
to know the corresponding sk COIN

τ , ρc and rc-values of the coins that are spent, so it is able to generate a valid
transaction and NIZK proof. Afterwards, in the real and ideal world, the coin is removed from the set of valid
coins, and the newly created coins are not yet added, but will be added once the transaction has been confirmed.
We conclude the induction hypothesis is maintained.

Adversarial transactions To consider adversarial transactions, the simulator does not immediately add them to
the buffer. Instead, the simulator locally stores them, and waits until the adversary has them sufficiently deep in
the chain that they must be added to the ideal world state. At this stage, the simulator adds them to the ideal-world
buffer, and immediately promotes them to the state. This allows the simulator to manage conflicting adversarial
transactions, as it simply waits for the adversary itself to resolve the conflict. In particular, transactions attempting
to spend the same coin, in either a leadership or transfer transaction, will be conflicting, as they would reveal
the same serial number. Once and adversarial leadership transaction is confirmed in the same way, the adversary
will control the same updated coins as in the honest case, and will be unable to use the old coins again, as the
validation predicate will detect and block the reuse of the coins serial number.

Adversarial transfers As the simulator waits until it enters the state, we need only consider sufficiently deep,
valid transactions in the real world, and ensure the simulator can create a corresponding ideal world transaction.
The real-world transaction will need to spend two valid coins, which can originate only from corrupted parties.
It creates two new coins, addressed to any party, or potentially no party at all, of the same value. This directly
corresponds to a legal adversarial transaction in the ideal world, and by induction hypothesis, all coins spent will
be unused. The adversary cannot spend honest coins, as it does not know their secret key, with which to create
a NIZK proof, cannot spend coins multiple times, as this would invalidly reveal the same serial number twice.
Finally, it cannot spend non-existent coins, as it could not provide a Merkle path witness.

Equivalence We conclude that real and ideal transactions induce the same set of valid coins, and are valid in the
same cases. The simulator delaying adversarial transactions in the ideal world is not visible to the environment in
any way, as the buffer is only seen by the simulator itself, and the validation predicate (which does not care about
the order of adversarial transaction until they enter the state). The set of coins induces a stakeholder distribution,
as required by the proof of [BGK+18].

Finally, the inverse mapping of parties views correspond to their ideal-world views. Specifically, if the party
sees anything in the ideal world, it is the recipient of a coin, in which case it it need only be able to supply pk COIN

c

and vc in the ideal world – provided the coin has not since been spent. If the transaction was honest, the party
will have seen them on decrypting its ciphertext and – iff the coin has not been spent – can be found recorded
in log. If the transaction is dishonest, either the ciphertext still correctly encrypts the coin, or, if it does not, the
ideal transaction would not have been addressed to the honest party, but to the adversary instead. We conclude
that honest parties response to READ requests in the real and ideal worlds match.

109

D3.2 – Design of Extended Core Protocols

Step 6. The private ledger differs primarily from the standard ledger in that it a) applies Blind to the output of
READ requests, b) leaks less information to the adversary, and c) provides a mechanism for unique ID generation
(which are used internally). Difference a) follows directly from the consistency demonstrated in Step 5. Further,
we are considering an overly permissive leakage predicate, Lkgid, which provides the adversary with the same
information it would receive from the standard ledger satisfying b). Finally, Ouroboros Crypsinous allows ID
generation, which are generated as either PRF outputs of a PRF seeded with a random, secret value, which will
lead to unique IDs for honest parties with overwhelming probability, FFWENC public keys, which are guaranteed
uniqueness, or randomly samples values from {0, 1}κ, which have a negligible probability of collision. We
conclude that Ouroboros-Crypsinous realizes GPL with S1, under the leakage predicate Lkgid.

Theorem 18. Ouroboros-Crypsinous, in the (WPoS
OC (FLLEAD

NIZK ,F
LXFER
NIZK,FFWENC,F∆

N-MC),GRO,GCLOCK)-hybrid
world, UC-emulates GPL with Lkg = Lkglead under the DDH assumption.

Proof (sketch). The leakage Lkglead leaks only the leader of any given slot. We utilize a modified version of S1,
which differs only in that it creates simulated transaction instead of real transactions, and reconstructs a corrupted
party’s state when required. The modified simulator, S2 is described in detail in Section 7.10.2. In Step 1, we
argue that the simulated transactions are indistinguishable from real transactions, and in Step 2, we argue that
the reconstructed party state is indistinguishable from a real party’s state. Finally, in Step 3, we argue that the
simulator S2 is indistinguishable from S1, although requiring less leakage from the private ledger functionality.
As a result, the same security argument as for S1 holds with respect to GPL with restricted leakage.

Step 1. There are three primitives that are simulated in simulated transactions: Commitments, NIZKs, and
FFWENC encryptions. Due to the simulation security of NIZKs, and the equivocality of the commitments, we
know they are indistinguishable from real NIZKs and commitments respectively. For FFWENC, the simulator
hands the adversary the same information about the plaintext (namely, the length) as the functionality itself,
leaving the adversary with no information to distinguish. As transactions consist of these primitives, and the
simulator accurately knows the format and originating party of a transaction, it can create a perfect simulated
equivalent of the transaction, and broadcast it on behalf of the same party.

Step 2. While the first simulator was effectively running the protocol for real parties, making corruption trivial,
S2 must reconstruct the parties local state in a way the adversary cannot distinguish from a real execution.
Parties maintain four important state variables: the local chain, Cloc, the local buffer buffer, the set of coins
C (as well as Cfree, and Ccnd), and the log of transfer interactions, and ciphertext to plaintext mappings, log.
Maintaining Cloc, and buffer is straightforward, as the network interactions directly dictate their content, and
the network is not anonymous. This leaves as the only major issues the reconstruction of C, Cfree, Ccnd, and
log. When a real-world party’s corruption is requested, the simulator corrupts the corresponding ideal-world
party. This allows the simulator to extract when the party received, transfers in the ideal world, all of which are
guaranteed to be unspent, as well as the plaintexts corresponding to the ciphertext of subtransactions addressed
to the party. At these points, a transfer, or generic transaction will have also been made in the real world. This
transaction is either a real transaction, in which case the simulator can extract its content from its simulated
FFWENC. The corrupted party can only be the recipient Ur of such transactions (as this is the only party which
may read it). There is one commitment in the transaction, that is created for a new coin of this party, and
one encrypted FFWENC message that encrypts the corresponding secret values used to control it. The simulator
randomly samples ρc

$← {0, 1}`PRF, and retrieves pk COIN
c , vc from the corresponding ideal-world transaction. As

the ideal-world transaction is valid, we know pk COIN
c must be a valid ID for the corrupted party, in which case

the simulator provided it, and knows the corresponding secret key sk COIN
c . It then opens the commitment cmc

to pk COIN
c ‖ vc ‖ ρc, with the opening randomness rc. This allows the simulator to populate C, Cfree, and Ccnd

with coins generated by transfer transactions, depending on their stage of confirmation. We further note that the
FFWENC ciphertext can now be opened to the appropriate encryption if necessary. Finally log is populated, by
recording the corresponding log action for each of these transactions.

This almost completes the simulator, with the exception of how to handle coins that were used in leadership
proofs. Recall that the simulator is aware of which slots the newly-corrupted party was a leader. It is not, however,

110

D3.2 – Design of Extended Core Protocols

aware of which coin won in these slots. For each leadership proof of the corrupted party, the simulator computes
the probability of each of the party’s coins being the winning coin in the given slot, and samples from this
distribution a single coin c. It then ensures this coin is appropriately updated – computing sk COIN

c′ = PRFevl
sk COIN

c
(1),

and ρc′ = PRFevl
sk COIN

c
(ρc), opening cmc′ , the commitment in the corresponding real-world leadership proof to

pk COIN
c′ ‖ vc ‖ ρc′ , with the resulting randomness being rc. This is added to C, with the preimage being removed.

As the adversary cannot find the preimage of sk COIN
c′ , or ρc′ , the adversary cannot perform consistency checks

involving the previous coin, such as checking serial numbers match what they should.
As the state of the party handed to the simulator is correct, and any sampled value in it are either purely

random, or originates from the equivocal commitment scheme, the adversary cannot distinguish the corrupted
parties state from the real parties state.

Step 3. We conclude from Theorem 17, and our observations in Steps 1 and 2, combined with the fact that S1

and S2 differ only in simulating transactions and corruption, that Theorem 18 holds.

7.8 Performance Estimation

Coin transfers are modeled after Zerocash’s [BCG+14] pour transactions. This enables us to reuse much of the
existing implementation work invested on optimizing the performance critical SNARK operations by the Zcash
project, cf. [HBHW18].

Like Zerocash, our transfer transactions pour two old coins into two new coins. In contrast, a leadership
transaction only updates a single coin. The additional costs incurred are two evaluations of a PRF to compute
ρc2 and sk COIN

c2 for updating the coin in a deterministic manner, two evaluations of MUPRF, and one range-proof
to determine the winners of the leadership election lottery. We approximate φf using a linear function as in
Bitcoin. The PRF is implemented using a SHA256 compression function. The MUPRF requires variable base
group exponentiations. As we require equivocal commitments, we replace the SHA256 coin commitments of
Zerocash that require 83,712 constraints with the Pedersen commitments of Sapling [HBHW18] which require
only approximately 2,542 constraints. Purely for performance reasons, we also replace the original SHA-256
Merkle tree of Zerocash with the Pedersen hash-based tree used in Sapling.

In total, see Table 7.2, the multiplication count of a leadership SNARK relation is less than a transfer relation
by about 42K constraints. Furthermore, the number of constraints used by our transfer relations is within a
small margin of those used in an equivalent Sapling transfer relation. While have not focused on optimizing
this process as Sapling has, by parallelizing the NIZK proofs, we emphasize that even unoptimized, Ouroboros
Crypsinous would have a proving time only around double that of Sapling.

Primitive Approx. constraints
SHA256 27,904
Exponentiation (variable base) 3,252 ([HBHW18], page 128)
Hidden range proof 256
Pedersen commitment 1,006 + 2.666 per bit8

Table 7.1: Number of multiplicative constraints in SNARK relations

We note in passing that the forward-secure encryption scheme is only needed for transfers and does not affect
the SNARK relations we need to prove which is dominating performance. Likewise, the usage of a simulation
secure NIZK will increase proving time, and proof lengths. Nevertheless, in both cases, the performance penalty

8https://github.com/zcash/zcash/issues/2634

111

https://github.com/zcash/zcash/issues/2634

D3.2 – Design of Extended Core Protocols
Constraint count LXFER LLEAD

Check pk COIN
ci 2× 27, 904 27, 904

Check ρc2 , sk COIN
c2 2× 27, 904

Path for cmci 2× 43, 808 43, 808
(1 layer of 32) (1, 369) (1, 369)
Path for rootsk COIN

ci
34, 225

(1 layer of 24) (1, 369)
(leaf preimage) (1, 369)
Check snci 2× 27, 904 27, 904
Check cmci 4× 2, 542 2× 2, 542
Check v1 + v2 = v3 + v4 1
Ensure that v1 + v2 < 264 65
Check y, ρ 2× 3, 252
Check (approx.) y < ord(G)φf (v) 256
Total 209,466 201,493

Table 7.2: Number of constraints per SNARK statement

is not intrinsic to the POS setting and it would equally affect a POW-based protocol like Zerocash if one wanted
to make it simulation-secure in the adaptive corruption setting.

A second performance concern may be the cost of maintaining and updating Merkle trees of secret keys.
There is a trade-off here – larger trees are more effort to maintain and use, while smaller ones may have all their
paths depleted and hence require a refresh in the sense of moving the funds to a new coin. For a reasonable value
of R = 224, this is of little practical concern. Public keys are valid for 224 slots – approximately five years – and
employing standard space/time trade-offs, key updates take under 10,000 hashes, with less than 500kB storage
requirement. The most expensive part of the process, key generation, still takes less than a minute on a modern
CPU.

7.9 Hybrid World Functionalities

The functionality FINIT is parameterized by the number of initial stakeholders n and their respective stakes
s1, . . . , sn. FINIT interacts with stakeholders U1, . . . , Un as follows:

• In the first round, upon a request from some stakeholder Ui of the form (claim, sid, Ui), then FINIT
samples sk COIN as Ouroboros-Crypsinous does on GENERATE requests, ρci randomly, computes
pk COIN ← PRFpk

rootCOIN
sk

(0), and commits (cmci , rci) = Comm(pk COIN ‖ si ‖ ρci), and returns the tuple

(pk COIN, ρci , rci , si), along with sk COIN. One all parties have registered, it samples and stores a random
value η1

$← {0, 1}λ. It then constructs a genesis block (C1, η1), where C1 = {cmc1 , . . . , cmcn}.

• If this is not the first round then do the following:

– If any of the n initial stakeholders has not send a request of the above form, i.e., a
(keys, sid, Ui, pk ENC

i)-message, to FINIT in the genesis round then FINIT outputs an error and halts.

– Otherwise, if the currently received input is a request of the form (genblock req, sid, Ui) from any
(initial or not) stakeholder U , FINIT sends (genblock, sid, (C1, η1)) to U .

Functionality FINIT

112

D3.2 – Design of Extended Core Protocols

The functionality manages the set P of registered identities, i.e., parties Up = (pid, sid). It also manages the
set F of functionalities (together with their session identifier). Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity Up := (pid, sid) ∈ P it manages
variable dUp . For each pair (F, sid) ∈ F it manages variable d(F,sid) (all integer variables are initially 0).

Synchronization:

• Upon receiving (CLOCK-UPDATE, sidC) from some party Up ∈ P set dUp := 1; execute Round-Update
and forward (CLOCK-UPDATE, sidC , Up) to A.

• Upon receiving (CLOCK-UPDATE, sidC) from some functionality F in a session sid such that (F, sid) ∈ F
set d(F,sid) := 1, execute Round-Update and return (CLOCK-UPDATE, sidC ,F) to this instance of F.

• Upon receiving (CLOCK-READ, sidC) from any participant (including the environment on behalf of a
party, the adversary, or any ideal—shared or local—functionality) return (CLOCK-READ, sidC , τ) to the
requestor.

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dUp = 1 for all honest
parties Up = (·, sid) ∈ P , then set τsid := τsid + 1 and reset d(F,sid) := 0 and dUp := 0 for all parties
Up = (·, sid) ∈ P .

Functionality GCLOCK

The (proof-malleable) non-interactive zero-knowledge functionality FLNIZK allows proving of statements in
an NP language L. It maintains a set of statement/proof pairs Π, initialized to ∅.
Proving When receiving a message (prove, sid, x, w):

if (x,w) /∈ L then

return (proof, sid, x,⊥)
end if
send (prove, sid, x) to A and receive the reply (proof, sid, x, π)
let Π← Π ∪ {(x, π)}

return (proof, sid, x, π)

Proof Malleability When receiving a message (maul, sid, x, π) from A:
if @π′ : (x, π′) ∈ Π then

return (maul, sid, x, π,⊥)
end if
let Π← Π ∪ {(x, π)}

return (maul, sid, x, π,>)

Proof Verification When receiving a message (verify, sid, x, π):
if (x, π) /∈ Π then

send (verify, sid, x, π) to A and receive the reply R
if R = (witness, sid, x, π, w) ∧ (x,w) ∈ L then

let Π← Π ∪ (x, π)
end if

Functionality FLNIZK

113

D3.2 – Design of Extended Core Protocols

end if

return (verify, sid, x, π, (x, π) ∈ Π)

FFWENC is parameterized by, a security parameter κ, a set of parties P , and a maximum delay ∆max.

• Key Generation. Upon receiving a message (KeyGen, sid) from a party Up, verify that Up ∈ P , and that
this is the first key generation. If so, send (KeyGen, sid, Up) to A, and receive a value pkp in return.
Return pkp to Up, and initialize τp := 0 and add Up to the set of honest partiesH.

• Encryption. Upon receiving a message (Encrypt, sid, pk , τ,m) from some party Up:

– Check that there exists a Uq ∈ P , where pk q = pk and Uq ∈ H, and τ < τq + ∆max. If so, send
(Encrypt, sid, τ, |m|, Up) to A. Otherwise, send (DummyEncrypt, sid, pk , τ,m,Up) to A.

– Receive a reply c from A, and send (ciphertext, c) to Up. Further, if the conditions in the previous step
were satisfied, record the tuple (Uq,m, τ, c).

• Decryption. Upon receiving a message (Decrypt, sid, τ ′, c) from party Up ∈ P:

– If τ ′ < τp, return ⊥.

– Else, if a tuple (Up,m, τ
′, c) was recorded, return m to Up.

– Otherwise, send (Decrypt, sid, τp, c, Up) to A, receive a reply m, and forward m to Up.

• Update. Upon receiving a message (Update, sid) from party Up ∈ P:

1. Send (Update, sid, Up) to A.

2. Update τp ← τp + 1

• Corruptions. Upon corruption of a party Up ∈ P , remove Up fromH.

Functionality FFWENC

7.10 The Simulator

7.10.1 The Stage 1 Simulator

Procedures EXTENDLEDGERSTATE, and ADJUSTVIEW as in Ouroboros Genesis, and SIMULATESTAKING as
in Ouroboros Genesis for S1.

Overview:
• The simulator internally emulates all local UC functionalities by running the code (and keeping the state)

of FINIT, FNIZK, FENC, Fbc
N-MC, and F tx

N-MC.

• The simulator mimics the execution of Ouroboros-Crypsinous for each honest party Up (including their
state and the interaction with the hybrids).

• The simulator emulates a view towards the adversary A in a black-box way, i.e., by internally running
adversary A and simulating his interaction with the protocol (and hybrids) as detailed below for each

Simulator S1 (Part 1 - Main Structure)

114

D3.2 – Design of Extended Core Protocols

hybrid. To simplify the description, we assume A does not violate the requirements by the wrapper
WPoS

OG (·) as this would imply no interaction between S1 (i.e., the emulated hybrids) and A.

• For global functionalities, the simulator simply relays the messages sent from A to the global
functionalities (and returns the generated replies). Recall that the ideal world consists of the dummy
parties, the ledger functionality, and the clock.

Party sets:
• As defined in Ouroboros Genesis [BGK+18], honest parties are categorized. Salert denote synchronized

parties that are not stalled, SsyncStalled are synchronized parties that are stalled, and PDS are
de-synchronized parties.

• For each registered honest party, the simulator maintains the local state containing in particular the local
chain C(Up)

loc , the time ton it remembers when last being online, spendable coins C, and the log of
transactions, log. For each party Up and clock time τ , the simulator stores a flag updateUp,τ (initially
false) to remember whether this party has updated its state already in this round. Note that an registered
party is registered with all its local hybrids.

• Upon any activation, the simulator will query the current party set from the ledger, and the clock, to
evaluate in which category an honest party belongs to. If a new honest party is registered to the ledger, it
internally runs the initialization procedure of Ouroboros-Crypsinous.

• We assume that the simulator queries upon any activation for the sequence ~ITH , and the current time τ
from the clock. We note that the simulator is capable of determining predict-time(·) of GPL.

Messages from the Clock: as in Ouroboros Genesis.

Messages from the Ledger:
• Upon receiving (SUBMIT,BTX) from GPL where BTX := (tx, txid, τ, Up), simulate running

(SUBMIT,BTX) as Up, interacting with the simulated network FN-MC.

• Upon receiving (GENERATE, Up, tag) from GPL, if tag is ID, and this is the first ID query for Up, return
pk ENC

p , otherwise execute GENERATE as the simulated party Up and tag.

• Upon receiving (MAINTAIN-LEDGER, sid) from GPL, extract from ~ITH the party Up that issued this query.
If Up has already completed its round-task, then ignore this request. Otherwise, execute
SIMULATESTAKING(Up, τ).

Simulation of Functionality FINIT towards A:

• The simulator relays back and forth the communication between the (internally emulated) FINIT
functionality and the adversary A acting on behalf of a corrupted party.

• If at time τ = 0, a corrupted party Up ∈ SinitStake registers via (claim, sid, Up) to FINIT, then input
(REGISTER, sid) to GPL on behalf of Up. Intercept the keys returned from FINIT, locally store them, and
send the intercepted pk COIN as the id for the coin in GPL.

Simulation of the Functionalities FNIZK and FFWENC towards A:

Simulator S1 (Part 2 - Black-Box Interaction)

115

D3.2 – Design of Extended Core Protocols

• The simulator relays back and forth the communication between the (internally emulated) hybrids and the
adversary A (either direct communication, communication to A caused by emulating the actions of
honest parties, or communication of A on behalf of a corrupted party). Whenever a witness is supplied for
a NIZK proof, the given witness is recorded.

Simulation of the Networks Fbc
N-MC, and F tx

N-MC as in Ouroboros Genesis, with the following modifications:

• The simulator records transactions originating from A or a corrupted party.

• When an adversarial transaction first enters the confirmed state, the simulator attempts to extract the
witness.

• If the witness does not extract, abort.

• If the witness is successfully extracted, compute the corresponding ideal-world transaction as follows:

– From the extracted secret keys and nonces, determine the ideal-world coins being spent. If one does
not exist, abort.

– If the public key of the “change” coin is assigned to the adversary, use it directly in the ideal
transaction. If it is assigned to an honest party, generate a new adversarial ID in the ideal world for it,
and record the relationship between the coins. If was not previously seen, generate it directly as an
adversarial ID.

– If the “recipient” coin public key is adversarial, use it directly as the coin ID. If it is honest, and the
transaction’s ciphertext is a correct encryption of the coin to the same honest party, use it directly as the
coin ID as well. If it is otherwise honest, again generate a new adversarial ID in the ideal world, and
record the relationship between the coins. If it was not previously seen, generate it directly as an
adversarial ID.

– Form an ideal-world transaction with the above coin IDs and extracted values.

7.10.2 The Stage 2 Simulator

The Simulator S2 behaves like S1, with key differences listed below. The simulator maintains a record of
simulated NIZK proofs. When asked to verify a simulated NIZK proof by the adversary through FNIZK,
return > if the statement provided is the same statement recorded, otherwise return ⊥. We define `Coin to be
the length of coin tuples.

• Upon receiving (SUBMIT,BTX) from GPL for honest transactions, if
BTX = (PUBLIC, TRANSFER) ‖BTX′, run SIMULATETRANSFER(BTX′). Otherwise, run
SIMULATEGENERIC(BTX).

• Upon receiving (MAINTAIN-LEDGER, sid) from GPL, extract from ~ITH the party Up that issued this query.
If Up has already completed its round-task, then ignore this request. Otherwise, execute
SIMULATESTAKING(Up, τ, Lτ), where Lτ is the leadership leakage for time τ . If this is not yet known,
query GPL with READ for it.

• Upon the adversary requesting corruption of a party Up, corrupt the corresponding ideal-world party
immediately, and run CORRUPT(Up).

Simulator S2

116

D3.2 – Design of Extended Core Protocols

procedure SIMULATETRANSFER((stxidealrcpt , stxidealchng))
if stxidealrcpt = ⊥ then

Let cm ← Ĉomm(ek).
Send (Encrypt, sid, τ, `Coin, Up) to A, and denote the response stxrealrcpt.

else
Let (pk ENC

q , (pk COIN, v))← stxrcpt

Let ρ $← {0, 1}`PRF
Let (cm, r)← Comm(pk COIN ‖ ρ ‖ v)
Use FFWENC to encrypt (pk COIN, τ, ρ, r, v) to pk ENC

q , and denote the ciphertext stxrealrcpt.
end if
Let cm2 ← Ĉomm(ek).
Let sn1, sn2

$← {0, 1}`PRF
If either ρ1 or ρ2 were adversarially generated, and can be read from the transaction, use them directly
to compute sn1 or sn2 instead.
Let root be the Merkle tree root of the current state of Up.
Let x← ({cm3, cm4} , {sn1, sn2} , root)
Send (Prove,x, Up) to A, denoting the response π.
Record the pair (x, π).
Let stxproof ← ({cm, cm2} , {sn1, sn2} , root, π).
Broadcast (TRANSFER, stxproof, stxrealrcpt) to F tx

N-MC as Up.
end procedure

procedure SIMULATEGENERIC(txideal)
Let txreal = GENERIC

for stx ∈ txideal in order do
if stx = (pk ENC

i ,M) then
Send (Encrypt, sid, pk ENC

i , τ,M) to FFWENC on behalf of Up, and denote the response c.
Let txreal = txreal ‖ (⊥, c).

else if stx = (PUBLIC,M) then
Let txreal = txreal ‖ (PUBLIC,M).

else
Send (Encrypt, sid, τ, |M |, Up) to A, and denote the response c.
Let txreal = txreal ‖ (⊥, c).

end if
end for
Broadcast txreal to F tx

N-MC as Up.
end procedure

procedure SIMULATESTAKING(Up, τ, L)
if Up /∈ L then return
Let cm ← Ĉomm(ek); ρ, sn

$← {0, 1}`PRF .
If ρ was adversarially generated, and can be read from the transaction, use it directly to compute sn
instead.
Send (Encrypt, sid, τ, `Coin, Up) to A, and denote the response as c.
Let B, h, ptr, ep, sl, root, ηep, and stxref be defined as in an honest staking protocol execution by Up.
Let x← (ηep, cm, sn, sl, ρ, h, ptr, root)
Send (prove,x, Up) to A, denoting the response π.

117

D3.2 – Design of Extended Core Protocols

Record (x, π).
Let stxproof ← (cm, sn, ep, sl, ρ, π, h, ptr)

Let tx← (LEAD, ~stxref, stxproof)
Broadcast tx to F tx

N-MC, and (tx, B) to Fbc
N-MC as Up.

end procedure

procedure CORRUPT(Up)
Corrupt Up in the ideal protocol.
Send (Read, sid) to GPL on behalf of Up. From the result, compute log, depending on the receiving
transactions recorded.
Register Up with FFWENC, and update the party’s key for time τ .
Determine which leadership and transfer transactions were simulated as originating from Up.
Disambiguate which coins won which leadership transactions.
for each unspent coin c belonging to Up do

if c was created by an honest party then
Let ρc

$← {0, 1}κ
Let τ be the time the coin creating transaction was submitted.
Let rc ← Equiv(ek , cmc, pk COIN

c ‖ τ ‖ ρc ‖ vc).
else

Extract (pk COIN, ρc, rc, vc) by decrypting the corresponding ciphertext.
end if
if c is currently visible to Up then

Add (pk COIN, ρc, rc, vc) to Up’s Ccnd.
end if
Ensure Cfree, Ccnd, and C are consistent with a real execution, by checking which coins are con-
firmed, moving them to C, and erasing them from Cfree and Ccnd.

end for
end procedure

7.11 UC Specification of Ouroboros Crypsinous

Registration/Deregistration: Intially, as in Ouroboros-Genesis, then call Initialization-Crypsinous(Up,
sid, R), returning the result.

Interacting with the Ledger (cf. Section 7.6.4):

Upon receiving a ledger-specific input I ∈ {(SUBMIT, . . .), (READ, . . .), (MAINTAIN-LEDGER, . . .)} verify
first that all resources are available. If not all resources are available, then ignore the input; else execute one
of the following steps depending on the input I:

If I = (SUBMIT, sid, (PUBLIC, TRANSFER) ‖ tx) then set invoke the protocol SubmitXfer(tx, Cloc, log).
Else if I = (SUBMIT, sid, tx) then set invoke the protocol SubmitGeneric(sid).
If I = (MAINTAIN-LEDGER, sid) then invoke protocol
LedgerMaintenance(Cloc,C, Up, sid, k, s, R, f, log); if LedgerMaintenance halts then halt the
protocol execution (all future input is ignored).
If I = (GENERATE, sid, tag) then

• If tag = COIN, query GCLOCK for the current time τ . Then, sample sk COIN
τ

$← {0, 1}`PRF , and let

Protocol Ouroboros-Crypsinousk(Up, sid)

118

D3.2 – Design of Extended Core Protocols

sk COIN
i+1 ← PRFevl

sk i
(1), for i ∈ {τ + 1, . . . , τ +R}. Let rootCOIN

sk be the root of the Merkle tree over
sk COIN
τ , . . . , sk COIN

τ+R, and pk COIN ← PRFpk
rootCOIN

sk
(τ). Insert the Merkle tree into Cfree, and return pk COIN.

• If tag = ID, and this is the first query for ID, send (KeyGen, sid) to FFWENC. Denote the response by
pk ENC. Record pk ENC, then return it.

• Otherwise, return a uniformly sampled value from {0, 1}κ.

If I = (READ, sid) then invoke protocol ReadState(k, Cloc, Up, sid, R, f, log).

Handling external (protocol-unrelated) calls: as in Ouroboros-Genesis.

7.11.1 Party Initialization

The following steps are executed in an (MAINTAIN-LEDGER, sid)-interruptible manner:

1: Use the clock to update τ, ep← dτ/Re, and sl← τ .
2: if τ = 0 then execute the following steps in an (MAINTAIN-LEDGER, sid)-interruptible manner:
3: Send (claim, sid, Up) to FINIT to claim stake from the genesis block, receiving the response

(pk COIN, ρc, rc, vc), and sk COIN.
4: Let C← {(pk COIN

c , ρc, rc, vc)}, and Cfree ← {sk COIN}
5: Send (CLOCK-UPDATE, sidC) to GCLOCK.
6: Use the clock to update τ, ep← dτ/Re, and sl← τ , and give up the activation.
7: while τ = 0 do

Use the clock to update τ, ep, and sl and give up the activation.

end while
8: else

Send (genblock req, sid, Up) to FINIT. If FINIT signals an error then halt. Otherwise, receive from
FINIT the response (genblock, sid,G = (C1, η1)).

9: Set Cloc ← (G).

10: Send (NEW-PARTY, sid, Up) to Fnew
N-MC.

11: Return pk COIN
c .

end if
12: Set ton ← τ .
13: Return ∅.

GLOBAL VARIABLES: The protocol stores the list of variables pk ENC, τ, ep, sl, Cloc,C,Cfree, ton to make each
of them accessible by all protocol parts.

Protocol Initialization-Crypsinous(Up, sid, R)

7.11.2 The Staking Procedure

The following steps are executed in an (MAINTAIN-LEDGER, sid)-interruptible manner:

1: for (pk COIN
c , ρc, rc, vc) ∈ C do

2: if c is not eligible for leadership then continue

Protocol StakingProcedure(k, Up, ep, sl,buffer, Cloc,C)

119

D3.2 – Design of Extended Core Protocols

3: Send (eval, sidRO, NONCE ‖ ηep ‖ sl)) to GRO, and denote the response µρ.
4: Send (eval, sidRO, LEAD ‖ ηep ‖ sl)) to GRO, and denote the response µy.
5: Lookup sk COIN

c,τ , rootc, and τc in Cfree corresponding to pk COIN
c .

6: Let ρ← µ
rootskCOIN

c
‖ ρc

ρ ; y ← µ
rootskCOIN

c
‖ ρc

y

7: if y < ord(G)φf (vc) then
8: repeat Parse buffer′ as sequence (tx1, . . . , txn)
9: for i = 1 to n do

10: if ValidTxOP(txi, ~st||st) = 1 then
11: ~N ← ~N ||txi
12: Remove tx from buffer′

13: Set st← blockifyOP(~N)
end if

end for
until ~N does not increase anymore

14: Set ptr ← H(head(Cloc)); h← H(st)
15: Set ρc′ ← PRFevl

rootskCOIN
c

(ρc); snc ← PRFsn
rootskCOIN

c
(ρc)

16: Set (cmc′ , rc′) = Comm(pk COIN ‖ vc ‖ ρc′).
17: Let ~stxref be, in order, the list of leadership transactions made by Up not in Cloc.
18: Let root be the root of the Merkle tree Clead in Cloc, after applying all transactions in ~stxref. Let

path be the path to cmc in the same Merkle tree.
19: Let pathc be the Merkle path to sk COIN

c,τ in the secret-key Merkle tree.
20: Let x = (cmc′ , snc, ηep, sl, ρ, h, ptr, µρ, µy, root).
21: Let w = (path, rootsk COIN , pathc, τc, ρc, rc, vc, rc′).
22: Send (prove, sid,x,w) to FLLEAD

NIZK , and denote the response π.
23: Let txlead = (LEAD, ~stxref, (cmc′ , snc, ep, sl, ρ, h, ptr, π)).
24: Set B ← (txlead, st); Cloc ← Cloc ‖B.
25: Update c: C← (C \ {(pk COIN

c , ρc, rc, vc)}) ∪ {(pk COIN
c , ρc′ , rc′ , vc)}

26: Send (MULTICAST, sid, txlead) to F tx
N-MC and proceed from here upon next activation of this

procedure.
27: Send (MULTICAST, sid, Cloc) to Fbc

N-MC and proceed from here upon next activation of this
procedure.

28: break
end if

end for
29: while A (CLOCK-UPDATE, sidC) has not been received during the current round do

Give up activation. Upon next activation of this procedure, proceed from here.

end while

7.11.3 The Ledger Maintenance Procedure

The following steps are executed in an (MAINTAIN-LEDGER, sid)-interruptible manner:

1: Execute FetchInformation to receive the newest messages for this round; denote the output by
(C1, . . . , CM), (tx1, . . . , txk), and read the flag WELCOME.

Protocol LedgerMaintenance(. . .)

120

D3.2 – Design of Extended Core Protocols

2: if WELCOME = 1 then
3: Send (MULTICAST, sid, Cloc) to Fbc

N-MC.
4: for each tx ∈ buffer do

Send (MULTICAST, sid, tx) to F tx
N-MC.

end for
end if

5: for transaction tx ∈ (tx1, . . . , txk) do
6: if tx is a transfer transaction then
7: Attempt to decrypt each new ciphertext c by sending (Decrypt, sid, c) to FFWENC. Receive the

response m.
8: if m = (pk COIN, τ, ρc, rc, vc) ∧ cmc ∈ tx then
9: if @sk COIN

τ ∈ Cfree corresponding to pk COIN

10: then continue
11: Let Ccnd ← Ccnd ∪ {(pk COIN, ρc, rc, vc)}.
12: Let log← log ‖ (tx, RECEIVE, (pk COIN, vc)).
13: end if
14: else if tx is a generic transaction then
15: Attempt to decrypt each subtransaction ciphertext c by sending (Decrypt, sid, c) to FFWENC. Re-

ceive the response m.
16: if m 6= ⊥ then log← log ‖ (PLAINTEXT, c,m)
17: end if
18: end for
19: for coin (sk COIN

c , τc) ∈ Cfree do
20: if ∃ a coin for pk COIN in Ccnd whose transaction ∈ Cdkloc then
21: Move such candidates to C.
22: end if
23: Erase sk COIN

c,τ (and for any time before τ) from Cfree.
24: end for
25: Use the clock to update τ, ep← dτ/Re, and sl← τ .
26: Set buffer← buffer||(tx1, . . . , txk), ton ← τ , N ← {C1, . . . , and CM}
27: Invoke Protocol SelectChain(Cloc,N , k, s, R, f).
28: Update FFWENC as many times as necessary for its time to be a least τ − k.
29: if twork < τ then
30: Invoke protocol StakingProcedure(k, Up, ep, sl,buffer, Cloc,C) (in a (MAINTAIN-LEDGER, sid)-

interruptible manner).
31: Set twork ← τ and send (CLOCK-UPDATE, sidC) to GCLOCK.

end if

7.11.4 Submitting Transfer Transactions

1: Let ((pk ENC
r , (pk COIN

c4 , v4)), (pk ENC
s , (pk COIN

c1 , v1), (pk COIN
c2 , v2), (pk COIN

c3 , v3)))← txxfer.
2: if pk ENC

s 6= pk ENC or v1 + v2 6= v3 + v4 or pk COIN
c3 /∈ Cfree then return

3: Check C for the first coin received at ID pk COIN
c1 , pk COIN

c2 . Ensure they have value v1 and v2 respectively,

and denote their (potentially evolved) variant as c1 and c2. Ensure these are in Cdkloc.
4: As a special case, allow pk COIN

c2 = ⊥, and v2 = 0.
5: if these do not exist, or are not in C then return

Protocol SubmitXfer(txxfer, Cloc,C, log)

121

D3.2 – Design of Extended Core Protocols

6: Retrieve the corresponding (pk COIN
ci , ρci , rci , vci) from C.

7: Lookup sk COIN
ci in Cfree for i ∈ {1, 2}, corresponding to pk COIN

ci .
8: if pk COIN

c2 = ⊥, and v2 = 0 then snc2 ← PRFzdrv
rootsk COIN

c1
(ρc1) and all other values for c2 are zeroed.

9: Sample ρc3 , ρc4
$← {0, 1}`PRF .

10: Commit (cmci , rci)← Comm(pk COIN
ci ‖ vi ‖ ρci), for i ∈ {3, 4}.

11: Let snc1 ← PRFsn
rootskCOIN

c1

(ρc1); snc2 ← PRFsn
rootskCOIN

c2

(ρc2)

12: Extract the state ~st from Cloc.
13: Let root be the transfer Merkle tree root in Cdkloc.
14: Let path1 and path2 be paths to cmc1 , and cmc2 in the same Merkle tree, respectively, or, if

pk COIN
c2 = ⊥, and v2 = 0, let path2 be empty.

15: if either are not found in the Merkle tree then return
16: Let x← ({cmc3 , cmc4} , {snc1 , snc2} , τ, root).
17: Let w ← (rootsk COIN

c1
, pathsk COIN

τ,c1
, rootsk COIN

c2
, pathsk COIN

τ,c2
, pk COIN

c3 , pk COIN
c4 , (ρc1 , rc1 , v1, path1), (ρc2 , rc2 , v2,

path2), (ρc3 , rc3 , v3), (ρc4 , rc4 , v4)).
18: Send (prove, sid,x,w) to FLXFER

NIZK , and receive π.
19: Send (encrypt, sid, τ, pk ENC

r , (pk COIN
c4 , τ, ρc4 , rc4 , vc4)) to FFWENC, and receive crcpt.

20: Let stxproof ← ({cmc3 , cmc4} , {snc1 , snc2} , root, π).
21: Let txrealxfer ← (TRANSFER, stxproof, crcpt).
22: Let log← log \

{
(pk COIN

c1 , vc1), (pk COIN
c2 , vc2)

}
.

23: Erase c1,2: C← C \ {(pk COIN
ci , ρci , rci , vci) | i ∈ {1, 2}}.

24: Record c3: Ccnd ← Ccnd ∪
{

(pk COIN
c3 , ρc3 , rc3 , vc3)

}
25: Send (MULTICAST, sid, txrealxfer) to F tx

N-MC.

7.11.5 Submitting Generic Transactions

1: Let txreal = GENERIC.
2: for each stx ∈ tx in order do
3: if stx = (>,M) then
4: Let txreal ← txreal ‖ stx.
5: else if stx = (pk ENC

r ,M) then
6: Send (Encrypt, sid, τ, pk ENC

r ,M) to FFWENC, and denote the response c.
7: Let txreal ← txreal ‖ (⊥, c).

end if
end for

8: Send (MULTICAST, sid, txreal) to F tx
N-MC.

Protocol SubmitGeneric(tx)

7.11.6 Reading the Ledger State

1: Execute FetchInformation to receive the newest messages for this round; denote the output chains by
(C1, . . . , CM) (the list of transactions (tx1, . . . , txk) and the flag WELCOME can be ignored).

2: Invoke protocol UpdateTime(k, Up, R, f) and denote the output as τ, ep, sl,Sep, αepp , T epp , and ηep.
3: Use the clock to update τ, ep← dτ/Re, and sl← τ .

Protocol ReadState(k, Cloc, Up, sid, R, f)

122

D3.2 – Design of Extended Core Protocols

4: Set ton ← τ , N ← {C1, . . . , CM}.
5: Invoke Protocol SelectChain(Cloc,N , k, s, R, f).
6: Extract the state ~st from the current local chain Cloc.
7: Let ~st

ideal
= ε.

8: for each tx ∈ ~st
dk

in order do
9: if tx = (TRANSFER, stxproof, stxrcpt) then

10: Let stxchng ← stxrcpt ← ⊥.
11: if ∃v : (tx, RECEIVE, v) ∈ log then
12: Let stxrcpt ← (Up, v).
13: end if
14: Let ~st

ideal ← ~st
ideal ‖ ((>, TRANSFER), stxrcpt, stxchng).

15: else if tx = (GENERIC, stx1, . . . , stxn) then
16: Let txideal ← ε.
17: for each subtransactions stx ∈ tx in order do
18: if stx = (>,m) then
19: Let txideal ← txideal ‖ (>,m)
20: else if stx = (⊥, c) then
21: if ∃m : (PLAINTEXT, c,m) ∈ log then
22: Let txideal ← txideal ‖ (Up,m)
23: else
24: Let txideal ← txideal ‖⊥
25: end if
26: end if
27: end for
28: end if
29: Let ~st

ideal ← ~st
ideal ‖ (txideal).

30: end for
31: Output (READ, sid, ~st

ideal
).

7.12 NP Statements

Recall that we use two NIZK statements: LEAD, and XFER. XFER is very close to the statement used in Zerocash
[BCG+14], while LEAD is a mixture between a Zerocash proof, and an Ouroboros Praos [DGKR18] leadership
proof. We define the statements by their corresponding NP languages:
A tuple (x,w) ∈ LLEAD iff all of the following hold:

• x = (cmc2 , snc1 , η, sl, ρ, h, ptr, µρ, µy, root)

• w = (path, rootsk COIN , pathsk COIN , τc, ρc, rc1 , v, rc2)

• pk COIN = PRFpk
rootskCOIN

(τc)

• ρc2 = PRFevl
rootskCOIN

c1

(ρc1)

• ∀i ∈ {1, 2} : DeComm(cmci , pk COIN ‖ v ‖ ρci , rci) = >

• path is a valid Merkle tree path to cmc1 in a tree with root root.

• pathsk COIN is a valid path to a leaf at position sl − τc in a tree with root rootsk COIN .

• snc1 = PRFsn
rootskCOIN

(ρc1)

123

D3.2 – Design of Extended Core Protocols

• y = µ
rootskCOIN

c1
‖ ρc

y ; ρ = µ
rootskCOIN

c1
‖ ρc

ρ

• y < ord(G)φf (v)

Note that x of LEAD contains values sl, h, ptr that seemingly nothing is proven about. As a UC proof system is
non-malleable, this makes them part of the signature of knowledge message.
A tuple (x,w) ∈ LXFER iff all of the following hold:

• x = ({cmc3 , cmc4} , {snc1 , snc2} , τ, root)

• w = (rootsk COIN
c1
, pathsk COIN

c1
, rootsk COIN

c2
, pathsk COIN

c2
, pk COIN

c3 , pk COIN
c4 , (ρc1 , rc1 , v1, path1), (ρc2 , rc2 ,

v2, path2), (ρc3 , rc3 , v3), (ρc4 , rc4 , v4))

• ∀i ∈ {1, 2} : pk COIN
ci = PRFpk

rootskCOIN
ci

(1) (or, if v2 = 0, this check may be skipped for i = 2)

• ∀i ∈ {1, ..., 4} : DeComm(cmci , pk COIN
ci ‖ vi ‖ ρci , rci) = > (or, if v2 = 0, this check may be skipped for

i = 2)

• v1 + v2 = v3 + v4

• path1 is a valid path to cmc1 in a tree with root root.

• path2 is a valid path to cmc2 in a tree with root root, or v2 = 0 and snc2 = PRFzdrv
rootskCOIN

c1

(ρc1).

• pathsk COIN
ci

is a valid path to a leaf at position τ in rootsk COIN
ci

, for i ∈ {1, 2}.

• ∀i ∈ {1, 2} : snci = PRFsn
rootskCOIN

ci

(ρci) (or, if v2 = 0, this check may be skipped for i = 2)

7.13 Protocol Assumptions Encoded as a Wrapper

This section includes complementary material for the main body. We sketch below the wrapper functionality
that is applied to the hybrid functionalities used by Ouroboros-Crypsinous. It is a slight adaptation of the
same wrapper used in Ouroboros Genesis [BGK+18], with the modification that calls to FNIZK are restricted,
not FVRF. In a nutshell, the wrapper observes the advancement of the entire system and checks whether the
proportional stake of alert parties, of corrupted or de-synchronized parties, and of stalled parties are within the
allowed range specified as required by our main theorems.

The wrapper functionality is parameterized by the bounds α,β on the alert and participating stake ratio, as
defined in Ouroboros Genesis [BGK+18], respectively, the network delay and a value ε > 0 (the parameter
that describes the gap between the honest and adversarial stake). The wrapper is assumed to be registered
with the global clock GCLOCK and is aware of sets of registered parties, and the set of corrupted parties.
We note that the wrapper makes checks about the distribution of stake. While this is trivial in Ouroboros
Genesis, it is not immediately obvious that the wrapper knows this information in Crypsinous. The wrapper
does, however, observe all network traffic, as well as all NIZK witnesses. From this, it can reconstruct
exactly which party transfers stake when, and to whom. We will not describe this extraction in full detail, but
note that effectively, as the wrapper is around all privacy-preserving functionalities, it has a clear view of the
state. We can therefore make assertions about the stake distribution despite the addition of privacy.

General:

• Upon receiving any request I from any party Up or from A (possibly on behalf of a party Up which is

FunctionalityWPoS
OC (·)

124

D3.2 – Design of Extended Core Protocols

corrupted) to a wrapped hybrid functionality, record the request I together with its source and the current
time.

• The wrapper keeps track of the active parties and their relative share to the stake distribution.

Restrictions on obtaining NIZK proofs:

• Upon receiving (Prove, sid, ·, ·) to FNIZK from A on behalf of a party Up which is corrupted or registered
but de-synchronized do the following:

1. If the fraction of alert stake relative to all active stake in this round τ so far does not satisfy the honest
majority, as in Ouroboros Genesis [BGK+18] then ignore the request.

2. Otherwise, forward the request to FNIZK and return to A whatever FNIZK returns.

• Upon receiving (Prove, sid, ·, ·) to FNIZK from an alert party Up do the following:

1. Forward the request to FNIZK and return to A whatever FNIZK returns.

2. If the minimal fraction (in stake) of participation (of alert parties and in total) as required by Ouroboros
Genesis [BGK+18] is reached in round τ , send (CLOCK-UPDATE, sidC) to GCLOCK to release the clock
for this round.

• Any other request is relayed to the underlying functionality (and recorded by the wrapper) and the
corresponding output is given to the destination specified by the underlying functionality.

7.14 Construction NIZKs via SNARKs

We will utilise, and prove the UC-security of the lifted SNARK system presented in [KZM+15b]. Specifically,
we will focus on the version presented allowing for proof-malleability, i.e. allowing the adversary to re-prove
statements with a different proof object. For our purposes, this weak version is sufficient. We note that asimula-
tion secure NIZK, as presented in [KZM+15b] is a tuple (K,P,V, K̂, P̂). This fairly directly corresponds to a
UC protocol for FNIZK, in the FDCRS-hybrid world, where D is the output distribution of K(1λ,L), and proving
and verification are implemented as expected with the provided algorithms. We will refer to this protocol as
NIZK-SNARK. We are also guaranteed the existance of an algorithm E which can extract proofs, and although
that may not be well-known, we note that both the environment and simulator may be assumed to have access
to E . For a security parameter κ, we are guaranteed the properties in Figures 7.1-7.4 hold. Where we use ≈, we
mean that the statistical distance between the distributions is less than some negligible function µ of λ.

∀L, (x,w) ∈ L, crs ∈ K(1κ,L), π ∈ P(crs, x, w) :

Pr [V(crs, x, π) = >] = 1

Figure 7.1: Perfect completeness.

Determinism We will assume that V and E are deterministic algorithms. If we are given a non-deterministic
verification algorithm V ′, E ′, we note that we can construct deterministic algorithms V , and E by fixing the

125

D3.2 – Design of Extended Core Protocols

∀L,A : Pr
[
crs

$← K(1κ,L);AP(crs,·,·)(crs) = >
]

≈Pr
[
(ĉrs, τ, ek)

$← K̂(1κ,L);AP̂1(ĉrs,τ,·,·)(ĉrs) = >
]

Where P̂1 acts as P̂ , but aborts if it is asked to simulate a proof for (x,w) /∈ L.

Figure 7.2: Computational zero-knowledge.

∀L,A : Pr

 crs
$← K(1κ,L);

(x, π)
$← A(crs);

(V(crs, x, π) = >) ∧ (@w : (x,w) ∈ L)

 ≈ 0

Figure 7.3: Computational soundness.

∀L,A : Pr


(ĉrs, τ, ek)

$← K̂(1κ,L);

(x, π)
$← AP̂(ĉrs,τ,·,·)(ĉrs, ek);

w
$← E(ĉrs, ek, x, π);

x /∈ Q ∧ (x,w) /∈ L ∧ V(ĉrs, x, π) = >

 ≈ 0

Where Q is set set of statements x that A queried using oracle access to P̂ .

Figure 7.4: Simulation sound extractability.

random tape. V necessarily satisfies completeness and zero-knowledge, and with overwhelming probability will
still satisfy soundness and simulation sound extractability. Likewise, E necessarily satisfies completeness, zero-
knowledge, and soundness, and with overwhelming probability satisfies simulation sound extractability. If α
is the fraction of random tapes for which V or E can break some property of the NIZK with a non-negligible
probability of at least β, then since the sampling of the random tape and the other inputs in the security games is
independant, V ′ or E ′ respectively has a probability of at least αβ of breaking the same property. As β is non-
negligible, and αβ negligible, by assumption, α must be negligible. Therefore, with overwhelming probability,
all properties hold for V .

7.14.1 Proof of UC-Emulation

The protocol F ′′LNIZK slightly idealises NIZK-SNARK(L), by ensuring that previously proved statements
always verify. It is built in the FDCRS hybrid model, and keeps crs, and Π as variables. Π is initialized to ∅.

Initialization On first activation:
send (query, sid) to FDCRS and receive the reply (query, sid, crs)

Proving When receiving a message (prove, sid, x, w):
if (x,w) ∈ L then

let π ← P(crs, x, w); Π← Π ∪ {(x, π)}

return (proof, sid, x, π)
else

Functionality F ′LNIZK

126

D3.2 – Design of Extended Core Protocols

return (proof, sid, x,⊥)
end if

Proof Verification When receiving a message (verify, sid, x, π):
if (x, π) ∈ Π then

return (verify, sid, x, π,>)
else if V(crs, x, π) = > then

let Π← Π ∪ {(x, π)}

return (verify, sid, x, π,>)
else

return (verify, sid, x, π,⊥)
end if

Lemma 19. NIZK-SNARK(L) perfectly UC-emulates F ′LNIZK in the FDCRS-hybrid model.

Proof. We note that (prove) queries, and CRS have identical output in NIZK-SNARK(L) and F ′LNIZK. For pre-
viously unseen statement/proof pairs, verification queries are also identical. For previously seen statement/proof
pairs (x, π), NIZK-SNARK(L) would output V(crs, x, π), while F ′LNIZK outputs >. There are two types of “pre-
viously seen” statement/proof pairs. π may be generated by P(crs, x, w) for some w where (x,w) ∈ L. In
this case, by Figure 7.1, we know that V(crs, x, π) = >, therefore the outputs are identical. Alternatively, the
statement/proof pair was previously seen in verification, and V(crs, x, π) = >. Since V is deterministic, it will
return >, the same as F ′LNIZK.

The protocol F ′′LNIZK is a further idealisation of F ′LNIZK, which utilises simulated proofs instead of real proofs.
It is built in the FD′CRS hybrid model, where D′ is the output distribution of K̂(1κ,L). It keeps ĉrs, τ , and Π as
variables, where Π is initialized to ∅.

Initialization On first activation:
send (query, sid) to FD′CRS and receive the reply (query, sid, (ĉrs, τ, ek))

Proving When receiving a message (prove, sid, x, w):
if (x,w) ∈ L then

let π ← P̂(ĉrs, τ, x); Π← Π ∪ {(x, π)}

return (proof, sid, x, π)
else

return (proof, sid, x,⊥)
end if

Proof Verification When receiving a message (verify, sid, x, π):
if (x, π) ∈ Π then

Functionality F ′′LNIZK

127

D3.2 – Design of Extended Core Protocols

return (verify, sid, x, π,>)
else if V(ĉrs, x, π) = > then

let Π← Π ∪ {(x, π)}

return (verify, sid, x, π,>)
else

return (verify, sid, x, π,⊥)
end if

let (ĉrs, τ, ek)
$← K̂(1λ,L)

program FDCRS to return ĉrs
simulate A

Simulator S ′′LSNARK

Lemma 20. F ′LNIZK in the FDCRS-hybrid model UC-emulates F ′LNIZK in the FD′CRS-hybrid model.

Proof. We note that it is sufficient to prove that there exists a simulator for the dummy adversary. We will use
S ′′LSNARK for this purpose. We note that the difference between FDCRS and FD′CRS is precicely the difference in the
sampled key generation parameters of Figure 7.2. Further, we note that the environment can query FDCRS through
the dummy adversary, which corresponds precicely to the input parameter of crs or ĉrs in Figure 7.2.

Aside from extracting the CRS from the adversary, the environment can only make honest interactions with
F ′LNIZK. We note that for verification queries, these are identical, given crs/ĉrs. We can therefore assume without
loss of generality that the environment computes them entirely locally, issuing only (prove, sid, x, w) queries.
We note that if (x,w) /∈ L the queries are also identical, so we assume that the adversary only makes a se-
quence of (prove) queries where (x,w) ∈ L. Then we note that if Z can distinguish between (D,F ′LNIZK) and
(S ′′LSNARK,F ′′LNIZK) with a non-negligible advantage, then Z is a distinguisher for Figure 7.2 with a non-negligible
advantage. More precisely, we can reframe the access to F ′LNIZK and D as access to a proving oracle and crs, and
reframe access to F ′′LNIZK and S ′′LSNARK as access to a (simulated) proving oracle and ĉrs.

The protocol F ′′′LNIZK further idealises F ′′LNIZK, by ensuring that not-previously seen, verifying proofs are
extractable. It is built in the FD′CRS hybrid model, and keeps ĉrs, τ , ek, and Π as variables. Π is initialized to
∅.

Initialization On first activation:
send (query, sid) to FD′CRS and receive the reply (query, sid, (ĉrs, τ, ek))

Proving When receiving a message (prove, sid, x, w):
if (x,w) ∈ L then

let π ← P̂(ĉrs, τ, x); Π← Π ∪ {(x, π)}

return (proof, sid, x, π)

Functionality F ′′′LNIZK

128

D3.2 – Design of Extended Core Protocols

else

return (proof, sid, x,⊥)
end if

Proof Verification When receiving a message (verify, sid, x, π):
if (x, π) ∈ Π then

return (verify, sid, x, π,>)
else if V(ĉrs, x, π) = > then

if ∃π′ : (x, π′) ∈ Π then
let Π← Π ∪ {(x, π)}

return (verify, sid, x, π,>)
else

let w ← E(ĉrs, ek, x, π)
if (x,w) ∈ L then

let Π← Π ∪ {(x, π)}
end if

return (verify, sid, x, π, (x,w) ∈ L)
end if

else

return (verify, sid, x, π,⊥)
end if

Lemma 21. F ′′LNIZK UC-emulates F ′′′LNIZK in the FD′CRS-hybrid model.

Proof. We note that F ′′LNIZK and F ′′′LNIZK differ only in the verification of statement/proof pairs (x, π), where
V(ĉrs, x, π) = >, and x was not previously proved. We note that any distinguishing environment will make
some number k of such queries, which must be polynomial in the security parameter.

We construct an adversary, that using Z breaks simulation sound extractability (Figure 7.4). A simulates Z
interacting with F ′′′LNIZK (and D), with FD′CRS programmed to return (ĉrs, τ, ek). It records all returns w of E , as
well as the corresponding x, π inputs in a vector ~e. If Z has advantage α, then with at least probability α, there
must exist at least one query Z made where F ′′LNIZK and F ′′′LNIZK differed in their output. Specifically, this means
that there exists a query to E such that the extraction failed, and (x,w) /∈ L. By the conditions that must be met
before E is called, we also know that V(ĉrs, x, π), and @π′ : (x, π′) ∈ Π.
A can test all queries made, and determine which one(s) fail extraction. It then returns (x, π) for which the

extraction fails. We note that this directly breaks the extractability property given in Figure 7.4, with probability
at least α. Therefore, if there is no adversary that can break simulation sound extractability except with negligible
probability, there exists no environment that has a greater advantage and can distinguish F ′′LNIZK and F ′′′LNIZK.

Initialization On first activation:
send (query, sid) to FD′CRS and receive the reply (query, sid, (ĉrs, τ, ek))
simulate A

Simulator SLSNARK

129

D3.2 – Design of Extended Core Protocols

Simulating Proofs On receiving a messsage (prove, sid, x) from FLNIZK:
let Q← Q ∪ {x}

return (proof, sid, P̂(ĉrs, τ, x))

Proof Verification On receiving a message (verify, sid, x, π) from FLNIZK:
if V(ĉrs, x, π) = > then

if x ∈ Q then
send (maul, sid, x, π) to FLNIZK

return (ok, sid, x, π)
else

return (witness, sid, E(ĉrs, ek, x, π))
end if

else

return (reject, sid, x, π)
end if

Lemma 22. F ′′′LNIZK in the FD′CRS-hybrid model perfectly UC-emulates FLNIZK.

Proof. We will show that SLSNARK interacting with FLNIZK perfectly simulates D interacting with F ′′′LNIZK. The
environment is presented with three types of actions it can do, as before. It can verify proofs, prove statements,
and query FD′CRS through D. We note that as SLSNARK perfectly simulates the interactions between D and Z , the
interaction with FD′CRS through D and through SLSNARK is identical.

We note that when receiving a (prove, sid, x, w) query, F ′′′LNIZK and FLNIZK both return (proof, sid, x,⊥) if
(x,w) /∈ L. Otherwise, F ′′′LNIZK selects π $← P̂(ĉrs, τ, x), while FLNIZK queries SLSNARK, which returns a value
from the same distribution (note that ĉrs, and τ come from the same distribution D′. Further, both F ′′′LNIZK and
FLNIZK add (x, π) to the set Π. In the query, SLSNARK adds x to the set Q. At each update of Π, we note that the
relation Q = { x | (x, π) ∈ Π } is preserved, and Π is equal in F ′′′LNIZK and FLNIZK. We will revisit this invariant
at each point Π is modified. Both FLNIZK and F ′′′LNIZK return (proof, sid, x, π).

For (verify, sid, x, π) queries, we note that Π is identical in F ′′′LNIZK and FLNIZK, and that if (x, π) ∈ Π,
both return (verify, sid, x, π,>). Otherwise, FLNIZK queries SLSNARK. If V(ĉrs, x, π) = ⊥, SLSNARK will return
(reject, sid, x, π), and FLNIZK will return (verify, sid, x, π,⊥), as will F ′′′LNIZK. We note that ∃π′ : (x, π) ∈ Π ⇔
x ∈ Q. Therefore, if we consider the remaining cases, where (x, π) /∈ Π, and V(ĉrs, x, π) = >, we have the
cases that x ∈ Q and x /∈ Q in both functionalities. If x /∈ Q, SLSNARK returns the witness E(ĉrs, ek, x, π), and
if (x,w) ∈ L, adds (x, π) to Π. This still preserves the relation between Q and Π. Both functionalities return
(verify, sid, x, π, (x,w) ∈ L), and add (x, π) to Π iff (x,w) ∈ L. If x ∈ Q, SLSNARK sends (maul, sid, x, π) to
FLNIZK, which (since x ∈ Q), permits the malleability and adds (x, π) to Π. Both will return (verify, sid, x, π,>).

Theorem 23. NIZK-SNARK(L) in the FDCRS-hybrid model UC-emulates FLNIZK.

Proof. By the transitivity of UC-emulation.

7.15 Key-Private Forward-Secure Encryption

Lifting to a UC-Protocol A kp-fs-CCA-secure key-evolving encryption scheme induces the following protocol
for realizing FFWENC in the FKEYMEM-hybrid model:

130

D3.2 – Design of Extended Core Protocols

kp-fs-Enc is parameterized by ∆max, κ, and N , and operates in the FKEYMEM-hybrid world, where FKEYMEM

is parameterized by ∆max, and the following Update function:
function Update((sk , τ))

return (Upd(sk , τ + 1), τ + 1)
end function

On receiving a message (KeyGen, sid) for the first time:

Let (pk , sk0)
$← Gen(1κ, N).

Send (Init, sid, (sk0, 0)) to FKEYMEM.
Erase sk0.
Record τ ← 0

return pk

On receiving a message (Encrypt, sid, pk , τ ′,m):

return Encpk (τ ′,m)

On receiving a message (Decrypt, sid, τ ′, c):
if τ ′ < τ then

return ⊥
else

Send (Get, sid) to FKEYMEM, denoting the response as (sk τ , ·).
Compute sk τ

′
from sk τ .

Let m← Dec
skτ
′ (τ ′, c).

Erase sk τ
′

and sk τ .

return m
end if

On receiving a message (Update, sid):
Record τ ← τ + 1.
Send (Update, sid) to FKEYMEM.

Protocol kp-fs-Enc

The Simulator We now give the simulator for which we will show UC emulation.

In addition to responding to FFWENC, the simulator SFWENC maintains a simulated FKEYMEM, through which it
provides the adversary with (delayed) access to secret keys.
On initialization:

Let (pkdummy, ·)
$← Gen(1κ, N)

Record pkdummy

On receiving a message (KeyGen, sid, Up):

Let (pkp, sk0
p)

$← Gen(1κ, N)

Record pkp, sk0
p, and τp ← 0

Simulator SFWENC

131

D3.2 – Design of Extended Core Protocols

Simulate sending (Init, sid, (sk0
p, 0)) to FKEYMEM as Up.

return pkp
On receiving a message (Encrypt, sid, τ, Up, l):

Let m $← 0l

Let c $← Encpkdummy
(τ,m)

return c
On receiving a message (DummyEncrypt, sid, pk , τ,m,Up):

Let c $← Encpk (τ,m)

return c
On receiving a message (Decrypt, sid, τ, c, Up):

if Up’s secret key sk0
p is recorded then

Use Upd to derive sk τp .
Let m← Decskτp (τ, c)
Return m

else

return ⊥
end if

On receiving a message (Update, sid, Up):
Record τp ← τp + 1
Simulate sending (Update, sid) to FKEYMEM as Up.

On receiving messages to FKEYMEM from A: Forward these messages to the simulated FKEYMEM.

UC Emulation

Theorem 24. If the underlying key-evolving PKE scheme is kp-fs-CCA secure then kp-fs-Enc UC-emulates
FFWENC in the FKEYMEM-hybrid world.

Proof. The points in which the simulator SFWENC, combined withFFWENC can behave differently from kp-fs-Enc
are in how they respond to various queries, and the internal state they maintain. kp-fs-Enc maintains a public/pri-
vate key pair for each party, which the simulator selects from exactly the same distribution, and both return the
public key, while storing sk0

p. Further, both initialize τp to zero. As a result, for KeyGen-queries, the simulation
is perfect. For update, while the simulator does not call Upd on the secret key, this is merely because the call
is deferred to the point where it is used, in Decrypt. In both worlds however, τp is updating the same way, and
matches the ideal functionality’s τp value.

What remains is showing the correctness of encryption, decryption, and corruption queries. We will reduce
this to kp-fs-CCA security, by showing that if the environment can distinguish, we can extract a kp-fs-CCA
adversary with black-box access to the distinguishing environment, which wins the kp-fs-CCA game with a non-
negligible advantage. In both the real and ideal worlds, the public and secret keys for U1, . . . , Un are sampled
from Gen(1κ, N) – with in the real-world parties holding their own keys, and in the ideal world, the simulator
holding all. We note that while the dummy key pkdummy exists only in the ideal world, and it’s corresponding se-
cret key is never used, we can assume it also exists in the real world, however remains entirely unused. Therefore
as all (not adversarially generated) key pairs are sampled the same in both worlds, we can extract this sampling
from the UC security definition – if all key pairs (pk1, sk1), . . . , (pkn, skn), (pkdummy, skdummy) are sampled
from the same distribution, and fixed in both the real and ideal executions, the real and ideal distributions are

132

D3.2 – Design of Extended Core Protocols

indistinguishable with overwhelming probability. Given an environment Z which can distinguish between the
real and ideal world with non-negligible advantage, we can therefore assume that it can distinguish between the
real and ideal world, with fixed keys, with a non-negligible advantage. We use Z to construct an adversary A in
kp-fs-CCA game, and prove that A has a non-negligible advantage. Specifically, A simulates running Z against
the ideal world, with the following modifications:

• The public/secret key pairs used by the simulator are supplied by A by programming the random tape.

• A monitors all messages sent in the simulation, in particular messages to the ideal functionality from all
parties.

• Since A does not hold parties secret keys, on a Decrypt query to the simulator, it posts a decrypt(τ, c, Up)
query, and return the response.

• We note secret keys are only used for decryption, as well as being handed to the (UC) adversary upon
corruption. When the simulator hands the keys to the (UC) adversary, the (kp-fs-CCA) adversary posts a
corrupt(τp + ∆max, Up) query to obtain sk

τp+∆max
p . While FKEYMEM at the time of corruption stores sk

τp
p ,

by assumption it will first apply ∆max updates.

• When the ideal functionality receives an (Encrypt, sid, pkp, τ,m) query, iff it does not reveal m to the
simulator, A queries challenge(τ, (Udummy, 0

|m|), (Up,m)), and returns c.

We begin by observing that this adversary does obey the rules of the kp-fs-CCA game. Specifically, the
conditions for the game are as follows: a) A challenge ciphertext is not queried for decryption, and b) A party
is not challenged after it has been corrupted. For a) challenge queries are performed when an Encrypt message
is seen, and due to the structure of FFWENC, the challenges will be for, at latest, the time τp + ∆max − 1. On
corruption, the corrupt(k, Up) query is make with k = τp + ∆max. As τp is monotonically increasing, and
Encrypt is not called after corruption – and therefore no further challenge queries are issued – the corruption is
after all challenges. For b), we note that on corruption, FFWENC will no longer query the simulator with Encrypt
queries for this party, but only with DummyEncrypt queries. As challenge queries are only issued on Encrypt
queries, this party will not longer receive challenge queries.

Next, if b = 0, the execution perfectly matches a random ideal world execution with SFWENC. Specifically,
if b = 0 the result of challenge(τ, (Udummy, 0

|m|), (Up,m)) = Encpkdummy
(τ, 0|m|). Further, decrypt(τ, c, Up) =

Decskτp (τ, c), i.e. all points in which A intervenes in the UC execution, the execution is identical for b = 0.
Finally, we will argue that if b = 1, the statistical distance between the simulated UC execution, and the

UC execution of kp-fs-Enc is negligible. Honest parties perform four operations in kp-fs-Enc: A one-time
key-generation, encryption, decryption, and update. The keys are supplied in kp-fs-CCA, and sampled from the
same distribution as in the protocol. τ is initialized to 0 for Up upon key generation in both the protocol and
the simulator. In both cases, pk is returned, sampled from the Gen algorithm. For encryption, regardless of
whether Encrypt or DummyEncrypt is called by the functionality, as challenge(τ, (Udummy, 0

|m|), (Up,m)) =
encpkp(τ,m), the ciphertext will be sampled from encpkp(τ,m), the same as in the protocol. For decryption
queries, if it lies in the past, both the protocol and functionality will return⊥. The functionality will, if it supplied
the ciphertext itself, and the party is the intended recipient, return the corresponding plaintext. Otherwise it asks
the simulator for decryption, which in turn makes a decrypt query. We note that by contrast, the protocol will
always run Decskτp (τ, c). If a decrypt query is made, we know that – since the ciphertext was not previously
challenged (at least not with the same party and time slot) – the behaviour is identical. Otherwise, we no
by the correctness of the underlying key-evolving encryption scheme, that with overwhelming probability, the
decryption must return the same plaintext. For update, τp is kept the same in the protocol and the simulated
execution, by incrementing it. While the secret key is not updated in the simulated execution, this update serves
only to erase information – something the simulator does not care about.

133

Chapter 8

Privacy Threats Exploiting Smart Contracts
and Forks

8.1 Attack to the Zero-Knowledge Property of GG-NIZK [GG17]

In this section we describe an attack with which an adversary, using a smart contract, is able to break the zero-
knowledge property of GG-NIZK without corrupting any party.

In [GG17] Goyal and Goyal presented a non-interactive zero-knowledge argument of knowledge based on the
assumption of the existence of a proof-of-stake blockchain. Their construction can be abstracted as an execution
of a non-interactive ZAP (i.e., a non-interactive witness-indistinguishable – NIWI – proof of knowledge) where
the prover proves that either a theorem is true or she possesses the majority of the stake. Without a majority of
the stake, a malicious prover cannot convince the verifier with an incorrect witness. Instead the simulator will
replace the honest players and thus will have a majority of the stake and this will allow it to have a witness for the
ZAP. Technically, the construction relies on the prover secret sharing the witness and then encrypting the shares
with the public keys corresponding to some stakeholders1.

Our observation is that it is natural to assume that a verifier of GG-NIZK can be also a party in the blockchain
protocol and therefore she can still interact with the blockchain after that she receives a proof computed by a
prover, in particular an adversarial verifier can decrypt shares of the witness. More in general, the goal of this
section is to bring attention to the fact that when a cryptographic protocol is constructed on top of a blockchain,
the protocol designers should take into account that on top of the same blockchain there can be smart contracts
run by honest players that can use their secret keys to generate valid transactions. Indeed a malicious player of
the cryptographic protocol could make use of the transactions generated by honest players to invalidate some
security property of the protocol. Our main idea consists of showing an adversarial verifier of GG-NIZK that
produces a smart contract to decrypt shares of the witness encrypted by the prover, therefore breaking completely
the privacy of the witness.

Before describing the attack, we provide a formal description of the GG-NIZK. The smart contract will
include the ciphertexts corresponding to the shares of the witness encrypted with the public keys of some stake-
holders. Then those stakeholders through transactions could provide verifiable decryptions of those ciphertexts
therefore allowing the adversary to reconstruct the witness.

The NIZK of [GG17].

NOTATION FOR GG-NIZK
- Blockchain B: this is the latest version blockchain which might contain unconfirmed blocks.
- Stable Blockchain B

′
: this is defined as Bd`1 , which is the blockchain B pruned of `1 blocks (that are possibly

unconfirmed blocks).
1Note that this approach requires that the proof-of-stake blockchain uses public keys for the stakeholders that can be used for public-

key encryption.

134

D3.2 – Design of Extended Core Protocols

- Parameter `2: number of last blocks taken into consideration in B
′

.
- StakeholdersM: set of public keys associated to the player that have added at least one block in the last `2

blocks of B
′
. In [GG17], such public keys are crucially used for both encryption and signature.

- Chain quality parameters: `3, `4 used in the soundness proof.
- params:= (1`1 , 1`2 , 1`3 , 1`4).

GG-NIZK: THE PROOF.

A proof π for theorem x is computed as follows. Let w be the witness s.t. (x,w) ∈ R.
1. Secret share the witness w using a weighted secret sharing scheme, using as weights the stake of the public

keys appearing inM. Do the same with the zero-string.
Namely, produce the following two sets2:

{sh1,i}i∈M = Share(w, {si}i∈M, β · stotal, s1)

{sh2,i}i∈M = Share(0, {si}i∈M, β · stotal, s2)

2. Encrypt each weighted share using the public key of the corresponding player. Namely for all i such
that PKi ∈ M, sample random strings r1,i, r2,i and compute: ctx1,i = Enc(PKi, sh1,i, r1,i) ctx2,i =
Enc(PKi, sh2,i, r2,i).

3. Compute a non-interactive witness indistinguishable proof (NIWI) πniwi for the theorem: (1) either the
first set of ciphertexts are correct encryptions under the public keys inM of shares of the witness w or (2)
(trapdoor witness) the second set of ciphertexts is a collection of correct encryptions under the public keys
inM of shares of a valid fork of length `3 + `4.

Hence, a proof π for theorem x ∈ L consists of the tuple:

π = (B, {ctx1,i, ctx2,i}i∈M, πniwi, params)

Note that the proof π is not published on the blockchain and it is only sent to the verifier.

Security of GG-NIZK: Intuition. Zero-knowledge follows from the assumption of honest majority of stake. Under
such assumption, the simulator –controlling all honest players– is able to compute a valid fork that constitutes
a valid trapdoor witness for the NIWI. Even if the trapdoor witness is encrypted in (ctx2,i)PKi∈M, a malicious
verifier cannot detect that the trapdoor witness was used, since it does not control enough secret keys (associated
to the public keys inM) that would allow for collection of enough shares.

Soundness is proved by witness extraction: the extractor controls a sufficient fraction of honest secret keys
(associated to the public keys inM) and this allows the decryption of enough ciphertexts, that leads to enough
shares to reconstruct the witness.

Clearly by obtaining in the future (e.g., when those keys will correspond to a reduced amount of stake) the
secrets of the involved stakeholders (through adaptive corruptions or by naturally receiving the keys from honest
stakeholders) the adversary would be able to decrypt those ciphertexts therefore breaking the zero knowledge
property and without violating the proof-of-stake assumption. This problem imposes the assumptions/limitations
of the GG-NIZK discussed previously.

A Simple Smart Contract that Breaks the ZK Property of GG-NIZK. The zero-knowledge property of
GG-NIZK crucially relies on the assumption that the malicious verifier – controlling only a minority of stake–
does not have enough secret keys for the public keys in M to be able to decrypt enough ciphertexts and thus
reconstruct the witness.

Our main observation is that in order to obtain decryptions of enough ciphertexts, a malicious verifier, does
not necessarily need to own enough of the stake/secret keys of the honest players. Instead, the malicious verifier
can upload a smart contract – that we called DecryptForMe– where she promises a reward for a valid decryption

2The role of s1, s2 and β is not relevant for our discussion and therefore they can be ignored.

135

D3.2 – Design of Extended Core Protocols

of a certain ciphertext ctx under a certain public key PK. In more details, once the malicious verifier obtains
π = (B, {ctx1,i, ctx2,i}i∈M, πniwi,params) from an honest prover she can publish a DecryptForMe for some of
the ciphertexts ctx1,i for which she does not possess the secret key. The malicious verifier using DecryptForMe

is able to collect enough shares and reconstruct the witness that is encrypted in {ctx1,i, ctx2,i}i∈M, thus directly
invalidating the ZK property of [GG17].

In Figure 8.1 we give a more detailed description of DecryptForMe. In order to keep the smart contract
simple we assume that the decryption procedure of the underlying encryption scheme gives in output a pair
(m, r) where r is the randomness used to encrypt and m is the message encrypted (see for instance [BR93]). For
the same reason, we also assume that (m, r) are unique (for a public key PK).

Notation (borrowed from [JKS16]).
- Ledger: the blockchain.
- Ledger[Upi] denotes the amount of money possessed by the secret key of party Upi.

DecryptForMe

1. Init: Upon receiving (init, $r, ctx,PKi) from a contractor C:
- Assert Ledger[C] > $r.
- Ledger[C] := Ledger[C]− $r.
- Set state := INIT.

2. Claim: On input (claim, v) from a player Upi:
- Parse v = (m, r).
- If ctx = EncPKi(m, r) then set rewards Ledger[Up] := Ledger[Up] + $r.
- Set state := CLAIMED.

Figure 8.1: Description of DecryptForMe.

Observations on the Smart Contract. We note that a player fulfilling DecryptForMe is not violating any as-
sumption of the underlying PoS protocol or of GG-NIZK. Indeed, he is not exposing his secret key but simply
providing a valid decryption of a certain ciphertext. Thus this is legitimate behavior of a honest player, she is
simply executing an other application that runs on top of the blockchain.

Our smart contract is not a “bribing attack”. Bribing assumes that one is paying somebody to do something
wrong/break the rules. Instead in this context an honest player is still behaving honestly and he is not breaking
any rule of the underlying PoS protocol.

We also note that since the proof π is not published on the blockchain (and is not required to be), honest
players could be not aware that they are helping a malicious verifier to break the security of π.

8.2 Attacking and Repairing Smart Contracts on Forking Blockchains

Typical blockchains experience delays before a transaction can be considered final. Indeed, most blockchains
consists of a list of blocks that can temporary fork. In such cases, fork-resolution mechanisms decide which
branch is eventually part of the list of blocks and which one is discarded, at the price of cutting off some trans-
actions that for some time have appeared on the blockchain.

The existence of transactions that appear and then disappear from a blockchain is the source of the double-
spending attack. In such attack, the adversary performs a payment through a transaction on the blockchain to
receive a service off-chain. If later on the transaction related to the payment disappears from the blockchain, due
to the presence of forks, then the attacker gets the money back and can spend it for something else. The crucial

136

D3.2 – Design of Extended Core Protocols

point of the double-spending attack is that, while the payment transaction disappears, the obtained service is not
cancelled since it is not linked to the payment transaction happening on-chain.

The double-spending problem seems to disappear when instead the service consists of another on-chain
transaction that is connected to the payment transaction. Indeed, in this case, if as consequence of a fork the
payment transaction disappears, then the service transaction disappears too. This chaining of transactions related
to the same process can be easily implemented through smart contracts.

Since transactions take time to be confirmed in a forking blockchain, the full execution of a smart contract
with multiple sequential transactions might take too long. It would thus be natural to speed up the execution of
smart contracts by rushing and playing messages immediately.

We notice that forks can help an adversary to mount more subtle attacks. For example, a player could answer
to some transaction A by sending another transaction B as soon as A appears on the blockchain. Obviously, in
case of forks, the transaction A could appear on the blockchain in different branches, and then multiple copies of
B would follow A. While at first sight, this seems to be fine, an adversary computing A can exploit its view of B
in a branch of a fork to play adaptively a message different than A in another branch, invalidating some security
property of the smart contract. Indeed, different transactions A1 and A2 could be played in the two branches of
a fork, and transactions B1 and B2 might be required and played as answers. The honest player could become
aware of the fork only after the fact. Indeed, because of a fork, transactions A1 and B1 would just disappear,
and transaction A2 might appear instead. The honest player, therefore, will have to compute B2 to continue the
execution of the smart contract. The fact that the adversary can play A2 adaptively after having seen B1 can
produce a deviation from the expected behaviour of the smart contract, therefore compromising the appealing
transparency and robustness guarantees of this technology. We want to highlights that this kind of attack will
break the input independence property because in this scenario the adversary can chose its input dependently
from the honest parties inputs.

We analyse a variant of the above attack focusing on the blockchain-aided MPC for parallel coin tossing.
Roughly, such protocols allow a set of players to agree on a uniformly random string, and have many important
applications. (For instance, they trivially imply a fair lottery.) After recalling the lottery protocol by Andrychow-
icz et al. [ADMM14], we show that this construction is not secure in the presence of rushing players. We then
propose a new protocol that achieves security in the presence of rushing players, leveraging the power of smart
contracts, but we lose the fairness guaranteed by the lottery protocol by [ADMM14].

In the Bitcoin ledger, each account is associated to a pair of keys (pk , sk), where pk is the verification key of
a signature scheme—representing the address of an account—while sk is the corresponding secret key used to
sign (the body of) the transactions. Each block on the ledger contains a list of transactions, and new blocks are
issued by an entity called miner. The blockchain is maintained via a consensus mechanism based on the proof
of work (PoW) [DN92]; users willing to add a transaction to the ledger forward it to all the miners, which will
try to include it in the next minted block.

Due to the PoW consensus mechanism, each miner could have a different view of the ledger. The common-
prefix property [GKL15] roughly states that all the miners have the same view of the blockchain up to a certain
number k of blocks (before the last block); this guarantees long-term consistency of the transactions in the ledger.
Each view of the blockchain is called a fork; after k blocks, with noticeable probability, one of these forks will
be part of the common prefix.

We say that a transaction is valid if it is computed correctly (i.e., the signature is valid, the coins have not
been spent already, and so on) and that it is confirmed if it appears in the common-prefix of all the miners (i.e.,
at least k blocks have passed). Each transaction Tx contains the following information:

• A set of input transactions Tx1,Tx2, · · · from which the coins needed for the actual transaction Tx are
taken;

• A set of input scripts containing the input for the output scripts of Tx1,Tx2, · · · ;

• An output script defining in which condition Tx can be claimed;

137

D3.2 – Design of Extended Core Protocols

• The number of coins taken from the redeemed transactions;

• A time lock t specifying when Tx becomes valid (i.e., a time-locked transaction won’t be accepted by the
miners before time t has passed).

A transaction is called standard if its output script contains only the signature of the account’s owner (i.e., it can
be redeemed by the owner by simply signing it).

The construction by [ADMM14] relies on a primitive called time-locked commitment. Let n denote the
number of parties. Each party Pj creates n − 1 Commitji 6=j transactions containing a commitment to its lottery

value. In particular, the output script of such a transaction ensures that it can be claimed either by Pj via an Openji
transaction exhibiting a valid opening for the commitment, or by another transaction that is signed by both Pj and
Pi. Before posting these transactions on the ledger, Pj creates a time-locked transaction PayDepositji redeeming
Commitji , sends it off-chain to each Pi 6=j , and finally posts all the Commitji transactions on the ledger. In case
Pj does not open the commitment before time t, then each recipient of a PayDepositji transaction can sign it and
post it on the ledger; since time t has passed, the miners will now accept the transaction as a valid transaction
redeeming Commitji .

In more detail, the protocol works as follows.

Deposit phase: Each player Pj computes a commitment yj = Hash(xj ||δj), where δj is some randomness,
sends off-chain the PayDepositji transactions (with time-lock t) to each Pi 6=j , and posts the Commitji
transactions on the ledger.

Betting phase: Pj bets one coin in the form of a standard transaction PutMoneyj (redeeming a previous trans-
action held by Pj , and with Pj’s signature as output script). All the players agree and sign off-chain a
Compute transaction taking as input all the (PutMoneyj)j∈[n] transactions, and then the last player that
receives the Compute transaction posts it on the ledger. In order to claim this transaction, a player Pw′
must exhibit the openings of the commitments of all participants: The script checks that the openings are
valid, computes the index of the winner w (as a function of the values x1, . . . , xn), and checks that w′ = w
(i.e., the only participant that can claim the Compute transaction is the winner of the lottery).

Compensation phase: After time t, in case some player Pj did not send all of its {Openji}i∈[n],i 6=j transactions,
all the other players Pi 6=j can post the PayDepositji transaction on the ledger, thus obtaining at least a
certain number of coins as compensation.

The idea behind our attack is that, in the presence of rushing players, the protocol’s messages can end-up on
unconfirmed blocks. By looking at different forks, an attacker can try to change an old unconfirmed transaction
by re-posting it, with the hope that it will end-up on a different fork and become part of the common prefix.

The construction described in the previous section relies on the assumption that the players are non-rushing.
In particular, each player Pj should wait to post its PutMoneyji transaction only after all the Commitji transactions
are confirmed on the ledger, in such a way that all players are aligned on the same fork (and so the miners have
the {Commitji}i∈[n],j 6=i transactions in their common prefix).

In the case of rushing players, when a fork occurs, an attacker can take advantage of openings of the other
parties played in a faster branch in order to bias the result of the lottery on a slower branch. If eventually the
slower branch remains permanently in the blockchain, then clearly the attack is successful.

For concreteness, let us focus on Blum’s coin tossing, in which the winner is defined to be w = x1 + . . . +
xn mod n+ 1. Consider the following scenario:

• The (rushing) players P1, . . . , Pn run a full instance of the lottery protocol; note that this requires at least
3 blocks.

• The attacker Pn hopes to see a fork containing all the {Commitij} transactions of the other n− 1 players.

138

D3.2 – Design of Extended Core Protocols

• Since the attacker Pn now knows the opening x1, . . . , xn−1 of the other participants, it can post a new set
of {Commit′

i
n}i∈[n],i 6=n transactions containing a commitment to a value x′n such that x1 + . . .+xn−1 +x′n

mod n+ 1 = n.

• In case the new set of transactions ends up on a different fork which is finally included in the common
prefix, Pn wins the lottery.

In the above scenario, the attacker can freely bias the result of the lottery. To understand the feasibility of this
attack, let’s consider the implementation of this protocol in Ethereum. The number that usually are taken to
consider a block final on the blockchain. Since the execution of full instance of the lottery protocol requires at
least 3 blocks, the attacker has 9 blocks to publish a different commitment on a different branch of the blockchain.

We now present a smart contract that can be implemented in Ethereum that allows to run a parallel coin-
tossing protocol with rushing players. The pseudocode of the smart contract proposed in this chapter is shown in
Fig. 8.3.

The main challenge is that the protocol must prevent that an adversary chooses adaptively in a branch of
a fork its contribution to the coin tossing after having seen the contributions of others in other branches. We
tackle this problem by requiring that honest players compute their contributions evaluating a verifiable unpre-
dictable function (VUF) [MRV99] on input the public keys of all players. Notice that if the adversary sees some
evaluations of the VUF in a branch, and changes its public key in another branch, then the VUF evaluations of
the honest players on this other branch are unpredictable, and thus the adversary will not manage to control the
final output. Moreover, changing the public key is the only possibility for the adversary because the VUF has a
uniqueness property, and thus, once the public key is selected, the adversary can play a single message that is
accepted as correct by the honest players.

Informally, the protocol works as follows:

• A contract is published on the blockchain with the unique identifier sid.

• Every player that wants to play in the protocol generates the public and private keys for the VUF as
(pk , sk)← $Gen(1λ), and shares pk with all the protocol participants publishing it in on the contract.

• For all i ∈ [n], using the VUF, Pi evaluates yi = Eval(sk i,Hash(pk1||...||pkn||sid)) and its proof φi, and
publishes (yi, φi) on the smart contract.

• The smart contract checks for all i ∈ [n] that yi is obtained using a VUF with input Hash(pk1||...||pkn||sid),
where pk i is the address of the i-th player. Then the smart contract defines the output as Hash(y1||...||yn).

Intuitively, the adversary can not bias the output of the protocol because, as long as the input of Hash is
unpredictable, the final output will be random, since we model Hash as a random oracle.

Moreover, unpredictability of the input to Hash comes from the unpredictability of the output of a VUF of at
least one honest player for any sequence of public keys, and from the uniqueness of the output of the adversary
once its public keys are established.

Our solution can be implemented on Ethereum. Ethereum transactions include two types of accounts:
externally-owned accounts (EOAs), controlled by the private keys of the users, and contract accounts (CAs),
controlled directly by their code [Woo19]. Both types of accounts have a balance in ETH (also denoted Ξ).
The blockchain tracks the state of every account in its blocks. The transactions posted by an EOA consist of a
destination address, a signature s , the amount of wei (subunits of Ξ), and an optional data field representing the
inputs of a contract (which we consider as messages to a contract).

Each time an EOA creates a transaction, it is replicated to all the miners of the blockchain. If such a trans-
action contains inputs to some contract, it triggers the specified contract via a function call: each miner, when
receiving a new transaction during the replication process, checks for the triggered contract on the blockchain,
and starts to run it using its current state state, and the inputs specified in the transaction. Contracts can send
messages (i.e., transactions) to the EOAs or other contracts, which means that when a miner runs the code of

139

D3.2 – Design of Extended Core Protocols

a contract with some prescribed input, the output contains messages (i.e., transactions) directed to some other
entity. We can model both EOAs transactions and messages from/to a contract as different types of transactions.
In particular, a block might contain the following elements.

Message transactions: Represented as a tuple Txmsg = (T , s, pk , ~x, data), where T is the set of transactions
from which Txmsg is redeeming,3 s is the signature of the owner, pk is the public key of the receiver (either
a contract or an EOA), ~x is the vector of inputs to the contracts (in case the receiver is a contract), and
data represents some extra data.

Contract transactions: Represented as a tuple: Txcnt = (T , s, Balance,Ψ), where Balance is the initial
balance of the contract, Ψ is the code of the contract, and T , s are the same as in message transactions.
Each time a new transaction triggers some contract, the miners check that it is valid (e.g., that the inputs
are correctly formed, and that the balance is enough). The program Ψ takes as input the current state of the
contract state and a vector ~x, and outputs a sequence of transactions (Tx1,Tx2, . . .) to possibly different
recipients and a new state state′; when a miner includes a message transaction Txi in a new block, it also
updates the current state of the contract.

Each contract has associated a sequence of states (state1, state2, · · ·), where statei is the i-th state of the
contract. Typically, the state includes the global variables of the contract plus all messages sent/received from/by
the contract itself. Note that, in case of forks, different miners can see diverging states for the same contract, i.e.,
state = (state1, . . . , statei, statei+1, · · ·) and state′ = (state1, . . . , statei, state′i+1, · · ·).

When interacting with a smart contract, a player sends message transactions without waiting the minimum
number of blocks that guarantee all the miners have a consistent view of the contract’s state. This, in particular,
means that if we describe the lottery protocol of [ADMM14] using a single contract, the attack previously defined
still works, since the protocol’s messages sent by the committer to the contract would appear in different blocks
of the blockchain, which makes the protocol insecure in the presence of rushing players.

We are now ready to describe our protocol for parallel coin tossing. Our construction follows the steps
described Fig. 8.2.

Our parallel coin tossing protocol has two limitations. The first one is related to the fact that the protocol
8.2 does not guarantee fairness with penalties. The second one is mainly a consequence of the first one since in
the absence of a penalty in case of misbehaviour an attacker has an advantage in changing its messages of the
protocol executed in another branch of the blockchain. Indeed, by changing its messages the adversary unfairly
increases the probability to obtain an output that it likes more.

To overcome the above two limitations we propose a branch-dependent execution of the protocol. In this
case, when the execution of the protocol is repeated in another branch, even when the very same messages are
played by honest players, the output of the protocol would change and be (computationally) independent of the
value obtainable in the original branch. Thus the adversary has no advantage in changing its messages when
playing in a different branches.

3The miners, in order to validate the transaction, must check that the signer is also the owner of the redeemed transactions, and that
those have a high enough balance.

140

D3.2 – Design of Extended Core Protocols

Parallel Coin Tossing protocol π

Running with hard-wired parameters q̄, t1, t2. Let (Gen,Eval, PROVE,Ver) be a VUF with range R ≡
{0, 1}`, and Hash : {0, 1}∗ → {0, 1}λ be a hash function. After the smart contract of Fig. 8.3 has been
created by one of the players, the protocol continues as follows:

• Any willing player deposits d ≥ q̄ coins and specifies a public key pk by triggering the deposit
function, where (pk , sk)← $Gen(1λ).

• After time t1, let n be the number of participants and denote by Pi the player that made the i-th deposit
(specifying public key pk i). Each player Pi, in an arbitrary order, executes the steps below:

– Compute yi = Eval(sk i, x), φi = PROVE(sk i, x, yi), where x = Hash(pk1|| . . . ||pkn||sid) and
the values (pk j)j 6=i and sid are retrieved from the state of the contract.

– If the flag redeemPhase contained in the state of the contract is set to true, trigger the claim
function with inputs (yi, φi).

• After time t2, upon receiving a compensation from the contract (meaning that some party aborted)
stop the execution. Else, retrieve y1, . . . , yn from the contract and output Hash(y1|| · · · ||yn).

Figure 8.2: Coin-tossing protocol.

141

D3.2 – Design of Extended Core Protocols

1 pragma s o l i d i t y ˆ 0 . 4 . 0 ;

2
3 c o n t r a c t P a r a l l e l C o i n T o s s i n g {
4 s t r u c t P l a y e r {
5 bool i s P l a y i n g ;

6 bool hasCla imed ;

7 s t r i n g pk ;

8 u i n t d ; //Player’s deposit

9 u i n t c ; //Player’s claim

10 }
11 address [] p l a y e r s A d d r ;

12 mapping (address => P l a y e r) p l a y e r s ;

13 u i n t s i d ;

14
15 //flags

16 bool c l a i m P h a s e = f a l s e ; //true if the claimPhase starts

17
18 //common input of the VUF

19 u i n t VUFmessage ;

20
21 f u n c t i o n beginCoinToss ing () {
22 s i d = . . . ; //generate a session id

23 }
24 f u n c t i o n d e p o s i t (s t r i n g pubKey) p u b l i c payable {
25 r e q u i r e (msg . sender . balance >= minDep && msg . va lue >= minDep && p l a y e r s [msg . sender] . d == 0 && now < t ime1) ;

26 p l a y e r s A d d r . push (msg . sender) ; //add the public key of the current sender

27 P l a y e r p = p l a y e r s [msg . sender] ;

28 p . i s P l a y i n g = t rue ;

29 p . pk = pubKey ;

30 p . d = msg . va lue ; //msg.value is the deposit value of the player

31 }
32 f u n c t i o n cla im (u i n t rand , u i n t p r o o f) p u b l i c {
33 r e q u i r e (c l a i m P h a s e && now < t ime2 && p l a y e r s [msg . sender] . i s P l a y i n g && ! p l a y e r s [msg . sender] . hasCla imed && VUFCheck (VUFmessage , rand ,

p roof , p l a y e r s [msg . sender] . pk)) ;

34 P l a y e r p = p l a y e r s [msg . sender] ;

35 p . c = rand ;

36 p . hasCla imed = t rue ;

37 msg . sender . t r a n s f e r (p . d) ;

38 }
39
40 //automatic check functions run after a certain time

41 f u n c t i o n checkDepos i t () p u b l i c {
42 r e q u i r e (! c l a i m P h a s e && now >= t ime1) ;

43 u i n t n = p l a y e r s A d d r . l e n g t h ;

44 VUFMessage = sha3 (p l a y e r s] p l a y e r s A d d r [0]] . pk | | . . . | | p l a y e r s [p l a y e r s A d d r [n−1]] . pk | | s i d) ;

45 c l a i m P h a s e = t rue ;

46 }
47 f u n c t i o n checkClaimed () p u b l i c { //if the second timestamp has passed and some player didn’t redeem, penalize the players

48 r e q u i r e (c l a i m P h a s e && now >= t ime2) ;

49 f o r (u i n t i = 0 ; i < p l a y e r s A d d r . l e n g t h ; i ++) {
50 address pAddr = p l a y e r s A d d r [i] ;

51 i f (p l a y e r s [pAddr] . c == 0)

52 p e n a l i z e (pAddr) ;

53 }
54 }
55
56 //local functions

57 f u n c t i o n p e n a l i z e (address p e n a l i z e d) p r i v a t e { //penalize dishonest players by sending the compensation

58 f o r (u i n t j = 0 ; j < p l a y e r s A d d r . l e n g t h ; i ++) {
59 address pAddr = p l a y e r s A d d r [i] ;

60 u i n t n = p l a y e r s A d d r . l e n g t h ;

61 i f (pAddr != p e n a l i z e d) pAddr . t r a n s f e r (minDep / n) ;

62 }
63 }
64 }

Figure 8.3: Pseudocode implementation of our smart contract for realizing parallel coin tossing. For simplicity,
we omit an explicit definition of the VRFCheck function and of the concatenation function in the computation of
VRFMessage.

142

Chapter 9

Verifiable MPC with Blockchain

9.1 Introduction

Properly embedding secure computation in its real-world context is a common challenge with secure multiparty
computation (MPC). This basic issue can be illustrated with Yao’s famous “Millionaires’ Problem”. Yao pro-
posed a protocol that allows two parties to decide which of them holds the largest input value (e.g., their fortunes).
The protocol only reveals which millionaire is the richest. However, the protocol also assumes that both parties
enter their inputs honestly. Nothing stops the parties from using false input values.

Typically, in an MPC setting, the parties that provide input are also part of the computation. However, one
can also imagine an outsourcing scenario where the input is external to the computation. In this case, we would
like to verify the correctness of the result even if all computation parties are corrupt. This chapter explains the
notion of verifiable multiparty computation that addresses this scenario explicitly.

Outsourcing computation is increasingly relevant in the blockchain context. For example, imagine a scenario
where players in an auction post bids to a smart contract that outsources the secure computation of the result to
a separate network of MPC parties. The MPC parties, who are external to the blockchain, download the private
inputs from the blockchain, compute the auction result and post it back to the chain. With verifiable MPC, this
computation result is accompanied with a cryptographic proof of correctness, such that blockchain users can
verify the validity of the outsourced computation. We will argue in this chapter that a blockchain and verifiable
MPC are a strong combination that can ensure verifiability of inputs and outputs as well as privacy of inputs and
computation (and outputs, if required by the use-case).

To motivate this with a concrete example: A complete solution to the millionaires problem would guarantee
that the input values accurately reflect the millionaires’ fortunes and the outcome of the comparison is verifiable.
Therefore, we upgrade the “Millionaires Problem” to the “Billionaires’ Problem”, where the parties running the
protocol should be able to verify that the inputs and outputs are valid. Validity of inputs may for instance be
checked against the information in a cryptographic commitment that is signed by the tax authority.

We would like to state the Billionaires’ Problem in an even more interesting setting. We do not only require
that the billionaires can decide among themselves who is richer, but also that any interested party should be able
to verify who is richer. Moreover, any such observer should also be convinced of the outcome of the ranking
without actively taking part in the secure computation.

Definition The World’s Billionaires’ Problem.
Given everybody’s committed tax return statements on a blockchain, produce a list of the top 400
billionaires world wide including a proof of correctness, without leaking any information of the
people who do not appear on the list.

The net-worth for the 400 richest people may be revealed, but that’s not necessary.1

1For a real-world motivation of the Billionaires’ problem we refer to the following article on CNBC.com:
’Forbes says Commerce Secretary Wilbur Ross lied about being a billionaire’ (https://www.cnbc.com/2017/11/07/
forbes-commerce-secretary-wilbur-ross-lied-about-being-a-billionaire.html).

143

https://www.cnbc.com/2017/11/07/forbes-commerce-secretary-wilbur-ross-lied-about-being-a-billionaire.html
https://www.cnbc.com/2017/11/07/forbes-commerce-secretary-wilbur-ross-lied-about-being-a-billionaire.html

D3.2 – Design of Extended Core Protocols

Solving the Billionaires’ problem requires the scheme to certify inputs and outputs of an MPC protocol. This
may require a setup stage, depending on the choice of building blocks. In our example, a blockchain is used
to handle necessary information for the proofs of correctness or “computation signatures”. These computation
signatures are constructed by the MPC parties as a zero-knowledge proof. A sketch of a solution to the World’s
Billionaires’ problem is presented in Section 9.4.2. We start with an explanation of the preliminaries.

The following sections cover the following topics:

• Section 9.2 explains the notions of outsourcing and privacy-preserving, publicly verifiable outsourcing;

• Section 9.3 presents recent results in verifiable multiparty computation;

• Section 9.4 introduces the interplay between blockchain and verifiable MPC and presents a solution sketch
to our Billionaires’ Problem;

• Section 9.5 finishes with a conclusion.

9.2 Preliminaries

This section aims to provide an accessible introduction to privacy-preserving and publicly verifiable computa-
tion. It then discusses MPC, verifiable computation with zero-knowledge (ZK) and blockchain in more detail.
These notions are key building blocks for a proposed verifiable MPC scheme based on a blockchain. MPC,
zero-knowledge and blockchain are explained in Sections 9.2.2, 9.2.3 and 9.2.4 respectively. We start with an
explanation of privacy-preserving and publicly verifiable outsourcing.

9.2.1 The Notion of Outsourcing

Privacy-preserving outsourcing to a single worker typically relies on expensive primitives, such as fully homo-
morphic encryption [GGP10, FGP14] and functional encryption [GKP+13].2 The practical alternative to these
primitives is privacy-preserving computation by multiple workers, i.e., MPC. MPC protocols can guarantee cor-
rectness up to all-but-one corrupt workers [DPSZ11]. This is satisfactory when an (honest) client participates as a
worker in the MPC protocol, but not when the client is an outsider to the protocol, i.e. in the case of outsourcing.

Publicly verifiable outsourcing to a single worker saw a breakthrough in efficiency with the publication of
the Pinocchio protocol [PHGR13], based on the work of [GGPR13, Gro10]. The achievement of “verifable
computation” is to allow a client to outsource a computation to a worker and cryptographically verify the result
with less effort than performing the computation itself. The notion of public verification refers to the property
that anyone, particularly someone that does not participate in the protocol, is able to verify correctness of the
computation. Privacy is not a property in these protocols, however.

Privacy-preserving and publicly verifiable outsourcing to multiple workers, i.e. where the computation is
private and efficiently verifiable by a client external to the MPC protocol, is an area of active research as well
[BDO14, SV15, SVdV16, Vee17]. These protocols guarantee correctness even if all workers are corrupt. (Note:
Privacy cannot be guaranteed when all parties are corrupt. This is inherent to MPC.)

The Trinocchio and Geppetri protocols are relevant recent work to achieve privacy-preserving, publicly ver-
ifiable outsourcing by integrating ZK proofs with MPC [SVdV16, Vee17]. These protocols rely on a bulletin
board for authenticated broadcast messages. In this chapter we formalize these protocols in case the bulletin
board is instantiated by a blockchain and use it to present a solution sketch to the Billionaires’ Problem.

Hence, the cryptographic building blocks underpinning our target scheme are:

• Secure multiparty computation;
2Please see [ABC+15] for an accessible overview of Fully Homomorphic Encryption, Functional Encryption and the state-of-the-art

per 2015.

144

D3.2 – Design of Extended Core Protocols

• Verifiable computation with zero-knowledge;

• Blockchain.

The following Sections (9.2.2 to 9.2.4) summarize the preliminaries for each bulding block, referring to earlier
PRIViLEDGE deliverables where relevant.

9.2.2 Secure Multiparty Computation

MPC enables multiple parties to correctly and privately evaluate a function of private inputs. Typical applications
of MPC include (electronic) voting, auctions, linear programming, linear regression and decision tree learning.
Typically two settings are distinguished in which correctness and privacy properties depend on the number of
malicious workers:

• Honest majority of workers (requiring ≥ 3 workers);

• Dishonest majority (requiring ≥ 2 workers).

In the case of an honest majority, MPC protocols can guarantee fairness and information theoretic security,
i.e. perfect privacy. (First feasibility results on information theoretic MPC are from [CCD88, BGW88].) The
fairness property formalizes the following: if one party receives the results of a computation, then all parties
receive that same result. Hence, fairness is a key attribute of correctness. Information theoretic security in this
context means that even a computationally unbounded adversary cannot learn anything (beyond what can be
deduced from the output) from participating in the protocol.

In traditional MPC protocols, the security analysis considers malicious participants in the protocol (i.e. work-
ers) and implicitly assumes that at least one participant is honest (i.e., the client). However, if we change our
perspective to a client that is external to the MPC computation (i.e., in the outsourcing scenario), we can introduce
two relevant scenarios:

• Clients or participants provide false inputs;

• All participants (workers) are corrupt.

As we illustrated with Yao’s Millionaires’ Problem [Yao82, Yao86] in Section 9.1, MPC protocols cannot
detect when the millionaires provide false inputs and cannot guarantee correctness and privacy in case that all
workers are corrupt. In subsequent sections, we present a scheme that ensures verified inputs (through crypto-
graphic commitments) and publicly verifiable correctness of outputs.

Our scheme builds on Shamir secret-sharing [Sha79] in the honest-majority setting (i.e., with three or more
parties). Canonical results in this multiparty setting are by [GMW87,BGW88,CCD88]. Throughout this chapter,
we denote a secret share by [a] for a finite field element a ∈ F. We refer to PRIViLEDGE deliverable D2.1
[Kri18], Chapter 5 “Secure Computation”, for a more elaborate treatment of MPC and subtopics.

9.2.3 Verifiable Computation with Zero-Knowledge

Verifiable Computation is a form of computation outsourcing that enables a client, or a party external to a compu-
tation, (the “verifier”) to verify computations performed by untrusted worker(s) (the “prover(s)”). When workers
participate in Verifiable Computation, they are required to provide a proof of correctness together with the result
of the outsourced computation. Furthermore, the “zero-knowledge” property enables scenarios where the worker
can include a private input to the verifiable computation and ensures that the client (or verifier) learns nothing
about the private information of the worker beyond the output of the computation. For example, it enables a
client to anonymously authenticate workers or aggregate sensitive data of multiple input parties.

Our verifiable MPC protocol takes the Pinocchio system [PHGR13] as a starting point. Pinocchio is widely
cited, as it is regarded one of the first practical setups for verifiable computation. However, we plan to adopt

145

D3.2 – Design of Extended Core Protocols

other constructions of zero-knowledge arguments of knowledge (e.g. Bulletproofs [BBB+18], Groth’s SNARKs
[Gro16]) as well. Pinocchio achieves efficient verifiable computation by combining a computational model called
“quadratic programs” [GGPR13] and “pairing-based non-interactive arguments” [Gro10] with own refinements
and engineering. We will elaborate on these concepts below.

At a high level of abstraction, the Pinocchio verifiable computation system works as follows:

• Client outsources the computation of a function F over a field F. F is represented by a circuit C of size
m, d multiplication gates and N input/output gates. For size m, m = N + d holds.

• Circuit C is represented as a “quadratic program” Q over F. The quadratic program Q is (completely)
represented by three sets of m+ 1 polynomials over F, {vk}, {wk}, {yk}, for k ∈ {0, ...,m}.

• A worker taking on the outsourced computation of F , evaluates circuit C, which yields the circuit wire
values denoted by vector c = (c1, ..., cm) ∈ Fm. Note that vector c is the witness in the zero-knowledge
proof.

• A trusted party generates the key material, which consists of a secret trapdoor and a public Evaluation Key
EKF and Verification Key VKF . The public EKF , VKF and proof π consist of elements in an (elliptic
curve) group that hides witness information in the exponent. The trapdoor contains a secret point s ∈ F.

• To prove correct evaluation of F , the worker constructs a polynomial p and its divisor h, where p is
dependent on vector c and polynomials of quadratic program Q as follows: p = v·w − y for polynomials
v, w, y defined as v =

∑
i ci· vi(x) (similar definitions for w and y).

• With p and h, worker can construct all necessary elements of proof (signature) π by using the public
evaluation key EKF ; π contains terms necessary to construct polynomial p evaluated in secret s.

• A cheating prover trying to construct an evaluation of p in secret point s without knowing c is unsuccessful
due to the Schwartz-Zippel Lemma.

• The client (or verifier) uses the public verification key VKF to efficiently validate proof π; efficiency comes
from the fact that the proof contains a small number of (elliptic curve) group elements and verification
requires a small number of (pairing) operations.

The central idea of verification is to prove satisfaction to all quadratic program equations. Prover demon-
strates that evaluations of the quadratic program polynomialsQ in a secret point s, “in the exponent”, correspond
to the verification key elements.

The Pinocchio protocol consists of three polynomial-time algorithms:

• Generate Function Keys(F ; 1λ)→ (EKF ; VKF)

– Trusted party creates public evaluation and verification keys for F ;

– F is represented by circuit of size m;

• Compute and Prove(EKF ;u)→ (y;πy);

– Worker evaluates circuit for F (u) to obtain y ← F (u) and wire values {ck}k∈1,...,m;

– With circuit wires, worker computes proof πy (bilinear group elements);

• Verify(VKF , u, y, πy)→ {0, 1}

– Verifier uses pairing operations to efficiently verify proof;

– Checks if πy contains encodings (’in the exponent’) of terms of polynomials v, w, y, evaluated in
secret point s, which construct p(s).

146

D3.2 – Design of Extended Core Protocols

In more detail, the Verify algorithm actually consists of five steps: the three steps “V ”, “W ” and “Y ” check
that the proof is a proof of knowledge of the witness (i.e. correct wire values for left input (V), right input (W)
and multiplication wires (Y)), “Z” checks that the same witness was used for steps V , W , Y , and step “H”
checks that p = h· t holds (for a specific “target” polynomial t.)

One important aspect of Pinocchio is that it requires a setup step where a trusted party generates a common
reference string (CRS), which consists of several random elements in the field F. The trusted party is required to
use these random elements from the CRS to generate the aforementioned public key material (EKF ; VKF). The
trusted party is then required to delete these random elements, because an adversary could generate fake proofs
if it could obtain these elements. (Note: The initial concept of using a “reference string” for non-interactive
zero-knowledge is from [BSMP91].)

We refer to [PHGR13] for the complete treatment of Pinocchio, and to PRIViLEDGE deliverable D2.1
[Kri18], chapter 6 “Zero-Knowledge”, for the broader topic of ZK.

9.2.4 Blockchain

Our verifiable MPC protocol could use a blockchain to implement the “authenticated broadcast channel function-
ality” of a bulletin board. We follow the formal definition of blockchain as a “public ledger” by [PSS17,GKL15].
In their definition, the public ledger serves as an immutable “bulletin board”, where anyone can post and read a
message. Garay et al. [GKL15] define two key properties for public ledgers:

• Liveness: If all honest players want to add a message, it should eventually appear on the ledger;

• Persistence: A message added to the public ledger cannot be removed.

Authentication to post to the public ledger happens via public key cryptography and verification of signatures.
Typically, when a new message is posted, all honest participants validate its signature. The details of message
or transaction verification in actual blockchains is explained further in Chapter 4 of PRIViLEDGE deliverable
D3.1 [KC18].

We also briefly introduce the concept of a smart contract. A smart contract is a (public) function with a public
state, hosted on a blockchain. The smart contract can be interacted with by sending a transaction to its contract
interface. The smart contract computation result can be retrieved by monitoring the smart contract’s public state.
We suggest the HAWK paper [KMS+15] for an elaborate treatment of smart contracts and specifically smart
contracts with privacy features.

We also refer to PRIViLEDGE deliverable D3.1 [KC18] and Chapters 6 and 7 in this document for an in-
depth treatment of general and specific blockchains. Furtermore, we refer to PRIViLEDGE deliverable D2.2
[SV18], chapter 6 “Bulletin Boards and BPK Model” for an elaborate treatment of bulletin boards.

9.3 Recent Related Work in Verifiable Multiparty Computation

Building on the preliminaries of verifiable computation from Section 9.2.3, we now provide an introduction of
verifiable computation in the MPC setting. Specifically, we introduce the Trinocchio protocol by Schoenmakers,
Veeningen and De Vreede [SVdV16] and its successor Geppetri [Vee17]. Both have valuable properties to
address the Billionaires’s problem.

9.3.1 Trinocchio: Verifiable Computation on Private Inputs

The main feature of the Trinocchio protocol is that it enables a client, or multiple clients, to outsource a com-
putation in a privacy-preserving way to multiple workers, while enabling fast verification of the computation.
Trinocchio also ensures input independence, which means that any input party cannot let its input depend on that
of another input party (e.g. by copying the input).

147

D3.2 – Design of Extended Core Protocols

Informally, the Trinocchio system expands on Pinocchio as follows (note: notation is consistent with the
Pinocchio protocol described in 9.2.3):

• Protocol allows multiple input parties, workers and clients (output parties);

• Protocol ensures privacy of inputs and outputs (I/O) by generalizing the single Pinocchio proof, π, to
multiple proof blocks πi for i ∈ 1, ..., N , where N equals the number of input and output parties (original
idea of blocks explained in the next paragraph);3

• πi: Includes proof terms restricted to a subset of wires, corresponding to the inputs of party i;

• Pinocchio’s KeyGen algorithm is adapted to MultiKeyGen:

– Evaluation key EK becomes the set {BEK i} and verification key VK becomes set {BVK i} that
correspond to proof block πi, each having their own random inputs;

– Keys {BEK i} and {BVK i} only include EK and VK terms for relevant wires, i.e. relevant to party
i;

• Input phase is expanded to include public broadcasting of cryptographic commitments of inputs, to ensure
input independence.

The concept of blocks from Trinocchio [SVdV16] originated from the Geppetto paper [CFH+14]. Geppetto
introduces a feature to enable more efficient compilation to quadratic programs, such that the prover only needs
to prove correctness of used portions of the circuit. In Trinocchio, keys only contain group elements for the
relevant subset of wires that correspond to the I/O parties associated with those keys.

The Trinocchio protocol consists of four polynomial-time algorithms:

• Generate Function Evaluation and Verification Keys

– Trusted party creates keys for the cryptographic commitments, which are “mixed commitments”4;
– Trusted party creates public Evaluation and Verification Keys;
– Trusted party throws away trapdoor information;

• Commit to and provide input

– Input parties post commitment to their input blocks (needed for input independence);
– Input parties open commitments for client(s) to verify, then provide secret-shared inputs to workers

(MPC based on Shamir secret sharing, multiplication protocol from Gennaro et al. [GRR98]);
– Workers check if shares correspond to the broadcast blocks;

• Compute and prove

– Workers compute function F , produce Pinocchio proof of correct computation;
– Calculation of polynomial h mostly local by using Fast Fourier Transforms;
– Computation over bilinear group elements all performed locally;
– Workers communicate shares of function output to the client(s);
– Workers then post the shares of the proof elements to the bulletin board (randomized for ZK);

• Verify

– Client(s) obtain their results and verify them w.r.t. information on the bulletin board.

For complete protocol details and proofs, we refer to Appendix B of [SVdV16].
3Please note that “blocks” in the proof of a Trinocchio protocol run are different from “blocks” in the consensus protocol of a

blockchain.
4In such a scheme, commitment keys can be generated in two ways: such that the scheme is perfectly binding or perfectly hiding.

Keys generated in both ways should be indistinguishable.

148

D3.2 – Design of Extended Core Protocols

9.3.2 Geppetri: Reusable Setup for Different Computations with Adaptive zk-SNARKs

Geppetri, the successor of Trinocchio, adds valuable properties to the previous protocol. First, Geppetri enables
efficient proofs that can refer to committed data. Second, Geppetri allows different verifiable computations on
that data while reusing the trusted setup to generate the CRS. This latter property is also referred to as “adaptive
zk-SNARK” [Lip14], i.e. the trusted CRS-generation setup is independent of the computation instance and
can be reused. (Note, however, that once the function F is given, another trusted step is required to generate
the function-dependent key material. While this step generates a trapdoor as well, it can only compromise the
security of the specific computation instance F .) We will further explain this setup below.5

To solve the Billionaires’ Problem, we assume the inputs to be cryptographic commitments of tax returns and
require efficient verifiable computations with those commitments. Furthermore, in the blockchain context with
persistent data, efficient reuse of that data and setup for different computations is highly beneficial. The trusted
setup needs to be done securely, so it is preferably done only once. By using “adaptive zk-SNARKs” Geppetri
achieves this. However, after generating the CRS, one more trapdoor-generating step is required to generate
key material for the specific function to be computed. With knowledge of the latter trapdoor, an attacker could
generate false proofs for that specific instance, but not for other computations on the committed data in general.

Geppetri requires a first setup step that produces a CRS and commitment keys. After this step, the CRS
and commitment keys are reused by clients to generate evaluation and verification keys per computation. In
summary, following [Lip14] and [Vee17]:

• Generate CRS and Commitment Keys: Outputs an extractable trapdoor commitment scheme family,
consisting of:

– a CRS and trapdoor,

– commitment keys and trapdoor, and

– a commitment for a given key.

• Generate Evaluation and Verification Keys: outputs

– evaluation keys for the specific statement (dependent on the function instance F),

– verification keys for the specific statement,

– a trapdoor given the aforementioned CRS and commitment keys.

Verification in the Geppetri protocol differs slightly from the Trinocchio protocol. Recall from Section 9.2.3
that in Trinocchio, verification consists of the following steps: steps V ,W , Y to check that the proof is a proof of
knowledge of the witness c, a step Z to check that the same witness was used for steps V , W , Y , and finally step
H to check that p = h· t holds. In Geppetri, where we have external commitments, commitments are checked
in the V step, now renamed to “(V,C) step”, and a new Z verification step ensures consistency between the
commitment and the witnesses used across wires.

In the next section, we present our high-level scheme to conduct Verifiable MPC with blockchain and lay out
a solution sketch to the Billionaires’ Problem.

9.4 Verifiable MPC with Blockchain

We have introduced the necessary building blocks to construct a Verifiable MPC protocol that interacts with a
blockchain as bulletin board. We illustrate this with the World’s Billionaires’ Problem. The scheme involves

5Recently, other improvements on the Pinocchio protocol have been proposed as well: [FFG+16] makes Pinocchio adaptive (as
explained above) but not zero-knowledge, and Geppetto [CFH+14] (note: not “Geppetri”) significantly reduces the computation cost for
proofs by reusing intermediate computation state. However, the computations need to be known before committing, which formally is
not “adaptive”.

149

D3.2 – Design of Extended Core Protocols

multiple input parties (tax-payers with tax return statements as inputs), multiple workers (MPC parties) and a
single, public result (a list of the 400 wealthiest individuals). If needed, this can be extended to multiple private
results for different result parties or to multiple computations on the same committed data.

After the setup phase, our scheme follows the three steps summarized below and illustrated in Figure 9.1.
(For detailed Trinocchio steps, see Section 9.3.1.)

• Step 1 in which input parties:

– Communicate secret shares of their inputs to workers;
– Post cryptographic commitments of their inputs to the blockchain.

• Step 2 in which workers:

– Compute secret shares of the output and the proof using MPC;
– Recombine shares of output and proof and then post these to the blockchain.

• Step 3 in which a smart contract:

– Receives and stores the outputs and the proofs (and potentially also verifies the proof, as explained
in the next Section 9.4.1.)

Figure 9.1: Trinocchio steps

A client that wants to verify the correctness of the output, can now download the output and proof and then
run the verification step. This verification step only requires public key material.

9.4.1 Optional: Use Smart Contract to Verify Correctness Proof

To verify the proof of correct computation on-chain and, for example, set a flag in the public state to “valid”/“invalid”,
we require a blockchain that supports efficient verification of zero-knowledge proofs. This requires extending
step 3 of the scheme in Figure 9.1.6

6E.g., Ethereum introduces special opcodes for zk-SNARK proof verification with Ethereum Improvement Proposal (EIP) 196 and
EIP 197

150

D3.2 – Design of Extended Core Protocols

Should we want to verify the correctness of the MPC computation on-chain, we could deploy a smart contract
that can receive the commitments to the inputs from step 1 and the (recombined) shares of the output and the
proof from step 2. It then, in step 3, verifies the correctness of the computation step, i.e., it performs the Verify
algorithm from either Trinocchio or Gepepetri. After verification of the proof, the smart contract could set a
flag referring to the computation to “valid”, signaling to external parties that the computation was performed
correctly.

9.4.2 The Billionaires’ Problem: Solution Sketch

In April 2019, the world’s population was estimated at 7.7 billion. Hence, to solve the Billionaires’ Problem the
MPC parties need to securely select the largest k = 400 elements out of set of size n = 7.7 ∗ 109 and produce a
proof of correct computation.

Solving the Billionaires’ Problem, i.e. privacy of inputs and computation, verifiable inputs and outputs for
k = 400 and n = 7.7 ∗ 109, is not a trivial task and we invite readers to solve this challenge and share their
solutions. Specifically, we suggest interested readers to review the “BOREALIS” blockchain-based scheme
to compute the kth-ranked integer among sealed integers distributed among n parties [BK19]. They purposely
avoid generic MPC techniques to design an efficient solution with at most four rounds of interaction. They relax a
privacy constraint, as input parties learn the rank of their input. Computing pairwise comparisons in BOREALIS
is based on the comparison protocol from Damgard et al. [DGK09] based on additively homomorphic encryption.
Zero-knowledge proofs are based on Groth and Sahai [GS08].

As our solution is still a work-in-progress, we can only present the main elements of our scheme. First, we
outline the three main (top-level) steps and then present the most important (sub-)protocols.

Scheme Steps (Top-level) To ensure verifiable inputs for the computation, citizens post cryptographic commit-
ments of their tax return, signed by the tax authority, to our smart contract. As privacy should be respected for
all outside the top 400, the commitments should not reveal information of individuals outside the top 400. The
verifiable output of our protocol is a list of the top 400 wealthiest people in the world. For the individuals in our
top 400, their membership to the “top 400”-set is published together with their wealth.

We recall Figure 9.1, which presents the three top-level scheme steps:

• Input parties, or citizens, send secret shares of their annual tax returns to the workers and post crypto-
graphic commitments of their inputs to the blockchain.

• Workers compute secret shares of the output and the proof of correctness in the MPC setting. After suc-
cessful computation of the secret shares of the output (our top 400 set) and the proof, workers recombine
shares of output and proof and post it to the smart contract on the blockchain. How this top 400 set is
computed securely is outlined below.

• Our client, which can be the general public, can now ask the smart contract to verify the proof given the
commitments of the inputs, the output and the proof elements. The smart contract publicly outputs True
or False , depending on whether the proof verifies.

9.4.3 Main Protocols to Compute the Top 400: Verifiable Secure Filtering and Sorting

In general, computation of the k largest items in a set of n elements corresponds to implementing a partial sort-
ing algorithm or partition-based selection. A partial sorting algorithm is a relaxed variant of a general sorting
algorithm, returning only a sorted list of the k largest items. A partition-based selection algorithm relaxes partial
sorting and selects the kth largest elements, without requiring that these k elements are ordered. Linear perfor-
mance can be achieved by a partition-based selection algorithm for which quickselect is common. Quickselect
reduces average complexity to O(n), while worst case is O(n2).

To construct a (somewhat) practical approach to compute the top 400 set, including a cryptographic proof of
correctness, we strive to limit the number of communication rounds. To this end, we exploit particular properties

151

D3.2 – Design of Extended Core Protocols

of our problem by first securely reducing our list of n top 400 candidates to a list of size at most n2 = 4000 by
applying a verifiable secure filter.7 Then, we apply a verifiable secure sorting algorithm. Thus, assuming our
workers hold secret shares of all inputs, our approach to compute the top 400 with verifiable MPC is as follows:

• Apply a verifiable secure filter to our full list, reducing our list from n = 7.7 ∗ 109 to at most n2 = 4000
elements.

• Apply a verifiable secure quicksort on the list of n2 = 4000 elements.

To implement the verifiable secure n-to-n2 filter, we proceed as follows:

• Represent the input list as a column vector L of length n, where each element Li contains a secret shared
input;

• Calculate a n× n2 “mapping” matrix M where each element Mi,j equals [1] (a sharing of 1) if item Li is
the jth occurrence of a billionaire in L and [0] otherwise (it maps a billionaire in L to our smaller list);

• Securely matrix multiply F ← L×M , such that the resulting length-n2 row vector F contains the secret
shared inputs for all billionaires.

The main two building blocks to construct the matrix M are a verifiable secure “if-else” sub-protocol,
[result] ← [c] ∗ ([a] − [b]) + [b], (i.e. evaluate to [a] if [c] == [1], else if [c] == [0] evaluate to [b]) and
an efficient sub-protocol to create a (column) unit-vector of length n that contains a [1] on the jth position
if the loop passes over the jth billionaire in list L (note: our matrix M is the concatenation of these column
unit-vectors).

For our verifiable secure sorting algorithm on the filtered input list F , we could pick the well-known quicksort
algorithm by Hoare [Hoa62] as starting point. The two main sub-protocols to implement a verifiable secure
version of quicksort are a verifiable secure partition protocol and a verifiable secure comparison protocol. The
verifiable secure partition protocol is similar to our verifiable secure filter with the main difference that the input
parameter is a pivot element instead of a threshold value that is independent of the elements in the set.

9.4.4 Verifiable Secure Comparison

The main bottleneck of a verifiable secure quicksort protocol is a verifiable secure comparison protocol. To
reduce round complexity and computation time, we suggest the following three-step approach to compute a
secret bit [c]← sign bit([a]− [b]), equivalent to the boolean [a] < [b] (i.e., the sign bit equals 1 if a < b):

• MPC parties perform secure bit-decomposition [c]B = {[c`−1], ..., [c0]} of [c] = [a] − [b], where ` corre-
sponds to the bitlength of c, c ∈ {−2`−1, ..., 2`−1 − 1} and two’s complement representation;

• MPC parties now select the secure most-significant bit [c`−1], which encodes whether [a] < [b];

• MPC parties proof in zero-knowledge that [c]B is a bit-decomposition of [c]:

– The equality [c] = −2`−1[c`−1] +
∑`−2

i=0 [ci]2
i;

– All [ci] are bits, i.e., ∀i[ci](1− [ci]) = 0.

Secure bit-decomposition based on the result by Schoenmakers and Tuyls [ST06] requires log2 `+ 2 rounds.
This would correspond to a 8 + 2 round protocol in our setting with a ±256-bit prime modulus used in the
Pinocchio/Trinocchio protocols. As an alternative, one could use the constant round protocol by Reistadt and
Toft [RT09] requiring 12 rounds.

To prove in zero-knowledge that [c] =
∑`−1

i=0 [ci]2
i, the MPC parties perform verifiable secure computations

and equality tests for
∑`−1

i=0 [ci]2
i = [c] and ∀i[ci](1− [ci]) = 0 using the Trinocchio (or Geppetri) protocol. As

for the equality tests, we run the two-round protocol by Franklin and Haber [FH96] in the verifiable MPC setting.
7In 2019, Forbes reported that there are 2153 billionaires in the world by their latest count. Therefore, we are comfortable to assume

that a list of 4000 elements is sufficient to capture all billionaires. See https://www.forbes.com/billionaires/.

152

https://www.forbes.com/billionaires/

D3.2 – Design of Extended Core Protocols

9.4.5 The Billionaires’ Problem: Next steps and Implementation Framework

The above sketch presents the most important components of a Verifiable MPC scheme to solve the Billionaires’
Problem. Next steps are to extend the MPC toolkit, MPyC [Sch18], to support Verifiable MPC and implement
the protocols presented in this chapter.

MPyC is a Python framework for Shamir secret-sharing-based MPC in the honest-majority setting. MPyC
supports computations on secret-shared values and handles the message exchange between parties asynchronously.
MPyC provides secure number types and secure operations that are made available through Python’s mechanism
for operator overloading. MPyC can be viewed as a successor to the VIFF (Virtual Ideal Functionality Frame-
work) MPC library [Gei10].8

9.5 Conclusion

This chapter explained the value of Verifiable MPC in the blockchain context. We showed how Verifiable MPC
with blockchain can enable use cases that require privacy of inputs and verifiability of inputs and outputs. We
outlined a scheme to solve the World’s Billionaires’ Problem, a generalization of Yao’s Millionaires’ Problem
that makes the entire computation verifiable. Our scheme can be extended to general privacy-preserving and
publicly verifiable outsourcing and demonstrates the early stages of a prototype. This prototype is a stepping
stone to support PRIViLEDGE use-case “UC2: Medical Insurance” and we hope it is beneficial to other (non-
PRIViLEDGE) use cases as well.

8MPyC currently provides the following functionalities:

• Information-theoretic and pseudorandom secret sharing;

• Finite-field arithmetic;

• Secure types for secret-sharing, specifically: SecField , SecInt , SecFxp;

• Secure random module with functions based on Python standard library counterpart with secure type as input, and helpers:
random unit vector, random permutation and random derangement;

• Secure statistics module with functions based on Python standard library counterpart including mean, median, mode, variance,
and stdev.

153

Chapter 10

Hash Based Server Assisted Signatures

10.1 Background

All digital signature schemes in wide use today (RSA, DSA, ECDSA) are known to be vulnerable to quantum
attacks by Shor’s algorithm. While the best current experimental results are still toy-sized, it takes a long time for
new cryptographic schemes to be accepted and deployed, so it is of considerable interest to look for post-quantum
secure alternatives already now. Error-correcting codes, discrete lattices, and multi-variate polynomials have
been used as foundations for proposed replacement schemes. However, these are relatively complex structures
and new constructions in cryptography, so require significant additional scrutiny before gaining trust.

Hash functions, on the other hand, have been studied for decades and are widely believed to be resilient to
quantum attacks. The best known quantum results against hash functions are using Grover’s algorithm [Gro96] to
find a pre-image of a given k-bit value in 2k/2 queries instead of the 2k queries needed by a classical attacker, and
Brassard et al’s modification [BHT98] to find a collision in 2k/3 instead of 2k/2 queries. To counter these attacks,
it would be sufficient to deploy hash functions with correspondingly longer outputs when moving from pre-
quantum to post-quantum setting. Hash function based signature schemes have indeed been studied extensively,
starting with Lamport’s early proposal in [DH76] and up to the current state of the art in XMSS [BDH11,HRB13,
HRS16] and SPHINCS [BHH+15].

In [BLT17], we combined hash function based message authentication codes and hash-then-publish time-
stamping to obtain a server assisted signature scheme. An authentication code enables the recipient of a message
to verify that it was indeed sent by the claimed sender (or, more accurately, by someone who knows the sender’s
key) and has not been modified in transit. However, message authentication codes lack the non-repudiation
property: the recipient can’t prove the authenticity of the message to a third party. This is due to the symmetric
nature of the codes: the recipient shares the secret key with the sender and thus could have fabricated both the
message and the accompanying code.

The main idea of the BLT scheme is to use time-stamping to break the symmetry. The signer pre-generates a
sequence of one-time keys zi as unpredictable (random or pseudo-random) values, binds each key to its intended
usage time ti by computing a hash commitment xi = h(ti, zi), aggregates the commitments into a hash tree, and
publishes the root hash of the tree as the public key (but keeps the signing keys zi secret). To sign message M
at time T = ti, the signer authenticates the message with the corresponding key zi by time-stamping the pair
(M, zi). The signature is the tuple (ti, zi, ci, aT), where ci is the hash chain proof linking the pair (ti, zi) to the
signer’s public key and aT is the time-stamp proving the message-key pair (M, zi) was authenticated at time
T = ti. Note that it is safe for the signer to release the key zi as part of the signature, as its intended usage time
has passed and thus it can no longer be used to create more valid signatures. It is the time-stamping step that
creates the crucial asymmetry: before ti, only the signer knew the key zi; after ti the key is public, but any new
pairs (M ′, zi) could only be stamped with times T ′ > ti.

154

D3.2 – Design of Extended Core Protocols

10.2 Blockchain Backed Key State Management

The signing keys in the original BLT scheme are really not one-time, but rather time-bound: every key can be
used for signing only at a specific point of time. This incurs quite a large overhead as keys must be pre-generated
even for time periods when no signatures are created. In particular, key generation on smart-cards would be
prohibitively slow in real-world parameters.

To avoid the inherent inefficiency of pre-generating keys for every possible time slot, in [BLT18] we proposed
a model where each key could be just just once, but at the time of the signer’s choosing.

A naive approach would be to have the signer time-stamp each signature, just as in the basic BLT scheme: in
case of a dispute, the signature with the earlier time-stamp wins and the later one is considered a forgery. This
obviously makes verification very difficult, but more importantly gives the signer a way to deny any signature:
before signing a document dwith a key z, the signer can use the same key to privately sign some dummy value x;
when later demanded to honor the signature on document d, the signer can show the signature on x and declare
the signature on d a forgery.

To prevent this, we assign every signer to a designated server which allows each key to be used only once.
The easiest way to track the one-time keys is to require them to be used in order and keep an index of the last
used (or next available) key for each signer. To reduce the need to trust the server (which, being in service of
the signer, might be persuaded to collude), we also propose a hash tree based authenticated data structure that
allows a consortium of notaries to keep just one hash commitment per monitored server and use that to verify the
validity of each key state transition. The update of the commitment is allowed only if sufficient majority of the
notaries approves it as valid.

Furthermore, the updates can be batched in such a way that only the final state of the commitment after a
batch of updates needs to be published and every signature issued within the batch can be linked to the final
commitment. Given all of the above, a distributed ledger is perfect for publishing these batch commitments to
use them as trust anchors for signature verification. The batch commitments, aggregating key transitions across
all the signers supported by a server, do not leak any information about the activity of any individual signer,
except possibly the fact that nothing was signed in case the commitment does not change over some period of
time (the latter can easily be mitigated by having the server update a dummy counter in each round when there
are no actual signing requests to be processed).

10.3 Forward-Resistant Tag Systems

In [BFL+19a] and [BFL+19b], we used the observation that the time-stamp component of a BLT signature,
being back-dating resistant, already prevents re-binding of the signing key to an earlier time, so it is sufficient for
the remaining signature components to only prevent re-binding to a later time. This gave rise to the new notion
of forward-resistant tags. We gave formal definition of such tags, which could in some ways be seen as half-
signatures, and proved that combining a forward-resistant tag system with back-dating resistant time-stamping
indeed yields a provably secure signature scheme.

Binding each key to a fixed time, like it was done in the original BLT scheme from [BLT17], satisfies the
requirements of a forward-resistant tag system, but is overly restrictive. In [BFL+19a] and [BFL+19b], we take
advantage of the relaxed requirements to define several other, more flexible tag systems and show that they induce
signature schemes more efficent than the one from [BLT17] and with lower trust requirements on the server than
the one from [BLT18].

A limitation of the results of [BFL+19a] and [BFL+19b] is an overly simplistic model of the time-stamping
service, which is assumed to be a plain-text log of all time-stamped datums. In all practical systems, only hash
values are sent to the time-stamping service, and in most hash-then-publish systems (see [BKL13], for example),
the client requests are further aggregated before the publishing step takes place.

In [BFLTa], we undertake a systematic study of different models of hash-then-publish time-stamping, to es-
tablish the exact requirements placed by each of them on the properties of the tag system on one hand, and on

155

D3.2 – Design of Extended Core Protocols

the hash functions on the other hand, for the resulting signature scheme to remain provably secure. In [BFLTb]
we report on the formalization and machine-checking of several of these results using the EasyCrypt frame-
work [BDG+13].

156

Chapter 11

Conclusion

This document presented recent advances by PRIViLEDGE partners in core protocol design for distributed
legders. All Chapters focused on contemporary DLT challenges: privacy, trust minimization, scalability and
security - to name the most important ones.

Common research themes in this document are public verifiability, efficiency and security properties of zero
knowledge protocols, consensus protocol design and formal security proofs of these protocols (typically in the
UC model). We believe this aligns well with the research focus of the wider privacy-enhancing cryptography
and DLT communities, and is therefore a valuable contribution to these communities.

The next steps for WP3 are to revise and finalize the core protocols and test them against the selected use
cases. The next and final public deliverable for WP3 is Deliverable D3.3 “Revision of Extended Core Protocols”
by month 36 of the project, i.e., end-of-year 2020.

157

Bibliography

[AB19] Shahla Atapoor and Karim Baghery. Simulation extractability in Groth’s zk-SNARK. In Data Pri-
vacy Management, Cryptocurrencies and Blockchain Technology - ESORICS 2019 International
Workshops, DPM 2019 and CBT 2019, Luxembourg, September 26-27, 2019, Proceedings, pages
336–354, 2019.

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo
De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan
Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro
Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed, and Jason Yellick. Hyper-
ledger Fabric: A distributed operating system for permissioned blockchains. In Proc. 13th Euro-
pean Conference on Computer Systems (EuroSys), pages 30:1–30:15, April 2018.

[ABC+15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela Jäschke, Chris-
tian A. Reuter, and Martin Strand. A guide to fully homomorphic encryption. IACR Cryptology
ePrint Archive, 2015:1192, 2015.

[ABL+19a] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and Michal Zajac. DL-
extractable UC-commitment schemes. In Applied Cryptography and Network Security - 17th
International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings, pages
385–405, 2019.

[ABL+19b] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and Michal Zajac. UC-secure
CRS generation for snarks. In Progress in Cryptology - AFRICACRYPT 2019 - 11th International
Conference on Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings, pages 99–117,
2019.

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant
SNARK. In Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part III, pages 3–33, 2017.

[ACKM06] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk Paxos: Optimal
resilience with Byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
443–458. IEEE, 2014.

[AKM+15] Frederik Armknecht, Ghassan O. Karame, Avikarsha Mandal, Franck Youssef, and Erik Zenner.
Ripple: Overview and outlook. In Mauro Conti, Matthias Schunter, and Ioannis G. Askoxylakis,
editors, Proc. Trust and Trustworthy Computing (TRUST), volume 9229 of Lecture Notes in Com-
puter Science, pages 163–180. Springer, 2015.

158

D3.2 – Design of Extended Core Protocols

[Bag19a] Karim Baghery. On the efficiency of privacy-preserving smart contract systems. In Progress in
Cryptology - AFRICACRYPT 2019 - 11th International Conference on Cryptology in Africa, Rabat,
Morocco, July 9-11, 2019, Proceedings, pages 118–136, 2019.

[Bag19b] Karim Baghery. Subversion-resistant simulation (knowledge) sound NIZKs. Cryptology ePrint
Archive, Report 2019/1162, 2019. http://eprint.iacr.org/2019/1162.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Sympo-
sium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 315–334. IEEE Computer Society, 2018.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-
key encryption. In Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Gold
Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer
Science, pages 566–582. Springer, 2001.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptology ePrint Archive, 2018:46, 2018.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In Shafi Goldwasser,
editor, Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10,
2012, pages 326–349. ACM, 2012.

[BCD+14] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew
Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain inno-
vations with pegged sidechains. 2014. http://www.opensciencereview.com/papers/123/
enablingblockchain-innovations-with-pegged-sidechains.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–
474. IEEE Computer Society, 2014.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 287–304. IEEE
Computer Society, 2015.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols
with relaxed set-up assumptions. In 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 186–195. IEEE Computer Society,
2004.

[BCTV13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
arguments for a von neumann architecture. Cryptology ePrint Archive, Report 2013/879, 2013.
http://eprint.iacr.org/2013/879.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and
Pierre-Yves Strub. EasyCrypt: A tutorial. In Foundations of Security Analysis and Design VII,
volume 8604 of LNCS, pages 146–166. Springer, 2013.

159

http://eprint.iacr.org/2019/1162
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://eprint.iacr.org/2013/879

D3.2 – Design of Extended Core Protocols

[BDH11] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS—A practical forward secure
signature scheme based on minimal security assumptions. In PQCrypto 2011, Proceedings, volume
7071 of LNCS, pages 117–129. Springer, 2011.

[BDO14] Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable secure multi-party compu-
tation. Cryptology ePrint Archive, Report 2014/075, 2014. https://eprint.iacr.org/2014/075.

[BFL+19a] Ahto Buldas, Denis Firsov, Risto Laanoja, Henri Lakk, and Ahto Truu. A new approach to con-
structing digital signature schemes (extended paper). Cryptology ePrint Archive, Report 2019/673,
2019. https://eprint.iacr.org/2019/673.

[BFL+19b] Ahto Buldas, Denis Firsov, Risto Laanoja, Henri Lakk, and Ahto Truu. A new approach to con-
structing digital signature schemes (short paper). In IWSEC 2019, Proceedings, volume 11689 of
LNCS, pages 363–373. Springer, 2019.

[BFLTa] Ahto Buldas, Denis Firsov, Risto Laanoja, and Ahto Truu. On tag systems and time-stamping.
Unpublished manuscript.

[BFLTb] Ahto Buldas, Denis Firsov, Risto Laanoja, and Ahto Truu. Verified security of BLT signature
scheme. To appear at ACM SIGPLAN CPP 2020.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an untrusted CRS: security
in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II,
volume 10032 of Lecture Notes in Computer Science, pages 777–804, 2016.

[BGG17] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the
public parameters of the pinocchio zk-snark. IACR Cryptology ePrint Archive, 2017:602, 2017.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros Genesis: Composable proof-of-stake blockchains with dynamic availability. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 913–930, 2018.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark param-
eters in the random beacon model. IACR Cryptology ePrint Archive, 2017:1050, 2017.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th Symposium on Theory of Computing (STOC
’88), pages 1–10, New York, 1988. ACM.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza
Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS:
Practical stateless hash-based signatures. In EUROCRYPT 2015, Proceedings, Part I, volume 9056
of LNCS, pages 368–397. Springer, 2015.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS’13, Berlin, Germany, November 4-8, 2013, pages 967–980. ACM, 2013.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free func-
tions. In LATIN’98, Proceedings, volume 1380 of LNCS, pages 163–169. Springer, 1998.

160

https://eprint.iacr.org/2014/075
https://eprint.iacr.org/2019/673

D3.2 – Design of Extended Core Protocols

[BK19] Erik-Oliver Blass and Florian Kerschbaum. Borealis: Building block for sealed bid auctions on
blockchains. Cryptology ePrint Archive, Report 2019/276, 2019. https://eprint.iacr.org/2019/276.

[BKL13] Ahto Buldas, Andres Kroonmaa, and Risto Laanoja. Keyless signatures’ infrastructure: How to
build global distributed hash-trees. In NordSec 2013, Proceedings, volume 8208 of LNCS, pages
313–320. Springer, 2013.

[BLT17] Ahto Buldas, Risto Laanoja, and Ahto Truu. A server-assisted hash-based signature scheme. In
NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17. Springer, 2017.

[BLT18] Ahto Buldas, Risto Laanoja, and Ahto Truu. A blockchain-assisted hash-based signature scheme.
In NordSec 2018, Proceedings, volume 11252 of LNCS, pages 138–153. Springer, 2018.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction
ledger: A composable treatment. In CRYPTO (1), volume 10401 of Lecture Notes in Computer
Science, pages 324–356. Springer, 2017.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In Yvo Desmedt, editor, Public Key Cryptography - PKC
2003, 6th International Workshop on Theory and Practice in Public Key Cryptography, Miami, FL,
USA, January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in Computer Science, pages
31–46. Springer, 2003.

[BPS16] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. IACR
Cryptology ePrint Archive, 2016:919, 2016.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing ef-
ficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, CCS ’93, Proceedings of the 1st ACM Conference on Computer and Com-
munications Security, Fairfax, Virginia, USA, November 3-5, 1993., pages 62–73. ACM, 1993.

[Bra87] Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75:130–143, 1987.

[BSBHR17] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Manuscript.(2017). Slides at https://people. eecs.
berkeley. edu/˜ alexch/docs/pcpip bensasson. pdf, 2017.

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. IACR Cryptology
ePrint Archive, 2014:349, 2014.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[Buc16] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
2016.

[But14] Vitalik Buterin. A next-generation smart contract and decentralized application platform. white
paper, 2014.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without ran-
dom oracles). In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Pro-
ceedings, volume 4117 of Lecture Notes in Computer Science, pages 290–307. Springer, 2006.

161

https://eprint.iacr.org/2019/276

D3.2 – Design of Extended Core Protocols

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 136–145. IEEE Computer Society, 2001.

[CBPS10] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replication: Theory and
Practice, volume 5959 of Lecture Notes in Computer Science. Springer, 2010.

[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols. In Proc.
20th Symposium on Theory of Computing (STOC ’88), pages 11–19, New York, 1988. ACM.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security
with global setup. In Salil P. Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, volume
4392 of Lecture Notes in Computer Science, pages 61–85. Springer, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in
Computer Science, pages 19–40. Springer, 2001.

[CFH+14] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. Cryptol-
ogy ePrint Archive, Report 2014/976, 2014. https://eprint.iacr.org/2014/976.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (prelim-
inary version). In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium
on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 209–218. ACM, 1998.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luı́s Rodrigues. Introduction to Reliable and Secure
Distributed Programming (Second Edition). Springer, 2011.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In
Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceed-
ings, volume 2656 of Lecture Notes in Computer Science, pages 255–271. Springer, 2003.

[CL02] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4):398–461, November 2002.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork, editor,
Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in
Computer Science, pages 78–96. Springer, 2006.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In John H. Reif, editor, Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages
494–503. ACM, 2002.

[CM18] Brad Chase and Ethan MacBrough. Analysis of the XRP ledger consensus protocol. e-print,
arXiv:1802.07242 [cs.DC], 2018.

[Com18] Cardano Community. Cardano settlement layer documentation.
https://cardanodocs.com/technical/, October 18 2018.

162

https://eprint.iacr.org/2014/976

D3.2 – Design of Extended Core Protocols

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect
reference string. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 249–259. IEEE Computer
Society, 2007.

[CS14a] Chris Culnane and Steve Schneider. A peered bulletin board for robust use in verifiable voting
systems. CoRR, abs/1401.4151, 2014.

[CS14b] Chris Culnane and Steve A. Schneider. A peered bulletin board for robust use in verifiable voting
systems. In IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria,
19-22 July, 2014, pages 169–183, 2014.

[CV17] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild. In Andréa W.
Richa, editor, Proc. 31st Intl. Symposium on Distributed Computing (DISC 2017), volume 91 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:16, 2017.

[Dam] Ivan Damgård. Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks.
pages 445–456.

[DDFN07] Ivan Damgård, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols with
asymmetric trust. In Kaoru Kurosawa, editor, Advances in Cryptology: ASIACRYPT 2007, volume
4833 of Lecture Notes in Computer Science. Springer, 2007.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs with
applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Pro-
ceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 532–550. Springer,
2014.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable commitment schemes.
In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 426–437. ACM,
2003.

[DGHM13] Grégory Demay, Peter Gazi, Martin Hirt, and Ueli Maurer. Resource-restricted indifferentiability.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in
Computer Science, pages 664–683. Springer, 2013.

[DGK09] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. A correction to ’efficient and secure com-
parison for on-line auctions’. IJACT, 1(4):323–324, 2009.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of Lecture Notes in Computer Science, pages 66–98. Springer, 2018.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740 of
Lecture Notes in Computer Science, pages 139–147. Springer, 1992.

163

D3.2 – Design of Extended Core Protocols

[DPSZ11] I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. Cryptology ePrint Archive, Report 2011/535, 2011. https://eprint.iacr.org/
2011/535.

[DPW+16] Johnny Dilley, Andrew Poelstra, Jonathan Wilkins, Marta Piekarska, Ben Gorlick, and Mark
Friedenbach. Strong federations: An interoperable blockchain solution to centralized third party
risks. CoRR, abs/1612.05491, 2016.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and
keys. In Serge Vaudenay, editor, Public Key Cryptography - PKC 2005, 8th International Workshop
on Theory and Practice in Public Key Cryptography, Les Diablerets, Switzerland, January 23-26,
2005, Proceedings, volume 3386 of Lecture Notes in Computer Science, pages 416–431. Springer,
2005.

[FFG+16] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko, and Bryan Parno.
Hash first, argue later: Adaptive verifiable computations on outsourced data. Cryptology ePrint
Archive, Report 2016/985, 2016. https://eprint.iacr.org/2016/985.

[FGP14] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on encrypted
data. Cryptology ePrint Archive, Report 2014/202, 2014. https://eprint.iacr.org/2014/202.

[FH96] Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient secure computation.
J. Cryptology, 9(4):217–232, 1996.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge snarks. In Michel Abdalla and Ricardo Dahab,
editors, Public-Key Cryptography - PKC 2018 - 21st IACR International Conference on Practice
and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings,
Part I, volume 10769 of Lecture Notes in Computer Science, pages 315–347. Springer, 2018.

[Gei10] Martin Geisler. Cryptographic Protocols: Theory and Implementation. PhD thesis, Aarhus Uni-
versity, 2010.

[GG17] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results using blockchains.
In Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part I, pages 529–561, 2017.

[GG18] Álvaro Garcı́a-Pérez and Alexey Gotsman. Federated Byzantine quorum systems. In Proc. 22nd
Conference on Principles of Distributed Systems (OPODIS), volume 125 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 17:1–17:16, 2018.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In Tal Rabin, editor, Advances in Cryptology – CRYPTO
2010, pages 465–482, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Proceedings of the IACR Eurocrypt Conference. International
Association for Cryptologic Research, May 2013.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Proc. 7th ACM Symposium on Operating
System Principles (SOSP), pages 150–162, 1979.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge,
MA, USA, Proceedings, pages 102–113. IEEE Computer Society, 2003.

164

https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2016/985
https://eprint.iacr.org/2014/202

D3.2 – Design of Extended Core Protocols

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057
of Lecture Notes in Computer Science, pages 281–310. Springer, 2015.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains
of variable difficulty. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages
291–323, 2017.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-snarks. In Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part III, pages 698–728, 2018.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’13, pages 555–564, New York, NY,
USA, 2013. ACM.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptol-
ogy - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 581–612. Springer, 2017.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - or - a completeness
theorem for protocols with honest majority. In Proc. 19th Symposium on Theory of Computing
(STOC ’87), pages 218–229, New York, 1987. ACM.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred Menezes,
editor, Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes
in Computer Science, pages 323–341. Springer, 2007.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages
339–358. Springer, 2006.

[GOT18] Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. Proof-of-stake protocols for privacy-aware
blockchains. Cryptology ePrint Archive, Report 2018/1105, 2018. https://eprint.iacr.org/2018/
1105.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC,
Proceedings, pages 212–219. ACM, 1996.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group sig-
natures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology - ASIACRYPT 2006, 12th
International Conference on the Theory and Application of Cryptology and Information Security,
Shanghai, China, December 3-7, 2006, Proceedings, volume 4284 of Lecture Notes in Computer
Science, pages 444–459. Springer, 2006.

165

https://eprint.iacr.org/2018/1105
https://eprint.iacr.org/2018/1105

D3.2 – Design of Extended Core Protocols

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010, pages 321–340, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive,
Report 2016/260, 2016. https://eprint.iacr.org/2016/260.

[GRR98] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In 17th annual ACM symposium on Principles of
Distributed Computing (PODC ’98), pages 101–111, New York, 1998. ACM.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings, volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer, 2008.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 99–108.
ACM, 2011.

[HBHW18] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification.
2018.

[HM00] Martin Hirt and Ueli Maurer. Player simulation and general adversary structures in perfect multi-
party computation. Journal of Cryptology, 13(1):31–60, 2000.

[Hoa62] C. A. R. Hoare. Quicksort. Comput. J., 5(1):10–15, 1962.

[HRB13] Andreas Hülsing, Lea Rausch, and Johannes A. Buchmann. Optimal parameters for XMSS MT.
In CD-ARES 2013, Proceedings, volume 8128 of LNCS, pages 194–208. Springer, 2013.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in hash-based
signatures. In PKC 2016, Proceedings, Part I, volume 9614 of LNCS, pages 387–416. Springer,
2016.

[HT93] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems. In Sape J.
Mullender, editor, Distributed Systems (2nd Ed.). ACM Press & Addison-Wesley, New York, 1993.

[JKS16] Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of gyges: Investigating the future of criminal
smart contracts. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016, pages 283–295, 2016.

[JM03] Flavio P. Junqueira and Keith Marzullo. Synchronous consensus for dependent process failures. In
Proc. 23rd Intl. Conference on Distributed Computing Systems (ICDCS), 2003.

[JMHD10] Flavio P. Junqueira, Keith Marzullo, Maurice Herlihy, and Lucia Draque Penso. Threshold proto-
cols in survivor set systems. Distributed Computing, 23:135–149, 2010.

[KC18] Aggelos Kiayias and Michele Ciampi. State of the art of cryptographic ledgers. PRIViLEDGE
project funded by the European Commission within the EU Framework Programme for Research
and Innovation HORIZON 2020, 2018. http://priviledge-project.eu/publications/deliverables.

[KDF13] Joshua A. Kroll, Ian C. Davey, and Edward W. Felten. The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In The Twelfth Workshop on the Economics of Information Security
(WEIS 2013), Washington DC, June 10-11 2013.

166

https://eprint.iacr.org/2016/260
http://priviledge-project.eu/publications/deliverables

D3.2 – Design of Extended Core Protocols

[KFTS17] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis of mon-
ero’s blockchain. In Computer Security - ESORICS 2017 - 22nd European Symposium on Research
in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II, pages 153–173,
2017.

[KJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan
Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Sympo-
sium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 583–598. IEEE Computer Society, 2018.

[KKL+18] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas Zacharias. On
the security properties of e-voting bulletin boards. In Security and Cryptography for Networks -
11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, pages
505–523, 2018.

[KL11] Dafna Kidron and Yehuda Lindell. Impossibility results for universal composability in public-key
models and with fixed inputs. J. Cryptology, 24(3):517–544, 2011.

[KLS16] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs of work
with sublinear complexity. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach,
Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data Security - FC 2016
International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers, volume 9604 of Lecture Notes in Computer Science, pages 61–78.
Springer, 2016.

[KMS+15] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. Cryptology ePrint
Archive, Report 2015/675, 2015. https://eprint.iacr.org/2015/675.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable syn-
chronous computation. In Amit Sahai, editor, Theory of Cryptography - 10th Theory of Cryptogra-
phy Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture
Notes in Computer Science, pages 477–498. Springer, 2013.

[KMZ17] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work.
IACR Cryptology ePrint Archive, 2017:963, 2017.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I, pages 357–388, 2017.

[Kri18] Toomas Krips. State of the art on privacy-enhancing cryptography for ledgers. PRIViLEDGE
project funded by the European Commission within the EU Framework Programme for Research
and Innovation HORIZON 2020, 2018. http://priviledge-project.eu/publications/deliverables.

[KYMM18] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An empirical analysis of
anonymity in zcash. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018., pages 463–477, 2018.

[KZM+15a] Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert Chan, Charalampos
Papamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi. C∅C∅: A Framework for Build-
ing Composable Zero-Knowledge Proofs. Technical Report 2015/1093, November 10, 2015.
http://eprint.iacr.org/2015/1093, last accessed version from 9 Apr 2017.

167

https://eprint.iacr.org/2015/675
http://priviledge-project.eu/publications/deliverables
http://eprint.iacr.org/2015/1093

D3.2 – Design of Extended Core Protocols

[KZM+15b] Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert Chan, Charalampos Papa-
manthou, Rafael Pass, Abhi Shelat, and Elaine Shi. How to use snarks in universally composable
protocols. IACR Cryptology ePrint Archive, 2015:1093, 2015.

[Lam86] Leslie Lamport. On interprocess communication. Distributed Computing, 1(2):77–85, 86–101,
1986.

[Ler16] Sergio Demian Lerner. Drivechains, sidechains and hybrid 2-way peg designs, 2016.

[LHL94] Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee. Threshold-multisignature schemes where
suspected forgery implies traceability of adversarial shareholders. In Alfredo De Santis, editor,
Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory and Application of Crypto-
graphic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume 950 of Lecture Notes in
Computer Science, pages 194–204. Springer, 1994.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Ronald Cramer, editor, Theory of Cryptography - 9th Theory of Cryptography Con-
ference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume 7194 of
Lecture Notes in Computer Science, pages 169–189. Springer, 2012.

[Lip14] Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge snarks. Cryptology ePrint
Archive, Report 2014/396, 2014. https://eprint.iacr.org/2014/396.

[Lip19] Helger Lipmaa. Simulation-extractable SNARKs revisited. Cryptology eprint archive, report
2019/612, July 2019.

[LNZ+16] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena.
A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages
17–30, 2016.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[Max13] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. https://bitcointalk.org/?topic=
279249, August 2013.

[Maz16] David Mazières. The Stellar consensus protocol: A federated model for Internet-level consensus.
Stellar, available online, https://www.stellar.org/papers/stellar-consensus-protocol.pdf, 2016.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
snarks from linear-size universal and updateable structured reference strings. IACR Cryptology
ePrint Archive, 2019:99, 2019.

[Mic16] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.

[MPJ+16] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geof-
frey M. Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men
with no names. Commun. ACM, 59(4):86–93, 2016.

[MR98] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, 1998.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In IEEE FOCS,
pages 120–130, 1999.

168

https://eprint.iacr.org/2014/396
https://bitcointalk.org/?topic=279249
https://bitcointalk.org/?topic=279249
https://www.stellar.org/papers/stellar-consensus-protocol.pdf

D3.2 – Design of Extended Core Protocols

[MSH+18] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava, Kyle
Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and Nicolas Christin. An empirical
analysis of traceability in the monero blockchain. PoPETs, 2018(3):143–163, 2018.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer
Science, pages 96–109. Springer, 2003.

[Noe15] Shen Noether. Ring signature confidential transactions for monero. IACR Cryptology ePrint
Archive, 2015:1098, 2015.

[NVV18] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for dis-
tributed ledgers. In Sujata Banerjee and Srinivasan Seshan, editors, 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018,
pages 65–80. USENIX Association, 2018.

[NW98] Moni Naor and Avishai Wool. The load, capacity and availability of quorum systems. SIAM
Journal on Computing, 27(2):423–447, 1998.

[PBF+18] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter Wuille. Confi-
dential assets. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Fed-
erico Pintore, and Massimiliano Sala, editors, Financial Cryptography and Data Security - FC
2018 International Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2,
2018, Revised Selected Papers, volume 10958 of Lecture Notes in Computer Science, pages 43–63.
Springer, 2018.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical ver-
ifiable computation. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA,
USA, May 19-22, 2013, pages 238–252. IEEE Computer Society, 2013.

[PS17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, pages 380–
409, 2017.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of
the ACM, 27(2):228–234, April 1980.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, volume
10211 of Lecture Notes in Computer Science, pages 643–673, 2017.

[Rip19] Ripple. XRP ledger documentation � Concepts � Technical FAQ. Available online, https://
developers.ripple.com/technical-faq.html, 2019.

[RMK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle: Practical decentralized coin
mixing for bitcoin. In Computer Security - ESORICS 2014 - 19th European Symposium on Re-
search in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II, pages
345–364, 2014.

169

https://developers.ripple.com/technical-faq.html
https://developers.ripple.com/technical-faq.html

D3.2 – Design of Extended Core Protocols

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transaction graph. In Financial
Cryptography and Data Security - 17th International Conference, FC 2013, Okinawa, Japan, April
1-5, 2013, Revised Selected Papers, pages 6–24, 2013.

[RT09] Tord Ingolf Reistad and Tomas Toft. Linear, constant-rounds bit-decomposition. In Dong Hoon Lee
and Seokhie Hong, editors, Information, Security and Cryptology - ICISC 2009, 12th International
Conference, Seoul, Korea, December 2-4, 2009, Revised Selected Papers, volume 5984 of Lecture
Notes in Computer Science, pages 245–257. Springer, 2009.

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty sig-
natures against rogue-key attacks. Cryptology ePrint Archive, Report 2007/264, 2007. https:
//eprint.iacr.org/2007/264.

[Sch18] Berry Schoenmakers. MPyC secure multiparty computation in python. https://github.com/lschoe/
mpyc, 2018.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[ST87] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant
algorithms. Distributed Computing, 2:80–94, 1987.

[ST06] B. Schoenmakers and P. Tuyls. Efficient binary conversion for Paillier encryptions. In Advances
in Cryptology—EUROCRYPT ’06, volume 4004 of LNCS, pages 522–537, Berlin, 2006. Springer.

[Ste15] Stellar. On worldwide consensus. Available online, https://medium.com/a-stellar-journey/
on-worldwide-consensus-359e9eb3e949, 2015.

[SV15] Berry Schoenmakers and Meilof Veeningen. Universally verifiable multiparty computation from
threshold homomorphic cryptosystems. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop
Lewko, and Michalis Polychronakis, editors, Applied Cryptography and Network Security, pages
3–22, Cham, 2015. Springer International Publishing.

[SV18] Luisa Siniscalchi and Ivan Visconti. Definitions and notions of privacy-enhancing crypto-
graphic primitives for ledgers. PRIViLEDGE project funded by the European Commission
within the EU Framework Programme for Research and Innovation HORIZON 2020, 2018.
http://priviledge-project.eu/publications/deliverables.

[SVdV16] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-preserving
outsourcing by distributed verifiable computation. In Mark Manulis, Ahmad-Reza Sadeghi, and
Steve Schneider, editors, Applied Cryptography and Network Security - 14th International Confer-
ence, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, volume 9696 of Lecture Notes
in Computer Science, pages 346–366. Springer, 2016.

[SYB14] David Schwartz, Noah Youngs, and Arthur Britto. The Ripple protocol consensus algorithm. Rip-
ple Labs, available online, https://ripple.com/files/ripple consensus whitepaper.pdf, 2014.

[Szt15] Paul Sztorc. Drivechain - the simple two way peg, November 2015. http://www.truthcoin.info/
blog/drivechain/.

[TS] Stefan Thomas and Evan Schwartz. A protocol for interledger payments.
https://interledger.org/interledger.pdf.

[Vee17] Meilof Veeningen. Pinocchio-based adaptive zk-snarks and secure/correct adaptive function eval-
uation. In Marc Joye and Abderrahmane Nitaj, editors, Progress in Cryptology - AFRICACRYPT
2017 - 9th International Conference on Cryptology in Africa, Dakar, Senegal, May 24-26, 2017,
Proceedings, volume 10239 of Lecture Notes in Computer Science, pages 21–39, 2017.

170

https://eprint.iacr.org/2007/264
https://eprint.iacr.org/2007/264
https://github.com/lschoe/mpyc
https://github.com/lschoe/mpyc
https://medium.com/a-stellar-journey/on-worldwide-consensus-359e9eb3e949
https://medium.com/a-stellar-journey/on-worldwide-consensus-359e9eb3e949
http://priviledge-project.eu/publications/deliverables
https://ripple.com/files/ripple_consensus_whitepaper.pdf
http://www.truthcoin.info/blog/drivechain/
http://www.truthcoin.info/blog/drivechain/

D3.2 – Design of Extended Core Protocols

[vS13] Nicolas van Saberhagen. Cryptonote v 2.0. https://cryptonote.org/whitepaper.pdf, October 17
2013.

[WLB14] Shawn Wilkinson, Jim Lowry, and Tome Boshevski. Metadisk a blockchain-based decentralized
file storage application. Storj Labs Inc., Technical Report, hal, pages 1–11, 2014.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper, 151:1–32, 2014.

[Woo16] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework, 2016.

[Woo19] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Technical Report
aeeda84, July 2019. Byzantium version.

[Yao82] A. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symposium on Foundations of
Computer Science (FOCS ’82), pages 160–164. IEEE Computer Society, 1982.

[Yao86] A. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symposium on Foundations of
Computer Science (FOCS ’86), pages 162–167. IEEE Computer Society, 1986.

[Zam17] Vlad Zamfir. Casper the friendly ghost: A “correct-by-construction” blockchain consensus pro-
tocol. https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf, De-
cember 17 2017.

[ZMR18] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain via
full sharding. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 931–948. ACM, 2018.

[ZSJ+18] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar R. Weippl, and
William J. Knottenbelt. A wild velvet fork appears! inclusive blockchain protocol changes in
practice - (short paper). In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali,
Federico Pintore, and Massimiliano Sala, editors, Financial Cryptography and Data Security - FC
2018 International Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2,
2018, Revised Selected Papers, volume 10958 of Lecture Notes in Computer Science, pages 31–42.
Springer, 2018.

171

https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf

	Executive Summary
	Scope
	Ledger protocols
	Secure Multiparty Computation
	Post-quantum

	Impact

	UC-Secure CRS Generation for zk-SNARKs
	Introduction
	Preliminaries
	Multi-Party CRS Generation
	UC-Secure CRS Generation
	Secure MPC for NIZKs

	On the Efficiency of Privacy-Preserving Smart Contract Systems
	Introduction
	Preliminaries
	Notations
	Definitions
	COCO: a Framework for Constructing UC-secure zk-SNARKs

	Efficient UC-secure zk-SNARKs
	Construction
	Efficiency
	Security Proof

	On the Efficiency of Privacy Preserving Smart Contract Systems

	Bulletin Board for E-voting
	Introduction
	Preliminaries
	Our contribution
	Attacking the liveness of the CS BB system
	A New Publishing Protocol for the CS BB System

	Asymmetric Distributed Trust
	Introduction
	Preliminaries
	Recent Related Work
	Asymmetric Byzantine Quorum Systems
	Symmetric Trust
	Asymmetric Trust

	Shared Memory
	Definitions
	Protocol with Authenticated Data
	Double-Write Protocol without Data Authentication

	Broadcast
	Conclusion

	Proof-of-Stake Sidechains
	Introduction
	Preliminaries
	Our Model
	Blockchains and Ledgers
	Underlying Proof-of-Stake Protocols

	Defining Security of Pegged Ledgers
	Implementing Pegged Ledgers
	Ad-Hoc Threshold Multisignatures
	A Concrete Asset A
	The Sidechain Construction

	Constructing Ad-Hoc Threshold Multisignatures
	Plain ATMS
	Multisignature-based ATMS
	ATMS From Proofs of Knowledge

	Security
	Assumptions
	Proof Overview
	Liveness and Persistence
	The Firewall Property and MC-Receiving Transactions
	Firewall Property During Sidechain Failure
	General Firewall Property

	The Diffuse Functionality
	Adaptation to Other Proof-of-Stake Blockchains
	Ouroboros Praos and Ouroboros Genesis
	Snow White
	Algorand

	Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake
	Introduction
	Protocol Intuition
	The Foundations of Genesis and Zerocash
	The Core Protocol
	Freezing Stake in Zero Knowledge
	Adaptive Corruptions

	The Model
	Tools
	Non-Interactive Zero Knowledge
	Key-private Forward-Secure Encryption
	PRFs with unpredictability under malicious keys
	Equivocal Commitments

	The Private Ledger
	Blinding for Forward-Secure Transactions
	Leakage for Leader-Based Protocols

	The Ouroboros-Crypsinous Protocol
	Ideal-World Transactions
	Protocol overview
	Real-world Transactions
	Interacting with the Ledger
	Transaction Validity

	Security Analysis
	Performance Estimation
	Hybrid World Functionalities
	The Simulator
	The Stage 1 Simulator
	The Stage 2 Simulator

	UC Specification of Ouroboros Crypsinous
	Party Initialization
	The Staking Procedure
	The Ledger Maintenance Procedure
	Submitting Transfer Transactions
	Submitting Generic Transactions
	Reading the Ledger State

	NP Statements
	Protocol Assumptions Encoded as a Wrapper
	Construction NIZKs via SNARKs
	Proof of UC-Emulation

	Key-Private Forward-Secure Encryption

	Privacy Threats Exploiting Smart Contracts and Forks
	Lg
	Attacking and Repairing Smart Contracts on Forking Blockchains

	Verifiable MPC with Blockchain
	Introduction
	Preliminaries
	The Notion of Outsourcing
	Secure Multiparty Computation
	Verifiable Computation with Zero-Knowledge
	Blockchain

	Recent Related Work in Verifiable Multiparty Computation
	Trinocchio: Verifiable Computation on Private Inputs
	Geppetri: Reusable Setup for Different Computations with Adaptive zk-SNARKs

	Verifiable MPC with Blockchain
	Optional: Use Smart Contract to Verify Correctness Proof
	The Billionaires' Problem: Solution Sketch
	Main Protocols to Compute the Top 400: Verifiable Secure Filtering and Sorting
	Verifiable Secure Comparison
	The Billionaires' Problem: Next steps and Implementation Framework

	Conclusion

	Hash Based Server Assisted Signatures
	Background
	Blockchain Backed Key State Management
	Forward-Resistant Tag Systems

	Conclusion

