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Abstract

Timestamping is an important cryptographic primitive with numerous applications. The
availability of a decentralized blockchain such as that offered by the Bitcoin protocol offers new
possibilities to realise timestamping services. Nevertheless, to our knowledge, there are no recent
blockchain-based proposals that are formally proved in a composable setting.

In this work, we put forth the first formal treatment of timestamping cryptographic primi-
tives in the UC framework with respect to a global clock—we refer to the corresponding prim-
itives as timed to indicate this association. We propose timed versions of primitives commonly
used for authenticating information, such as digital signatures, non-interactive zero-knowledge
proofs, and signatures of knowledge and show how those can be UC-securely implemented by a
protocol that makes ideal (blackbox) access to a global transaction ledger based on the ledger
proposed by Badertscher et al. [CRYPTO 2017] which is UC realized by the Bitcoin backbone
protocol [Eurocrypt 2015]. Our definitions introduce a fine-grained treatment of the different
timestamping guarantees, namely security against postdating and backdating attacks; our results
treat each of these cases separately and in combination, and shed light on the assumptions that
they rely on. Our constructions rely on a relaxation of an ideal beacon functionality, which
we implement UC-securely assuming the ledger functionality. Given the many potential uses of
such a beacon in cryptographic protocols this result may be of independent interest.

1 Introduction

Timestamping allows for a (digital) object—typically a document—to be associated with a creation
time (interval), such that anyone seeing the timestamp can verify that the document was not
created before or after this time. It has numerous applications from synchronizing asynchronous
distributed systems to establishing originality of scientific discoveries and patents. In fact, the idea
of timestamping has been implicit in science for centuries, with anagram-based instantiations being
traced back to Galileo and Newton. The first cryptographic instantiation of timestamping was
proposed by Haber and Stornetta [HS91].
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A cryptographic timestamping scheme involves a document creator (or client) and a verifier,
where the document creator wishes to convince the verifier that a document was at his possession
at time T . In typical settings, the aim is to achieve universal verification, where any party can
verify the timestamp but one can also consider the simpler designated verifier-set version. Ideally,
the protocol aims to protect against both backdating and postdating of a digital document. To define
these two properties, let A be a digital document which was generated at time T . In backdating,
an adversary attempts to claim that A was generated at time T ′ < T . In postdating, an adversary
tries to claim that A was generated at time T ′ > T . We note that no existing solution achieves the
above perfect form of timestamping. This would be feasible only by means of perfect synchrony
and zero-delay channels. Instead, timestamping protocols, including those presented in this work,
allow to prove backdating and postdating security for a sufficiently small time interval around T .

Haber et al. [HS91] achieve timestamping using a hash-chain of documents. In the plain, cen-
tralized version of their scheme the parties have access to a semi-trusted (see below) third party,
called a timestamping server (TS). Whenever a client wishes to sign a document, he sends his ID
and (hash of) his document to TS who produces a signed certificate, given the client’s request. The
certificate includes the current time (according to TS), the client’s request, a counter, and a hash
of the previous certification which links it to that certificate. The idea is that, assuming the TS
processes the documents in the time and order they were received, if a document A appears in the
hash chain before the hash of document B, then B must have been generated after A. If someone
wants to check the order in which the two documents where generated, he can check the certificate,
and assuming that he trusts TS’s credentials, he can derive the order. The above solution suffers
from the TS being a single point of failure. Concretely, the timestamping protocol is only effec-
tive if the TS is constantly online and responsive. This opens the possibility of denial-of-service
attacks. Also, when used in the context of patents, in order to avoid the need to trust the TS from
claiming the patent as its own, one needs to combine it with anonymity primitives, such as blind
signatures [Cha88]. To circumvent such issues, [HS91] proposed a decentralized version of their
scheme, where the clients interactively cooperate with each other to timestamp their documents.
The efficiency and participation requirements of that scheme were later improved by Benaloh et
al. [BdM91]. Later on, [BLSW05] formally models the timestamping mechanisms, previously pro-
posed in [BdM91, HS91], using the UC model. Moreover, it provides a construction very similar
to [BdM91, HS91] with the main difference that it utilises an additional trusted party, an auditor,
who periodically verifies the TS.

More recently, [BLT14] proposes a protocol that requires multiple non-colluding servers who
interactively time-stamp a document. Although such a level of decentralization eliminates the
single-failure point issue, it brings additional complications. Concretely, first, it can only work if
the servers are properly synchronized and their communication network is synchronous. Indeed,
[BdM91, BLT14] have an implicit round structure where every server/client is always in the same
round as all other servers/clients. Second, to avoid attacks by malicious servers that attempt to
backdate or postdate a document (e.g., by creating a fork in the hash-chain) it seems necessary
to assume that a majority of them are honest and will therefore keep extending the honest chain.
Third, the identities and signature certificates of the servers and clients need to be public knowledge,
leading to the permissioned model that often requires mechanisms for registering and deregister-
ing (revoking) parties’ certificates. We note in passing that the above issues are implicit in the
treatment of [HS91, BdM91], and there is no known technique to mitigate them. We further re-
mark that these issues are similar to the core problem treated by blockchains and their associated
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cryptocurrencies [Nak08, Woo14, KRDO17]. Thus, one could use techniques from such primitives,
e.g. relying on proofs of work or space, to develop a timestamping blockchain. In fact, there are
existing commercial solutions, e.g., Guardtime1, that use this idea to offer a blockchain-based times-
tampting system. Following this research line, very recently [LSS19] have presented a treatment
of non-interactive timestamping schemes in the UC-model. The construction provided in [LSS19]
is based on proofs of sequential work such as VDF’s [BBBF18]. However, as the authors stated
in [LSS19], the construction allows the adversary to pretend that a record was timestamped later
than it actually was (i.e., it allows postdating attack). Also, even if the work of Landerreche et al.
assumes the existence of a global clock, the timestamping service provides only ordering of events.2

Our Contributions. We put forth a formal composable treatment of timestamping of crypto-
graphic primitives. Concretely, we devise a formal model of protocol execution for timestamping
cryptographic primitives with respect to a global clock that parties have access to. We use the term
timed, as in timed (digital) signatures to distinguish timestamping with respect to such a global clock
from the guarantee offered by existing timestamping schemes [HS91, BdM91, LSS19], which only
establishes causality of events—i.e., which of the hash-chained document was processed first—but
does not necessarily link it to a global clock. We stress that although for simplicity our treatment
assumes ideal access to a global clock—which is captured as in [BMTZ17] by a global clock function-
ality, it trivially extends to allow for parties having bounded-drift view of the clock [KMTZ13]—i.e.
the adversary is allowed at time t to make a party think that the time is t′ which might lie within
a distance d from t for a known drift parameter d.

We then define timed versions of primitives commonly used for authenticating information, such
as digital signatures, non-interactive zero-knowledge proofs [DMP88, BFM88], and signatures of
knowledge [CL06] in Canetti’s Universal Composition (UC) framework [Can01]. Our treatment
explicitly captures security against backdating and postdating separately, and investigates the asso-
ciated assumptions required to achieve each of these security notions.

Finally, we devise UC secure implementations of our timed primitives that use any ledger-based
blockchain. Rather than building a new dedicated timestamping blockchain, our protocols take
advantage of the recent composable treatment of ledger-based cryptocurrencies by Badertscher et
al. [BMTZ17, BGK+18] to implement timed versions of these primitives while making blackbox
(hybrid) access to a (global) transaction ledger functionality. This decouples the trust assumptions
needed for secure timestamping from the ones needed for maintaining a secure ledger and makes the
security of our protocols independent of the technology used to implement the ledger. In particular,
our protocols can use any existing public blockchain to achieve backdating and/or postdating secu-
rity. In fact, our protocols not only make blackbox use of the ledger functionality, but they also make
blackbox use of the corresponding cryptographic primitive they rely on. For example, our timed
signatures make blackbox use of a signature functionality [Can03] and no further cryptographic
assumptions. This means that all our constructions can be instantiated with any protocols that UC
securely realizes the underlying cryptographic primitives (ledger and signatures). Furthermore, our
use of the ledger is minimal with postdating security requiring only read access to the ledger, while
backdating security requiring only write access to the ledger. As a result it is readily compatible
with Bitcoin or any other current permissionless distributed ledger.

1https://guardtime.com
2In [LSS19] the parties need to be synchronized via a global clock in order to keep track of the computation steps

done by the adversary to compute the outputs of the verifiable delay function.
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Our Techniques. A standard idea for achieving security against postdating attacks—i.e., thwart-
ing an adversary that runs a cryptographic primitive and gets a bitstring as an output at time T
but claims that it was created at time T ′ > T , is to embed in the cryptographic primitive’s output
evidence of an event (or just a value) which becomes publicly known at creation time and could not
have been predicted in advance. A folklore use of this idea is for example to embed a newspaper
article about an unexpected event. The main challenge with the above solution is that the unpre-
dictable information needs to be verifiable (along with the time it became available) by anyone who
attempts to verify the timestamp. In a cryptographic setting, this could be solved by assuming
an unpredictable randomness beacon that generates a new value in every round, with the property
that anyone can query it with a round index and receive the value that the beacon output in that
round. Here we do not assume such a perfect beacon—as this would correspond to a strong trust
assumption. So the main question to answer is:

How can we construct such a source of sufficiently unpredictable and publicly verifiable
randomness?

One might be tempted to think that the blockchain directly provides us with such a source. In
fact, a number of proposals for a beacon based on Bitcoin exist [AD15, BCG15, BGZ16]. But, to
our knowledge, none of these works has a formal specification of the beacon they achieve or a formal
proof of its security based on standard cryptographic assumptions. In fact, as argued in [BGZ16], an
unbiased beacon can not be constructed using such assumptions based on the Bitcoin protocol. In
this work, we take a different path. We investigate how an ideal beacon as above can be weakened so
that it is implementable by a protocol which uses the ledger functionality (and a random oracle). In
particular, we specify a weak beacon functionality, denoted as Bw, which is sufficiently strong to be
used for timestamping cryptographic primitives. In a nutshell, the beacon functionality is relaxed in
the following way in order to obtain our weak version: First, the weak beacon is slower, and is only
guaranteed to generate a new value every MaxRound many rounds, where MaxRound is a parameter
that depends on the ledger’s liveness parameter3 (we discuss it in more details in Section 2).

Second, although the sequence of outputs of the beacon cannot be changed once set, instead of
every party being able to learn this sequence at any time, the adversary is allowed to make different
parties witness different prefixes of this sequence in any round; this can, however, happen only
under the following two restrictions, which are derived from the properties of the ledger specified
in [GKL15] (cf. Section 2): (1) the lengths of the prefixes seen by different parties do not differ by
more than WindowSize, again a parameter which depends on the ledger, (2) the prefixes increase
monotonically as the rounds advance (albeit not necessarily at the same rate), and most impor-
tantly, (3) the adversary has a limited capability of predicting the beacon’s output. In a nutshell,
this predictability will allow the adversary to be able to predict several future outputs, under the
restriction that in every t outputs at least one of them could not have been predicted more than
k rounds before it was generated by the beacon, where k is a parameter that will depend on the
ledger’s transaction liveness parameter. Interestingly, while the first two properties are captured
in the composable treatment of [BMTZ17], the latter one is not. To address this, we introduce
a simple wrapper functionality that upgrades the ledger functionality of [BMTZ17] to possess this
weak unpredictability property while we show that the main result of [BMTZ17], namely that the
Bitcoin backbone protocol of [GKL15] implements the ledger, can be strengthened accordingly.

3The ledger’s liveness property from [BMTZ17] corresponds to the chain growth property from [GKL15].
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We provide a formal description of the above sketched weak beacon, and prove that it can be
implemented by a protocol which makes ideal access to any of the ideal ledger functionalities from
the literature [BMTZ17, BGK+18] suitably augmented with our wrapper functionality. We believe
that this result is of independent interest. Given the above beacon, we will show how it can be
used to time(stamp) cryptographic primitives with respect to the global clock, the beacon (and the
ledger) is connected to. We start with one of the most common primitives used in the timestamping
literature, namely digital signatures. Note that the straightforward adaptation of digital signatures
to their timed version—which only allows the adversary to register a signature at the right time—
cannot be implemented given the above beacon. Instead, we devise a relaxation of such functionality
which embraces the imperfections of the beacon, while preserving the security against postdating
and backdating attacks.

To obtain postdate-security, we use the above idea of embedding in the signature the most recent
value of the beacon. As the adversary cannot predict the output of the beacon for more than k
rounds in the future, this already puts an upper-bound in his poststamping ability. Recall that in
any timestamping scheme, the timestamp is associated with some time interval and the adversary
can create valid timestamps within the interval. Note that our mechanism for postdate-security
does not require writing anything on the ledger; instead, the signer and the verifier only need read-
access. Obtaining backdate-security is trickier. First, we observe that if the signer has read-only
access to the ledger, then the ledger cannot be used to counter backdating attacks. The reason is
that an adversarial signer has full information on the history of the ledger, at a certain time T . So,
it can always pretend the ledger is in a past state (e.g., use an old beacon output in the signature),
and then issue the signature claiming it was created earlier. Nonetheless, if the signer can insert
some data, via a transaction to the blockchain, then it is straightforward to guarantee protection
against the backdating attack. Now, the signature is only considered validly timed after it appears
on the ledger’s state and it is posted within a predefined delay. Again, the formal guarantee needs to
inherit the deficiencies of the ledger’s output; in particular a verifier might in some round consider a
signature accepting; whereas, another verifier does not, as the latter may have a shorter chain that
does not contain the signature yet. But eventually every party will be able to check the timestamp.
We view this separation between the timestamping abilities enabled by read/write vs read-only as
an interesting feature which is exposed by our fine-grained treatment of timestamping. We note
that this separation is not only theoretically interesting but has a clear implication in practice:
unlike postdate security, backdate security using a cryptocurrency blockchain is not free of charge,
since inserting information in the blockchain of any such cryptocurrencies has associated fees that
the signer would need to pay.

Completing our treatment of timed signatures, we prove that combining the above two ideas,
namely creating a signature with the beacon value and inserting it on the blockchain, yields a
signature with both backdate and postdate security. We note that one might be tempted to assume
that this level of security can be obtained without the use of the beacon, since the blockchain
is immutable. Indeed, one can argue that postdate security is trivially solved by considering a
signature valid once it is seen on the blockchain. This is however not the case, since a signer might
generate the signature in the past with a future date, and only post it on the blockchain after that
date (while using the signature in the meanwhile).

To see why the above makes a big difference, consider the following application scenario. A
bank B has issued to Alice an electronic checkbook and wants to ensure that Alice cannot issue
postdated signatures (e.g., to use them as collateral for a loan from another bank C). This cannot
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be enforced by B by only requiring Alice to insert the signature on the blockchain, as Alice can
issue the signature with a future date T , use with C at time T ′ < T and only post it on the
blockchain at time T . Bank C has no reason not to accept the signature as it knows that it will be
considered valid at time T (even if Alice does not post it on the blockchain, the Bank C can do it
for Alice). Mitigating a problem like this may be addressed by other techniques, e.g., by requiring
the signer to post the transaction from the same public key as the one used for the signatures,
however such workarounds would be using the ledger in a non-blackbox way. In any case this
example demonstrates a delicate point in timestamping—namely the difference between the time
object is created vs. when its timestamp becomes publicly valid—which highlights the usefulness
of our fine-grained analysis.

The above issue becomes even more evident when considering timed signatures of knowledge,
where we want to guarantee that the witness was known to the signer at the claimed time. We define
a three-tier timed version of such signatures of knowledge analogously to the above time signatures,
and show how these can be implemented by a timed version of non-interactive zero-knowledge
proofs which we also introduce. We believe that both these primitives might have applications on
autonomous and IoT systems where both the privacy and availability are of major concern. For
instance, consider a case where a set of smart devices, in an IoT network, need to periodically prove
their availability in zero-knowledge to a verifier, e.g. a smart contract. In this scenario, our timed
NIZK proofs or signatures of knowledge (depending on a particular application) can be used by
each device to prove that it knows the witness at a certain time, i.e. can prove it was available at
a certain point in time.

Related Work. We have already reviewed the milestones in the timestamping literature and
discussed its relation with the notions proposed in this paper. We have also discussed solutions
using blockchain technologies, e.g. proofs of work and stake. For completeness we include a more
detailed survey of that literature in Appendix A; in the same appendix, we discuss basic results
in zero knowledge (including some recent attempts that use time [DNS98, LTCL07, EO95]). To
our knowledge none of the existing blockchain-based solutions obtains timestamping with only ideal
(blackbox) access to the ledger nor includes a formal composable proof of the claimed security.
There is also literature on schemes called time-lock encryption and commitments, and time released
signatures [RSW96, BN00, GJ03, LJKW18, LGR15]. Despite the similarity in the name, these
works do not (aim to) achieve timestamping guarantees. For the sake of completeness, we also
review these works in Appendix A. We also recall the work of Scafuro et al. [SSV19] in which the
authors show how to obtain non-interactive witness-indistinguishable proof using the blockchain as
a trusted-setup assumption.

Notation. We denote the security parameter by λ and use “||” as concatenation operator. For a
finite set Q, x $←− Q denotes a sampling of x from Q with uniform distribution. In this paper, ppt
stands for probabilistic polynomial time. We use poly(·) to indicate a generic polynomial function.
Let v be a sequence of elements (vector); by v[i] we mean the i-th element of v. Also, by v|i
and v|i,j we mean the sequence of elements of v in the ranges [1,v[j]] and [v[i],v[j]], respectively.
Analogously, for a bi-dimensional vector M , we denote with M [i, j] the element identified by the
i-th row and the j-th column of M . Moreover, an adversary is denoted by A. We assume the
readers are familiar with standard notions such as commitment and UC-security. See Appendices C
and D for their formal definitions.
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Organization of Paper. The remainder of this paper is structured as follows. In Section 2 we put
forth our execution modeling reviewing relevant aspects of the (G)UC framework. In Section 3 we
provide an technical overview of all our results condensing the content of all the following sections.
In Section 4 we provide the description of wrapper for the ledger functionality to capture the
entropy contained in the blockchains. In Section 5 we describe our (weak) beacon functionality and
demonstrate how it can be realized via the ledger functionality. Timed signatures are introduced in
Section 6 together with constructions that realize them using the ledger as a resource as well as a
standard digital signature functionality. In Section 7 we present timed proof of knowledge while in
Section 8 we demonstrated the generalization to signatures of knowledge.

2 The Model

Following the recent line of works proving composable security of blockchain ledgers [BMTZ17,
BGK+18] we provide our protocols and security proofs in Canetti’s universal composition (UC)
framework [Can01]. In this section we discuss the main components of our real-world model (in-
cluding the associated hybrids). We assume that the reader is familiar with simulation-based security
and has basic knowledge of the UC framework. We review all the aspects of the execution model
that are needed for our protocols and proof, but omit some of the low-level details and refer the
more interested reader to these works wherever appropriate. We note that for obtaining a better
abstraction of reality, some of our hybrids are described as global (GUC) setups [CDPW07]. The
main difference of such setups from standard UC functionalities is that the former is accessible by
arbitrary protocols and, therefore, allow the protocols to share their (the setups’) state. The low-
level details of the GUC framework—and the extra points which differentiate it from UC—are not
necessary for understanding our protocols and proofs; we refer the interested reader to [CDPW07]
for these details.

Protocol participants are represented as parties—formally Interactive Turing Machine instances
(ITIs)—in a multi-party computation. We assume a central adversary A who corrupts miners and
uses them to attack the protocol. The adversary is adaptive, i.e., can corrupt (additional) parties
at any point and depending on his current view of the protocol execution. Our protocols are
synchronous (G)UC protocols [BMTZ17, KMTZ13]: parties have access to a (global) clock setup,
denoted by Gclock, and can communicate over a network of authenticated multicast channels. We
assume instant and fetch-based delivery channels [KMTZ13, CGHZ16]. Such channels, whenever
they receive a message from their sender, they record it and deliver it to the receiver upon his
request with a “fetch” command. In fact, all functionalities we design in this work will have such
fetch-based delivery of their outputs. We remark that the instant-delivery assumption is without
loss of generality as the channels are only used for communicating the timestamped object to the
verifier which can anyway happen at any point after its creation. However, our treatment trivially
applies also to the setting where parties communicate over bounded-delay channels as in [BMTZ17].

We adopt the dynamic availabilitymodel implicit in [BMTZ17] which was fleshed out in [BGK+18].
We next sketch its main components: All functionalities, protocols, and global setups have a dy-
namic party set. i.e., they all include special instructions allowing parties to register, deregister,
and allowing the adversary to learn the current set of registered parties. Additionally, global setups
allow any other setup (or functionality) to register and deregister with them, and they also allow
other setups to learn their set of registered parties. For more details on the registration process we
refer the reader to Appendix F. We conclude this section by elaborating on the hybrid functionali-
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ties and global setups used by our protocol. These are standard functionalities from the literature;
however, for self-containment we have included formal descriptions in the Appendices.

The Clock Functionality Gclock (cf. Fig. 14). The clock functionality was initially proposed
in [KMTZ13] to enable synchronous execution of UC protocols. Here we adopt its global-setup
version, denoted by Gclock, which was proposed by [BMTZ17] and was used in the (G)UC proofs
of the ledger’s security.4 Gclock allows parties (and functionalities) to ensure that the protocol they
are running proceeds in synchronized rounds; it keeps track of round variable whose value can be
retrieved by parties (or by functionalities) via sending to it the pair: CLOCK-READ. This value is
increased when every honest party has sent to the clock a command CLOCK-UPDATE. The parties use
the clock as follows. Each party starts every operation by reading the current round from Gclock
via the command CLOCK-READ. Once any party has executed all its instructions for that round it
instructs the clock to advance by sending a CLOCK-UPDATE command, and gets in an idle mode where
it simply reads the clock time in every activation until the round advances. To keep more compact
the description of our functionalities that rely on Gclock, we implicitly assume that whenever an
input is received the command CLOCK-READ is sent to Gclock to retrieve the current round. Moreover,
before giving the output, the functionalities request to advance the clock by sending CLOCK-UPDATE
to Gclock.

The Random Oracle Functionality FRO (see App. B Fig. 15). As typically in cryptographic
proofs the queries to hash function are modeled by assuming access to a random oracle functionality:
Upon receiving a query (EVAL, sid, x) from a registered party, if x has not been queried before, a
value y is chosen uniformly at random from {0, 1}λ (for security parameter λ) and returned to the
party (and the mapping (x, ρ) is internally stored). If x has been queried before, the corresponding
ρ is returned.

The Global ledger Functionality Gledger. The last functionality (in fact, a global setup) is
a cryptographic distributed transaction ledger, and is the main tool used in our constructions.
We use the (backbone) ledgers proposed in the recent literature [BMTZ17, BGK+18] in order to
describe a transaction ledger and its properties. As proved in [BMTZ17, BGK+18] such a ledger is
implemented by known permissionless blockchains based on either proof-of-work (PoW), e.g., the
Bitcoin, or poof-of-stake (PoS) e.g., Ouroboros Genesis. The ledger stores an immutable sequence
of blocks—each block containing several messages typically referred to as transactions and denoted
by tx—which is accessible from the parties under some restrictions discussed below. It enforces the
following basic properties that are inspired by [GKL15, PSS17]:

Ledger’s growth. The size of the state of the ledger should be growing—by new blocks being
added—as the rounds advance.
(`, µ)-Chain quality. Let ` ∈ N be a number which is super-logarithmic in the security parameter
and µ ∈ N. In any sequence of ` blocks, at least µ > 0 of them have to be contributed by honest
parties—in this context, parties are often referred to miners.5

Transaction liveness. Old enough (and valid) transactions are included in the next block added
to the ledger state.

4As a global setup, Gclock also exists in the ideal world and the ledger connects to it to keep track of rounds.
5Typically chain quality is specified by the ratio `/µ, but it is useful for our description to break this into two

parameters.
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We next give a brief overview of the ledger functionality Gledger proposed in [BMTZ17, BGK+18],
focusing on the properties of Gledger that are relevant for understanding our results (for self-
containment we have included the formal description of the ledger functionality proposed in [BMTZ17]
in Appendix G). Along the way we also introduce some useful notation and terminology. We refer
the reader interested on the low-level details of the ledger functionality and its UC implementation
to [BMTZ17, BGK+18]. We note that with minor differences related to the nature of the resource
used to implement the ledger, PoW vs PoS, the ledgers proposed in these works are identical.

At a high-level anyone (honest miner or the adversary) might submit a transaction to Gledger
which is validated by means of a filtering predicate, and if it is found valid it is added to a buffer. The
adversary A is informed that the transaction was received and is given its contents.6 Periodically,
Gledger fetches some of the transactions in the buffer and creates a block including these transactions
and adds this block to its permanent state, denoted as state, which is a data structure that
includes the sequences of blocks that the adversary can no longer change. (In [GKL15, PSS17] this
corresponds to the common prefix.)

Any miner or the adversary is allowed to request a read of the contents of the state and every
honest miner will eventually receive state as its output. However, as observed in [BMTZ17], it is
not possible to achieve with existing constructions that at any given point in time all honest miners
see exactly the same blockchain length, so each miner may have a different view of the state which
is defined by the adversary. Therefore, the functionality Gledger defines, for every honest miner pi, a
subchain statei of the state of length |statei| = pti that corresponds to what pi gets as a response
when it reads the state of the ledger. For convenience, we denote by state|pti the subchain of
state that finishes in the pti-th block. Informally, the adversary can decide the value of the pointer
pti for each miner, with the following constraints: (1) he can only move the pointers forward; and
(2) he cannot set pointers for honest miners to be too far apart, i.e., more than WindowSize state
blocks. The parameter WindowSize ∈ N reflects the similarity of the blockchain to the dynamics
of a so-called sliding window, where the window of size WindowSize contains the possible views of
honest miners onto state and where the head of the window advances with the head of state.

3 Technical Summary

In this section, for the sake of brevity and due to the page limit, we provide a technical summary
of our contributions. In the later sections, we provide elaborated versions of them.

3.1 Beacon functionality and enhanced ledger

In order to construct a source of sufficiently unpredictable and publicly verifiable randomness, we
design and use a blockchain-based beacon. We investigate how an ideal beacon can be weakened so
that it is implementable by a protocol which uses the ledger functionality and a random oracle. In
particular, we specify a weak beacon functionality which is sufficiently strong to be used for times-
tamping cryptographic primitives. Our beacon, similar to [BMTZ17, BGK+18, GKL15, PSS17],
relies on the assumption that the blocks generated by the honest parties include at least λ̂ bits
entropy. However, this does not mean that it is possible to extract at least λ̂-bit randomness from

6Taking a peak at the actual implementation of the ledger, this buffer contains transactions that, although vali-
dated, are either not inserted into a valid block yet, or are in a block which is not yet deep enough in the blockchain
to be considered immutable for an adversary.
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a sequence of blocks that contains an honestly generated entry. Generally speaking, the reason is
that parties work in parallel to extend the chain, and there is a possibility that they collide which
gives the adversary the choice between the colliding blocks. This gives the adversary a bit more
power in guessing the output of the beacon. Informally, the entropy of the honest block can be
reduced by a factor that depends on the number of honest blocks proposed within a small window
from the round in which the beacon emits its value. Nevertheless, as we will argue later, this issue
can at most eliminate a few bits of entropy from the beacon. Attempting to capture the above, we
hit a shortcoming of the ledger from [BMTZ17]. The reason is that the current definition of the
ledger does not account for the entropy of the honest blocks. A way to rectify that would be to
change the ledger functionality in a non-back-box manner and reprove the its security. To resolve
the aforementioned issue, we introduce an explicit wrapper called WBU-wrapper. In a nutshell,
the WBU-wrapper wraps the ledger functionality, i.e., takes control of all its interfaces, and acts as
an upper relayer. Together with the formal definition of the WBU-wrapper we also show that the
(UC-abstraction of the) Bitcoin backbone protocol in [BMTZ17] emulates the wrapped ledger. As
a next step we define a weak beacon functionality Bw and provide an instantiation of it using the
wrapped ledger functionality. This functionality can be queried with a round number ρ, and return
the couple (η, tsl), where η denotes the random value, and tsl represents the output number (i.e.,
there is not a one-to-one correspondence between the rounds of Gclock and the output number of
Bw). Note that any implementation of an ideal randomness beacon is expected to meet (at least)
the following requirements:

Agreement on the Output: The output of the beacon can be verified by any party who has access to
the beacon.

Liveness: The beacon generates new values as time advances. The output of the beacon can be
verified (albeit at some point in the future) by any party who has access to the beacon.

Perfect Unpredictability: No one should be able to bias or even predict (any better than guessing)
the outcome of the beacon before it has been generated.

Nevertheless, due to the adversarial influence on the contents of the ledger, we cannot obtain a
perfect beacon from the ledgers that are implemented by common cryptocurrencies (cf. also [BGZ16]
for an impossibility). Indeed, we will allow the adversary to predict the next ∆ outputs of Bw, and
to generate a new output after at most R rounds. At a high level, our beacon protocol works as
follows. A party that wants to compute the latest beacon’s output simply needs to compute the
hash of the latest `−µ+1 blocks of the ledger. This ensures that at least one hashed block is honest,
and therefore that the adversary cannot predict more than the next ∆ outputs, where ∆ = ` − µ.
Moreover, R = MaxRound, where MaxRound denotes the maximum number of rounds after that the
state of the ledger has to be extended. We note passing that one might be tempted to implement the
Bw by hashing only the last (stable) block of the hash chain, which would yield to a more efficient
construction. However, as we will argue later, this approach is not generic and is suitable only for a
certain type of blockchains. For more details on the wrapper and on the weak beacon we refer the
reader to Section 4 and 5 respectively.

3.2 Timed digital signature

In this section, we provide a technical overview of our timed signatures. Here, we extend the
standard notion of the digital signature by different levels of timing guarantees. In our model, a
timestamped signature σ for a message m is equipped with a time mark τ that contains information
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about when σ was computed by the signer (σ corresponds to an output of Gclock). We refer to this
special notion of signature as Timed Signature (TSign). We define three categories of security for
TSign: backdate security, postdate security, and their combination which we refer to just as timed
security. Intuitively, backdate security guarantees that the signature σ time-marked with τ has been
computed some time before τ ; postdate security guarantees that the signature σ was computed some
time after τ ; and timed security provides to the party that verifies the signature σ a time interval
around τ in which σ was computed. We will formally define these three new security notions with
a single notion Fw,t

σ parameterized by a flag t ∈ {+,−,±} where t = “ − ” indicates that the
functionality guarantees backdate security, t = “ + ” indicates postdate security, and t = “ ± ”
indicates timed security. Analogously to the weak beacon, Fw,t

σ and all parties that have access to
this functionality, are registered to Gclock which provides the notion of time inherently required by
our model.

In a nutshell, and more formally, the functionality Fw,t
σ provides to its registered parties a new

time-slot tsl ∈ N every R rounds (in the worst case). Once a time slot tsl is issued, it can be used
to time(stamp) a signature σ. The meaning of tsl depends on the notion of security that we are
considering. For backdate security (i.e., t = “− ”), a signature σ marked with tsl denotes that σ
was computed during a time slot tsl′ ≤ tsl. For postdate security (t = “ + ”) tsl denotes that σ
was computed during a time slot tsl′ ≥ tsl. For timed security, the signature σ is equipped with
two time-marks tslback and tslpost that denote that σ was computed in a time-slot tsl′ such that
tslpost ≤ tsl′ ≤ tslback. A new time-slot issued by Fw,t

σ can be immediately seen and used by
A. However, the adversary can delay honest parties from seeing new time-slots—i.e., truncate the
view that each honest party has of the available time-slots. That is, for each party pi, A can decide
to hide the most recent W -many available time-slots. There are also other subtleties that the ideal
functionality Fw,t

σ needs to capture and this makes the functionality more complicated that one
might expect. We refer the reader to the formal definition of the functionality in Sec. 6.

To obtain postdate security we rely on the weak beacon and on signatures. The signer in our
case queries the beacon thus obtaining the pair (η, tsl) where η represents the tsl-th output of
Bw (which is also the most recent) and sign the message together with with η. In order to obtain
backdate-security, the signer inserts its signature, via a transaction to the blockchain. Now, the
signature is only considered validly timed after it appears on the ledger’s state and is posted within
a predefined delay. Moreover, as we will prove, combining the above two ideas yields a signature
with both backdate and postdate security. For the formal constructions and definition we refer the
reader to Section 6.

3.3 Timed Zero-Knowledge PoK (TPoK) and Signature of Knowledge (TSoK)

TPoK. In this section we apply the same methodology used for timed signatures in the previous
section to defined analogously timed versions of non-interactive zero-knowledge proofs of knowledge.
The basis for our approach is the standard UC Non-Interactive Zero-Knowledge functionality pro-
posed FNIZK in [GOS12]. Roughly, FNIZK considers two parties, a prover and a verifier. The prover
provides as input to FNIZK an NP-statement x. The functionality checks whether (x,w) ∈ Rel
(where Rel is an NP-relation) and if the check is successful then FNIZK stores (x, π) and sends a
proof π to the prover. The verifier can query the functionality with a couple (x, π), and if FNIZK

stores the couple (x, π) sends 1 to the verifier, 0 otherwise.
We extend FNIZK to consider different levels of timed-security, in the same way as we have done

for signatures: A proof π generated with respect to an NP-statement is equipped with a time-mark
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tsl that gives some information about when π was computed. We refer to this notion of NIZK as
TPoK and, also in this case, we consider three categories of security: backdate, postdate and timed
security. The formalization of these notions is given by means of the UC-functionalities Fw,t

TPoK,
with t = “− ”, “ + ”, “± ”. Fw,t

TPoK is formally described in the Sec 7. In this setting, intuitively, a
prover can send to the functionality a couple (x,w), and if (x,w) ∈ Rel then Fw,t

TPoK returns a couple
(π, tsl), where tsl is a time-mark. A verifier that queries Fw,t

TPoK with a couple (π, tsl) and gets
1 as the answer from the functionality has the guarantees that: 1) the prover knew the witness for
the NP-statement x (like in case of FNIZK) and 2) the proof π was generated (using the witness)
in some moment specified by tsl. We also provide three instantiations, one for each of the three
security notions mentioned above. That is, we show a protocol Πw,t

TPoK that UC-realize Fw,t
TPoK for

all t ∈ {−,+,±}. Πw,−
TPoK is similar to Πw,−

σ , indeed the prover of Πw,−
TPoK, on input (x,w) ∈ Rel,

just needs to compute a NIZK proof (e.g. computed using FNIZK) and store it into the ledger.
Πw,+

TPoK instead needs to use Bw. Πw,+
TPoK follows the commit-and-prove paradigm in which the prover

commits to the witness w for the NP-statement x to be proven, and then proves to the verifier that
the committed message corresponds to a valid witness for x. In our protocol we want to associate
some time-stamp to the proof generated by the prover, so we slightly modify the above approach
as follows. The prover obtains the pair (η, tsl) by invoking the weak beacon Bw with the current
round ρ, where η represents the tsl-th output of Bw (which is also the most recent).

Then the prover computes a commitment com of w||η and proves to the verifier that com contains
a witness for x concatenated with η. The verifier, upon receiving the proof computed by the prover
accepts it if and only if the following two conditions hold: 1) value η has been output by Bw in some
round τ ; 2) the NIZK proof given by the prover is accepting. Since the NIZK that we use is a PoK
and we assume that a malicious prover cannot predict the output of the weak beacon Bw more than
δ = MaxRound · (WindowSize + ` − µ) rounds in advance then the verifier has the guarantee that
the proof has been computed (and that the witness w was known by the prover) in some moment
subsequent to τ − δ. The protocol Πw,±

TPoK instead internally runs Πw,+
TPoK and store the proof on the

ledger, and this is sufficient to provide timed security.

TSoK. The work of Chase et al. [CL06] introduces the notion of signature of knowledge (SoK).
A signature of knowledge schemes allows to issue signatures on behalf of any NP-statement. That
is, receiving a valid signature for a message m with respect to an NP-statement x means that the
signer of m knew the witness w for the NP-statement x. Exactly in the same spirit of signature
and NIZK, we define the notions of backdate, postdate and timed SoK. That is, we define the UC-
functionalities Fw,t

TSoK with t ∈ {−,+,±}. Those functionalities are analogous to the functionalities
for timed signatures and NIZKs we have just discussed (we refer the reader to Sec. 8 for the formal
description of the functionalities and the protocols). It should be easy to see that postdate, backdate
and timed secure NIZK implies respectively postdate, backdate and timed secure TSoK. Indeed we
observe in the Fw,t

TPoK-hybrid model it is possible to obtain a protocol that UC-realizes Fw,t
TSoK. The

approach is to construct a commitment of a witness contateneted with the message that we want
to sign and then run Fw,t

TPoK to prove that the commitment actually contains the concatenation of
the witness for x and the message m.
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4 Weak Block Unpredictability (WBU)

A delicate point about the ledger from [BMTZ17, BGK+18] is the way it enforces the chain quality
property from [GKL15]. Recall that this property requires that in every sequence of ` blocks put
into the state, at least µ of them have to be associated with honest leaders. The ledger enforces this
by the simulator declaring in a special field—corresponding to a coinbase transaction—the identity
of the party who should be considered as having inserted each block; the extend-policy predicate will
then ensure that the simulator has to declare blocks as created by honest parties with a sufficiently
high frequency as above.

Our analysis—as well as the security analyses of the ledger [BMTZ17, BGK+18] and the back-
bone abstraction of the protocol [GKL15, PSS17]—uses the assumption that the coinbase trans-
action of such honest blocks includes at least λ̂ bits randomly chosen by an honest party7. One
might be tempted to deduce that it is possible to extract (at least) λ̂ bits of randomness from
each sequence of ` blocks. However, this is not the case. Informally, the reason is that parties
are in parallel working to extend the chain, and there is a chance that they might collide, giving
the adversary the choice between the colliding blocks. And, although, one can use the existence
of uniquely successful rounds—i.e., rounds in which only one honest party succeeds in solving the
PoW puzzle—guaranteed to exist by the analysis of [GKL15], this is not sufficient: The problem is
that the most recent part of the blockchain is not stable (it is not part of the common prefix) so the
adversary can, in principle overwrite it, potentially using alternative postfixes (which can include
blocks even by honest parties that have inconsistent view of the blockchain’s head). This gives the
adversary a bit more slackness in guessing the output of the beacon. Informally, the entropy of the
honest block can be reduced by a factor that depends on the number of honest blocks proposed
within a small window from the round in which the beacon emits its value. However, as we will
argue below, this grinding might at most eliminate a few bits of entropy from the beacon.

Attempting to capture the above, we hit a shortcoming of the ledger from [BMTZ17]. The reason
is that in the current definition of the ledger, there is no way for an honest party to insert some
random value into a block’s content, as the ledger allows its simulator to have full control of the
contents of the blocks inserted into the state. Note that the extend policy algorithm (responsible
for enforcing the chain quality and liveness) in the ledger functionality does not account for the
above property. A way to rectify that would be to adjust the extend policy, but this would then
mean changing the ledger in a non-transparent manner.

Instead, here we choose to take the following approach, which was also proposed in [BMTZ17]
for explicitly capturing assumptions—in the case of [BMTZ17] it was used for capturing honest
majority of computing power: We introduce an explicit wrapper that exactly captures the property
that yields the above entropic argument. We refer to this wrapper as WBU-wrapper, and to the
corresponding property that it enforces as weak beacon unpredictability, and denote it as WWBU.

In a nuttshel, the WBU-wrapper wraps the ledger functionality, i.e., takes control of all its
interfaces, and acts as a relayer except for the following behavior: It might accept a special input
from the simulator in any round (even multiple times per round). Once it does, it returns a
random nonce N and records the pair (N, ρ), where ρ is the current round. Furthermore, for
each block inserted into the state, it records the block along with the round in which this insertion
occurred (note that the wrapper can easily detect insertions by reading the state through all miner’s

7Formally, in [BMTZ17, BGK+18] the ledger chooses the contents of the coinbase transactions of honest blocks,
including the nonces and possible new keys/wallet-addresses, hence the simulator cannot predict them.
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interfaces). If it observes that the simulator does not ask for a nonce for more than ` · MaxRound
rounds, or does not insert a block with its coinbase including a previously output nonce N within
a δ-long time window from the creation of N , where δ = MaxRound · WindowSize · (`− µ), then the
wrapper halts. The formal definition of the weak block unpredictability wrapper is as follows.

Definition 1 (Weak Block Unpredictability Wrapper: WWBU) A WWBU is a functionality-
wrapper (that wraps Gledger) and operates as follows:

• Upon receiving (new_nonce) from the simulator it returns random fresh N ∈ {0, 1}λ to the
simulator, and records (N, ρ), where ρ is the current round (WWBU can get this round by
querying the clock.)

• For any block proposed by the simulator that makes it into the ledger’s state, which is flagged
(via the coinbase transaction, by the simulator) as originating from an honest party (WWBU

can detect this as discussed above). If this block does not contain some N previously recorded,
then halt; otherwise, if (N, ρ′) has been recorded and the current round index is ρ > ρ′ + δ =
ρ′ + MaxRound · WindowSize · (` − µ) then halt. In any other case simply relay messages
between the wrapped functionality and the entities it is connected to (i.e., the simulator, the
environment, and the global setups it has registered with.)

As an additional contribution of this work, which we believe might be of independent interest,
we prove the following lemma which states that the (UC abstraction of the) Bitcoin backbone
protocol from [BMTZ17] emulates the wrapped ledger WWBU[Gledger], where, Gledger is the ledger
from [BMTZ17]. We prove that by showing that the blocks generated by the protocol satisfy the
weak beacon unpredictability property. The lemma follows then directly by observing that the
simulator of [BMTZ17] internally generates the coinbase for honest blocks by emulating the honest
protocol. The detailed proof can be found in Appendix E.4.

Lemma 1 The (UC version of the) Bitcoin backbone protocol ΠBB [BMTZ17] realizesWWBU(Gledger).

5 The (Weak) Beacon functionality

Before discussing the timed versions of the cryptographic primitives proposed in our work, we de-
scribe how to utilize the blockchain to derive a source of sufficiently unpredictable randomness, which
we refer to as a weak (randomness) beacon. Note that any implementation of an ideal randomness
beacon would be expected to satisfy (at least) the following properties:

Agreement on the Output: The output of the beacon can be verified by any party who has access to
the beacon.

Liveness: The beacon generates new values as time advances. The output of the beacon can be
verified (albeit at some point in the future) by any party who has access to the beacon.

Perfect Unpredictability: No one should be able to bias or even predict (any better than guessing)
the outcome of the beacon before it has been generated.

However, as discussed in the introduction, due to the adversarial influence on the contents of the
ledger, we cannot obtain such a perfect beacon from the ledgers that are implemented by common
cryptocurrencies (cf. also [BGZ16] for an impossibility). Nonetheless, as it turns out, even under
a worst-case analysis as in [GKL15, BMTZ17], the contents of the ledger are periodically updated
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check_time_table(T , T ′,P, R,maxtsl)
If all the following conditions are satisfied
1. T is a prefix of T ′;
2. For each corrupted party pi T ′[R, pi] = maxtsl;
3. For all j ∈ {0, . . . , R− 1}, either T ′[j + 1, pi] = T ′[j, pi] or T ′[j + 1, pi] = T ′[j, pi] + 1;
4. For all l ∈ {0, . . . , R}, for all pi, pj ∈ P, |T ′[l, pj ]− T ′[l, pi]| ≤ WindowSize

then return 1, else return 0.

force_time_table(T ,P, R,maxtsl)
Generate a random T ′ such that check_time_table(T , T ′,P, R,maxtsl) = 1
Return T ′.

define_new_set(MaxSize)

Define S = ∅. For i = 1 to MaxSize pick ηi
$←− {0, 1}λ and add ηi to S. Return S.

check_validity(j)

c← 0
For i = j − `, . . . , j
Parses H[i] as (ηi, hflagi)

If hflag = 1 then set c← c+ 1

if c ≥ µ then return 1, else return 0.

force_liveness(maxtsl, T ,H)

maxtsl ← maxtsl + 1,
T ← force_time_table(T ,P, R,maxtsl),

η
$←− {0, 1}λ,

H[maxtsl]← (η, 1).
return (maxtsl, T ,H)

check_liveness(τlast, R)
if τlast + MaxRound = R then return 0 else return 1

Figure 1: Auxiliary Procedures.

with fresh unpredictable randomness. In the following, we provide a formal definition of a beacon
satisfying a weaker notion of liveness and unpredictability, which as we will prove, can be constructed
having blackbox access to the global functionalityWWBU(Gledger). We refer to this beacon as a weak
beacon. As we shall show, this beacon will be sufficient for our timestamping schemes.

In a nutshell, our weak beacon generates an unpredictable value η every ∆ outputs. Concretely,
we define our weak beacon as a UC-functionality Bw in the Gclock-hybrid model. Note that an ideal
beacon functionality is straightforward to define in this model as follows. It maintains a vector H of
random values available to anyone upon request, and in each round it appends to this string a new
uniformly random value. Before we formally define our weak beacon Bw, we review the ways in which
our weak beacon relaxes the ideal-beacon properties, and the additional capabilities it offers to the
adversary. Bw is parameterized by a set of parameters w = ((µ, `), MaxRound, WindowSize, MaxSize)
whose role will become clear as we go over the adversary’s capabilities:

Eventual Agreement on the Output: Similar to the ideal beacon, the functionality maintains an out-
put sequence vector H. However, instead of the parties guaranteed a consistent view of H,
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the adversary might choose a prefix of H that each party sees, with the restriction that length
difference of the prefixes seen by any two parties in any round is upper bounded by a pa-
rameter WindowSize. More precisely, each party pi can see only the first pti elements of H,
where pti is adversarially chosen in each round, with the restriction that the adversary is that
|H| − pti ≤ WindowSize for all pi registered to Bw. In our weak beacon functionality this
restriction will be enforced by means of a checking procedure, denoted as check_time_table,
which will be executed whenever the adversary attempts to rewrite indexes; if the check fails
then another procedure, force_time_table, is invoked which overwrites the adversary’s choices
with values of pti that adhere to the above policy.

Slow Liveness: Bw does not necessarily generate a new value in every round. Instead, the adversary
can delay the generation of a new value but only by at most MaxRound rounds.

Weak Unpredictability: The adversary has the following influence on the output of the beacon:
The adversary can bias some of the beacon’s outputs. More precisely, assume that Bw is
about to choose its ith value to be appended to its output vector H. The adversary is given
a set Si of random values (where |Si| ≤ MaxSize = poly(λ)) and a choice: he can either allow
the beacon to randomly choose the i-th output (in this case this output is considered honest),
or he can decide on a value ηi ∈ Si to append to the output vector. But, the restriction is
that within every window of ` outputs, at least µ of them will be honest (looking ahead,
this will be enforced by means of a procedure check_validity described in the Fig.1.)
The adversary can predict, in the worst case, the next ` − µ outputs of the beacon. More
precisely, let n be the size of H; the adversary can ask Bw to see `−µ sets Sn+1, . . . ,Sn+`−µ
from which the next ` − µ outputs will be chosen. In terms of rounds, this means that
at any point the adversary might predict the output of a beacon for up to the next δ =
(`− µ+ WindowSize) · MaxRound rounds.

In the following, we elaborate on the exact power that each of the above properties yields to
the adversary. For capturing eventual agreement on the output and slow liveness, we introduce the
notion of a time table T . It is a table with one column for each party that has ever been seen
or registered with the beacon, indexed by the ID of the corresponding party (recall that we allow
parties to register and deregister), and one row for each (clock) round. The table is extended in
both dimensions as new parties register and as the time advances. For a party pi and (clock-)round
τ , the entry T [τ, pi] is an integer tsl that we call time-slot index. This value tsl defines the size of
the prefix of the beacon’s output H that pi can see at round τ . That is, pi at round τ can request
any of the first tsl outputs of Bw, denoted by H[1], . . . ,H[tsl].

The adversary is allowed to instruct Bw as to how T should be populated under the following
restrictions: (1) for any party the values of its column, i.e., its time-slot indices, are monotonically
non-decreasing and they are increasing by at least once in every MaxRound rounds (this will enforce
slow liveness), and (2) in any given round/row, no two time-slot indices (of two different parties) can
be more than WindowSize far apart (this together will enforce the eventual agreement property).
These properties are formally enforced by two procedures, called force_time_table and

check_time_table that check if the adversary complies with the above policy as follows: The
procedure check_time_table takes as input the current time table T , a new table T ′ proposed by
the adversary, the set of parties P registered to Bw, the current round R, maxtsl = |H|; it outputs
0 if T ′ is invalid, and 1 otherwise. The procedure force_time_table is invoked to enforce the policy
mandated by check_time_table in case the adversary is caught trying to violate it. In a nutshell,
it generates a valid and randomly generated time table T ′ to be adopted instead of the adversary’s
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proposal. More concretely, force_time_table is invoked in the following two cases: 1) If H has not
been extended in the last MaxRound rounds. In this case Bw generates a random output, appends
it to H and extends T using force_time_table. 2) If the adversary has not updated T in the last
round, then a new T ′ (that extends the previous one) is generated via force_time_table.

The above two procedures are formally described in Fig. 1 and are, in fact, useful also for the
definition of our other (timed) UC-functionalities described in the following section. The trickiest
of the above properties to capture (and enforce in the functionality) is weak unpredictability. The
idea is the following. Assume that the beacon has already generated outputs η1, . . . , ηi−1, where
ηi−1 was generated in round τ . Recall that, per the slow liveness property, the beacon does not
generate outputs in every round. In every round after τ , the adversary is given a sequence of `− µ
output candidate sets Si, . . . ,Si+`−µ sampled by Bw and can do one of the following:
(1) decide to set the i-th beacon’s output to a value from Si of his choice. In this case, ηi is set

to this value and flagged as dishonest (this is formally done by setting a flag hflagi ← 0 and
storing the pair (ηi, hflagi)); the adversary is also given a next set Si+`−µ+1 of size MaxSize

sampled by the beacon by choosing MaxSize-many random values from {0, 1}λ (cf. procedure
define_new_set(MaxSize) in Fig. 1). Looking ahead in our beacon protocol, λ will correspond
to the bits of entropy that are guaranteed to be included in an honestly generated ledger block.
Si+`−µ+1 will be the output candidate set for the (i+ `− µ+ 1)-th beacon output.

(2) instruct the beacon to ignore Si and instead choose a uniformly random value for ηi. In this
case, the beacon marks the i-th output as honest, i.e., sets hflagi := 1, informs the adversary
about ηi, disposes of all existing output candidates sets, samples ` − µ fresh candidates sets
Si+1, . . . ,Si+`−µ+1 and hands them to the adversary.

(3) instruct the beacon to not include any new output in the current round.
The choice (1) above captures the fact that the adversary can predict the next `− µ outputs of

the beacon. However, to ensure that the above weakened unpredictability is meaningful, does not
mess with liveness, and also achieves a guarantee similar to the chain quality property—i.e. that
a truly random (honest) output of length λ is generated in sufficiently small intervals—the beacon
enforces a policy on the adversary which ensures that the adversary’s choices abide to the following
restrictions: (A) any sequence of ` outputs of the beacon contains (at least) µ honest outputs,
generated (randomly) by Bw, and (B) the adversary can leave the beacon without an output for at
most MaxRound sequential rounds. Condition A is checked by the procedure check_validity whenever
the adversary attempts to propose a new output from the corresponding candidate set, by taking
choice (1) above; if the check fails the proposal of the adversary is ignored. Condition B is checked
by procedure force_liveness(maxtsl, T ,H); if it fails, i.e., the adversary tries to delay the beacon’s
update by more than MaxRound rounds, then procedure force_liveness(maxtsl, T ,H) is invoked which
forces the above policy in a default manner. The helper procedures and the formal description of
our weak beacon functionality are included in Fig. 1 and 2, respectively.

5.1 Our weak beacon protocol

In this section, we propose a protocol that realizes the Bw functionality in the (WWBU(Gledger),FRO)-
hybrid model. We first recall some of the properties that Gledger (similarly WWBU(Gledger)) enjoys,
and will be useful here.

1. The chain quality property of Gledger guarantees that any portion of state of length ` con-
tains, at least, a portion of µ blocks originated by some honest parties. This means that the
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The functionality is parametrized by the algorithms check_time_table(T , T ′,P, R,maxtsl),
define_new_set(MaxSize), force_time_table(T ,P, R,maxtsl), check_validity(tsl) along with the
parameters MaxSize, MaxRound, (`, µ), τlast ← 0 maxtsl ← 0, the time table T , a set of parties
P and adversary A. T [0, pi] = 0 for all pi ∈ P. We assume the functionality to be registered
to Gclock. The functionality manages the output vector H that records the random values issued
by the functionality. H is initially empty. The functionality is also initialized with the sets
S1 ← define_new_set(MaxSize), . . . ,S`−µ ← define_new_set(MaxSize) and p ← 0. Let R be the the
response obtained by querying Gclock, upon receiving any input I from any party or from the adversary
act as follows:

• If check_liveness(τlast, R) = 0 then (maxtsl, T ,H) = force_liveness(maxtsl, T ,H)

• If check_time_table(T , T ,P, R,maxtsl) = 0 then T ← force_time_table(T ,P, R,maxtsl).

Fetch

- If I = (FETCH, τreq, sid) is received from party pi or from A (on behalf of a corrupted party pi)
check if τreq ≤ R. If it is not then ignore I; otherwise, do the following:

- tsl← T [τreq, pi];

- parses H[tsl] as (η, hflag);

- returns (FETCH, sid, tsl, η) to pi.

Sampling

- If I = (READ_SETS, sid) is received from A, then send (READ_SETS, sid,S1, . . . ,S`−µ) to A.
- If I = (SET, sid, η) is received from A, then check if H[maxtsl + 1] has not been set yet,

check_validity(maxtsl) = 1 and η ∈ Sp. If it is not, then ignore I; otherwise, do the follow-
ing: τlast ← R, maxtsl ← maxtsl + 1, H[maxtsl] ← (η, 0), p ← p + 1 and send (OK, sid, η) to
A.

- If I = (SET_RANDOM, sid) is received from A, then check if H[maxtsl + 1] has not been set yet. If
it is not, then ignore I; otherwise, do the following:

- τlast ← R, maxtsl ← maxtsl + 1, η $←− {0, 1}λ, H[maxtsl]← (η, 1), p← 0.

- For i = 1, . . . , `− µ
Si ← define_new_set(MaxSize)

- send (OK, sid, η) to A.

Set delays
If I = (SET-DELAYS, sid, T ′) is received from A, then set b ← check_time_table(T , T ′,P, R,maxtsl). If
b = 1, then set T = T ′; ignore I otherwise.

Figure 2: The Bw functionality.

remaining `− µ blocks might be chosen by the adversary and the content of these blocks are
under full control of the adversary.

2. Since honest blocks include at least λ bits of entropy, the output of a hash function modeled
as a RO with security parameter λ on input an honest block represents a uniform random
value in {0, 1}λ.
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At a high level, our beacon protocol works as follows. A party that wants to compute the
beacon’s output reads state from WWBU(Gledger) and outputs the hash of the latest ` − µ + 1
blocks of state. At first glance, as any chunk of ` − µ + 1 blocks of state contains (at least) an
honestly generated block, the output of the beacon is an unpredictable random value. However, this
is not the case. The first observation is that, using the technique described above, an adversary can
predict the next `− µ outputs of the beacon in advance. In particular, the adversary first allows a
sequence of µ honestly generated blocks to be added to the chain and then it inserts its own `− µ
pre-computed adversarial blocks after those µ blocks. But, the prediction power of the adversary
is not limited to ` − µ blocks. We recall that the view that an honest party has of the ledger
state could differ of at most WindowSize blocks. Therefore, in the worst case, the adversary sees
WindowSize blocks in advance with respect to an honest party, thus giving an additional prediction
power to him. In conclusion we can claim that, given a ledger WWBU(Gledger) with chain quality
parameters (µ, `) and window size WindowSize, it is possible to construct a weak beacon Bw in
which an adversary can predict, with respect to an honest party, the next ∆ = `− µ+ WindowSize

outputs. This means that an adversary, in the worst case, can predict the outcome of the beacon
δ = MaxRound · ∆ rounds in advance with respect to an honest party, where MaxRound represents
the liveness parameter of Gledger. The only thing left to argue is how the output of the beacon are
distributed. In the above scenario, not only the adversary can predict the next `− µ outputs, but
can also bias those outputs since he can decide to extend state with any sequence of `− µ blocks.
Since we model the hash function as a random oracle, it is easy to see that the bias of the output
of the beacon depends on the randomness inside the honest blocks and on the hashing power of the
adversary. Indeed, a powerful adversary can always decide what the next ` − µ of state will be
in the worst case. In this work we denote with MaxSize the maximum number of queries that the
adversary can ask the RO. We observe that our instantiation of the weak beacon only needs to read
information from the ledger. In Fig. 3 we provide a formal construction of the weak beacon protocol
Πw that UC-realizes Bw with w = ((µ, `), MaxRound, WindowSize, MaxSize). The steps described in
Fig. 3 follows the description given here with the exception that all the parties invoke the procedure
update_time_table() every time that an input is received (see Fig. 4). This procedure helps a party
to keep track of the size of the ledger (i.e. the size of state) at any round.

We assume that a set of parties P are registered to WWBU(Gledger), Gclock and FRO. Every time that a
party pi ∈ P receives an input it invokes the procedure update_time_table(). Let cq← `− µ+ 1. The
party pi on input (FETCH, τ, sid) proceeds as follows.

1. Send (READ, sid) to WWBU(Gledger) and wait for an answer.

2. Upon receiving (READ, sid, state) from WWBU(Gledger) set tsl ← T local
pi (τ) and send

(EVAL, sid, tsl||state|tsl−cq,tsl) to FRO.
3. Upon receiving the answer (EVAL, sid, η) from FRO output (FETCH, sid, tsl, η).

Figure 3: The weak beacon protocol in (WWBU(Gledger),Gclock,FRO)-hybrid model.

Theorem 1 LetWWBU(Gledger) be the wrapper functionality for Gledger defined in Def. 1 parametrized
by ((µ, `), MaxRound, WindowSize), then protocol Πw described in Fig. 3 securely realizes Bw in
the (WWBU(Gledger),Gclock,FRO)-hybrid model with w = ((µ, `), MaxRound, WindowSize, MaxSize)
where MaxSize = poly(λ).
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update_time_table()
When the procedure is invoked by pi ∈ P the query (CLOCK-READ, sidC) is sent to Gclock. Upon
receiving the answer (CLOCK-READ, sidC , R) from Gclock, send (READ, sid) to WWBU(Gledger). Upon
receiving receiving (READ, sid, state) from WWBU(Gledger) set T local

pi (R) := |state|.

Figure 4: The procedure update_time_table().

Intuitively, in the proof of this theorem the simulator populates T and H by reading from
WWBU(Gledger) the view that each party has of the ledger state. We note that it would be easy to
also implement alternative ledger that manages the view that the parties have of the ledger state
using T by means of a protocol that uses the WWBU(Gledger) (this new ledger manages a time-table
T that is updated by asking the size of the state on the underlying ledger). We refer the reader to
Appendix E for the formal proof of the theorem.

5.2 Discussion on alternative constructions

By looking at some real blockchains such as the Bitcoin blockchain, one would be tempted to
implement Bw by hashing only the last (stable) block of the hash chain. This might actually
be a more efficient way to implement our weak-beacon functionality than the one in this work.
However, it would not be a generic approach and is suitable for a certain type of blockchains, e.g.,
Bitcoin. In particular, the alternative approach would require some properties of blockchains not
captures by Gledger. Indeed, for the case of Bitcoin we have that the blocks are organised in a hash-
chain—where the hash function behaves as a random oracle—and those aspects are not exported
to the UC Ledger. Our construction works for arbitrary blockchains, as it uses the UC ideal ledger
functionality by Badertscher et al. in a black-box (ideal) manner wrapped with WWBU. We use
WWBU to only capture the fact that honest blocks (which appear frequently according to chain
quality) have sufficient entropy, which we prove is the case using only the basic properties of the
Backbone protocol; for adversarial blocks the Ledger offers no unpredictability guarantees. Hence,
the alternative construction cannot work unless we make extra assumptions on the structure of the
blockchain and hence on the entropy of the maliciously generated blocks. We remark that even
though one might be able to prove that Bitcoin’s output does have such extra properties—sufficient
for the above alternative construction—the resulting statement would not be stronger: one would
still need to rely on the unpredictability of the next honest block and on chain quality; hence it
would at most give a slightly more efficient solution (hashing one block instead of `−µ) at the cost
of a more involved analysis with extra assumptions.

6 Timed Signatures (TSign)

In this section, we extend the standard notion of the digital signature by different levels of timing
guarantees. For self-containment, we have included the standard signatures functionality proposed
by Canetti [Can03] in Fig. 17 of Appendix B.

In our model, a timestamped signature σ for a message m is equipped with a time mark τ that
contains information about when σ was computed by the signer. We refer to this special notion
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of signature for a time mark τ that is associated with the global clock Gclock as Timed Signature
(TSign). We define three categories of security for TSign: backdate, postdate security, and their
combination which we refer to just as timed security. Intuitively, backdate security guarantees
that the signature σ time-marked with τ has been computed some time before τ ; postdate security
guarantees that the signature σ was computed some time after τ ; and timed security provides to
the party that verifies the signature σ a time interval around τ in which σ was computed.

We formally define these three new security notions by means of a single UC-functionality Fw,t
σ

(see Fig. 5.a and 5.b for a detailed description.) Fw,t
σ is parameterized by a flag t ∈ {+,−,±}

where t = “ − ” indicates that the functionality guarantees backdate security, t = “ + ” indi-
cates postdate security, and t = “ ± ” indicates timed security. Analogously to the weak beacon,
Fw,t
σ and all parties that have access to this functionality, are registered to Gclock which provides

the notion of time inherently required by our model. For generality, we parametrize Fw,t
σ with

w = (∆, MaxRound, WindowSize, waitingTime), where the meaning of these parameters is discussed
below.

In a nutshell, the functionality Fw,t
σ provides to its registered parties a new time-slot tsl ∈ N

every MaxRound rounds (in the worst case). The exact moment in which each such time slot is issued
is decided by the adversary A via the input (NEW_SLOT, sid). Once a time slot tsl is issued, it can
be used to time(stamp) a signature σ. The meaning of tsl depends on the notion of security that
we are considering. For backdate security (i.e., t = “− ”), a signature σ marked with tsl denotes
that σ was computed during a time slot tsl′ ≤ tsl. For postdate security (t = “ + ”) tsl denotes
that σ was computed during a time slot tsl′ ≥ tsl. For timed security, the signature σ is equipped
with two time-marks tslback and tslpost that denote that σ was computed in a time-slot tsl′ such
that tslpost ≤ tsl′ ≤ tslback. A new time-slot issued by Fw,t

σ can be immediately seen and used
by A. However, A can delay honest parties from seeing new time-slots—i.e., truncate the view that
each honest party has of the available time-slots. That is, for each party pi, A can decide to hide
the most recent WindowSize-many available time-slots. This means that, for example, in any round
R the party p1 could see (and use) the most recent time-slot tsl, whereas p2’s view might have
tsl− WindowSize as the most recent time-slot.

To keep track of the association between rounds and time-slots, Fw,t
σ manages a time table T

in the same way as Bw. That is, an entry T [τ, pi] is an integer tslpi , where pi represents a party
registered to Fw,t

σ and τ represents round number. The value tslpi defines the view that the party
pi has of the available time-slots in round τ . In particular, at round τ party pi can access and
use the time slots 1, . . . , tslpi . The time table T is controlled by A but it is limited to change
the content of T according to the parameter WindowSize as we discussed above. More formally,
Fw,t
σ checks that the changes made by A to T are valid using the procedures check_time_table and

force_time_table (the same ones that were used by our weak beacon, see Fig. 1.)
Note that the way to obtain postdate security is by relying on the unpredictability of the beacon.

However, this creates the following subtlety. As the adversary is able to predict future values of
our (weak) beacon he can attempt to postdate signatures as far in the future as his prediction
reaches. To capture this behaviour, our functionality is parameterized by a value ∆ ∈ N, which we
call the prediction parameter. This parameter is only relevant when t ∈ {“ + ”, “ ± ”}. With this
parameter we allow the adversary to use, before of any honest party, ∆ new time-slots. This means
that, for the case of postdate and timed security, an adversary can compute a signature σ marked
with a time slot maxtsl + ∆, where maxtsl denotes the most recent time-slot. However this creates
a new issue, this time with the security proof: when the simulator receives from its adversary a
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signature timed with a presumably predicted beacon value, it cannot be sure whether the adversary
will indeed instruct the beacon to output this value when its time comes. To resolve that, the
functionality allows its simulator/adversary to withdraw signatures which refer to a future time
slot tsl > maxtsl via the command (DELETE, sid, ·). We also introduce a parameter waitingTime,
which is relevant when t ∈ {−,±} and allows the following adversarial interference: Whenever an
honest party wants to time-mark a signature, A can decide to delay the marking operation until that
waitingTime time-slots have been issued by Fw,t

σ . This means that an honest party that requests
to time-mark σ in round R has to wait, in the worst case, waitingTime · MaxRound rounds in order
to see σ time-marked. To guarantee that a new time-slot is available every MaxRound (at least)
rounds, any time that an input is received the functionality checks that a new time-slot has been
issued using the procedure check_liveness following exactly the same approach of Bw (see. Sec 5 for
more details on how the liveness is enforced).

The formalization of our functions (proposed in Fig. 5.a and 5.b) extends the Canetti’s standard
signature functionality FSIGN that we recall in Fig. 17). Roughly, FSIGN stores all the signatures that
are issued, and when a verification request for a message m occurs then FSIGN checks whether or not
she is storing a signature for m. In the description of Fw,t

σ we make explicit the data structure, that
we call signature-table, that stores the signature (with the corresponding time-stamping) by denoting
it with Tabσ. In the formal description of this and the other timed functionalities considered in
this work, we always use t as a parameter of the inputs. The reason to use t also as a part of the
input given to the timed functionalities is that there might be protocols that use multiple timed
functionality (e.g. the Fw,−

σ and Fw,±
σ ), and therefore it could be useful to discriminate the inputs

of Fw,−
σ from the input of Fw,+

σ by means of the parameter t. Finally, to keep the description of
the functionality as compact as possible, Fw,t

σ is also equipped with procedure standard_verification
(see Fig. 6) that abstracts the checks for completeness, unforgeability and consistency performed
by Canetti’s standard signature verification phase in FSIGN, Fig. 17).

6.1 Our constructions

We provide a scheme Πw,t
σ that UC-realizes the functionality Fw,t

σ for t = “ − ”, “ + ”, “ ± ”. The
backdate secure TSign scheme Πw,−

σ showed in Fig. 12 realizes Fw,−
σ in the (FSIGN,Gledger,Gclock)-

hybrid model. In this, informally, the signer signs a message m using a standard signature scheme,
creates a transaction that contains the signature of the message and then asks the ledger to store
the transaction permanently into state. Intuitively, the construction is secure as of the security
of the signature scheme and because the history of the ledger cannot be changed. Also, Πw,−

σ

realizes Fw,−
σ with w = (⊥, MaxRound, WindowSize, waitingTime) where MaxRound, WindowSize

and waitingTime are the parameters of Gledger. In this construction, as for the weak beacon
protocol, every honest party pi maintains a table T local

pi that is updated on any input received by
pi according to the procedure update_time_table(). The aim of T local

pi is to associate each round
of Gclock to the size of the state of Gledger. The postdate secure TSign scheme Πw,+

σ , showed in
the Fig. 8, realizes Fw,+

σ in the (FSIGN,Bw,Gclock)-hybrid model. In this protocol the signer, on
input a message m, first invokes the weak beacon Bw thus obtaining the most recent output (in
his view) η and then signs m||η using a standard signature scheme. Intuitively, this scheme is
secure due of the unforgeability of the signature scheme and because an adversary can, in the worst
case, predict only the future ∆ outputs of the beacon. More precisely, Πw,+

σ realizes Fw,+
σ with

w = (∆ = (`, µ), MaxRound, WindowSize,⊥) where MaxRound, WindowSize are the parameters of
Bw.
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Initialization. The main parameter of Fw,t
σ is t ∈ {−,+,±}. The functionality is also parametrized

by the algorithms check_time_table(T , T ′,P, R,maxtsl), force_time_table(T ,P, R,maxtsl),
check_liveness(τlast, R) along with the parameters WindowSize, MaxRound, ∆, maxtsl ← 0,
waitingTime, τlast ← 0 the time-table T , the signature-table Tabσ and running with parties P and
adversary A. T [0, pi]← 0 for all pi ∈ P. We assume that the parties are registered to Gclock. Let R
be the the response obtained by querying Gclock, upon receiving any input I from any party or from
the adversary act as follows:

If check_liveness(τlast, R) = 0 then maxtsl ← maxtsl + 1, τlast ← R, T ←
force_time_table(T ,P, R,maxtsl).
If check_time_table(T , T ,P, R,maxtsl) = 0 then T ← force_time_table(T ,P, R,maxtsl).

Key Generation.
Upon receiving a value (KEY_GEN, sid) from some party S ∈ P, verify that sid = (S, sid′) for
some sid. If not, then ignore the request. Else, hand (KEY_GEN, sid) to the A. Upon receiving
(VERIFICATION_KEY, sid, v) from the A, output (VERIFICATION_KEY, sid, v) to S, and record the
pair (S, v).
Signature.

If I = (TIMED_SIGN, sid, t,m, τreq) is received from party S, verify that sid = (S, sid′) for some
sid′. If not, then ignore the request. If τreq ≤ R then

• if t = “ + ” then record (t,⊥,m, S, τreq) and send (TIMED_SIGN, sid, t,m, τreq) to A;
• if t ∈ {−,±} then record (t,maxtsl,m, S, τreq) and send (TIMED_SIGN, sid, t,maxtsl,m, τreq)
to A;
• else output an error message to S and halt.

If I = (TIMED_SIGNATURE, sid, t,m, (tslback, σ, tslpost)) is received from A, verify that no entry
((m,σ, 0), tslpost) has been stored in Tabσ. If it is not then send an error message to S and halt.
If an entry (t, oldmax,m, S, τreq) has been recorded, then do the following.

• if t ∈ {−,±} then
- if (S is honest and tslback ≤ oldmax+waitingTime) or (S is corrupted) and tslback >

maxtsl) then tslback
′ ← tslback

- else output an error message to pi and halt.

• if t ∈ {+,±} then
- if (T [τreq, S] = tslpost and S is not corrupted) or (tslpost ≤ T [τreq, S] + ∆ and S is
corrupted) then tslpost

′ ← tslpost

- else output an error message to S and halt.

Add (tslback
′, (m,σ, v, 1), tslpost

′) to Tabσ and send (TIMED_SIGNATURE, sid,t, (tslback′,m, σ,
tslpost

′)) to S.

Figure 5.a: The Fw,t
σ functionality.

The timed secure TSign scheme Πw,±
σ showed in Fig. 9 realizes Fw,±

σ in the (Fw,+
σ ,Bw,Gclock)-

hybrid model. In the construction we promote the postdate security of Fw,+
σ to timed security by

simply storing the signature obtained via Fw,+
σ into the ledger. The security of this scheme follows

immediately from the postdate security of Fw,+
σ and from the immutability of Gledger.
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Verification
If I = (TIMED_VERIFY, sid, t, (tslback,m, σ, v′, tslpost)) is received then hand
(TIMED_VERIFIED, sid, t, (tslback,m, σ, v′, tslpost)) to A. Upon receiving
(TIMED_VERIFIED, sid,m, φ) from A invoke f = standard_verification(m,σ, v′, φ, tslpost)
and check if f = 1. If it is not, then send (TIMED_VERIFIED, sid,⊥,m, 0,⊥) to pi, otherwise set
τpost ← ⊥, τback ← ⊥ and do the following:

• If t ∈ {+,±} and T [R, pi] ≥ tslpost then find the smallest τpost such that T [τpost, pi] =
tslpost else send (TIMED_VERIFIED, sid, t,m, (⊥, π, 0,⊥)) to pi.

• If t ∈ {−,±} and T [R, pi] ≥ tslback then find the smallest τback such that T [τback, pi] =
tslback else send (TIMED_VERIFIED, sid, t,m, (⊥, π, 0,⊥)) to pi.

Send (TIMED_VERIFIED, sid, τback,m, f, τpost) to pi.
Set delays and new time-slots
If I = (NEW_SLOT, sid) is received from A then τlast ← R, maxtsl ← maxtsl + 1.
If I = (SET-DELAYS, sid, T ′) is received from A, then b ← check_time_table(T , T ′,P, R,maxtsl). If
b = 1 then T ← T ′ else ignore I.
Withdraw future signature If I = (DELETE, sid, t, (tslback,m, σ, v

′, tslpost)) then check
if tslpost > maxtsl. If it is not then ignore I otherwise delete the entry (if it exists)
(tslback, (m,σ, v, 1), tslpost) from the storage.

Figure 5.b: The Fw,t
σ functionality (cont’d).

standard_verification(m,σ, v′, φ, tslpost)

If v′ = v and the entry ((m,σ, v, 1), tslpost) is stored in Tabσ then set f = 1.
Else, if v′ = v, the signer is not corrupted, and no entry (m,σ′, v, 1, tslpost) for any σ′ is stored
in Tabσ, then set f = 0 and record the entry ((m,σ, v, 0), tslpost).
Else, if there is an entry (m,σ, v′, f ′, tslpost) stored in Tabσ then let f = f ′.
Else let f = φ and store the entry (m,σ, v′, φ, tslpost) in Tabσ.

Return f

Figure 6: The Procedure standard_verification

Theorem 2 The protocol Πw,−
σ described in Fig. 7 realizes with perfect security Fw,−

σ in the (Gledger,Gclock,FSIGN)-
hybrid model where Gledger is parametrized by ((µ, `), MaxRound, WindowSize, waitingTime).

Theorem 3 Let Fw,+
σ be the functionality parametrized by w = (∆, MaxRound, WindowSize,⊥),

then the protocol Πw,+
σ described in Fig. 8 realizes with perfect security Fw,+

σ in the (Bw′ ,Gclock,FSIGN)-
hybrid model where Bw′ is parametrized by w′ = ((µ, `), MaxRound, WindowSize, MaxSize) with ∆ =
`− µ.

We refer the reader to Appendix E for the formal proofs of the above theorems. The proof for
the following theorem follows the arguments given in the proof of Theorem 2. Indeed we observe
that the only difference here is that into the ledger we store a signature issued by Fw,+

σ instead of
a signature computed by FSIGN.
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We assume that the parties P are registered to Gledger, Gclock and FSIGN. Each party pi ∈ P manages
a local time table T local

pi that is updated any time that pi receives an input by invoking the procedure
update_time_table().
Initialisation. The signer S ∈ P sends (KEY_GEN, sid) to FSIGN thus obtaining
(VERIFICATION_KEY, sid, v).
Signature. The signer S ∈ P on input (TIMED_SIGN, sid,−,m, τreq) executes the following steps.

1. Send (SIGN, sid,m) to FSIGN and upon receiving the answer (SIGNATURE, sid,m, σ), create a trans-
action tx := (m,σ) and send (SUBMIT, sid, tx) to WWBU(Gledger).

2. Wait until tx is added to the state of WWBU(Gledger). Let tslback be the block of state that
contains tx, output (TIMED_SIGNATURE, sid,−, (tslback,m, σ,⊥)).

Verification. The party pi ∈ P on input (TIMED_VERIFY, sid,−, (tslback,m, σ, v′,⊥)) proceeds as
follows.

1. Send (VERIFY, sid,m, σ, v′) to FSIGN.

2. Upon receiving (VERIFIED, sid,m, b) from FSIGN, if b = 1 then send (READ, sid) to WWBU(Gledger)
else output (TIMED_VERIFIED, sid,−, (⊥,m, 0,⊥)).

3. Upon receiving the answer (READ, sid, state) from WWBU(Gledger) check if the transaction tx =
(m,σ) is stored in the tslback-th block of state. If it is, then find the smallest τback such that
T local
pi [τback] = tslback and output (TIMED_VERIFIED, sid,−, (τback,m, 1,⊥)) otherwise output

(TIMED_VERIFIED, sid,−, (⊥,m, 0,⊥)).

Figure 7: The protocol Πw,−
σ in the (FSIGN,Gledger,Gclock)-hybrid model.

We assume that the parties P are registered to FSIGN, Bw and Gclock.
Initialisation. The signer S ∈ P sends (KEY_GEN, sid) to FSIGN thus obtaining
(VERIFICATION_KEY, sid, v).
Signature. The signer S ∈ P on input (TIMED_SIGN, sid,+,m, τreq) executes the following steps.

Send (FETCH, τ, sid) to Bw and upon receiving (FETCH, sid, tslpost, η) send
(SIGN, sid, tslpost||m||η) to FSIGN.
Upon receiving (SIGNATURE, sid, tslpost||m||η, σ), σt ← (σ, η) and output
(TIMED_SIGNATURE, sid,+, (⊥,m, σt, tslpost)).

Verification. The party pi ∈ P on input (TIMED_VERIFY, sid,+, (⊥,m, σt, v′, tslpost)) parses σt
as (σ, η) and executes the following steps.

Parses σt as (σ, η) and query Bw to check when (and if) the value η was issued by Bw. If η has
never been issued by Bw then output (TIMED_VERIFIED, sid,+, (⊥,m, 0,⊥)). Else, let τpost be
the round in which η has been issued, send (VERIFY, sid, tslpost||m||η, σ, v′) to FSIGN.
Upon receiving (VERIFICATION, sid,m, b) from FSIGN, if b = 1 then output
(TIMED_VERIFIED, sid,+, (⊥,m, 1, τpost)) else output (TIMED_VERIFIED, sid,+, (⊥,m, 0,⊥))

Figure 8: The protocol Πw,+
σ in the (FSIGN,Bw,Gclock)-hybrid model.

Theorem 4 Let Fw,±
σ be the functionality parametrized by w = (∆, MaxRound, WindowSize, waitingTime),
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We assume that the parties P are registered to Gledger, Gclock and to the functionality Fw,+
σ . Each

party pi ∈ P manages a local time table T local
pi that updates on any input he receives by invoking the

procedure update_time_table().
Initialisation. The signer S ∈ P sends (KEY_GEN, sid) to Fw,+

σ thus obtaining
(VERIFICATION_KEY, sid, v).
Signature. The signer S ∈ P on input (TIMED_SIGN,±, sid,m, τreq) execute the following steps.

1. Forward (TIMED_SIGN, sid,+,m, τreq) to Fw,+
σ and upon receiving the answer

(TIMED_SIGNATURE, sid,+, (⊥,m, σ, tslpost)), create a transaction tx ← (m,σ, tslpost)
and send (SUBMIT, sid, tx) to WWBU(Gledger).

2. Wait until tx is added to the state of WWBU(Gledger). Let tslback be the block of state that
contains tx, output (TIMED_SIGNATURE, sid,±, (tslback,m, σ, tslpost)).

Verification. The party pi ∈ P on input (TIMED_VERIFY, sid,±, (tslback,m, σ, v′, tslpost)) proceeds
as follows.

1. Send (TIMED_VERIFY, sid,+, (⊥,m, σ, v′, tslpost)) to Fw,+
σ .

2. Upon receiving (TIMED_VERIFIED, sid,+,⊥,m, b, τ) from Fw,+
σ , if b = 1 then send (READ, sid) to

WWBU(Gledger) else output (TIMED_VERIFIED, sid,±,⊥,m, 0,⊥).

3. Upon receiving the answer (READ, sid, state) from WWBU(Gledger) check if the transaction tx =
(m,σ, tslpost) is stored in the tslback-th block of state. If it is, then find the smallest τback such
that T local

pi [τback] = tslback and output (TIMED_VERIFIED, sid, τback,m, 1, τpost) otherwise output
(TIMED_VERIFIED, sid,⊥,m, 0,⊥).

Figure 9: The protocol Πw,±
σ in the (Fw,+

σ ,Gledger,Gclock)-hybrid model.

then the protocol Πw,±
σ described in Fig. 9 realizes with perfect security Fw,±

σ in the (Fw,+
σ ,Gledger,Gclock)-

hybrid model-hybrid model.

7 Timed Zero-Knowledge Proof of Knowledge (TPoK)

The NIZK Functionality. In this section we apply the same methodology used for timed signa-
tures in the previous section to defined analogously timed versions of non-interactive zero-knowledge
proofs of knowledge. The basis for our approach is the standard UC Non-Interactive Zero-Knowledge
functionality proposed in [GOS12].8 In order to use the functionality from [GOS12] as basis for our
fetch-based delivery (cf. Section 2) timed NIZK functionality, we first turn it into a fetch-based
delivery version: instead of waiting for the adversary to deliver the proof to the honest verifier,
we allow the verifier to request for the proof, a request which is answered directly if the adversary
has allowed the proof to be generated. This is a simple syntactic modification of the functionality
from [GOS12]; for self-containment we have included the resulting functionality, denoted by FNIZK,
in Fig. 16 in Appendix B.

Here is how we extend FNIZK to consider different levels of timed-security, in the same way as
we have done for signatures: A proof π generated with respect to an NP-statement is equipped
with a time-mark tsl that gives some information about when π was computed. We refer to this

8Although [GOS12] focuses on constructing UC perfect NIZK argument of knowledge the corresponding function-
ality is the same for UC NIZK proof of knowledge.
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notion of NIZK as TPoK and consider three categories of security: backdate, postdate and timed
security. The formalization of these notions is given by means of the UC-functionalities Fw,t

TPoK, with
t = “− ”, “ + ”, “± ”. Fw,t

TPoK is formally described in the Fig. 10.a and 10.b. In this, intuitively, a
prover P that generates an accepting proof π equipped with a time-mark tsl gives to the verifier
V the guarantee that: 1) he knew the witness for the NP-statement that he is proving; 2) the
proof π was generated (using the witness) in some moment specified by tsl. We also provide three
instantiations, one for each of the three security notions mentioned above. That is, we show a
protocol Πw,t

TPoK that UC-realize Fw,t
TPoK for all t ∈ {−,+,±}. We show the details of Πw,+

TPoK and
Πw,±

TPoK only since Πw,−
TPoK is similar to Πw,−

σ . Indeed the prover of Πw,−
TPoK, on input (x,w) ∈ Rel, just

needs to compute a NIZK proof (e.g. computed using FNIZK) and store it into the ledger.

Initialization. The main parameter of Fw,t
TPoK is t ∈ {−,+,±}. The function-

ality is also parametrized by the algorithms check_time_table(T , T ′,P, R,maxtsl),
force_time_table(T ,P, R,maxtsl), check_liveness(τlast, R) along with the parameters WindowSize,
MaxRound, ∆, maxtsl ← 0, waitingTime, τlast ← 0 the time-table T and running with parties
P = {p1, . . . } and adversary A. T [0, pi] ← 0 for all pi ∈ P. We assume that the parties are
registered to Gclock. Let R be the the response obtained by querying Gclock, upon receiving any
input I from any party or from the adversary act as follows:

If check_liveness(τlast, R) = 0 then maxtsl ← maxtsl + 1, τlast ← R, T ←
force_time_table(T ,P, R,maxtsl).
If check_time_table(T , T ,P, R,maxtsl) = 0 then T ← force_time_table(T ,P, R,maxtsl).

Proof.
If I = (TIMED_PROVE, sid, (x,w), τreq) is received from party pi or from A (on behalf of a cor-
rupted party pi) check if (x,w) ∈ Rel and τreq ≤ R. If it is not then ignore I otherwise do the
following.

• if t ∈ {−,±} then record (t,maxtsl, x, pi, τreq) and send (TIMED_PROVE, sid, t,maxtsl, x, pi)
to A;
• if t = “ + ” then record (t,⊥, x, pi, τreq) and send (TIMED_PROVE, sid, t, x, pi) to A;

If I = (TIMED_PROOF, sid, (t, tslback, x, pi, π, tslpost)) is received from A then check if
(t, oldmax, x, pi, τreq) was recorded. If it is not then ignore I otherwise do the following.

• if t ∈ {−,±} then
- if (pi is honest and tslback ≤ oldmax+waitingTime) or (S is corrupted) and tslback >

maxtsl) then tslback
′ ← tslback else ignore I.

• if t ∈ {+,±} then
- if (T [τreq, pi] = tslpost and pi is not corrupted) or (tslpost ≤ T [τreq, pi] + ∆ and pi is
corrupted) then tslpost

′ ← tslpost else ignore I.

Store (tslback
′, (x, π), tslpost

′) and send (TIMED_PROOF, sid, (tslback′, x, π, tslpost′)) to pi.

Figure 10.a: The Fw,t
TPoK functionality.

TPoK with Postdate Security via UC-NIZK. Our protocol Πw,+
TPoK UC-realizes Fw,+

TPoK in the
(FNIZK,Bw,Gclock)-hybrid model (with w = ((µ, `), MaxRound, WindowSize, MaxSize)). Πw,+

TPoK fol-
lows the commit-and-prove paradigm in which the prover commits to the witness w for the NP-
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Verification
If I = (TIMED_VERIFY, sid, t, x, (tslback, π, tslpost)) then check if tslback ≤ maxtsl or tslback =
⊥. If it is not then ignore I. Otherwise set τpost ← ⊥, τback ← ⊥, b = 0 and continue as follows.

If t ∈ {−,±} then
• If (tslback, x, π, tslpost) is stored and T [R, pi] ≥ tslback then find the smallest τback such
that T [τback, pi] = tslback and set b← 1.

If t ∈ {+,±} then
• If (tslback, x, π, tslpost) is stored and T [pi, R] ≥ tslpost then find the smallest τpost such
that T [τ, pi] = tslpost and set b← 1.

If b = 0 and t = + then record (x, pi, tslpost) and send (VERIFY, sid, (x, π, tslpost)) to A.
If b = 1 then send (TIMED_VERIFICATION, t, sid, τback, 1, τback).
If b = 0 then send (TIMED_VERIFICATION, t, sid,⊥, 0,⊥).

If I = (WITNESS, w, x, tslpost) is received from A, (x,w) ∈ Rel and (x, pi, tslpost) was
recorded, then then store (⊥, (x, π), tslpost), ignore I otherwise. If there exists a value
τ such that T [τ, pi] = tslpost then return (TIMED_VERIFICATION, t, sid, τ, 1) to pi, send
(TIMED_VERIFICATION, t, sid,⊥, 0) otherwise.

Set delays and new time-slots
If I = (NEW_SLOT, sid) is received from A then τlast ← R, maxtsl ← maxtsl + 1.
If I = (SET-DELAYS, sid, T ′) is received from A, then b ← check_time_table(T , T ′,P, R,maxtsl). If
b = 1 then T ← T ′ else ignore I.
Withdraw future proof If I = (DELETE, sid, t, (tslback, x, π, tslpost)) then check if tslpost >
maxtsl. If it is not then Ignore I otherwise delete the entry (if it exists) (tslback, x, π, tslpost) from
the storage.

Figure 10.b: The Fw,t
TPoK functionality (cont’d).

statement x to be proven, and then proves to the verifier that the committed message corresponds to
a valid witness for x. In our protocol we want to associate some time-stamp to the proof generated
by the prover, so we slightly modify the above approach as follows. The prover obtains (η, τ) by
invoking the weak beacon Bw and computes a commitment com of w||η (see Appendix C.1 for a
formal definition of commitment). Then the prover proves to the verifier that com contains a witness
for x concatenated with η. More precisely, let L be an NP-language and Rel be the corresponding
NP-relation; to compute a proof the prover uses a NIZK PoK for the following NP-relation

Rel′ = {(com, x, η), (dec, w) s.t. Dec(com, dec, η||w)) = 1 AND (x,w) ∈ Rel}.

where x is the statement being proved and w is the corresponding witness (i.e. (x,w) ∈ Rel). The
verifier, upon receiving the proof computed by the prover accepts it if and only if the following two
conditions hold: 1. value η has been output by Bw in some round τ ; 2. the NIZK proof given by
the prover is accepting.

Since the NIZK that we use is a PoK and we assume that a malicious prover cannot predict the
output of the weak beacon Bw more than δ = MaxRound · (WindowSize + `− µ) rounds in advance
then the verifier has the guarantee that the proof has been computed (and that the witness w was
known by the prover) in some moment subsequent to τ − δ.

In Fig. 11 we show the details of our protocol. Our protocol uses FNIZK, Bw and Gclock. We
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recall that Bw can be implemented by having having read-only access to WWBU(Gledger).

We assume that the parties P are registered to FNIZK for the NP-relation Rel′, Bw and Gclock.
Proof. The party p ∈ P on input (TIMED_PROVE, sid, (x,w), τ) checks if (x,w) /∈ Rel. If it is, then
ignores I else executes the following steps.

Send (FETCH, τ, sid) to Bw and upon receiving (FETCH, sid, tsl, η), compute (com, dec)
$←− Com(w||η)

and define xt ← (com, x, η) and wt ← (w, dec) such that (xt, wt) ∈ Rel′.
Send (PROVE, sid, (xt, wt)) to FNIZK and upon receiving the answer (PROOF, sid, π) output
(PROOF, sid, xt, (π, tsl)).

Verification. The party p on input (TIMED_VERIFY, sid,+, xt, (⊥, π, tsl)) parses xt as (com, x, η) and
executes the following steps.

Query the beacon to see in which round τ the value η was issued.
If this τ does not exist then output (TIMED_VERIFICATION, sid,+,⊥, 0,⊥), otherwise send
(VERIFY, sid, xt, π) to FNIZK.
Upon receiving (VERIFICATION, sid, b) from FNIZK output (TIMED_VERIFICATION, sid, t,⊥, b, τ).

Figure 11: The protocol Πw,+
TPoK in the (FNIZK,Bw,Gclock)-hybrid model.

Theorem 5 Let Fw,+
TPoK be the functionality parametrized by w = (∆, MaxRound, WindowSize,⊥)

then the protocol described in Fig. 11 realizes with perfect security Fw,+
TPoK in the (Bw′ ,FNIZK,Gclock)-

hybrid model where Bw′ is parametrized by w′ = ((µ, `), MaxRound, WindowSize, MaxSize) with ∆ =
`− µ.

From Postdate Secure TPoK to Timed TPoK. In this section we show how to obtain a
protocol Πw,±

TPoK that UC-realizes Fw,±
TPoK in the (Fw,+

TPoK,Gledger,Gclock)-hybrid model. Πw,±
TPoK is the

first protocol described in this work that uses Gledger to store some information. Informally, every
time that it is required to generate a proof for an NP-statement x, Πw,±

TPoK queries Fw,+
TPoK thus

obtaining a proof (x, π, tslpost).

Then the prover of Πw,±
TPoK generates a transaction that contains (x, π, tslpost) and asks Gledger

to add the transaction to state. The parameter waitingTime of Πw,±
TPoK is the same parameter

that in Gledger defines the upper bound on the number of blocks that needs to be added to state

before that a transaction submitted from an honest party gets into state. Intuitively, the postdate
security of Πw,±

TPoK comes immediately from the postdate security of Fw,+
TPoK and the backward security

comes from the fact that once that a transaction is part of state it cannot be removed. The formal
construction of Πw,±

TPoK for the NP-Relation Rel is shown in Fig. 12. In this, every honest party
pi manages a table T local

pi that is updated on any input received by pi according to the procedure
update_time_table(), see Sec. 5.1 for more details. The proofs that our constructions implement
the different notions of TPoK are very similar to the proof of Sec. 6.1. We provide formal proofs in
the full version of the paper.

8 Timed Signatures of Knowledge

In [CL06] Chase et al. introduce the notion of signature of knowledge (SoK). A signature of
knowledge schemes allows to issue signatures on behalf of any NP-statement. That is, receiving
a valid signature for a message m with respect to an NP-statement x means that the signer of
m knew the witness w for the NP-statement x. In there, the authors propose a UC-definition of
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We assume that the parties P are registered to WWBU(Gledger) and to the functionality Fw,+
TPoK that is

parametrized with the NP-relation Rel. Every time that a party pi ∈ P receives ad input she invokes
the procedure update_time_table() (see Fig. 4 fore more details on this procedure).
Proof. The party pi ∈ P on input (TIMED_PROVE, sid,±, (x,w), τ) check if (x,w) ∈ Rel. If it is not,
then ignore I, proceeds as follows otherwise.

1. Forward (TIMED_PROVE, sid,+, (x,w), τ) to Fw,+
TPoK and upon receiving the answer

(TIMED_PROOF, sid,+,⊥, π, tsl), create a transaction tx← (x, π, tsl) and send (SUBMIT, sid, tx)
to WWBU(Gledger).

2. Wait until tx is added to the state of WWBU(Gledger). Let tslback be the block of state that
contains tx, output (TIMED_PROOF, sid,±, x, (tslback, π, tslpost)).

Verification. The party pi ∈ P on input (TIMED_VERIFY, sid,±, x, (tslback, π, tslpost)) proceeds as
follows.

1. Send (TIMED_VERIFY, sid,+, x, (⊥, π, tslpost)) to Fw,+
TPoK.

2. Upon receiving (TIMED_VERIFICATION, sid,+,⊥, b, τ) from Fw,+
TPoK, if b = 1 then send (READ, sid)

to WWBU(Gledger) else output (TIMED_VERIFICATION, sid,±,⊥, 0,⊥).

3. Upon receiving the answer (READ, sid, state) from WWBU(Gledger) check if the transaction tx :=
(x, π, tslpost) is stored in the tslback-th block of state. If it is, then find the smallest τback such
that T local

pi [τback] = tslback and output (TIMED_VERIFICATION, sid,±, τback, 1, τpost, 1) otherwise
output (TIMED_VERIFICATION, sid,±,⊥, 0,⊥).

Figure 12: The protocol Πw,±
TPoK in the (Fw,+

TPoK,Gledger,Gclock)-hybrid model.

signature of knowledge and provide a construction for it. Moreover, they propose a game-based
definition of signature of knowledge and show that the UC and game-based definitions are indeed
equivalent. Chase et al. also provide a construction for a signature of knowledge scheme assuming
NIZK and encryption scheme9. The construction provided is very intuitive. The signer, on input a
witness w for an NP-statement x and the message m to be signed, encrypts w||m thus obtaining
the ciphertext c. Then, the signer computes a NIZK proof π to demonstrate that: “c contains
the concatenation of the message m with a valid witness for x” and sends (σ = (c, π),m) to the
verifier. The verifier, upon receiving (σ = (c, π),m), checks the validity of the NIZK by running the
NIZK verifier on input (c, π, x,m). In this part of the paper we extend the definition of signature
of knowledge by requiring the signatures to be time marked. That is, a signature for a message m
with respect to an NP-statement x has the form (σ,m, tsl) where tsl gives an indication about
when the σ was actually computed.

Exactly in the same spirit of signature and NIZK, in this section we define the notions of
backdate, postdate and timed SoK. That is, we define the UC-functionalities Fw,t

TSoK with t ∈
{−,+,±}. Those functionalities are analogous to the functionalities for timed signatures and NIZKs
proposed in Sections 7 (see Fig. 13.a and 13.b). It should be easy to see that postdate, backdate
and timed secure NIZK implies respectively postdate, backdate and timed secure TSoK. Indeed
we observe in the Fw,t

TPoK-hybrid model it is possible to obtain a protocol that UC-realizes Fw,t
TSoK

following the approach proposed in [CL06] that we mentioned above. The only difference is that
instead of using NIZK we rely on Fw,t

TPoK to prove that the ciphertext c contains the concatenation
of the witness for x and the message m.

9The construction of [CL06] requires the NIZK to be simulation sound and the encryption scheme to be dense.
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Initialization. The main parameter of Fw,t
TSoK is t ∈ {−,+,±}. The function-

ality is also parametrized by the algorithms check_time_table(T , T ′,P, R,maxtsl),
force_time_table(T ,P, R,maxtsl), check_liveness(τlast, R) along with the parameters WindowSize,
MaxRound, ∆, maxtsl ← 0, waitingTime, τlast ← 0 the time-table T and running with parties
P = {p1, . . . } and adversary A. T [0, pi] ← 0 for all pi ∈ P. We assume that the parties are
registered to Gclock. Let R be the the response obtained by querying Gclock, upon receiving any
input I from any party or from the adversary act as follows:

If check_liveness(τlast, R) = 0 then maxtsl ← maxtsl + 1, τlast ← R, T ←
force_time_table(T ,P, R,maxtsl).
If check_time_table(T , T ,P, R,maxtsl) = 0 then T ← force_time_table(T ,P, R,maxtsl).

Proof.
If I = (TIMED_SIGN, sid, (x,w),m, τreq) is received from party pi or from A (on behalf of a
corrupted party pi) check if (x,w) ∈ Rel and τreq ≤ R. If it is not then ignore I otherwise do the
following.

• if t ∈ {−,±} then record (t,maxtsl, x, pi, τreq) and send (TIMED_SIGN, sid, t,maxtsl, x,m, pi)
to A;
• if t = “ + ” then record (t,⊥, x,m, pi, τreq) and send (TIMED_SIGN, sid, t, x,m, pi) to A;

If I = (TIMED_SIGNATURE, sid, (t, tslback, x,m, pi, σ, tslpost)) is received from A then check if
(t, oldmax, x,m, pi, τreq) was recorded. If it is not then ignore I otherwise do the following.

• if t ∈ {−,±} then
- if (pi is honest and tslback ≤ oldmax+waitingTime) or (S is corrupted) and tslback >

maxtsl) then tslback
′ ← tslback else ignore I.

• if t ∈ {+,±} then
- if (T [τreq, pi] = tslpost and pi is not corrupted) or (tslpost ≤ T [τreq, pi] + ∆ and pi is
corrupted) then tslpost

′ ← tslpost else ignore I.

Store (tslback
′, (x, σ),m, tslpost

′) and send (TIMED_SIGNATURE,
sid, (tslback

′, (x, σ),m, tslpost
′)) to pi.

Figure 13.a: The Fw,t
TSoK functionality.
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Verification
If I = (TIMED_VERIFY, sid, t, (tslback, (x, σ),m, tslpost)) then check if tslback ≤ maxtsl or
tslback = ⊥. If it is not then ignore I. Otherwise set τpost ← ⊥, τback ← ⊥, b = 0 and
continue as follows.

If t ∈ {−,±} then
• If (tslback, (x, σ),m, tslpost) is stored and T [R, pi] ≥ tslback then find the smallest τback
such that T [τback, pi] = tslback and set b← 1.

If t ∈ {+,±} then
• If (tslback, (x, σ),m, tslpost) is stored and T [pi, R] ≥ tslpost then find the smallest τpost
such that T [τ, pi] = tslpost and set b← 1.

If b = 0 and t = + then record (x, pi, tslpost) and send (VERIFY, sid, ((x, σ),m, tslpost)) to
A.

If b = 1 then send (TIMED_VERIFICATION, t, sid, τback, 1, τback).
If b = 0 then send (TIMED_VERIFICATION, t, sid,⊥, 0,⊥).

If I = (WITNESS, w, x, tslpost) is received from A, (x,w) ∈ Rel and (x, pi, tslpost) was
recorded, then then store (⊥, (x, σ),m, tslpost), ignore I otherwise. If there exists a value
τ such that T [τ, pi] = tslpost then return (TIMED_VERIFICATION, t, sid, τ, 1) to pi, send
(TIMED_VERIFICATION, t, sid,⊥, 0) otherwise.

Set delays and new time-slots
If I = (NEW_SLOT, sid) is received from A then τlast ← R, maxtsl ← maxtsl + 1.
If I = (SET-DELAYS, sid, T ′) is received from A, then b ← check_time_table(T , T ′,P, R,maxtsl). If
b = 1 then T ← T ′ else ignore I.
Withdraw future SoK If I = (DELETE, sid, t, (tslback, (x, σ),m, tslpost)) then check if tslpost >
maxtsl. If it is not then Ignore I otherwise delete the entry (if it exists) (tslback, (x, σ),m, tslpost)
from the storage.

Figure 13.b: The Fw,t
TSoK functionality.
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A A Survey of Related Work

Time-stamping digital documents. The idea of time-stamping a digital document was introduced in
[HS91]. They provide two schemes, centralised and decentralised based on hash-chain and digital
signatures. The former scheme includes a centralised time-stamping server and a set of clients (each
of them given a unique ID). Each time a client wants to sign a document, it sends its ID and hash of
its document to the time-stamping server who produce a signed certificate, given the clients request,
where the certificate includes time, client’s request, a counter, as well as information that links it
to a certificate issued for the previous client. In this scheme, in order for a party to verify the
correctness of the time-stamp included in the certificate of client ith, it has to ask client i − 1th to
provide its certificate. However, this scheme is susceptible to forward-date attack by mounting a
Sybille attack. In particular, the server can create a set of ID’s and a set of dummy documents.
Then, it computes certificates for the dummy documents. This allows it to forward-date the next
document given by a legitimate client. Furthermore, for the scheme to support a fine-grained
time-stamping mechanism, sufficiently high number of requests has to be sent frequently to the
server. The second scheme, i.e. decentralised one, utilises a pseudorandom generator too. In
this scheme, there is no time-stamping server and clients interactively cooperate with each other
to time-stamp a document. As explained in [DMD04], an issue with this scheme is that many
participants must engage in the process in order to time-stamp an individual document; however,
in the absence of enough incentive they may participate that leads to denial of service. A collection
of schemes proposed in [BdM91], that improve the efficiency of [HS91]. The schemes allow clients
to interactively time-stamp their documents in rounds, such that in every round all documents and
previous round time-stamp are combined together and a hash value of the combination is produced.
To improve the scheme efficiency, in every round a Merkle tree is built on top of the documents and
the previous round time-stamp. Then, the root of the tree is considered as the documents’ time-
stamp of the round. Moreover, [BLT14] proposes a protocol that requires multiple non-colluding
servers who interactively time-stamp a document. Many variants of time-stamping mechanism
have been proposed ever since. Recently, Buldas et al. [BLT17] proposed an efficient server-aided
hash-based time-stamped signature scheme based on a Merkle tree and hash function. The scheme
associates a time-slot to each signing key that can be used only for the related time period to sign
a message. In particular, the signer first generates a set of signing keys, one for each time-slot, and
commits to them. To sing a message at a certain time period, it hashes the related key along with
the message and sends the result to the server who time-stamps it, using the tree, and returns the
time-stamped value to the signer. When the time-slot has passes the signer releases the signature
and the associated signing key. In the verification phase, the verifier accepts the signature if (a)
the signing key and the time-stamp, provided by the server, belong to the same slot, and (b) the
server has time stamped the same signature. In this scheme, it is assumed that the time stamping
server is fully trusted and does not collude with a signer; otherwise, a signer can back/post-date a
signature.

Time-lock encryptions and timed signatures. The idea to send information into the future, i.e. time-
lock encryption, was first put forth by Timothy C. May. A time-lock encryption allows one to encrypt
a message such that it cannot be decrypted (even the sender) until a certain amount of time has
passed. The time-lock encryption scheme May proposed lies on a trusted agent. However, later on,
[RSW96] proposes a protocol that does not require a trusted agent, and is secure against a receiver
who may have access to many computation resources. The scheme is based on Blum-Blum-Shub
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pseudorandom number generator that relies on modular repeated squaring, believed to be sequential.
Later on, [BN00, GJ03] improves the previous work and proposed timed commitment and timed
signature schemes. The former scheme allows a party to commit to a value in a way that if, later on,
it avoids opening the commitment, it can be forced-open by anyone after a certain time period. The
proposed timed-signature scheme lets two mutually distrustful parties sign a message, and prove to
each other that they have signed a right message and it can be extracted after a certain time period,
without disclosing their signature or decrypting it at the proving phase. The signature scheme is
based on the repeated modular double-squaring, the timed-commitment and zero-knowledge proof
systems. Very recently, after the appearance of Bitcoin and the blockchain technology, a set of
blockchain-based time-lock encryptions have been proposed, e.g. [LJKW18, LGR15]. Intuitively, in
these protocols, a sender encrypts a message using a witness encryption scheme whose secret key is
a hash of future block, in the blockchian, that will appear after a certain time period. Note that
the main difference between the witness encryption-based and the repeated squaring-based (or in
general puzzle-based) approaches is that in the former one, when a secret key appears the recipient
starts decrypting the ciphertext; whereas, in the latter one, the receiver has to start decrypting it,
as soon as the ciphertext is provided, and the decryption process has to be run for the whole lifetime
of the ciphertext.

Blockchain-based time-stamping service. In the same line of work, there are schemes, such as Origin-
Stamp10 or [GMG15, CE12, GN17], in which clients simply store the hash value (or commitment)
of their data in a form of a transaction into a blockchian to time-stamp them. These schemes,
unlike the previous ones, do not require a centralised trusted party or a collaboration of clients to
time-stamp data, at the cost of blockchain transaction fee.

Time and zero-knowledge proofs. Lam et al. in [LTCL07] propose a protocol, called timed zero-
knowledge proof, that supports secure access of shared computing resources for anonymous clients.
The protocol is mainly based on a centralised e-cash scheme proposed in [EO95]. In the former
protocol, in order for a client to obtain a timed zero-knowledge proof/token, it first receives a token
from a central authority, and sends the token to a server who time-stamps it and returns the result
to the client. The client can use the time-stamped token anonymously for a certain session only once
and if the client double spends the token, it can be de-anonymised. We highlight that the notion of
time has been also considered in concurrent zero-knowledge protocols, e.g. [DNS98], to enable them
to be simulated in a concurrent setting. In these protocols, timing constraints are used to impose:
(a) delays at the prover-side on sending some messages, and (b) time-outs at the verifier-side on
accepting some messages. Thus, in the concurrent zero-knowledge protocols, the time constraints
are imposed locally to the protocol’s participants and are not embedded in a proof to time-stamp
it.
Concluding Remarks. Among all schemes we studied above, only the server-aided schemes support
a fine-grained and accurate time-stamping (at the cost of fully trusting the servers), as there is only
one clock that belongs to the server who accurately time-stamp all data it receives. However, in
the other schemes, the time is approximate, e.g. relative to the growth of a blockchain’s length (in
the blockchain-based protocols) or the computational power of the recipients (in the puzzle-based
approaches).

10http://originstamp.org
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B Additional UC Functionalities and Global Setups

The functionality is available to all participants. It is parametrized with variable τ , a set of parties
P, and a set F of functionalities. For each party p ∈ P it manages variable dp. For each f ∈ F it
manages variable df . Initially, τ := 0, P := ∅, F = ∅
Synchronization

• Upon receiving (CLOCK-UPDATE, sidC) from some party p ∈ P, set dp := 1; execute Round-
Update() and forward (CLOCK-UPDATE, sidC , p) to A.

• Upon receiving (CLOCK-UPDATE, sidC) from some functionalities f ∈ F set df := 1; execute
Round-Update() and forward (CLOCK-UPDATE, sidC , f) to A.

• Upon receiving (CLOCK-READ, sidC) from any participant (including the environment, the
adversary, or any ideal-shared or local-functionality) return (CLOCK-READ, sidC , τ) to the re-
questor.

Procedure: Round-Update() if df = 1 for all f ∈ F and dp = 1 for all honest p ∈ P, then set
τ = τ + 1 and reset df := 0 and dp := 0 for all parties in P.

Figure 14: The Global Clock Setup Gclock

The functionality is parametrized by a security parameter λ. It maintains a set of registered parties
P (initially set to ∅) and a (dynamically updatable) function table T (initially T = ∅).

- Upon receiving (EVAL, sid, x) from p ∈ P or from A, if (x, ρ) ∈ T , then return ρ to the
requestor. Otherwise, if no entry for x is in T , then choose ρ← {0, 1}λ, add (x, ρ) in T , and
return ρ to the requestor.

Figure 15: The Random Oracle functionality FRO

B.1 The basic signature functionality

In Fig. 17, we provide the basic UC signature functionality proposed in [Can03].

C Additional Tools

C.1 Commitment Schemes

Definition 2 (Commitment Scheme) Given a security parameter 1λ, a commitment scheme
CS = (Sen,Rec) is a two-phase protocol between two ppt interactive algorithms, a sender Sen and a
receiver Rec. In the commitment phase Sen on input a message m interacts with Rec to produce a
commitment com, and the private output d of Sen.
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The functionality is parametrized by an NP-relation Rel and running with parties P = {p1, . . . , pn}
and adversary A.
Proof
- On input I = (PROVE, sid, (x,w)) from party pi ∈ P, ignore I if (x,w) /∈ Rel, record (x, pi) and

send (PROVE, x) to A otherwise.
- On input I = (PROOF, π, (x, pi)) from A, if (x, pi) is recorded then store (x, π) and send

(PROOF, sid, π) to pi, ignore I otherwise.
Verification
- On input I = (VERIFY, sid, x, π) is received from a party pi ∈ P check whether (x, π)

is stored. If not then record (x, π, pi) and send (VERIFY, x, π) to A, otherwise return
(VERIFICATION, sid, 1) to pi.

- On input I = (WITNESS, w, (x, π, pi)) from A, (x, π, pi) is recorded and if (x,w) ∈ Rel then store
(x, π) and return (VERIFICATION, sid, 1) to pi, return (VERIFICATION, sid, 0) to pi otherwise.

Figure 16: The NIZK functionality FNIZK

In the decommitment phase, Sen sends to Rec a decommitment information (m, d) such that Rec
accepts m as the decommitment of com.

Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the following
properties hold:
Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of
execution of CS = (Sen,Rec) where Sen runs on input a message m. Let d be the private
output of Sen in this phase.
• Decommitment phase11. Rec on input m and d accepts m as decommitment of com.

Statistical (resp. Computational) Hiding([Lin10]): for any adversary (resp. ppt ad-
versary) A and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment
ExpHidingbA,CS(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same
length.
• Sen on input the message mb interacts with A to produce a commitment of mb.
• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. ppt adversary) A, there exist a negligible function ν, s.t.:∣∣∣Prob [ ExpHiding0A,CS(λ) = 1
]
− Prob

[
ExpHiding1A,CS(λ) = 1

] ∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during
the commitment phase by a possibly malicious unbounded (resp. malicious ppt) sender Sen?

there exists a negligible function ν such that Sen?, with probability at most ν(λ), outputs two
decommitments (m0, d0) and (m1, d1), with m0 6= m1, such that Rec accepts both decommit-
ments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.
11In this paper we consider only non-interactive commitment and decommitment phase.
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Key Generation.
Upon receiving a value (KEY_GEN, sid) from some party S ∈ P, verify that sid = (S, sid′) for
some sid. If not, then ignore the request. Else, hand (KEY_GEN, sid) to the A. Upon receiving
(VERIFICATION_KEY, sid, v) from the A, output (VERIFICATION_KEY, sid, v) to S, and record the
pair (S, v).
Signature. If I = (SIGN, sid,m) is received from party S, verify that sid = (S, sid′) for
some sid′. If not, then ignore the request, else send (SIGN, sid,m) to A. Upon receiving
I = (SIGNATURE, sid,m, σ) from A, verify that no entry (m,σ, v, 0) is stored. If it is, then out-
put an error message to S and halt. Else, send (SIGNATURE, sid,m, σ) to S, and store the entry
(m,σ, v, 1).
Verification
Upon receiving a value (VERIFY, sid,m, σ, v′) from some party pi, hand (VERIFY, sid,m, σ, v′) to the
adversary. Upon receiving (VERIFIED, sid,m, φ) from the adversary do:

1. If v′ = v and the entry (m,σ, v, 1) is recorded, then set f = 1. (This condition guarantees
completeness: If the verification key v′ is the registered one and σ is a legitimately generated
signature for m, then the verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m,σ, v, 1) for any σ′ is recorded,
then set f = 0 and record the entry (m,σ, v, 0). (This condition guarantees unforgeability: If
v′ is the registered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (m,σ, v′, f ′) stored, then let f = f ′ . (This condition guarantees
consistency: All verification requests with identical parameters will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ, v′, φ)

Send (VERIFIED, sid,m, f) to pi.

Figure 17: The FSIGN functionality of [Can03]

When a commitment scheme (Com,Dec) is non-interactive, to not overburden the notation, we use
the following notation.
– Commitment phase. (com, dec)

$←− Com(m) denotes that com is the commitment of the message
m and dec represents the corresponding decommitment information.

– Decommitment phase. Dec(com, dec,m) = 1.

D Universal Composability (UC)

The Universal Composability (UC) framework introduced by Canetti in [Can01] is a security model
capturing the security of a protocol Π under the concurrent execution of arbitrary other protocols.
All those other protocols and processes not related to the protocol Π go through an environment
Z. The environment has the power to decide the input that the parties should use to run the
Π, and to see the output of these parties. In this framework there is also an adversary A for the
protocol Π that decides the parties to be corrupted and can communicate with Z (who knows which
parties have been corrupted by A). The security in this model is captured by the simulation-based
paradigm. Let F be the ideal functionality that should be realized by Π. The ideal functionality F

40



can be seen as a trusted party that handles the entire protocol execution and tells the parties what
they would output if they executed the protocol correctly. We consider the ideal process where
the parties simply pass on inputs from the environment to F and hand what they receive to the
environment. In the ideal process, we have an ideal process adversary Sim. Sim does not learn the
content of messages sent from F to the parties, but is in control of when, if ever, a message from
F is delivered to the designated party. Sim can corrupt parties and at the time of corruption it
will learn all inputs the party has received and all outputs it has sent to the environment. As the
real world adversary, Sim can freely communicate with the environment. We compare running the
real protocol with running the ideal process and say that Π UC-realizes F if no environment can
distinguish between the two worlds. This means that the protocol is secure, if for any polynomial
time A running in the real world with Π, there exists a polynomial time Sim running in the ideal
process with F , so no non-uniform polynomial time environment can distinguish the two worlds.

E Formal Proofs

E.1 Proof of Theorem 3

Following the approach proposed in the proof of Theorem 2, we summarize the behaviour of Sim as
follows.

• If (KEY_GEN, sid) is received then forward it to FSIGN upon receiving the answer (VERIFICATION_KEY, sid, v)
sent it back to Fw,+

σ .

• If the input (TIMED_SIGN, sid,+,m, S̃, τreq) is received it means that a dummy party S̃
has received the input (TIMED_SIGN, sid,+,m, τreq). Therefore, send (FETCH, sid, τreq) to
Bw, and upon receiving (FETCH, η) send (SIGN, sid, tslpost||m||η) to FSIGN. Upon receiving
(SIGNATURE, sid,m′, σ), define σt ← (σ, η) send (TIMED_SIGNATURE, sid,+,m, (⊥, σt, v, tslpost))
to Fw,+

σ .

• If the input (TIMED_VERIFIED, sid,+, (⊥,m, σ, v′, tslpost)) is received it means that a dummy
party p̃i has received the input (TIMED_VERIFY, sid,+, (⊥,m, σt, v′, tslpost)). Therefore parses
σt as (σ, η) and send (VERIFY, sid, tslpost||m||η, σ, v′) to FSIGN and upon receiving the answer
(VERIFIED, sid,m, φ) query the Bw to check if the value η is the tslpost-th output of Bw. If
it is not then set φ← 0 and send (TIMED_VERIFIED, sid,m, φ) to Fw,+

σ .

• At any round Sim updates T according to the time table that is managed by Bw. That is, let
T ′ be the time table of Bw, then Sim sends (SET-DELAYS, sid, T ′) to Fw,+

σ at any round.

• If the adversary obtains a valid signature σ for the message i||m||η by querying FSIGN with
(SIGN, sid, i||m||η) then send (TIMED_SIGN, sid,+,m, τreq) to Fw,+

σ . Upon receiving (TIMED_SIGN, sid,+,
maxtsl,m, S, τreq), check if maxtsl + δ ≤ i. If it is not, then ignore, otherwise set tslpost ← i
and send (TIMED_SIGNATURE, sid, t,m, (⊥, σ, v, tslpost)) to Fw,+

σ . We refer to a signature
(m, (⊥, σ, tslpost)) computed in the way we just described as predicted signature. Any time
that a predicted signature is catch by Sim, he stores it together with η.

• At any round Sim updates T according to the time table that is managed by Bw. That is, let
T ′ be the time table of Bw, then then Sim sends (SET-DELAYS, sid, T ′) to Fw,+

σ at any round.
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• Any time that Bw issues a new value Sim checks if the signatures predicted by the adversary
are actually valid. That is, for any recorded entry with the form (m, (⊥, σ, tslpost), η) that
have tslpost = |H| (we recall that H contains all the output issued by Bw), Sim checks if
H[tslpost] = η. If it is not then Sim sends I = (DELETE, sid, t, (tslback, x, π, tslpost)). In the
end Sim aligns the size of the time-slots with the size new size of H by sending (NEW_SLOT, sid)
to Fw,+

σ .

E.2 Proof of Theorem 2

Let A be an arbitrary polynomial time adversary. We will describe a corresponding polynomial time
ideal process adversary Sim such that no non-uniform polynomial time environment can distinguish
whether Πw,−

σ is running in the (WWBU(Gledger),Gclock,FSIGN)-hybrid model with parties p1, . . . , pn
and adversary A or the ideal process is running with Fw,−

σ , Sim and dummy parties p̃1, . . . , p̃n.
Sim starts by invoking a copy of A. It will run a simulated interaction of A, the parties and the
environment. In particular, whenever the simulated A communicates with the environment, Sim just
passes this information along. And whenever A corrupts a party pi, Sim corrupts the corresponding
dummy party p̃i. We summarize the behaviour of Sim as follows.

• If (KEY_GEN, sid) is received then forward it to FSIGN upon receiving the answer (VERIFICATION_KEY, sid, v)
sent it back to Fw,−

σ .

• If the input (TIMED_SIGN, sid,−,m, S̃, τreq) is received it means that a dummy party S̃ has
received the input (TIMED_SIGN, sid,−,m, τreq). Therefore, send (SIGN, sid,m) to FSIGN, and
upon receiving (SIGNATURE, sid,m, σ) generate the transaction tx ← (m,σ) and send tx to
WWBU(Gledger). When tx is added to the state state of WWBU(Gledger), take the index of
the block tslback that contains tx and send (TIMED_SIGNATURE, sid,−,m, (tslback, σ, v,⊥))
to Fw,−

σ .

• If the input (TIMED_VERIFIED, sid,−, (tslback,m, σ, v′,⊥)) is received it means that a dummy
party p̃i has received the input (TIMED_VERIFY, sid,−, (tslback,m, σ, v′,⊥)). Therefore Send
(VERIFY, sid,m, σ, v′) to FSIGN and upon receiving the answer (VERIFIED, sid,m, φ) send (READ, sid)
toWWBU(Gledger). Upon receiving the answer from (READ, sid, state) check if the block in the
tslback-th position of state contains the transaction tx = (m,σ). If it is not, then φ ← 0.
Send (TIMED_VERIFIED, sid,m, φ) to Fw,−

σ .

• At any round Sim updates T according to the slackness values ofWWBU(Gledger). That is, Sim
reads the values pti1 , . . . , ptin from WWBU(Gledger), defines a time-table T ′ that extends the
previous one (T ) by setting T ′[R, pi1 ] = ptij for all the honest parties pij , and set T ′[τ, pik ] =

|state| for all the corrupted parties pik . Then Sim sends (SET-DELAYS, sid, T ′) to Fw,−
σ .

We recall that the maxim number of blocks after that an honest transaction is added to the state
of WWBU(Gledger) is waitingTime. Therefore, if the environment can distinguish between the ideal
and the real execution it means that the security of either FSIGN or Gledger has been compromised.

E.3 Proof of Theorem 1

Let A be an arbitrary polynomial time adversary. We will describe a corresponding polynomial time
ideal process adversary Sim such that no non-uniform polynomial time environment can distinguish
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whether Πw is running in the (WWBU(Gledger),Gclock,FRO)-hybrid model with parties p1, . . . , pn and
adversary A or the ideal process is running with Bw, Sim and dummy parties p̃1, . . . , p̃n. Sim starts
by invoking a copy of A. It will run a simulated interaction of A, the parties and the environment.
In particular, whenever the simulated A communicates with the environment, Sim just passes this
information along. And whenever A corrupts a party pi, Sim corrupts the corresponding dummy
party p̃i.

In the following description of Sim, we denote with head the current size of the state state of
Gledger. The behaviour of Sim can be summarized as follows.

1. Whenever A sends (EVAL, sid, i||x) to FRO, Sim does the following.

• If i > head+ `−µ, then pick a random value ρ ∈ {0, 1}λ and instruct FRO to reply with
(i||x, ρ) any time that (EVAL, sid, i||x) is received.

• If head < i ≤ head + ` − µ, then send (READ_SETS, sid) to Bw. Upon receiving
(READ_SETS, sid,S1, . . . ,S`−µ), take randomly a new element η from Si−head − S̃i−head,
S̃i−head ← S̃i−head ∪ {η} and instruct FRO to reply with η on the query (EVAL, sid, i||x).

2. Any time that state is extended with a new block Block, Sim checks if Block is generated
honestly by reading the value hflag. Let cq← `−µ+1. Sim computes x← state|head,head−cq
and does the following.

• If hflag = 1 then send I = (SET_RANDOM, sid) to Bw. If Bw replies with (OK, sid, η), then
instruct FRO to reply with η on the query (EVAL, sid, head||x) and set S̃1 = ∅, . . . , S̃`−µ =
∅
• if hflag = 0 check if FRO has been queried with (EVAL, sid, head||x). If it is, then send

(SET, sid, x) to Bw else send I = (SET_RANDOM, sid). We observe that if (EVAL, sid, head||x)
has been queried before by the adversary, then η ∈ S(head mod `−µ).

3. At any round, Sim updates T according to the slackness values ofWWBU(Gledger). That is, Sim
reads the values pti1 , . . . , ptin from WWBU(Gledger), defines a time-table T ′ that extends the
previous one (T ) by setting T ′[R, pi1 ] = ptij for all the honest parties pij , and set T ′[τ, pik ] =

|state| for all the corrupted parties pik . Then Sim sends (SET-DELAYS, sid, T ′) to Bw.

We now observe that Sim in step 3 keeps consistent the view that each party has of state with
the view of H. That is, each party that in the ideal model can see the i-th value of H can see
also the i-th block of state in the real world. This is done in step 3 by updating the time-table T
consistently with the slackness of WWBU(Gledger). Moreover, any time that state is extended with
a new block, H is extended as well. As showed in step 2, H is extended via adding a random value
decided by the functionality if state was extended honestly, or by using a value taken from the set
Si with i = head mod `−µ. The crucial observation here is that, because honest blocks include at
least λ bits of fresh entropy, if state is extended with an honest block then the output of the RO
on input (EVAL, sid, state(head−`+µ+1,head)) is a uniform in {0, 1}λ. Moreover, since any consecutive
blocks of state contain, at least, µ honestly generated blocks, this guarantee that the adversary
can only predict the next ` − µ outputs. In step 1 Sim takes care of the latter aspect by keeping
consistent the content of the sets S1, . . . ,S`−µ with the queries made by the real world adversary
to the RO. In more details, once that Sim gets the sets S1, . . . ,S`−µ from Bw then he instructs the
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RO to reply to the query (EVAL, sid, j||x) with η, where η is randomly chosen from Sj mod `−µ. We
recall that these sets have size MaxSize where MaxSize denotes an upper bound on the number of
queries that can be made by the adversary to the RO. We also observe that, in order to reply with
different values of Sj mod `−µ to the queries (EVAL, sid, j||x), (EVAL, sid, j||x′) with x 6= x′, Sim keep
track of all the values of Sj mod `−µ that have been already used to program the RO in a special
set S̃j mod `−µ.

E.4 Proof of Lemma 1

Let κ be the security parameter of ΠBB, δ = MaxRound · WindowSize · (`− µ) and λ = λ̂− log(κ).
We start the proof by showing that in ΠBB, under the assumption that the honest parties include

a random value of length λ̂ in each coinbase transaction, no adversary can predict at round ρ, with
probability greater than 2−λ, the nonce η′ that is added by an honest party to a block that becomes
part of state at round ρ+ δ. Let ρ1 be the round in which an honest party pi sees st = state|pi ,
then the block that extends st could either be a block generated by an honest party, or a block
generated by a malicious party. Moreover, this new block has to be added to st after at most
MaxRound · WindowSize rounds. In the case that the block that extends st is malicious, we cannot
say much on the entropy since, without loss of generality, we assume that the content of the block
is in full control of the adversary. Let us now consider the case in which the added block is honest.
Let ρ2 be the round in which the block becomes part of the ledger state. We note that all honest
parties that generate candidate blocks12 for state at round ρ2 could see state already at round
ρ1 with T = |ρ2 − ρ1| ≤ MaxRound · WindowSize. We now want to compute t, which represents the
number all the possible candidate blocks that can be seen by the adversary in the interval [ρ1, ρ2].
Note that there could be other candidate blocks for ledger states that are shorter than state, but
those blocks cannot be used by the adversary anymore.

From [GKL15, Remark 3] we know that the number of blocks generated by the honest parties
in an interval of size T is t = pq(n − m)T , where n is to the total number of parties, m is the
number of parties controlled by the adversary, p is the probability that an honest party generates a
block and q is the upper bound on the number of queries that each party can make to the random
oracle. Moreover, from the proof of [GKL15, Lemma 6] we know that pq(n − m) ≤ 1

2 , therefore
t ≤ T /2 ≤ MaxRound · WindowSize/2. Given that WindowSize and MaxRound are polynomially
related to the security parameter of the ledger κ, we have that t = poly(κ).

From the chain quality we also know that after at most `−µ blocks, an honestly generated block
has to be added to the ledger state. This means that if δ = MaxRound · (WindowSize + `− µ), then
by round ρ+ δ there is one block included in the ledger state that has min-entropy λ = λ̂− log(κ),
conditional on the view of the adversary at round ρ. We are now ready to show that ΠBB implements
WWBU[Gledger]. We describe a corresponding polynomial-time simulator Sim. Let SimBB be the
simulator for ΠBB. Sim acts as the ideal-functionality Gledger for SimBB with the following difference.
Whenever it is required to compute a nonce for the coinbase transaction, Sim queriesWWBU[Gledger]
with new_nonce thus obtaining (N, ρ) and uses N a the nonce with N ∈ {0, 1}λ̂.

12In this proof we call candidate block a block that could extend state.
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F Functionalities with Dynamic Party Sets

UC provides support for functionalities in which the set of parties that might interact with the
functionality is dynamic. We make this explicit by means of the following mechanism (that we
describe almost verbatim from [BMTZ17, Sec. 3.1]): All the functionalities considered here include
the following instructions that allow honest parties to join or leave the set P of players that the
functionality interacts with, and inform the adversary about the current set of registered parties:
– Upon receiving (REGISTER, sid) from some party pi (or from A on behalf of a corrupted pi), set

P := P ∪ {pi}. Return (REGISTER, sid, pi) to the caller.
– Upon receiving (DE_REGISTER, sid) from some party pi ∈ P, the functionality updates P :=

P \ {pi} and returns (DE_REGISTER, sid, pi) to pi.
– Upon receiving (IS_REGISTERED, sid) from some party pi, return (REGISTER, sid, b) to the caller,

where the bit b is 1 if and only if pi ∈ P.
– Upon receiving (GET_REGISTERED, sid) fromA, the functionality returns the response (GET_REGISTERED,

sid,P) to A.
In addition to the above registration instructions, global setups, i.e., shared functionalities that

are available both in the real and in the ideal world and allow parties connected to them to share
state [CDPW07], allow also UC functionalities to register with them. Concretely, global setups
include, in addition to the above party registration instructions, two registration/de-registration
instructions for functionalities:
– Upon receiving (REGISTER, sidG) from a functionality F (with session-id sid), update F := F ∪

{(F, sid)}.
– Upon receiving (DE_REGISTER, sidG) from a functionality F (with session-id sid), update F :=

F{(F, sid)}.
– Upon receiving (GET_REGISTEREDF , sidG) from A, return (GET_REGISTEREDF , sidG, F ) to A.
We use the expression sidG to refer to the encoding of the session identifier of global setups. By
default (and if not otherwise stated), the above four (or seven in case of global setups) instructions
will be part of the code of all ideal functionalities considered in this work. However, to keep the
description simpler we will omit these instructions from the formal descriptions unless deviations
are defined.

G The Basic Transaction-Ledger Functionality of [BMTZ17]
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Ledger Element Description
P, H, PDS The party sets and categories: Registered, honest, and honest-

but-desynchronized, respectively.
~IT

H The timed honest-input sequence.
predict-time The function to predict the real-world time advancement.
state The ledger state, i.e., a sequence of blocks containing the

content.
buffer The buffer of submitted input values.
pti, statei The pointer of party Pi into state state. This prefix is

denoted statei for brevity.
~⌧state A vector containing for each state block the time when the

block added to the ledger state.
⌧L The current time as reported by the clock.
NxtBC Stores the current adversarial suggestion for extending the

ledger state.
Validate Decides on the validity of a transaction with respect to the

current state. Used to clean the buffer of transactions.
ExtendPolicy The function that specifies the ledger’s guarantees in extend-

ing the ledger state (e.g., speed, content etc.).
Blockify The function to format the ledger state output.
windowSize The window size (number of blocks) of the sliding window.
Delay A general delay parameter for the time it takes for a newly

joining (after the onset of the computation) miner to become
synchronized.



Functionality Gledger

General: The functionality is parametrized by four algorithms Validate, ExtendPolicy, Blockify, and
predict-time, along with two parameters windowSize, Delay 2 N. The functionality manages variables
state, NxtBC, buffer, ⌧L, and ~⌧state, as described above. Initially, state := ~⌧state := NxtBC := ",
buffer := ;, ⌧L = 0.
For each party Pi 2 P the functionality maintains a pointer pti (initially set to 1) and a current-state view
statei := " (initially set to empty). The functionality keeps track of the timed honest-input sequence ~IT

H

(initially ~IT
H := ").

Party management: The functionality maintains the set of registered parties P, the (sub-)set of honest
parties H ✓ P, and the (sub-set) of de-synchronized honest parties PDS ⇢ H (following the definition
in the previous paragraph). The sets P, H, PDS are all initially set to ;. When a new honest party is
registered at the ledger, if it is registered with the clock already then it is added to the party sets H and
P and the current time of registration is also recorded; if the current time is ⌧L > 0, it is also added to
PDS . Similarly, when a party is deregistered, it is removed from both P (and therefore also from PDS

or H). The ledger maintains the invariant that it is registered (as a functionality) to the clock whenever
H 6= ;. A party is considered fully registered if it is registered with the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Gclock
and upon receiving response (clock-read, sidC , ⌧) set ⌧L := ⌧ and do the following:

1. Let bP ✓ PDS denote the set of desynchronized honest parties that have been registered (contin-
uously) since time ⌧ 0 < ⌧L � Delay (to both ledger and clock). Set PDS := PDS \ bP. On the
other hand, for any synchronized party P 2 H \ PDS , if P is not registered to the clock, then
PDS [ {P}.

2. If I was received from an honest party Pi 2 P:

(a) Set ~IT
H := ~IT

H ||(I, Pi, ⌧L);

(b) Compute ~N = ( ~N1, . . . , ~N`) := ExtendPolicy(~IT
H , state, NxtBC, buffer, ~⌧state) and if ~N 6= "

set state := state||Blockify( ~N1)|| . . . ||Blockify( ~N`) and ~⌧state := ~⌧state||⌧`L, where ⌧`L =
⌧L|| . . . , ||⌧L.

(c) For each BTX 2 buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer.
Also, reset NxtBC := ".

(d) If there exists Pj 2 H \ PDS such that |state| � ptj > windowSize or ptj < |statej |, then
set ptk := |state| for all Pk 2 H \ PDS .

3. Depending on the input I and the ID of the sender, execute the respective code:

– Submiting a transaction:
If I = (submit, sid, tx) and is received from a party Pi 2 P or from A (on behalf of a
corrupted party Pi) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, ⌧L, Pi)

(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer [ {BTX}.

(c) Send (submit, BTX) to A.

– Reading the state:
If I = (read, sid) is received from a fully registered party Pi 2 P then set statei :=
state|min{pti,|state|} and return (read, sid, statei) to the requestor. If the requestor is A
then send (state, buffer, ~IT

H) to A.

– Maintaining the ledger state:
If I = (maintain-ledger, sid, minerID) is received by an honest party Pi 2 P and (after
updating ~IT

H as above) predict-time(~IT
H) = b⌧ > ⌧L then send (clock-update, sidC) to

Gclock. Else send I to A.

– The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as
follows:

(a) Set listOfTxid ✏

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid, minerID, ⌧L, Pi) 2 buffer with ID
txid = txidi then set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.

– The adversary setting state-slackness:
If I = (set-slack, (Pi1 , bpti1

), . . . , (Pi` , bpti`
)), with {Pi1 , . . . , Pi`} ✓ H \ PDS is received

from the adversary A do the following:

(a) If for all j 2 [`] : |state| � bptij
 windowSize and bptij

� |stateij |, set pti1
:= bpti1

for every j 2 [`] and return (set-slack, ok) to A.

(b) Otherwise set ptij
:= |state| for all j 2 [`].

– The adversary setting the state for desychronized parties:
If I = (desync-state, (Pi1 , state0i1 ), . . . , (Pi` , state0i` )), with {Pi1 , . . . , Pi`} ✓ PDS is
received from the adversary A, set stateij := state0ij

for each j 2 [`] and return
(desync-state, ok) to A.
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