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Abstract—We present and evaluate models that allow clients
to access IoT resources using secure and trusted device-to-
device (D2D) communication, while utilizing smart contracts to
obtain the benefits of blockcain technology. These benefits include
immutability, high availability, and distributed trust. The models
consider different network connection capabilities of the clients
and the IoT resources, namely continuous network connectivity
and D2D-only connectivity. We describe two approaches for
utilizing blockchains and smart contracts in the authorization
process: in the first approach, only hashes of the authorization
information are recorded on the blockchain. In the second
approach, a smart contract handles authorization requests. We
implement the approaches using the OAuth 2.0 delegated au-
thorization framework and evaluate the implementations on the
public Ethereum testnet Rinkeby, in terms of execution cost,
contract creation cost, and delay. Our evaluation quantifies the
tradeoffs of blockchain cost and smart contract functionality,
such as blocking and non-blocking operation, and the reduction
of the transaction cost that can be achieved when multiple
authorization requests are concatenated in a single transaction.

Index Terms—delegated authorization, blockchains, dis-
tributed ledgers, constrained IoT devices

I. INTRODUCTION

The Internet of Things will involve a huge number of
devices, acting both as consumers of services (or clients) and
providers of services (or resources), which can be sensors or
actuators. Some of these devices will be constrained in terms
of memory, processing, energy, and network connectivity.
Due to their constrained resources, performing authentication
and authorization by the IoT devices themselves will not be
possible in the majority of cases. Additionally, due to the huge
number of devices, there can be significant advantages in terms
of scalability, total cost reduction, and improved security if
the authentication and authorization functionality is offloaded
from the IoT devices to nodes with sufficient processing and
storage resources to handle authentication and authorization
for a large number of devices.

Distributed ledger technologies such as blockchains provide
an immutable ledger offering high availability and distributed
trust. These features can provide advantages when applied to
the IoT [1]. However, not all devices would be capable of
interacting directly with the blockchain and even if they could,
due to security and overall management, direct interaction
with blockchains might not be desirable. The interaction with

a blockchain, similar to the authentication and authorization
functionality, can be offloaded to capable nodes.

The goal of this paper is to present and evaluate different
architectures for providing delegated authorization using smart
contracts that enable clients to use secure and trusted device-
to-device (D2D) communication to access IoT resources.
Clients and IoT resources can have different capabilities in
terms of network connectivity, processing power, and memory.
Secure refers to keeping the authorization information that
needs to be exchanged confidential, whereas trusted refers to
all entities performing the actions intended by their owners.
D2D communication can be provided by technologies such as
bluetooth, WiFi direct, and cellular D2D.

Our realization of the proposed models considers the widely
used IETF standard OAuth 2.0 for delegated authorization,
which is based on access tokens. OAuth 2.0 is being inves-
tigated for authorization in IoT environments by IETF’s Au-
thentication and Authorization for Constrained Environments
(ACE) Working Group [2], [3]. The OAuth 2.0 framework
can also be used in cases where centralized management
of authorization policies is beneficial. An important feature
of OAuth 2.0 is that it provides authorization for different
levels of access, termed scopes. OAuth 2.0 mainly defines the
format of the authorization message exchange, and the models
presented in this paper can be applied to the general context
of IoT resource access authorization.

In summary, the contributions of the paper are the following:
• We present and discuss models for providing secure

and trusted D2D-based IoT resource access based on
smart contracts that consider different network connection
capabilities of the clients and the IoT resources.

• We implement the proposed models in smart contracts
with blocking and non-blocking operation, and with sup-
port for the concatenation of authorization requests.

• We evaluate the implementations on the public Ethereum
testnet Rinkeby, in terms of the execution cost, contract
creation cost, and delay, and quantify the tradeoffs be-
tween blockchain cost and smart contract functionality.

Our previous work [4], [5], [6], [7] focused on the case where
the IoT device does not have continuous network connectivity,
whereas the client both has continuous network connectivity
and interacts directly with the blockchain. In the current paper



we consider scenarios where the client doesn’t have continuous
network connectivity, and assume that the client does not
directly interact with the blockchain.

The remainder of the paper is structured as follows: In Sec-
tion II we discuss some motivating use cases and in Section III
we present some background on delegated authorization using
OAuth 2.0 and the advantages from utilizing blockchains
and smart contracts for authorization in IoT environments.
In Section IV we present different architectures for D2D-
based IoT resource access that utilize blockchains, considering
different network connection capabilities of the client and
the IoT resource. In Section V we present the message
exchange between the entities involved, and in Section VI we
present the implementation and the evaluation of the proposed
models. Finally, in Section VII we present related work and
in Section VIII we present conclusions and our ongoing work.

II. USE CASES

Next we discuss some motivating use cases which involve
clients and IoT resources with different network connection
capabilities, and different processing and storage resources.

The first use case that we consider involves electronic door
locks (IoT resources) in the rooms of a hotel or an apartment
that is rented on a short-term basis. The electronic door lock
can be opened using a digital key (access token), which a
client sends directly to the lock through D2D communication,
e.g., bluetooth. A person seeks to reserve a hotel room or rent
the apartment for some number of nights. The person sends a
requests from his/her smartphone (client) to the authorization
server (AS) that handles authorization requests for the door
lock. The same AS can handle authorization requests for many
door locks. The AS sets up a blockchain contract to receive
the payment for the requested number of nights. The client can
make the payment through some proxy, or client authorization
server (CAS). Once the AS verifies that the price for resource
access has been paid, the AS provides the client with the
necessary credentials to unlock the door for the duration of
the requested stay. In this use case the electronic door lock is
a constrained IoT resource: it has only bluetooth connectivity
for receiving the access token from the client. The client can
be a smartphone, which is a device with continuous network
connectivity that can also communicate with the door lock
using D2D communication to provide the access token to
unlock the door.

The above use case can be extended if the person staying
in the hotel is accompanied by a second guest who also wants
to be able to open the room’s door. However, instead of using
a smartphone, the accompanying guest wants to use his/her
smart watch. To achieve this, the first person’s smartphone
can send a copy of the access token, and possibly other
authorization credentials, to the accompanying guest’s smart
watch. In the extended use case, both the client (smart watch)
and the door lock are constrained devices without continuous
network connectivity; despite not having network connectivity,
the smart watch and door lock can communicate in a trusted
manner using D2D communication to transfer the access token

that unlocks the door. Furthermore, we assume that neither
the smart watch nor the smartphone, despite being capable,
interacts directly with the blockchain. Instead, the interaction
with the blockchain is performed through a proxy, the CAS,
which operates on the behalf of the clients.

The second use case we consider involves purchasing
items from a smart vending machine. We assume that the
smart vending machine has continuous network connectivity.
However, it does not interact directly with the blockchain. A
person can purchase items from the vending machine through
his/her smart wristband. In this case, the client (wristband) is a
constrained device while the IoT resource (vending machine)
is not constrained in terms of network connectivity. As in
the first use case, we again assume that neither the client
nor the IoT resource interact directly with the blockchain.
The client with constrained network connectivity must interact
with a proxy, the CAS, operating on its behalf, to perform
the payment (on the blockchain) for the item purchased and
obtain the necessary access credentials that will allow the
client to obtain the purchased item. It is interesting to note
that in this use case the client (smart wristband) has only D2D
communication capability, but can communicate with its proxy
(CAS) through the connected IoT resource. Of course, all the
above communication and transactions must be performed in
a secure and trusted manner.

III. BACKGROUND

In this section we provide some background information on
delegated authorization using OAuth 2.0 and the benefits from
utilizing blockchains and smart contracts for authorization in
IoT environments.

A. Delegated authorization using OAuth 2.0

OAuth 2.0 is a framework for delegated authorization to
access a protected resource [8]. It enables a third party
application (client) to obtain access with specific permissions
to the protected resource, with the consent of the resource
owner. Access to the resource is achieved through access
tokens, which are created by an authorization server (AS).
The specific format of the access tokens, which are discussed
below, is opaque to the clients and to OAuth 2.0. The consent
for authorization by the resource owner is provided after the
owner is authenticated. Alternatively, authorization requests
can be accepted automatically by the AS, based on policies
defined a priori by the resource owner [3]. Authorization can
allow different access levels, called scopes, and for a specific
time interval. The OAuth 2.0 authorization flows can involve
intermediate messages exchanged before the access token is
provided by the AS. However, the details of the authorization
flow does not impact the general approach of the proposed
models, hence in our discussion we only consider the initial
client request and the AS’s response with the access token.

One type of access tokens are bearer tokens. Bearer tokens
allow the holder (bearer), independently of its identity, to
access the protected resource. Bearer tokens are the default
for OAuth 2.0, which assumes secure communication between



the different entities based on TLS (Transport Layer Security).
OAuth 2.0 also assumes that the protected resource has con-
tinuous network connectivity, hence can communicate with
the AS to check the validity and scope of the access tokens
provided by the clients. Meeting the above two requirements
is not always possible in constrained environments [2].

JSON Web Token (JWT) is an open standard that defines
a compact format for transmitting claims as JSON objects
[9]. JWTs can use the JSON Web Signature (JWS) structure
to digitally sign or integrity protect claims with a Message
Authentication Code (MAC) [10]. Hence, unlike simple bearer
tokens, JWT/JWS tokens are self-contained, i.e., they include
all the necessary information for the protected resource to
verify their integrity without communicating with the AS.
The JWT format is also considered by the W3C Credentials
Community Group for Verifiable Credentials which can be
combined with Decentralized Identifiers or DIDs [11]. A more
efficient encoding of claims, which is derived from JWTs but
is based on CBOR (Concise Binary Object Representation),
is the CBOR Web Token (CWT) [12], [3]. CWTs reduce the
amount of data that needs to be sent to constrained IoT devices
and can be extended to create and process signatures, MACs,
and encrypted data [13]. The implementation of the models
presented in this paper adopts the CWT format.

In constrained environments, in addition to limited connec-
tivity, the communication between the client and the protected
resource is not secure, hence transmitting bearer tokens or self-
contained JWTs/CWTs over such insecure links make them
a target for eavesdropping. To avoid this Proof-of-Possession
(PoP) tokens are used in constrained environments [14]. PoP
tokens include a normal access token, such as a JWT/CWT,
and a PoP key [15]: access to the protected resource requires
both the access token and the PoP key, which can be used to
secure the link between the client and the protected resource.

If the client is a constrained device, some of the authoriza-
tion functionality must be performed on behalf of the client
by a proxy, the client authorization server (CAS) [16]. In the
models we present in the next section, we will consider that the
CAS, in addition to implementing the authorization functions,
also interacts with the blockchain on behalf of the client.

B. Delegated authorization utilizing blockchains and smart
contracts

The advantages from combining authorization based on
frameworks such as OAuth 2.0 with blockchain and smart
contracts are the following:

• Blockchains can immutably record hashes of the infor-
mation exchanged during authorization and cryptograph-
ically link authorization grants to payments and other IoT
events recorded on the blockchain. These records serve
as indisputable receipts in the case of disagreements.

• Smart contracts can encode authorization policies in an
immutable and transparent manner. Policies can depend
on payments or other IoT events.

• Smart contracts run on all nodes of a blockchain, hence
sending resource access requests to smart contracts can

protect against DoS attacks that involve a very high
resource request rate.

In the models presented below we assume that the CAS, the
AS, and the resource owner, have an account (public/private
key pair) on the blockchain. The CAS will use its account to
pay for the client’s access to the IoT resource. Initially, the
CAS will deposit the amount for resource access to a Hashed
Time-Lock Contract (HTLC) [17], as we discuss below. The
deposit is transferred to the resource owner’s account when
the AS reveals a secret that corresponds to the hash-lock.
The same secret is used by the CAS to obtain the necessary
authorization credentials that the client needs in order to access
the resource. If the AS does not provide the secret within some
time interval, the CAS can submit a refund request to return
the deposit to its account.

IV. D2D-BASED IOT RESOURCE ACCESS USING SMART
CONTRACTS

In this section we present models for access authorization
using blockchains that consider different network connection
capabilities of the client and the IoT resource:

• The IoT resource does not have continuous network
connectivity, but only D2D connectivity, whereas the
client requesting resource access has continuous net-
work connectivity. This combination corresponds to the
electronic door lock use case discussed in the previous
section, where a smartphone is the client.

• Both the client and the IoT resource do not have con-
tinuous network connectivity, i.e., they both having only
D2D connectivity. This combination corresponds to the
electronic door lock use case, where now the client device
is a smart watch (or wristband).

• The client has only D2D connectivity, whereas the IoT
resource has continuous network connectivity. This com-
bination corresponds to the smart vending machine use
case discussed in the previous section, where the IoT re-
source (smart vending machine) has continuous network
connectivity and the client is a smart wristband (or watch)
with only D2D connectivity.

In addition to whether a device (client or IoT resource) has
continuous network connectivity or only D2D connectivity, a
second dimension is whether the device is constrained in pro-
cessing and memory. A device without processing and memory
constraints can perform asymmetric key cryptographic func-
tions, while a device that is constrained can perform only
symmetric key cryptographic functions. Hence, processing and
memory constraints influence the type of access tokens that
can be used, and in particular the type of integrity verification
that will be incorporated in the JWT/CWT token: if the device
is capable, then signatures using public/private keys can be
used. On the other hand, if the device is constrained, then
MAC integrity verification must be used.

In all three scenarios presented below there is a client
authorization server (CAS) and an authorization server (AS)
that handle requests and responses on behalf of the client and
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Fig. 1. The client has network connectivity while the IoT resource has
only D2D connectivity. The client acts as an intermediate node that forwards
messages between the IoT resource and the AS, which handles authorization
requests on behalf of the IoT resource. The client AS (CAS) interacts with
the blockchain and the AS on behalf of the client.

IoT resource, respectively [16]. The CAS and AS also handle
interactions with the blockchain, in order to link authorization
grants to blockchain payments. To take actions on behalf of the
client and resource, the CAS and AS must have the consent of
the client owner and the resource owner; one way to provide
such consent is through verifiable credentials [11], which is
more general than considering that the client and resource
owners control the CAS and AS, as assumed in [16].

During their initialization, both the client and the IoT
resource establish with the CAS and AS, respectively, shared
keys to be able to securely communicate over insecure D2D
links and/or through intermediate nodes. If a device, either
the client or the IoT resource, is constrained in terms of
processing, then during its initialization it must establish a
common secret key with the CAS or the AS. This shared secret
key is used to add MAC integrity verification to the messages
exchanged between the client and the CAS, and between the
AS and the IoT device. If the device has sufficient processing
to perform asymmetric key cryptographic functions, then the
CAS and/or the AS can use public key cryptography to sign
messages they send to the client and/or the IoT resource,
respectively. Note that if the IoT resource has continuous
network connectivity, then instead of using signed or MAC
integrity protected access tokens, simple access tokens can be
used; in this case, the IoT resource can use introspection to
verify the validity and scope of the access token [8], [3].

A. Connected client and disconnected IoT resource

In the first model we discuss, the client has continuous
network connectivity whereas the IoT device does not have
continuous network connectivity, but only D2D connectivity.
This is the case investigated in our previous work [4], [5], [6],
[7]. The difference with the model considered in the current
paper is that the client, despite having network connectivity,
does not interact directly with the blockchain, Figure 1.

Because the client does not interact directly with the
blockchain, the CAS performs blockchain transactions on

CAS

AS

Internet 

client
IoT 

resource

D2DD2D

Fig. 2. Both the client and IoT resource have only D2D connectivity. Prior
to requesting access, the client must obtain the authorization credentials from
the CAS. Once it has the credentials, the client can request access to the
resource using D2D communication, without requiring synchronous network
connectivity or simultaneous D2D connectivity with the CAS.

behalf of the client. The client can send authorization requests
to the CAS, which handles the exchange of authorization
messages with the AS and interacts with the blockchain. The
goal of this interaction is to link authorization grants with
blockchain payments. Specifically, the CAS obtains the neces-
sary access token and PoP key from the AS only if it performs
the blockchain payment, on behalf of the client. When the
CAS receives the authorization credentials, it forwards them
to the client. The client can then use the credentials to request
service from the IoT resource. As we will see more detail when
we discuss the message exchange, when the client requests
access to the IoT resource, the client acts as an intermediate
node that forwards messages between the IoT resource and
the AS, which handles authorization requests on behalf of
the IoT resource. Specifically, the AS accepts authorization
requests from the CAS and provides authorization credentials
once it verifies that the appropriate blockchain payment has
been performed. As shown in Figure 1, a single CAS and AS
can handle multiple clients and IoT resources, respectively.

B. Disconnected client and disconnected IoT resource

Next we discuss the case where both the client and the IoT
resource are constrained devices. As in the previous scenario,
the authorization requests for the IoT resource are handled
by the AS and the authorization requests on behalf of the
client are handled by the CAS, see Figure 2. Moreover, both
the CAS and the AS directly interact with the blockchain.
The client prior to communicating using D2D with the IoT
resource, must obtain the necessary authorization credentials
(access tokens and PoP keys) from the CAS. This may be
achieved at any point prior to the time the client requests
resource access, when the client has intermittent connectivity
to the CAS using D2D communication. Once it has obtained
the authorization credentials, the client can request access to
the IoT resource through its D2D communication link, without
requiring synchronous network connectivity or simultaneous
D2D connectivity with the CAS. The communication between
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Fig. 3. The client has only D2D connectivity while the IoT resource has
continuous network connectivity. The IoT resource acts as an intermediate
node that forwards messages between the client and the CAS, which handles
authorization requests on its behalf.

the CAS and the AS to request resource access on behalf of
the client and to obtain the authorization credential after the
corresponding blockchain payment is the same as the message
exchange in the previous scenario.

C. Disconnected client and connected IoT resource

In the third model the client is disconnected while the IoT
resource has continuous network connectivity. As in the model
of the previous subsection, the CAS submits authorization
requests to the AS and interacts with the blockchain on behalf
of the client. The client communicates with the CAS using
the connected IoT device as the intermediate node. The AS
is responsible for handling authorization requests on behalf of
the IoT resource, see Figure 3.

The CAS and AS interact in the same way as in the first two
models. Once the CAS obtains the authorization credentials,
which include the access token and the PoP key, it must
transfer these to the client before the client requests service
from the IoT resource; this transfer is performed through the
connected IoT resource.

Because the IoT resource has continuous network connec-
tivity, it can use introspection to verify the validity and scope
of the access token [8], [3]. Hence, unlike the first two models,
the access token does not need to contain a signature or a MAC
for verifying its authenticity.

V. MESSAGE EXCHANGE

In this section we present the message exchange between
the various entities, namely the client, IoT resource, CAS, AS,
and blockchain.

A. CAS-AS message exchange

We present two approaches for the message exchange
between the CAS, which operates on behalf of the client,
and the AS, which operates on behalf of the IoT resource.
In the first approach, the authorization requests and responses
are communicated directly between the CAS and AS. In this
approach the blockchain is used only to record hashes of the

authorization information exchanged between the CAS and the
AS and to link blockchain payments to authorization grants.
The motivation for recording hashes of the authorization
information exchanged between the CAS and AS is that they
serve as indisputable receipts in the case of disputes.

In the second approach, authorization requests and re-
sponses go through a smart contract, which is owned by the
resource owner. Because smart contracts are executed by all
blockchain nodes, a blockchain provides a secure execution
environments with high availability. This offers higher protec-
tion against DoS attacks, compared to the first approach where
access requests are sent directly to the AS. Moreover, in the
second approach a smart contract can be used to transparently
record prices and other authorization policies defined by the
resource owner. Examples of such policies include permitting
resource access to specific CASes/clients, determined by their
public keys on the blockchain, and dependence of access au-
thorization on IoT events that are recorded on the blockchain.
An additional advantage achieved by allowing a smart contract
to handle authorization requests is that the smart contract can
securely bind the IoT resource with the AS responsible for
providing authorization grants for that resource.

The two approaches are similar to the message exchange in
our previous work [6], [7], where however the authorization
message exchange occurred between the client and the AS; the
client was assumed to have continuous network connectivity
and could interact directly with the blockchain. An additional
contribution of this paper is that, in Section VI, we evaluate
different smart contract implementations that can be realized
for the scenarios presented in Section IV: a non-blocking
implementation that allows multiple authorization exchanges
to be conducted in parallel and an implementation that allows
the CAS and the AS to request and respond to multiple
concatenated authorization requests that are included in a
single message and transaction.

1) Linking authorization grants to blockchain payments
and recording hashes of authorization information: With
this approach the initial communication between the CAS
and the AS occurs as in the normal OAuth 2.0 framework,
Figure 4. However, instead of the AS providing the CAS with
authorization credentials after consent is given by the resource
owner, the authorization credentials are disclosed only after the
payment for resource access is recorded on the blockchain.

Specifically, in Step 1 the CAS sends on the behalf of the
client to the AS a request for accessing the IoT resource.
The AS generates a random PoP key which it sends to the
CAS1 together with the PoP key encrypted with the secret key
KAS−resource shared by the AS and the IoT resource, which
is set during the IoT resource’s initialization2; the client will
later use the PoP key to establish a secure D2D link with
the IoT resource. Also, the AS sends to the CAS the access
token encrypted with a secret s, i.e., Es(token), the hash

1The communication link between the CAS and the AS is secured, hence
the PoP key cannot be leaked through eavesdropping.

2If the resource has sufficient processing, then the AS can use asymmetric
cryptography and encrypt the PoP key with the resource’s public key.
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Fig. 4. CAS-AS message exchange when authorization requests are sent
directly to the AS. Hashes of the authorization information are recorded on
the blockchain, which provide indisputable receipts in case of disagreements.
Disclosure of authorization credentials is linked to blockchain payments.

h = Hash(s) of the secret s, and the price for the requested
resource access scope. The secret s is a secret randomly
generated by the AS and is required for the CAS to decrypt
Es(token) and obtain the access token; the AS will reveal the
secret s once it confirms that the payment for resource access
has been committed on the blockchain. Communicating the
price from the AS to the CAS allow different levels of resource
access to be offered for different prices.

In Step 3, two hashes are submitted to the blockchain: the
first is the hash of the token that the AS will reveal to the
CAS once payment has been confirmed. The second is the
hash of three items: EKAS−resource

(PoP ), the PoP key, and
Es(token); the second hash serves as proof of the authoriza-
tion information that is exchanged using OAuth between the
AS and the CAS. Note that the above authorization exchange
does not ensure that the access token the client obtains from
the AS indeed allows access to the IoT resource.

Also, in Step 3 a hashed time-lock payment is initiated on
the blockchain, which allows the CAS to deposit the requested
price (Step 4). This amount will be transferred to the resource
owner’s account if the secret s (hash-lock) is submitted to the
contract by the AS (Step 5) within some time interval. If the
time interval is exceeded, then the CAS can request a refund of
the amount it deposited. Once the secret s is revealed, the CAS
can get s from the blockchain (Step 6) and decrypt Es(token),
thus obtaining the access token. After Step 6, the CAS has
all the credentials that are necessary for the client to request
access from the IoT resource.

2) Smart contract for handling authorization requests:
Unlike in the previous approach where the CAS and the AS
communicated directly, in the approach discussed next the
interaction is through the smart contract, corresponding to
Steps 1 and 2 in Figure 5.

In response to the authorization request it received from the
CAS, in Step 3 of Figure 5 the AS sends to the smart contract
the PoP key encrypted both with the secret key shared by the
AS and the IoT resource, EKAS−resource

(PoP ), and with the

After step 5, deposit is 

transferred to resource 

owner account

EK_AS-resource(PoP),

EPK_CAS (PoP), Es(token), h, price

deposit

CAS AS
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Hashed time-lock payment enabled: CAS 
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Decrypt Es(token)
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Fig. 5. CAS-AS message exchange when a smart contract handles authoriza-
tion requests. Authorization information is exchanged through the blockchain.
As in the approach of Figure 4, disclosure of authorization credentials is linked
to blockchain payments.

CAS’s public key, EPKCAS
(PoP ). On the other hand, in the

previous approach the PoP key was sent from the AS to the
CAS over a secure communication link, hence encrypting the
PoP key was not necessary.

As in the first approach, a hash time-locked payment is en-
abled, allowing the CAS to deposit the amount corresponding
to the resource access price (Step 4). The amount is transferred
to the resource owner’s account if the secret s that unlocks the
hash-lock is revealed (Step 5). Once revealed, the CAS can
obtain the secret s (Step 6), together with the other necessary
authorization credentials that will allow the client to access the
protected resource. If the blockchain is public, then s can be
read by anyone, hence everyone can obtain the access token.
However, the access token cannot be used alone, since the PoP
key is also required for accessing the resource. Nevertheless,
if privacy of the access token is important, then the secret s
can be encrypted using the CAS’s public key PKCAS and the
hash-lock set to h = Hash(EPKCAS

(s)).

B. Client-CAS and client-IoT resource message exchange

The message exchange between the client, the CAS, and the
IoT resource when the IoT resource does not have continuous
network connectivity is shown in Figure 6. Note that this mes-
sage exchanges applies to both the case where the client has
continuous network connectivity and the case where the client
has only D2D connectivity. Initially the client communicates
with the CAS by sending a message with its intent to access
the IoT resource (Step 1). After receiving the request from the
client, the CAS performs either of the two message exchanges
presented in Section V-A. Next, in Step 2 the client receives
the authorization credentials from the CAS and in Step 3 it
sends its access request to the IoT resource.

The message exchange when the client has only D2D
connectivity and the IoT resource has continuous network con-
nectivity is shown in Figure 7. Now, the client communicates
with the CAS that handles authorization requests on its behalf
using the connected IoT resource as an intermediate node.
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Fig. 7. Message exchange between client, resource, and CAS message when
the client has only D2D connectivity while the IoT resource has continuous
network connectivity (Figure 3). The CAS-AS message exchange can follow
the sequence in Figure 4 or 5.

Note that the communication of the client and the CAS is
secured, since they share a secret key KCAS−client that was
configured during the client’s initialization.

VI. EVALUATION

For the evaluation we used a local Ethereum node running
Go-Ethereum3 that was connected to the public Ethereum
testnet Rinkeby4. Smart contracts were written in Solidity with
the Remix5 web-based editor. The AS was based on a PHP
implementation of the OAuth 2.0 framework6. The CAS and
AS used Web3.js to interact with the Rinkeby blockchain.

3https://geth.ethereum.org/
4https://www.rinkeby.io/
5https://remix.ethereum.org/
6https://github.com/bshaffer/oauth2-server-php

We compare the two approaches presented in Section V-A:
the first records hashes of the authorization information on the
blockchain (Figure 4) and the second involves a smart contract
handling authorization requests (Figure 5). For each of the two
approaches we compare four implementations: The first is the
baseline implementation where the smart contract operates in
a blocking mode where only one authorization request can
be handled at a time (“1 req” in Figure 8(a)). The second
implementation also operates in a blocking mode, but each
message includes three authorization requests (“3 reqs con-
catenated” in Figure 8(a)), which are sent by the same CAS;
similar to the requests, we assume that the responses are also
concatenated, which means that the authorizations are handled
by the same AS. The third implementation operates in a non-
blocking mode, allowing more than one authorization requests,
each in a separate message, to be ongoing at the same time
(“1 req” in Figure 8(b)). Finally, the fourth implementation
operates in a non-blocking mode, as the previous - third -
implementation, but each message includes three authorization
requests (“3 reqs concatenated” in Figure 8(b)). The “3 reqs
separate” columns in Figures 8(a) and 8(b) correspond to the
case where three authorization requests and their responses are
sent and received separately with blocking and non-blocking
operation, respectively.

Figure 8 shows the execution cost (gas), which quantifies the
amount of EVM (Ethereum Virtual Machine) resources (com-
putation and storage), for each of the above implementations.
Comparison of the corresponding columns in Figures 8(a)
and 8(b) shows that, for a blocking implementation, a smart
contract that handles authorization requests requires approxi-
mately 2.5 times more gas than the approach that records only
hashes of the authorization information on the blockchain. For
the non-blocking implementation, the ratio is larger and close
to 4 times. Figure 8(a) shows that the gas is 88% higher for
the non-blocking implementation compared to blocking when
only hashes are recorded on the blockchain, while Figure 8(b)
shows that it is approximately 190% higher in the case of
a smart contract handling authorization requests. The above
results quantify the higher execution cost for smart contracts
with more functionality.

Comparison of columns “3 reqs separate” and “3 reqs
concatenated” in Figure 8(a) show that, for the blocking imple-
mentations, the gas when three requests and their responses are
concatenated is smaller than the gas when the requests are sent
separately by 56% when only hashes are recorded, and smaller
by 28% when a smart contract handles requests. The gains for
non-blocking, Figure 8(a), are 55% and 18% when only hashes
are recorded and when a smart contract handles authorization
requests, respectively. These results show that concatenation of
requests can provide gains in terms of reduced execution cost;
indeed, the gains are significantly higher for simple contracts
that record only hashes. Additional experiments not shown
due to space indicate that, as expected, the gains are higher
when more requests are concatenated. Specifically, for non-
blocking, when 9 requests are concatenated the gains are 67%
(higher than the 55% gain when 3 request are concatenated)
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Fig. 8. Contract execution cost. The top graph corresponds to the approach
in Figure 4 where only hashes are recorded on the blockchain. The bottom
graph corresponds to the approach in Figure 5 where a smart contract handles
authorization requests.

when only hashes are recorded and 25% (higher than the 18%
gain when 3 request are concatenated) when a smart contract
handles requests.

Concatenation of authorization requests can be performed
in the space domain, when CASes and ASes handle multiple
clients and IoT resources. Alternatively, concatenation can be
performed in the time domain by aggregating requests received
by a CAS in a time interval, before sending them to the AS.
Such time domain aggregation of requests adds a delay to the
authorization process, which needs to be considered together
with the blockchain transaction time.

The contract creation cost is shown in Figure 9. Note that
this figure does not contain the contact creation cost for “3
reqs separate”, since it uses the same contract as “1 req”.
The figure shows that the increase of the contract creation
cost for the second approach, where authorization requests
are handled by the smart contract, compared with the simpler
scheme, where only hashes of authorization information are
recorded on the blockchain, is smaller for the non-blocking
compared to the blocking implementation: Comparison of
the corresponding columns in Figures 9(a) and 9(b) shows
that the contract creation cost for smart contracts handles
authorization requests is 36-80% higher than the creation cost
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Fig. 9. Contract creation cost. The top graph corresponds to Figure 4 where
only hashes are recorded on the blockchain. The bottom graph corresponds to
Figure 5 where a smart contract handles requests. The contract creation cost
for “3 reqs separate” in Figure 8 is the same as the cost for “1 req”.

for contracts that record only hashes. An additional conclusion
from the comparison of Figure 9 and Figure 8 is that for
simple contracts that record only hashes and are blocking,
the contract creation cost dominates the execution cost, while
for more complex smart contracts such as the ones handling
authorization requests and are non-blocking, the execution cost
becomes comparable to the creation cost.

Finally, 20 executions of each of the non-blocking imple-
mentations have shown that the average transaction delay when
only hashes of authorization information are recorded on the
blockchain is 44 seconds, with a 95% confidence interval
± 5 seconds; the delay for the blocking implementation
with three separate requests is higher by approximately 29
seconds, due to the serialization that blocking imposes. For
a smart contract handling authorization requests the delay is
58 seconds, with a 95% confidence interval ± 6 seconds.
The above results show that the delay is approximately 32%
higher for the smart contract approach compared to the
approach that records only hashes. This result is expected,
since the recording only hashes involves three transactions on
the blockchain, Figure 4, whereas a smart contract handles
authorization requests involves four transactions, Figure 5.



VII. RELATED WORK

The work in [18] presents a blockchain-based authorization
system where authorization proofs can be efficiently verified.
The work in [19] presents a decentralized access control sys-
tem where IoT devices have continuous network connectivity
and interact directly with the blockchain, while [20] presents
a system where policies and access control decisions are
directly recorded on Bitcoin’s blockchain. The work in [21]
presents a smart contract-based system for providing access
control to IoT devices while satisfying access policies in terms
of the minimum time interval between consecutive accesses.
The above works all assume that the IoT device can directly
access the blockchain, which is not possible in constrained IoT
environments. Unlike the above, our work considers different
network connection capabilities of the clients and the IoT
resources, which includes the case where either the client, or
the IoT resource, or both, have only D2D connectivity.

The work in [22] presents a system based on OAuth 2.0
where a smart contract generates authorization tokens, which
a key server obtains in order to provide private keys that
allow clients to access a protected resource. The work of [23]
contains a high level description for using smart contracts
with OAuth 2.0 to allow users to freely select the server
that provides authorization to their protected resource. The
difference of this paper, in addition to considering different
network connection capabilities of the clients and the IoT
resources, is that we present two different approaches for
utilizing blockchains which have different tradeoffs in terms of
the contract execution and creation cost, and the smart contract
functionality.

Our previous work [4], [5], [6], [7] focuses on the case
where clients have continuous network connectivity and inter-
act directly with the blockchain, while IoT resources have only
D2D connectivity. Moreover, [5] investigates the reduction of
the transaction cost by utilizing private channels which enable
off-chain transactions, and [7] investigates the reduction of the
transaction cost by moving smart contract functionality from
a public blockchain to a private or permissioned blockchain.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented different architectures involving devices
with different network connection capabilities that utilize
smart contracts to provide secure and trusted D2D-based IoT
resource access. Blockchains are used to link authorization
grants to payments and record authorization information. Our
evaluation quantifies the tradeoffs between blockchain cost
and smart contract functionality, such as blocking and non-
blocking operation, and the reduction of the transaction cost
when multiple authorization requests are concatenated in a
single transaction.

Ongoing work is investigating two directions: first, how
smart contract functionality related not only to payments
but also to IoT transactions can be moved to private or
permissioned ledgers to reduce transactions costs and, second,
the trusted interaction of smart contracts with the real world
using decentralized oracles. This is important since as our

results show, the execution cost of smart contracts increases
significantly with higher functionality.
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