

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D5.3

End-to-end Platform Validation

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 21.7.2020

Author(s) Dmitrij Lagutin (AALTO), Yki Kortesniemi (AALTO),
Tommaso Bragatto (ASM), Francesca Santori (ASM),
Francesco Bellesini (EMOT), Gian Marco Silieri (EMOT),
Giuseppe Raveduto (ENG), Vincenzo Croce (ENG), Priit
Anton (GT), Margus Haavala (GT), Mait Märdin (GT),
Antonio Antonino (LMF), Antonis Gonos (OPT), Elias
Kanakis (OPT), Asimakis Christodoulopoulos (OPT),
David Mason (ROV), Ahsan Manzoor (ROV), Ioannis
Oikonomidis (SYN)

Responsible person Ioannis Oikonomidis (SYN), oikonomidis@synelixis.com

Target Dissemination Level Public

Status of the Document Completed

Version 1.00

Project website https://www.sofie-iot.eu

mailto:oikonomidis@synelixis.com
https://www.sofie-iot.eu/

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 2(90)

Table of Contents

1. Introduction.. 8

1.1 Scope of this document .. 8

1.2 Structure of the deliverable .. 8

1.3 Relation to other activities and timeline overview 8

2. SOFIE reference architecture ... 10

3. Food Supply Chain Pilot ... 12

3.1 Pilot overview ... 12

3.2 Pilot platform architecture and services ... 12

3.3 Validation results .. 20

3.3.1 Future validation results .. 26

4. Decentralized Energy Data Exchange Pilot 27

4.1 Pilot overview ... 27

4.2 Pilot platform architecture and services ... 28

4.2.1 Introduction ... 28
4.2.2 Responsibilities of the FA ... 29

4.2.3 The FA Communication Protocol .. 30
4.2.3.1 Choosing the Source and Target DID .. 30
4.2.3.2 Proving the Control of a DID .. 30
4.2.3.3 Proving the Identity of a DID Owner ... 31
4.2.3.4 Proving Delegated Authorization .. 31

4.2.4 FA Internals and the Use of SOFIE Components 33
4.2.5 Proxy Private API .. 34

4.2.6 Pilot Deployment View .. 34

4.3 Validation results .. 35

4.3.1 Validation approaches .. 35

4.3.2 Validation results .. 38
4.3.3 Future validation results .. 40

5. Decentralized Energy Flexibility Marketplace Pilot 41

5.1 Pilot overview ... 41

5.2 Pilot platform architecture and services ... 41

5.3 Validation results .. 44

5.3.1 Future validation results .. 55

6. Mixed Reality Mobile Gaming Pilot ... 56

6.1 Pilot overview ... 56

6.2 Pilot platform architecture and services ... 58
6.2.1 High-level architecture .. 58
6.2.2 Flow of the game .. 59
6.2.3 APIs description .. 59

6.3 Validation results .. 61

6.3.1 Validation Results ... 61
6.3.2 Technical performance tests ... 66

6.3.2.1 Response Time .. 66
6.3.2.2 Throughput .. 68

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 3(90)

Fixed Rate ... 68

Composite rate .. 68

6.3.2.3 Modeling Active Player Support ... 69
6.3.2.4 Beacon Detection Time .. 69

6.3.3 Future plans .. 70

7. SMAUG ... 72

7.1 Purpose and use case .. 72

7.1.1 Use case ... 72
7.1.1.1 Smart locker management ... 73

Smart locker registration ... 73

Request creation ... 74

Request decision ... 74

7.1.1.2 Smart locker discovery and access .. 74
Smart locker discovery .. 74

Smart locker purchase and access ... 75

7.2 Architecture .. 75

7.2.1 MP domain .. 76
7.2.2 SLO domain .. 77

7.2.3 SLR domain .. 77

7.3 SMAUG and SOFIE ... 77

7.3.1 Usage of SOFIE components ... 78
7.3.1.1 Marketplace ... 78
7.3.1.2 Interledger .. 78
7.3.1.3 Identity, Authentication and Authorisation (IAA) ... 79
7.3.1.4 Privacy and Data Sovereignty (PDS) ... 79
7.3.1.5 Provisioning and Discovery (P&D) ... 79
7.3.1.6 Semantic Representation (SR) ... 79

8. Cross pilot scenarios and testing plan .. 80

8.1 Cross pilot data exchange .. 80

8.1.1 Test cases .. 81
8.1.1.1 Latency overhead of the FA ... 81
8.1.1.2 Throughput of the FA ... 81
8.1.1.3 Integration Effort and Comparison to Current Situation 81

8.2 Cross pilot reward exchange .. 81
8.2.1 Test cases .. 82

8.2.1.1 Validation ... 82
8.2.1.2 Latency .. 82

9. Conclusions ... 83

10. References ... 84

11. Appendix I: Validation of SOFIE components 85

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 4(90)

List of Figures

Figure 1: The SOFIE framework architecture .. 10
Figure 2: High-level pilot architecture .. 13
Figure 3: FSC Pilot platform Deployment view .. 14
Figure 4: FSC Pilot component diagram .. 15
Figure 5: API description ... 19
Figure 6: Steps in QR code creation .. 19
Figure 7: Basic building block of the DEDE pilot .. 27
Figure 8: Overview of the DEDE platform .. 29
Figure 9: A connection between two DIDs controlled by different FAs 30
Figure 10: Request to a service that requires proved attributes ... 31
Figure 11: Request to a service with delegated access rights ... 32
Figure 12: Internal structure of the FA ... 33
Figure 13: Deployment view of the DED platform pilot environment 35
Figure 14: Access rights delegation for SOFIE platform in Estfeed user portal 36
Figure 15: SOFIE Estfeed adapter service list ... 37
Figure 16: High-level architecture of the DEFM pilot .. 42
Figure 17: Message flow in the DEFM pilot ... 43
Figure 18: DEFM platform deployment view .. 44
Figure 19: DEFM Pilot Charging Stations Energy Consumption Trend - 1,5 years 50
Figure 20: DEFM Pilot Charging Stations Money Saved Trend - 1 month 50
Figure 21: DEFM Pilot Charging Stations CO2 Saved Trend - 1 month 51
Figure 22: Exchanged power between the ASM headquarter and the grid in the ex-ante and first
scenario .. 53
Figure 23: Exchanged power between the ASM headquarter and the grid on 4th April in the ex-
ante and first scenarios ... 53
Figure 24: Distribution of number of EV charging sessions rescheduled 54
Figure 25: Renewable consumed energy rate increase [%] ... 54
Figure 26: Scavenger Hunt game prototype. Starting, playing, and ending a hunt on a mobile
client.. 56
Figure 27: Viewing and equipping items in Blockmoji. ... 57
Figure 28: The high-level architecture of our pilot. ... 58
Figure 29: Response time for Read requests .. 67
Figure 30: Response time for Write requests... 67
Figure 31: There may be multiple instances of marketplaces in the global ecosystem. Suppliers
and renters of smart lockers can choose any of them depending on their preferences and the
policies implemented by each marketplace. .. 73
Figure 32: Smart locker owners can rent their smart lockers by publishing their availability on
the SMAUG marketplace. On the other hand, potential smart locker renters can discover nearby
available smart lockers and pay to purchase access. .. 73
Figure 33: SMAUG architecture... 76
Figure 34: Interledger flow for a typical marketplace transaction ... 78
Figure 35: The setup of cross-pilot testing using the FA from the DEDE pilot 80
Figure 36: The setup of cross-pilot testing ... 82

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 5(90)

List of Tables

Table 1: Timeline and main outcomes per reporting period for all SOFIE pilots 8
Table 2: FCP validation results .. 20
Table 3: Proxy Private API .. 34
Table 4: DEFM test case 1 .. 44
Table 5: DEFM test case 2 .. 47
Table 6: DEFM test case 3 .. 48
Table 7: Ex-ante Scenario ... 51
Table 8: Comparison among scenarios ... 55
Table 9: Requirement validation .. 62
Table 10: Performance validation – fixed rate .. 68
Table 11: Performance validation – composite rate ... 68
Table 12: Beacon performance results. ... 70

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 6(90)

List of Acronyms

AMI Advanced Metering Infrastructure

AWS Amazon Web Server

BoEU Block of Energy Unit

BLE Bluetooth Low Energy

BP Business Platform

DEDE Decentralized Energy Data Exchange

DEFM Decentralized Energy Flexibility Marketplace

DER Distributed Energy Resources

DID Decentralized Identifiers

DLT Distributed Ledger Technology

DR Demand Response

DSO Distribution System Operator

EV Electric Vehicle

EVSE Electric Vehicle Supply Equipment

FCP Food Chain Pilot

FSC Food Supply Chain

GSM Global System for Mobile communication

GUI Graphical User Interface

GW Gateway

IAA Identification, Authentication and Authorization

IoT Internet of Things

ML/VL Medium Voltage / Low Voltage

MPO MarketPlace Owners

MRMG Mixed Reality Mobile Gaming

NORM Next generation Open Real time smart Meter

PoC Proof of Concept

PoI Point of Interest

PV PhotoVoltaic

QR Quick Response

RBAC Role Based Access Control

RES Renewable Energy Sources

RPF Reverse Power Flow

SLO Smart Locker Owners

SLR Smart Locker Renters

SM Supermarket

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 7(90)

SSEV Self-Sufficiency for EV

SWS Supervisor Web Server

TPS Transactions Per Second

TSO Transmission System Operator

TR Transportation

V2G Vehicular to Grid

WH Warehouse

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 8(90)

1. Introduction

1.1 Scope of this document

This deliverable is a report about the system software architecture and end-to-end validation
results for the four SOFIE pilots. An additional use case which serves as a reference
implementation of all the components included in SOFIE’s architecture and framework is
presented. Finally, cross-pilot cases are described in this deliverable, aiming to combine the
pilot solutions, highlighting the interoperability aspects of SOFIE. For each pilot, the platform
architecture and services are described, including any updates from the previous initial
validation phase. Also, the validation end-to-end results are presented, focusing on the users’
perspective. The main objective has been to validate the integrated functionality of the SOFIE
federation architecture and framework components from a user’s point of view. SOFIE
components’ validation can be found in the document’s appendix.

1.2 Structure of the deliverable

We first provide an overview of the SOFIE reference architecture. Then, an individual section is
devoted to each of the four SOFIE pilots, containing an overview, the pilot platform architecture
updates, and the end-to-end (integration) validation results. These sections are structured in
the same way by using the following three subsections:

- Subsection X.1 presents an overview of the pilot, summarizing its application context
and any updates from the previously reported version.

- Subsection X.2 reports and presents any updates on the architecture of the pilot
platform. In this section, architecture view diagrams (e.g., Component diagram,
Deployment diagram, High-level architecture diagram) are included.

- Subsection X.3 presents the integration, end-to-end validation results of the latest pilot
platform versions.

Next, a reference implementation (namely SMAUG) that utilizes and demonstrates all SOFIE
framework components is presented.

A section is then dedicated to the description of a cross-pilot case that will be realized in the
context of the SOFIE pilots.

The final chapter concludes the deliverable.

1.3 Relation to other activities and timeline overview

The table below depicts the timeline and the main outcomes of all SOFIE pilots, mapping
activities to deliverables, and giving an overview of what has been done so far and what is
expected until the end of the project, pilot-wise.

Table 1: Timeline and main outcomes per reporting period for all SOFIE pilots

Period Achievement Reported

M1-M6 Definition of the baseline technology, scenarios, and use cases. D5.1,
v1.00

M6-M18 Definition of data management, KPIs and pilot test cases. D5.1 v1.10

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 9(90)

Definition of pilot software architecture.

Initial implementation of supplementary software components.

Proof of concept validation of SOFIE federation architecture and
components.

D5.2,
v1.00

M18-M30 Updates on the implementation of the pilot specific software components.

Description of cross-pilot scenarios and testing plan

Integration and deployment of pilot software platform (first release).

Installation of IoT devices and deployment of IoT platforms

Unit/integration tests to verify the functionality of the platform services.
Engagement of end users in the improvement of certain platform aspects.

End-to-end verification of pilot requirements.

D5.3

M30-M36 Training of end users in using the platform’s services.

Final release of pilot platform, platform deployment in the production
environment.

On-site end-to-end validation of platform services, collection of data.

Demonstration of cross-pilot scenarios.

Overall pilot performance assessment, KPIs evaluation, competitive
advantage.

Lessons learned, and provision of replication guidelines.

D5.4

The pilot platforms are continuously integrating any updated versions of the SOFIE framework
components. Therefore, we expect that the final version of each pilot platform will have
integrated the latest version of any SOFIE components that are being used, and thus any
validation will be performed on these versions.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 10(90)

2. SOFIE reference architecture

This section provides an overview of the SOFIE architecture. A full description of the SOFIE
architecture is available in [D2.4] while the SOFIE framework is described in [D2.5]. The source
code of the SOFIE framework has been released as open-source and is available at:
https://github.com/SOFIE-project/Framework.

One of the most fundamental assumptions of SOFIE is that it must be able to support different
types of IoT and ledger technologies without requiring changes to those technologies. This is
due to the large installed base of existing technologies that do not allow for changes and the
fact that different parties and consortia will continue to select their own IoT and distributed ledger
technologies based on the different strengths of those technologies. By allowing the federation
of such self-selected ledgers, SOFIE enables interoperability across the technology silos
created by the manufacturers, who control those silos.

Figure 1 provides a functional overview of the SOFIE architecture. In particular, it depicts the
six components that provide the SOFIE functionality (green boxes) and the Federation
Adapter(s) used to interact with the IoT platforms and devices.

Figure 1: The SOFIE framework architecture

A key element of the SOFIE architecture is that it is a framework architecture that defines the
types of functionalities provided by the components and adapter, but not an exhaustive list of
supported functions. This is due to the fact that SOFIE is intended to support IoT federation in
many application areas and it is infeasible to define a set of functions that would encompass all
the needs (including future needs) of the different application areas. Instead, SOFIE defines
types of functionalities and provides example implementations of each component and adapter
in the SOFIE Framework. The provided examples are based on the pilots in the SOFIE project
and they can be freely adapted and expanded to suit the needs of other applications.

The lowest level of the architecture contains IoT assets (or resources), that include, e.g., IoT
sensors for sensing the physical environment, actuators for acting on the physical environment,
and boxes with RFID tags that are used to transport products. IoT assets can be connected to
or be integrated in actual devices. IoT platforms include platforms with data stores, where the

https://github.com/SOFIE-project/Framework
https://github.com/SOFIE-project/Framework
https://github.com/SOFIE-project/Framework

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 11(90)

measurements from sensors are collected and made available to third parties, as well as servers
providing IoT services.

The federation adapter(s) are used to interface the IoT platforms with the SOFIE framework.
This allows the IoT platforms to interact with SOFIE without requiring any changes to the IoT
platforms themselves. Different scenarios and pilots can utilise different types of federation
adapters, which expose only the required parts of the SOFIE functionality to the IoT platform.

Of the six components, the architecture emphasises the interledger component responsible for
interconnecting the different types of DLTs, which can have quite different features and
functionality. Public (or permissionless) DLTs offer wide-scale decentralised trust and
immutability, but this necessitates a large network with many peers and/or a more demanding
consensus mechanism, thereby incurring a higher overall computation cost that will lead to
longer transaction confirmation times. On the other hand, permissioned or consortium DLTs
have a lower, or even zero, transaction cost and low latency; however, trust is determined by
the peers in the set of permissioned nodes that participate in the DLT’s consensus mechanism.
Moreover, the level of privacy afforded also differs: the transactions and data on
public/permissionless blockchains are completely open to everyone, which is necessary to
achieve wide-scale decentralised trust and transparency but forgoes any privacy. On the other
hand, private/permissioned DLTs involve the collaboration of peers that belong to a specific
permissioned set and can arrange for their records to be opaque to others (private), or public
(but only allowing the permissioned set to contribute to the DLT). Thus, permissioned
blockchains can support different levels of write and read access, which allows them to support
different levels of privacy. DLTs can also differ in the functionality they provide: a DLT can focus,
e.g., on cryptocurrency payments, recording of IoT events, access authorisation, or providing
resolution of Decentralised Identifiers (DIDs). Utilising multiple ledgers that are interconnected
through interledger functionality, instead of a single DLT, provides the flexibility to exploit the
trade-offs. Finally, providing interledger mechanisms to interconnect different DLTs allows
companies and consortiums to select private/permissioned distributed ledgers based on their
requirements and constraints. Hence, interledger mechanisms can enhance interoperability
across different IoT platforms that utilise different distributed ledger technologies.

The other SOFIE framework components are: Identity, Authentication, and Authorisation (IAA),
which provides identity management and supports multiple authentication and authorisation
techniques; Privacy and data sovereignty, which provides mechanisms that enable data sharing
in a controlled and privacy preserving way; Semantic representation, which provides tools for
describing services, devices, and data in an interoperable way; Marketplace, which allows
participants to trade resources by placing bids and offers in a secure, auditable, and
decentralised way; and Discovery & provisioning, which provides functionality for the discovery
and bootstrapping of services.

Finally, all the components can expose application APIs, which provide the interfaces for IoT
clients and applications to interact with the SOFIE components. In Figure 1, the multiledger
operations are positioned next to the Interledger component as it is mostly using that
functionality, but any of the other components can also utilise multiledger operations when
required. Also, the framework adapters and IoT applications can directly interact with the DLTs,
but for simplification this is not shown in the figure. The figure also does not show the
interactions between the components – these are described in more detail in deliverable D2.5.

The interactions with the DLTs that support DIDs can include DID document
creation/modification, DID resolution, credential recording/revocation, etc. The format and
information contained in the transactions is described in deliverable D2.5.

The architecture also illustrates the separation of data transfer and control message exchanges.
Some IoT data can be transferred directly between the IoT platforms and IoT clients. Control
messages related to authorisation logs, events, payments, etc. go through the SOFIE
framework. IoT data or hashes of data can also be handled by the SOFIE framework.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 12(90)

3. Food Supply Chain Pilot

3.1 Pilot overview

The objective of the Food Supply Chain (FSC) pilot is to demonstrate the use of the SOFIE
architecture and framework components in the product (grapes) supply chain and validate a
provenance Business Platform (BP) that offers the following two main important services:

1. a traceability service used by the consumers to access the full history of grapes from the
field to the supermarket shelf.

2. an audit service used by the supermarket company to verify the integrity of data which
is collected as grapes are transferred over the supply chain as well as relevant business
rules (driven by this data) which have been agreed with the suppliers.

The architectural design of the FSC software platform, the considered scenarios/use cases, the
types and the roles of the involved actors, as well as the added value of the pilot BP into the
supply chain business can be found in detail in Deliverable 5.2 (Initial Platform Validation). At
this stage, the first integration of the FSC pilot platform has been completed and the first round
of end-to-end validation results have been performed to verify the platform’s operation with
respect to the defined requirements. More details about the platform’s implementation view and
validation results are discussed in §3.2 and §3.3, respectively. Overall, the main achievements
of the FSC pilot during the period M18-M30 and the activities which are scheduled for the last
period of the project are summarized in Table 1 as part of the general pilot timeline.

3.2 Pilot platform architecture and services

In this section we describe the updated pilot platform architecture. This version of the platform
has been used for the validation results described in the next section.

Figure 2 depicts the platform’s high-level architecture. The SOFIE components that have been
utilized are shown in this architecture view and are listed below:

 Federation Adapters

 Identity, Authentication, Authorization

 Semantic Representation

 Discovery & Provisioning

 Interledger

This figure depicts pilot-specific software as well. This includes the Supervisor Web Server
component, which offers a public API for the internal services provided by the Data management
and the reasoning sub-component (i.e., Actors/IoT registration, Interledger client, Consortium
Ledger Client). More details have been included in D5.2 (Initial Platform Validation)

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 13(90)

M
u

lt
ile

d
g

er
o

p
er

a
ti

o
n

s
A

ll
co

m
p

o
n

en
ts

 m
a

y
in

te
ra

ct
 w

it
h

 D
LT

s

KSI

Public DLT

IoT platforms (SynField, Transportation, Aberon)

Interledger

IoT applications (QR creation and product quality audit)
Actors (producer, transporter, warehouse, supermarket)

SO
FI

E

Off-chain
communication

Authorisations,
access logs (hashes),
events, payments, etc.

Multiledger
operations

Smart contract

Applicable

Identity,
Authentication
& Authorisation

Marketplace

Semantic
Representation

Discovery &
Provisioning

Privacy &
Data Sovereignty

Consortium
Ledger

Public API

Federation Adapters

SOFIE Components

Not applicable

Pilot Software

Data Management
& Reasoning

Actors/IoT
registration

Interledger
client

Consortium
Ledger Client

Figure 2: High-level pilot architecture

In Figure 3, the Deployment view of the FSC Pilot platform is presented. Starting from the bottom
layer, the Federation Adapter components are deployed on the IoT platform premises, since
this is where the adaptation to the pilot needs to take place. The adaptation, as already
mentioned in previous deliverables, does not require any modifications on the IoT platform side
but it adds the functionality required by the IoT platform to connect to the Supervisor Web Server
component on top, in a separate component (as a (micro)service).

The Supervisor Web Server component along with the SOFIE components are all combined to
offer an API to the user’s application, residing on the pilot’s cloud that has been setup for this
purpose. This cloud is also where the Consortium ledger resides. As expected, the Public ledger
is external to the pilot’s cloud. To connect between the two ledgers, SOFIE components are
utilized (including clients that serve as connection libraries).

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 14(90)

Figure 3: FSC Pilot platform Deployment view

The component diagram of the FSC Pilot platform is in line with the description of the
architecture of the platform presented in D5.2 and is depicted in Figure 4.

Federation Adapters: the components that provide the adaptation functionality to the IoT
platforms.

Supervisor Web Server: the component that provides the backend functionality of the platform.

Web application: the component that provides the user interface of the platform.

Ledgers (private and public): the components that represent the private and public ledgers
used within the pilot platform.

Consortium ledger Public ledger

SOFIE components

Supervisor

API

FA FA FA

FSC Web App.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 15(90)

Figure 4: FSC Pilot component diagram

The components of the platform provide API endpoints for communication with other
components of the platform. The Supervisor component that was implemented and plays a key
role in the Food Chain pilot offers an API which the Federation Adapters and the Web application
are using. The API endpoints of the Supervisor Web Server component are included in Figure
5.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 16(90)

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 17(90)

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 18(90)

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 19(90)

Figure 5: API description

In Figure 6 we show the sequence of steps that must be performed by the pilot platform to
achieve the QR creation result. The flow presented follows the several actions taken by the
actors (producer, transporters, employees) during the transportation of an asset from the field
to the end destination (supermarket).

Figure 6: Steps in QR code creation

Following the overview of the architecture of the FSC Pilot platform, we present the validation
of the implemented platform in the next section.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 20(90)

3.3 Validation results

In the tables below we present the test cases defined in D5.1 (Baseline system and
measurements) and the related results from the validation process:

Table 2: FCP validation results

Test ID FSC_TC01

Test
descripti
on

Measurements from each deployed sensing device are collected by the
corresponding IoT platform and they are properly stored in its database system.

Steps 1. Sensing devices are deployed on site and they are properly configured to
communicate and send data to the corresponding IoT platform.
2. Collect data from a given period of time (e.g. few days)
3. Use IoT platform API to retrieve data from each integrated sensing devices
within a specific time period.

Pass
criteria

All relevant measurement values are properly retrieved.

Result

Test ID FSC_TC02

Test
descripti
on

Each registered actor of any type (e.g. producer, transporter, warehouse,
supermarket employee) can access and perform all the services provided by the
FSC web application based on its role.

Steps 1. The actor initiates an HTTPS session to the FSC web application login page.
2. The HTTPS traffic is intercepted and the authorization is initiated by the
Authentication Server (AS) of the SOFIE platform. The login page is sent to the
actor.
3. The actor enters a username and password, which are sent to the AS of the
SOFIE platform.
4. The OAuth2.0 server authenticates the actor and creates a unique token that
is used to enable role-based access to FSC web application resources.

Pass
criteria

Actor’s access policy is activated. The actor is able to access the FSC web
application’s resources.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 21(90)

Result

Test ID FSC_TC03

Test
descripti
on

Test that box reuse is possible (after its release) and that registration of a box with
an ID that is already used by another box is impossible (box unique identifier).

Steps 1. An actor (transporter) enters its profile in the FSC web applications and
activates register box action.
2. The actor provides as input to the action a box ID which has been already
registered in the used DLT.
3. The actors provides as input the ID of a released box.

Pass
criteria

Registration of a box with an already used ID (by another box) is prohibited. Reuse
of a released box is possible.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 22(90)

Result

Test ID FSC_TC04

Test
descripti
on

Presence of a group of boxes (RFID tags) is detected as they are placed/removed
in/from the truck.

Steps 1. A number of boxes are placed inside the truck at a certain time instant.
2. Some of the boxes are removed from the truck at a certain time instant.
3. The boxes which were removed in step 2) are placed again inside the truck at
a certain time instant but in a different location (inside the RFID range)

Pass
criteria

The presence of all the boxes inside the truck is properly detected by the
transportation IoT platform all times (taking also into account the delay in
collecting measurements).

Result

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 23(90)

Test ID FSC_TC05

Test
descripti
on

The SOFIE platform receives data from the transportation GW deployed in the
truck i) as the vehicle moves, and ii) as the vehicle engine is turned off.

Steps 1. A group of boxes is placed inside the truck.
2. At a certain time the truck starts to move from site A to site B.
2. Before reaching its destination, the truck stops for a certain period of time and
its engine is turned off for a certain period of time (a few minutes).
3. The engine is turned on and the truck moves to reach site B.

Pass
criteria

The presence of the boxes inside the truck is continually detected (given the used
time resolution in collecting data from the truck) from A to B.

Result

Test ID FSC_TC06

Test
descripti
on

Data and metadata provided by the actors through the FSC web application are
recorded in DLTs. The payload of any transaction is verified.

Steps 1. An actor accesses the FSC web application and activates an action.
2. The actor performs any operation in the physical world requested to complete
the action (e.g., boxes onboarding in the truck) and inputs the necessary
(meta)data.
3. The actor completes the action (thus data is recorded in the used DLTs)
4. The actor accesses the logs of the performed operation and verifies that
information recorded in the DLTs is correct.

Pass
criteria

Data of the transaction which is stored in the DLTs matches the relative activity
and metadata.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 24(90)

Result

Test ID FSC_TC07

Test
descripti
on

Metadata related to an actor’s activity (in the FSC app) is accessible by that actor
at any time and is invisible to any other actor.

Steps 1. An actor logs in using his profile in the FSC web application.
2. The actor performs a number of actions.
3. The actor confirms that he can access the logs of all performed actions and
that recorded information per (trans)action is correct.
4. The actor tries to access a view/endpoint for which he does not have the
authority (based on his role).

Pass
criteria

Access of each actor to its own resources is allowed, while access to other
resources is prohibited.

Result

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 25(90)

Test ID FSC_TC08

Test
descripti
on

A QR code which is created by the supermarket employee using the FSC web
application can be read offline by using different smartphone devices. Readability
of all included information is confirmed.

Steps 1. The customer uses a smartphone to read information encoded in the QR code
of the package.
2. The action is repeated by using five different smartphone devices/QR reading
applications.

Pass
criteria

The revealed information includes (at least) the following information: farm
location, type of product, harvesting date, used fertilizers, packetizing date, ID of
used box and session ID.

Result

Test ID FSC_TC9

Test
descripti
on

Test that the audit service can access/process data streams containing relevant
information and discard requests containing irrelevant information, e.g., improper
box ID and session ID.

Steps 1. The supermarket employee scans the QR code attached on the product.
2. The supermarket employee requests an audit by accessing the corresponding
service in the FSC web application and providing box ID and session ID values.

Pass
criteria

Audit services are properly executed once relevant data is provided whereas they
are aborted in cases of irrelevant data.

Result

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 26(90)

3.3.1 Future validation results

The final validation results of the platform and the pilot overall validation is on-going and will be
reported in the final WP5 deliverable, D5.4 (Final Validation & Replication Guidelines). These
results will also include information about the on-site pilot deployment as well as any updates
on the pilot platform based on the feedback from the on-site deployment. Due to the major
impact that COVID-19 had on all segments of the Food Supply Chain, we had to postpone the
on-site validation until the health safety protocols would allow it. Therefore, we are scheduling
the on-site validation within the last six months of SOFIE.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 27(90)

4. Decentralized Energy Data Exchange Pilot

4.1 Pilot overview

The Decentralized Energy Data Exchange (DEDE) pilot key driver is enabling the data owner
(i.e. the entity/person who legally owns smart meter data) to:

 choose who gets access to the data,

 enable data transfer supported with business logic,

 receive proof of the parties accessing/using the data,

 receive guarantees that activities comply with GDPR and high security requirements.

The starting point for the decision-making regarding access rights is fixed on the data owner
side, but the smart meter data storage and data processing can be different. The pilot is focusing
in three different data access points:

 data from the National data hub (Estfeed platform),

 data from a regional database, energy subsystem (wind farm network),

 data from the single metering point from the household (zero-energy building)

The core idea of the pilot is to provide a proof-of-concept for secure data exchange and
agreements to data access rights between smart meter data and infrastructure owners and
energy service providers (intermediaries, distributors, brokers). The pilot will develop and use
the capabilities of the SOFIE federated platform and Energy grid adapters to deliver the required
functionality to stakeholders.

A general overview of the pilot can be seen here:

Figure 7: Basic building block of the DEDE pilot

The basic concept and building blocks of the DEDE pilot is depicted in Figure 7. We build a
network where SOFIE adapters are installed and the interaction between the energy sellers (on
the top here) and consumers (behind the data sources) is enabled.

On the bottom we can see the data sources. The stand-alone smart meters, national datahubs
and regional solutions already exist, but are not able to deliver data as needed. On the upper
part we have energy flexibility service providers needing access to the data on the left and
various entities on the right that require the reporting, auditing, and traceability functionality of
data access control. In the center we have the SOFIE Energy grid adapters and SOFIE
federated platform that are the main components developed during the project. Using the

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 28(90)

Hyperledger Indy, Verifiable credentials, Decentralized Identifiers and Guardtime’s KSI
blockchain, we enable governance and traceability when accessing the data for data owners
and service providers.

The adapters will enable users to connect to those data sources and deliver matchmaking,
cryptographic proof, security of transactions and logs to all parties involved. From the service
providers and datahub operator’s perspective, the key driver to be onboarded is the reduction
of integration costs, as most of this is solved with adapters and the SOFIE federated platform.

More detailed information about the architectural design of the DEDE pilot, selected
scenarios/use cases, roles of the involved actors, as well as the added value to stakeholders
that are involved can be found in detail in Deliverable 5.2 (Initial Platform Validation).

At this stage, the first integration of the DEDE pilot platform has been completed and the first
round of end-to-end validation results have been performed to verify the platform’s operation
with respect to the defined requirements. Overall, the main achievements of the DEDE pilot
during the period M18-M30 and the activities which are scheduled for the last period of the
project are summarized in Table 1.

4.2 Pilot platform architecture and services

4.2.1 Introduction

The DEDE platform connects energy data providers with energy data consumers in a secure,
open, and decentralized way. Both the data providers and the data consumers connect to the
platform through their own instance of the Federation Adapter (FA). The FA is a common
software component for both data providers and data consumers and needs no extension or
customization. The FA of a data consumer connects directly to the FA of a data provider to
exchange messages according to the FA communication protocol. Messages between the two
FAs are transported securely over a mutually authenticated TLS connection, using Hyperledger
Indy-based decentralized identifiers and verifiable credentials to establish trust. This document
describes the architecture of the platform and the FA component that enables it.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 29(90)

Figure 8: Overview of the DEDE platform

4.2.2 Responsibilities of the FA

The FA is the key component in enabling the DEDE platform. Its main function is to ensure
interoperability and to secure the communication with other entities on the DEDE platform. It
acts as a forward proxy for the data consumer and as a reverse proxy for the data provider, but
it can also perform both roles at the same time, enabling entities that are both data consumers
and data providers. The FA takes care of the security aspects of the integration and lets the
data provider concentrate on implementing services and the data consumer on using these
services. The only requirement for a data provider is to describe its services in OpenAPI 3.0
format.

Each entity on the DEDE platform is identified by a Decentralized Identifier (DID). It is a new
type of globally unique identifier, that is self-administered and whose ownership can be
cryptographically verified. DIDs form the base layer for Verifiable Credentials (VC) that are used
to make authorization decisions in the FA. Every DID is associated with a public key and the
mapping is published on a Hyperledger Indy instance - a distributed ledger built for this purpose.
The private key that gives control over the DID is stored in a wallet managed by the FA. This
makes it possible for the FA to sign every message sent out from that FA. Use of DIDs and VCs
makes the DEDE platform independent of DNS names and Web PKIs. Although there are many
different methods to define DIDs and basic CRUD operations to manage them (https://w3c-
ccg.github.io/did-method-registry/), the DEDE platform only supports the Sovrin1 method
implemented by Hyperledger Indy.

The FA is also a natural place to construct the audit log of the messages exchanged between
entities. A data provider will have a log of signed request messages that can be used to prove
which data consumer has asked for which data. Likewise, a data consumer will have a log of

1 https://sovrin.org/

https://w3c-ccg.github.io/did-method-registry/
https://w3c-ccg.github.io/did-method-registry/

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 30(90)

signed response messages to prove which data provider gave out which data. The FA will take
care of securing this audit log with KSI.

4.2.3 The FA Communication Protocol

4.2.3.1 Choosing the Source and Target DID

On the DEDE platform, a data consumer initiates the connection to a data provider. Both entities
are represented by a DID, generated for them in their FA. Each FA can manage one or more
DIDs to represent one or more entities. The first step for the data consumer is to choose the
source (its own) DID for the connection and the target (data provider) DID. Providing the source
DID is optional, as the FA only has a single DID generated by default that will be used as the
source. Providing the target DID is required. The FA then resolves the endpoint of the target
DID from the ledger, by reading the published attribute proxy-endpoint of the target DID.

Figure 9: A connection between two DIDs controlled by different FAs

4.2.3.2 Proving the Control of a DID

The first step in establishing trust between a data consumer and a data provider is proving the
control of the DID that is used for the connection. For this purpose, both sides generate a self-
signed X.509 certificate with the Subject Common Name (CN) field containing the DID and
publish its SHA-256 hash as an attribute to the ledger. This certificate is then used to establish
a mutually authenticated TLS connection. Verification of the certificate presented in a TLS
handshake contains the following steps for both sides:

1. Read the DID from the Common Name field of the certificate
2. Fetch certificate-hash attribute for the DID from the ledger
3. Calculate the SHA-256 hash of the certificate
4. Compare the calculated hash with the published hash
5. If the hashes match, the other party must be in control of the DID. If the hashes do not

match, the connection should be dropped

Essentially, the public key used in the X.509 certificate is an alternative authentication key for

the DID. Theoretically, it should be possible to issue an X.509 certificate for the native Ed25519

public key generated for each DID in Hyperledger Indy and use that for TLS connections as

well. But the support for the Ed25519 signature system is currently lacking in TLS

implementations. The FA initiating the TLS connection must specify the target DID in the Server

Name Indication (SNI) extension of the TLS protocol. This allows the receiving end to present

the correct certificate if it happens to have more than one. Only TLS 1.3 is used between the

FAs.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 31(90)

4.2.3.3 Proving the Identity of a DID Owner

Once both parties have proved the control of the DID, they are using for the connection, it is
possible to start consuming services that do not require further authentication. But, if the data
consumer sends a request to a service that requires proving his identity, the data provider FA
sends a proof request to the data consumer FA, requesting proof of the attributes configured for
the service. For example, a service called getConsumptionData can be configured to require
proof of the nationalId attribute in a verifiable credential issued by any of the issuers trusted by
the data provider. The data provider can either configure a set of allowed nationalId values for
the service in the FA, or it can do the authorization decision later in the service implementation,
for which the FA will pass on the proved attributes.

Figure 10: Request to a service that requires proved attributes

The proof presented by the data consumer must contain proof of non-revocation of the verifiable
credential that contains the proved attribute. It is up to the service provider policy to decide the
frequency of asking this proof again to verify non-revocation.

4.2.3.4 Proving Delegated Authorization

If an entity is authorized to consume some service, it is also possible for that entity to delegate
that access right to other entities.

As the first step, the authorized entity (delegator) must prove its identity to the data provider.
This is required to establish trust between the delegator and the data provider and contains the
same interactions described in the previous section. If the data provider trusts and allows access
to an entity, it can also trust the delegations made by that entity.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 32(90)

As the second step, the delegator entity issues a credential to the delegated entity. The
credential must follow the standard Edex-Delegation credential schema. This credential can be
revoked by the delegator at any time.

As the last step, the delegated entity sends a request to the data provider, specifying the DID
of the delegator entity as a header parameter. This is the flag for the data provider FA, saying
that instead of asking for proof of configured attributes, it needs to ask for proof of delegation. If
the data provider allows access to the delegator DID and the request sender can prove that it
has been delegated by that entity, then the data provider FA can safely proceed with the request.
Figure 11 shows this interaction between the FAs in three different roles.

Figure 11: Request to a service with delegated access rights

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 33(90)

4.2.4 FA Internals and the Use of SOFIE Components

The two main responsibilities of the FA is to proxy messages and to manage the identity of the
represented entity. The internal structure of the FA mirrors this with two loosely coupled
services: proxy and ssi-agent (Self-Sovereign Identity agent). Both components have public and
private interfaces, for external and internal use accordingly.

Figure 12: Internal structure of the FA

The information system of the data consumer first sends a request to the proxy private interface.
The proxy uses the ssi-agent private interface to resolve the endpoint of the target DID and to
sign the request with the source DID. Then, it initiates a secure connection to the public interface
of the data provider (target DID) proxy. Both sides use the ssi-agent private interface to retrieve
the hash of the currently valid certificate to verify the authenticity of the connection. Once the
connection is set up, the data provider proxy will use the ssi-agent private interface to verify
request signature. If the request is for a service that requires further authorization, the data
provider proxy will also use the ssi-agent private interface to get the proved values of the
attributes required for the authorization decision. If the data provider ssi-agent receives such a
request, it will send a proof request to the public interface of the data consumer ssi-agent. Once
the data provider proxy has values for all the proved attributes, it can forward the request to the
service implementation that is described using the OpenAPI 3.0 specification. The signing of
the response and the verification of the response message signature is analogous to the
processing of the request.

An alternative for the data consumer to proving its credentials on demand, is to send them
together with the request, as a JSON Web Token issued by the SOFIE Privacy and Data
Sovereignty (PDS) component. In this setup, it is the responsibility of the data consumer
information system to acquire the token accepted by the data provider and include it in the
request header. If the data provider proxy receives such a request, it will use the SOFE
Identification, Authentication, and Authorization (IAA) component to verify the token and get the
trusted values for the attributes that are required for the authorization decision.

The ssi-agent on both sides uses the SOFIE Interledger component to periodically record the
state of the Hyperledger Indy instance with KSI.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 34(90)

4.2.5 Proxy Private API

The most important API that the FA provides is the private API of the proxy service that data
consumers use to send requests to data providers. Although the goal for the proxy is to be as
transparent as possible and make it feel like the data provider services are invoked directly,
there are still some aspects that the data consumer needs to be explicit about. In addition to the
request payload, which is constructed according to the target service description, data
consumer must provide the following DEDE platform-specific parameters in the request:

Table 3: Proxy Private API

Parameter Type Required

Target DID Path parameter
(targetDid)

yes

Source DID Header parameter (X-EDEX-
SourceDid)

no (only if the FA controls
more than one DID)

Authorization Token Header parameter
(Authorization)

no (only if PDS based tokens
are used for authorization)

The API defines just one endpoint: /proxy/{targetDid}/**

Currently, HTTP GET and POST methods are supported. Everything in the path after the
targetDid parameter is used as is to execute the service on the data provider side. That includes
the query parameters. Also, the request body and headers are proxied as is.

The response looks exactly as returned by the service implementation, except for an additional
header (X-EDEX-Error) in case an error happens in the FA of either side. This helps to
distinguish service implementation errors from the DEDE platform errors.

There is also a metaservice implemented by the FA at /proxy/{targetDid}/services. It can be
used by data consumers to discover the services that different data providers offer. The service
description follows the OpenAPI 3.0 specification.

4.2.6 Pilot Deployment View

The pilot environment consists of two data providers and a single data consumer that supports
multiple data owners.

● Smart Meter is a data provider that serves data for a single metering point, owned by an

individual who has sole rights to the data served by it.

● Estfeed is an aggregate data provider that serves data for many metering points, each

owned by a different individual. Since Estfeed has a different service description and

message format than the one expected by the DEDE platform, it needs an additional

converter that converts between the two.

● Data Owner Portal is a data consumer that can represent many data owners. It controls

the DID for each data owner that it represents. In this setup the data owner portal is also

a trusted party for the data providers who can issue verifiable credentials or bearer

tokens to prove data owner identities. These roles do not have to belong to a single

entity. Each data owner could control its own DID in a mobile app version of the FA and

receive verifiable credentials or tokens from external sources.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 35(90)

Figure 13: Deployment view of the DED platform pilot environment

4.3 Validation results

The validation approach can be roughly divided into three sections.

 Firstly, the business case and processes validation with end-users considering the
technical details that are already fixed based on the previous analyze and work in
SOFIE.

 Secondly, the pilot’s solution components validation with full functionality in the test
environment. This also includes the validation of the technical approach that we have
taken in the pilot.

 Thirdly, the on-site testing with end users.

Since the validation process inside the industry has been impacted by the COVID-19 situation
we have mainly focused on the First and Second section of the validation, leaving the on-site
testing to be conducted in the last 6 months in the SOFIE project.

4.3.1 Validation approaches

The Business case and processes validation was ongoing until the end of February 2020 and
started again after the COVID-19 outbreak eased in June 2020. The methodology to do
validation was mainly using one to one telcos, participation in workshops and conducting
questionnaires to end-users. Key stakeholders that were targeted were selected based on the
Dissemination and Exploitation plan and covered the full spectrum from National data hub
operators (Elering, Energinet, PSE), Service providers (Spotty Energy, Enoco), Integrators
(AKKA) and multiple smart home groups.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 36(90)

The main outcome of this validation was that there is a definite demand for the SOFIE DEDE
platform and a high interest to investigate the cost benefit of using the platform from each
stakeholders’ premises as well as agreeing the preliminary business model for operation. More
details can be found in the SOFIE deliverable link: D6.8 Interim Report on Communication,
Dissemination and Exploitation

From the pilot technical concept perspective (presenting the SOFIE federation architecture,
framework and interledger approach), we have validated that a decentralized and auditable
approach to energy data exchange is feasible with the use of Hyperledger Indy and KSI
technologies. Each integration is independent from all others yet enabling secure data exchange
with every other entity that has joined before.

Integration of different energy data sources and data consumers is a key element for the data
exchange pilot. So far, we have validated onboarding and integration steps with a national
energy data hub in Estonia (Estfeed). With other national data hubs there has been preparation
work, but no additional integrations are available yet. Additionally, we have prepared and
validated integration with single data sources (could be an individual smart meter, small network
etc.) in a simulated fashion.

The flexibility for integrating existing systems allows to create additional value for existing
connections by multiplying the potential data exchange partners. Here is the description of
integration steps for the Estonian Energy data hub called Estfeed.

 The SOFIE platform had to be onboarded at Estfeed by signing an agreement with
Elering AS as the service provider for Estfeed platform.

 User logs in to the portal: https://portal.research.estfeed.ee/#/. Users can see data
consumption and manage authorizations for data sharing. SOFIE has been onboarded
as a trusted service provider to whom users can grant access to its data.

Figure 14: Access rights delegation for SOFIE platform in Estfeed user portal

https://portal.research.estfeed.ee/#/

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 37(90)

 Estfeed provides system components that were installed and configured. The Estfeed
adapter is the web application that exchanges messages between the client application
and the decentralized network, where different data sources provide data services. The
pilot had to build a separate application that provides services in OpenAPI version 3
format. Here is the list of services as a screenshot from Swagger UI:

Figure 15: SOFIE Estfeed adapter service list

 The SOFIE adapter proxies the requests to the estfeed adapter and shows the energy
data in common format. Here is the sample payload in JSON format:
[
 {
 "person":"PNOEE-38502136521",
 "usagePoint":"38Z121212123-U",
 "from":1567332000000,
 "to":1571616000000,
 "readings":[
 {
 "value":123456.789,
 "from":1567332000000,
 "to":1567335600000,
 "flowDirection":"o",
 "commodity":"electricity",
 "measurementKind":"energy",
 "unit":"kWh"
 },
 {
 "value":123456.789,
 "from":1567335600000,
 "to":1567339200000,
 "flowDirection":"o",

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 38(90)

 "commodity":"electricity",
 "measurementKind":"energy",
 "unit":"kWh"
 },
 {
 "value":123456.789,
 "from":1567339200000,
 "to":1567342800000,
 "flowDirection":"o",
 "commodity":"electricity",
 "measurementKind":"energy",
 "unit":"kWh"
 }
]
 }
]

4.3.2 Validation results

The following pilot test cases defined in D5.1 have been validated.

Test ID EDE_TC01

Test
environment

Federation adapter has been installed and configured on both sides of the data
exchange - customer portal and data hub. Data owner has been authenticated
in customer portal and a credential proving his identity has been issued to him.

Validation
flow

Validation results are provided in graphical and textual form.

Users must authenticate before accessing the customer portal.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 39(90)

User can select energy service provider to grant access to its data:

Test ID EDE_TC02

Test
environment

The Federation adapter has been installed and configured by a third party. Third
party is known to the customer portal and offered as a target for delegation.

Validation
flow

Validation results are provided in graphical and textual form.

Logged in users in the customer portal can request access credentials. The list
of issued credentials is displayed. Additionally, the user has an overview of
credentials issued to her/him and can revoke them.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 40(90)

Test ID EDE_TC03

Test
environment

Both data owner and delegated third party have performed requests to data hub.
The audit log is not empty at the data hub.

Validation
flow

Every interaction in the system produces a signed audit log. For users, a
human-friendly presentation of the audit log is displayed.

4.3.3 Future validation results

Technical validation tests are on-going and different performance metrics will be collected. To
validate the integration process to alternative existing data hubs, an additional data hub
integration process will be described.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 41(90)

5. Decentralized Energy Flexibility Marketplace Pilot

5.1 Pilot overview

The objective of the Decentralized Energy Flexibility Marketplace (DEFM) pilot is to demonstrate
the use of the SOFIE architecture and its components to support the implementation of a
decentralized energy flexibility marketplace in the context of an energy district/electricity grid
with a high penetration of distributed generation from renewable energy sources. The pilot is
designed to address the needs of the main actors: DSO operators, requesting flexibility to
balance the grid, and EV fleet managers, interested in Demand Response campaign benefits.
The actors are supported by:

i. The creation of flexibility requests on the marketplace

ii. The proposal of flexibility offers, in response to the requests

iii. Requests and offers matching

iv. Verification and payment settlement

The pilot’s architectural design, main actors, scenarios and use cases, and the added value
provided by SOFIE to the pilot BP can be found in detail in Deliverables 5.1 (Baseline System
and Measurements) and Deliverable 5.2 (Initial Platform Validation.

At this stage, the first integration of the pilot platform has been completed and is being
demonstrated at the pilot site (to be reported in D5.4). The first validation tests have been
performed, in order to verify the platform’s results with respect to the defined objectives. More
details about the platform’s implementation are discussed in Section 5.2, while the validation
results are discussed in Section 5.3.

5.2 Pilot platform architecture and services

This section describes the updated pilot platform architecture (Figure 16) used for the initial
validation. The pilot’s architecture mixes pilot-specific components with the following SOFIE
platform components:

 Federation Adapters

 Decentralized Marketplace

 Interledger

 Semantic Representation

The pilot-specific components include the IoT platforms, the operators’ dashboards, and the
necessary backend services and APIs.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 42(90)

M
u

lt
ile

d
g

er
o

p
er

a
ti

o
n

s
A

ll
co

m
p

o
n

en
ts

 m
a

y
in

te
ra

ct
 w

it
h

 D
LT

s

Private DLT

KSI

IoT platforms (SMX, EV, EVSE)

Interledger

Dashboards (DSO, Fleet Manager)

SO
FI

E

Off-chain
communication

Authorisations,
access logs (hashes),
events, payments, etc.

Multiledger
operations

Smart contract

Applicable

Identity,
Authentication
& Authorisation

Marketplace

Semantic
Representation

Discovery &
Provisioning

Privacy &
Data Sovereignty

Public API

Federation Adapters

SOFIE Components

Not applicable

Pilot Software

Backend

Local storage Services

Consortium
Ledger Client

Figure 16: High-level architecture of the DEFM pilot

Figure 17 shows the interaction among the different actors and subsystems, with the steps
needed to create a flexibility market request, participate with an offer to a market request, select
the winning offer and, after the delivery phase, verify the fulfilment of the request and make the
payment.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 43(90)

Figure 17: Message flow in the DEFM pilot

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 44(90)

Figure 18: DEFM platform deployment view

Finally, Figure 18, presents the deployment view of the pilot platform. The actual deployment of
the platform is based on container images. A container image can be considered as a software
unit that packages together the code with all its dependencies (runtime, system tools, libraries,
and settings) to form a standalone executable package that can be executed in different
environments.

The host system operates a Docker instance as the runtime environment for the container
images. The source code of the different modules contains all the instructions needed to build
the related container images. Every time a new feature is added, a new image is built and is
pushed on a container registry.

The host system utilizes Docker to fetch the updated images and execute them. Each (micro)
service is managed then as a separated container which exposes its own set of APIs to interact
with the clients (human operators through web interfaces, or IoT systems in an automated way).

5.3 Validation results

The pilot test cases defined in deliverable D5.1 involve Metering & data collection and the
Decentralized marketplace management. Below, the results of the platform tests are
presented (Table 4, Table 5, Table 6).

Table 4: DEFM test case 1

Test ID DEFM_TC01

Feature(s)
under test

Metering & data collection

Pass criteria historical and real-time data provided by the smart meters are properly
retrieved

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 45(90)

Methodology API request invocation

Result Request:

Response (truncated):

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 46(90)

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 47(90)

Table 5: DEFM test case 2

Test ID DEFM_TC02

Feature(s)
under test

Metering & data collection

Pass criteria Real-time charging data provided by the EVSE is properly retrieved

Methodology API request invocation

Result Request #1 (charging station info & real-time status):

https://panel.spot-link.it/public/api/chargeboxes/{"chargeboxID":"24"}

Method: GET

Response #1:

Request #2 (charging sessions data):

https://panel.spot-link.it/public/api/historyCharges/{"chargeboxID":"24"}

Method: GET

Response #2 (truncated):

https://panel.spot-link.it/public/api/chargeboxes/%7B%22chargeboxID%22:%2218
https://panel.spot-link.it/public/api/historyCharges/%7B%22chargeboxID%22:%2224

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 48(90)

Table 6: DEFM test case 3

Test ID DEFM_TC03

Feature(s)
under test

Decentralized marketplace management

Pass criteria All the marketplace functionalities are working as expected, tokens are
transferred after a successful transaction

Methodology API request invocation

Result Request:

Response:

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 49(90)

The use cases and scenarios of the DEFM pilot have been presented in D5.1 “Baseline System
and Measurements”; they describe a situation in which the DSO is facing a problem due to a
condition of high penetration of renewable energy into the electricity grid. For this reason, the
DSO requires flexibility through a marketplace that enables aggregators to make offers and to
sign smart contracts for the provision of the service. At this phase of the project, several Demand
Response (DR) campaigns were carried out and more than 5300 kWh were consumed (Figure
19) at the time and the place of the request through the charging of electric vehicles at the
charging stations located at the electricity grid node where flexibility was needed. The flexibility
provided not only guaranteed the stability of the electricity grid but also brought economic and
environmental benefits; indeed, using renewable energy, as outlined by the Italian Institute for
Environmental Protection and Research (ISPRA), it is possible to avoid emitting 491 g CO2/kWh
(Figure 21), an average amount of CO2 associated to the energy mix that is purchased by
energy retailers. Furthermore, if we consider that the average cost of energy purchased by the
energy retailers is 0.26 €/kWh, as specified by Italian Energy Market Manager (GME), and the
average cost of energy sold to the energy retailers by prosumers is 0.13 €/kWh, taking
advantage of the renewable energy surplus to charge the electric vehicles, the economic saving
is 0.13 €/kWh (Figure 20).

https://www.isprambiente.gov.it/files2019/pubblicazioni/rapporti/R_303_19_gas_serra_settore_elettrico.pdf
https://www.isprambiente.gov.it/files2019/pubblicazioni/rapporti/R_303_19_gas_serra_settore_elettrico.pdf
https://www.mercatoelettrico.org/it/

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 50(90)

Figure 19: DEFM Pilot Charging Stations Energy Consumption Trend - 1,5 years

Figure 20: DEFM Pilot Charging Stations Money Saved Trend - 1 month

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 51(90)

Figure 21: DEFM Pilot Charging Stations CO2 Saved Trend - 1 month

In order to evaluate the benefits coming from the flexibility marketplace based on the SOFIE
architecture, the analysis of 1-year (2019) of consumption in the ASM headquarters was carried
out. The data were collected and elaborated through a MATLAB script and they were referred
to timestamps of 10 minutes.

Initially, the scenario where flexibility requests are not present was considered (ex-ante
scenario). The local power generation comes from PV plants, whereas the consumption is due
to the facilities and the EV charging sessions of a Renault ZOE equipped with a 52-kWh battery.
In 2019, 402 charging sessions were recorded, with a total energy consumption of 5.1 MWh.
The 22-kW nominal power of the charging station was assumed constant in the analysis,
identifying the charging timestamps through the variation of the State Of Charge (SOC)
recorded by the vehicle. Energy flows and indicators are reported in Table 7, which also shows
the number of Reverse Power Flow (RPF) events (i.e., a 10 min timeslot in which energy
balance is negative) as well as self-consumption (i.e., the ratio between the energy directly
consumed by the loads and the produced energy) and self-sufficiency rate (i.e., the ratio
between the energy directly consumed by the loads and the total energy used by the customer).

Table 7: Ex-ante Scenario

KPI Value

Consumed energy 646,38 MWh

Produced energy 320,46 MWh

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 52(90)

Injected energy 108,57 MWh

Charging station energy 5,14 MWh

Self-consumed energy 211,89 MWh

Self-consumption rate 66,12 %

Self-sufficiency rate 32,78 %

RPF events 10419

The second scenario is characterized by a different scheduling of the charging sessions
according to some constraints, that are listed below:

● Charging sessions are shifted and scheduled only for reducing injected power flows
(i.e., maximizing green energy consumption)

● The charging session would not be shifted if the new scheduling reduced the
consumed energy up to an RPF greater than that reduced.

● The charging session is never divided in more sessions, but it is entirely postponed.

● Charging sessions are not rescheduled if the EV would not be at the EVSE premises
for the new selected timeslot.

The constraints introduce an important improvement in the realism of the model. In this scenario
the new charging session scheduling is accepted by the end users and the exchanged power
between the ASM headquarter and the distribution grid in the ex-ante and in the first scenario
is reported in Figure 22. According to these assumptions, 190 sessions would be shifted,
reducing the injected energy of 1.9 MWh.

An example of the charging session rescheduling is reported in Figure 23Figure 22, in which
the charging session on the 4th of April reduces the Reverse Power Flow (RPF), shaving the
peak. It is worth noting that the energy consumed by the EV in case of RPF corresponds to an
increase of the part of renewable energy consumed by the headquarters. This part should be
injected into the grid in the absence of EV absorption whilst the charging session rescheduling
promotes this effect. It can be evaluated as the Self-Sufficiency for EV (SSEV) which
corresponds to the share of the PV production drawn by the EV charging sessions and, in the
simulated scenario, an amount of energy 2.73 times higher than the first one was calculated.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 53(90)

Figure 22: Exchanged power between the ASM headquarter and the grid in the ex-ante and
first scenario

Figure 23: Exchanged power between the ASM headquarter and the grid on 4th April in the
ex-ante and first scenarios

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 54(90)

Figure 24: Distribution of number of EV charging sessions rescheduled

Figure 25: Renewable consumed energy rate increase [%]

The second scenario takes into account the possibility of the charging session rescheduling to
be rejected, though the limitations mentioned above do not prevent the event. A 50% of
probability that the displacement is accepted is considered in order to take into account the EV
end user’s decision. This scenario is repeated 500 times to obtain a distribution of the main
interesting index of the data analysis.

In particular, Figure 24 shows the distribution of the number of rescheduled charging sessions.
The range between 95 and 100 displacements is the most present in the analysis,
corresponding to the chosen 50% of probability. Figure 25 depicts the distribution of the
renewable consumed energy rate increase as a percentage. The outcomes of the simulation
are also summarized in Table 8, highlighting the increased self-sufficiency of the EVSE needs
if an EV scheduler was applied.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 55(90)

According to the results, it can be argued that the flexibility from EV will have great potential if
a proper session scheduling is applied. The next section presents the enabling technologies
that have been implemented in the pilot site to carry out these scenarios, as well as some
technical achievements.

Table 8: Comparison among scenarios

 Not scheduled
charging
sessions

Scheduled
charging
session

SSEV
(MWh)

Energy from the
grid for EVSE
(MWh)

Ex ante 401 0 0.7 4.4

First Scenario 211 190 2.6 2.5

Second Scenario [286, 332] [69, 115] [1.4, 1.8] [3.3, 3.7]

With respect to the KPIs, a group of business goals were defined in D5.1, as well as some
values to be achieved by the validation of the SOFIE project. Based on validation results, the
KPI values are as follows:

● KPI_DEFM_6, RPF reduction Amount of RPF is on average 13.7 kWh/ day, applicable
only if a charging session happen very close to the expected value reported in D5.1 (i.e.,
15kWh/day).

● KPI_DEFM_7, Power losses reduction, considering that about 3 MWh could be
consumed when it is locally produced, a beneficial effect is the reduction of that power
in the Medium Voltage network and therefore power losses would be reduced up to 75%
(i.e., a quarter of losses are produced in the LV part of the grid).

● KPI_DEFM_8, Voltage under the limits Voltage waveforms, simulation results show that
maximum and minimum voltages are 0.98 p.u. and 1.06 p.u., respectively.

● KPI_DEFM_9, Green energy consumption, the increased share of consumption from
green energy producers has been measured as the reduction of RPF and therefore the
increased share of consumption drawn from green energy producers (i.e., about 13.7
kWh/day as in KPI _DEFM_6 RPF).

● KPI_DEFM_10, EV fleet manager metrics Involvement in DR campaign provide
advantageous energy price for EV Fleet Manager, due to DSO benefits and Retailers
auction Monetary savings Measure the money saved involving EV fleet in DR
Campaigns: energy cost in DR campaign vs energy cost in non-DR campaign money
saved: 0,13 €/kWh.

5.3.1 Future validation results

In D5.4, Final Validation & Replication Guidelines, the final results of the activities carried out
during the whole project on the Terni pilot site and the outcome of the implementation of the
cross-pilot testing will be represented, described and analysed.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 56(90)

6. Mixed Reality Mobile Gaming Pilot

6.1 Pilot overview

The focus of the Mixed Reality Mobile Gaming (MRMG) pilot is to explore how DLTs can be
used to provide new gaming features for players, as well as to validate the potential of location-
based IoT gaming use cases. The pilot seeks to overcome the known technical issues of DLTs
with respect to scale, in order to cost-effectively support millions of active users per day.

As our earliest use case, we prototyped a game that enables players to collect and trade in-
game content, swap or trade with other players (e.g., characters, weapons, equipment, parts),
leveraging DLTs to provide player ownership of the asset, transparency and consistency of
asset attributes and transactions. Attributes, or the “DNA” of the in-game assets were published
on the blockchain.

As our second use case, we developed a Scavenger Hunt game prototype in order to explore
location-based IoT gaming. In the game, the player starts a hunt, which takes them on a journey
of predetermined real-world locations. At each location, a Bluetooth Low Energy (BLE) beacon
is deployed, either indoors or outdoors. When the mobile game client detects the beacon, it
means that the player has arrived at the correct location, and they receive a task in the form of
a question. By observing their real-world surroundings, the player can answer the question and
receive the clue on where the next correct location is. At the end of a hunt, the player receives
rewards that can bring in-game advantages in the next hunts.

Figure 26: Scavenger Hunt game prototype. Starting, playing, and ending a hunt on a mobile
client.

As additional rewards, the player receives items that are stored on a distributed ledger as non-
fungible tokens. To browse and manage these items, a companion application was created -
Blockmoji. In this mobile application, the player can see which items they own, and equip or
unequip them on their virtual avatar. Shared items between Scavenger Hunt and Blockmoji
demonstrate that it is possible to share the same items between multiple games, where it is up
to the game designers on how to interpret the attributes of the player’s Blockmoji items and
which in-game benefits they would bring. In our Scavenger Hunt game prototype, the Blockmoji
do not bring in-game benefits, but instead, the game acts as a source of these items.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 57(90)

Figure 27: Viewing and equipping items in Blockmoji.

In addition to the use cases, we are now working with Aalto on integrating Interledger and
Marketplace components into our pilot. In addition, the Discovery and Provisioning component
can be used to discover IoT beacons and add them to the database for a location-based game,
such as for our Scavenger Hunt prototype.

Before the end of the project, we plan to continue integrating the above-mentioned SOFIE
components into our pilot, and validate our pilot use cases as described by the requirements in
the validation matrix in D4.4 (page 49), as well as below in section 6.3. Moreover, we plan to
develop an additional use case relating to a decentralized mobile advertisement profile. This
use case would serve as a reference implementation of the IAA component. Furthermore, we
plan to complete the playtesting of the Scavenger Hunt prototype, if the COVID-19 situation will
allow it (tests need to be organized in the office spaces). Regardless, we will validate all
requirements that are listed in the validation matrix in 2020, as these do not require physical
presence in the office. The technical performance of our pilot has been measured and analysed,
as seen in Section 6.3. In addition, several requirements have also been validated, also as seen
in Section 6.3

Since D5.2, we have replaced multiple validation requirements of our pilot in order to better
reflect which functionalities we expect from our use cases, as well as to better align with our
planned mobile ads use case. The new requirements have IDs MRMG9.1-4, as can be seen in
the updated validation matrix.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 58(90)

6.2 Pilot platform architecture and services

Our pilot employs a hybrid server-blockchain architecture in order to utilize the benefits of both
worlds: the speed of a traditional game server and the transparency, traceability and a sense of
true ownership of virtual assets brought by distributed ledger technology.

6.2.1 High-level architecture

In this hybrid architecture, most of the game logic runs on the game server. The server is written
in Python using the Flask framework and deployed on AWS Lambda. For the mobile client to
communicate with the server, and for creating new hunts, a REST API is used. The server is
also connected to the DynamoDB database. The Web App, that is the AWS Console, can be
used by the game designer to manage the game’s hunts and players.

An additional Node.js Fabric SDK server is used, which runs on an AWS EC2 instance. This
reduces the coupling between the game and the blockchain network. The Hyperledger Fabric
network is deployed on AWS Managed Blockchain and exposes specific functions to the Node.js
server for the game server to access. The Fabric consortium includes two organizations, with
one peer node each. The network also includes an orderer node, two certificate authorities, and
one channel to log all transactions.

Figure 28: The high-level architecture of our pilot.

Figure 28 demonstrates the high-level architecture of our pilot, showing how the Scavenger
Hunt game prototype connects with our Hyperledger Fabric platform. As can be seen from the
figure, additional games can be connected to the same network, sharing the virtual items
between many games. That is exactly how Blockmoji and Scavenger Hunt use cases relate:

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 59(90)

both use items that are stored on the managed Hyperledger Fabric blockchain. In order for the
player to experience this interoperability, they have to use the same wallet address in both
applications. In our prototypes, the player’s device ID is automatically used to identify the player
in both use cases.

The Hyperledger Fabric managed blockchain is used for fast transactions in order to support as
many concurrent users as possible. For transparency and traceability during trading of the
assets, a public Ethereum network will be used, marked as “Sofie DLT” in Figure 28. To enable
this, the Marketplace and Interledger components will be utilized.

6.2.2 Flow of the game

As the player downloads and opens the Scavenger Hunt game application, they are
automatically signed in based on their device ID. If they have not logged in before, a new
account is created, along with a decentralized identity on the blockchain. From then on, the
game flow is as follows, from the player’s perspective:

1. The player sees available nearby hunts based on their coarse GPS location. The hunts
are stored in a DynamoDB database and are retrieved through the Python game server.

2. The player sees the hunts’ information, such as difficulty, user rating, and item rewards.
3. After starting a hunt, the game enables Bluetooth scanning on the mobile device, so as

to discover IoT beacons. The player receives the clue to the first location from the game
server.

4. As the player physically visits the correct location, the mobile device detects the BLE
beacon in that location. The beacon advertises its ID, which the game compares to the
ID of the beacon in that location, checking that the player is indeed in the correct location.
The player receives the task for that location in the form of a text question. By observing
their physical surroundings, the player answers the question correctly and receives the
clue to the next location.

5. The user visits all locations by solving the clues and answering questions. The player
can skip any task or receive relevant hints by consuming in-game tokens (stars and
gems, respectively) that are received by completing previous hunts.

6. As the player completes the last task in a hunt, they receive the rewards. The rewards
are moved from the hunt’s escrow to the player’s wallet address. This includes non-
fungible Blockmoji item rewards.

7. After the player has received an item reward from completing a hunt in Scavenger Hunt,
the item appears in the player’s Blockmoji collection. There, the player can browse their
items, and equip or unequip items from their avatar. Equipping and unequipping items
are write functions on the Hyperledger Fabric ledger.

6.2.3 APIs description

The Scavenger Hunt and Blockmoji client communicate with the game server through a REST
API. Numerous methods are utilized throughout the flow of Scavenger Hunt, such as getting the
nearby hunts, clues to the next location in a hunt, question tasks, Blockmoji item information,
and updating the backend to reflect the player’s progress in a hunt. Outside of the game, the
game designers can create new hunts and item rewards with POST methods. In Blockmoji,
methods for getting and updating equipment are utilized.

Some of these API calls get forwarded to the Node.js server, which, in turn, forwards them to
the Hyperledger Fabric network. When a game needs to get item information, a read call is
forwarded to the ledger. When a player completes the hunt and receives rewards, the call is
forwarded to the ledger to move the rewards from the hunt’s escrow to the player’s account.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 60(90)

Method API endpoint Description

POST /api/players Register the Player and create an
account on the fabric network

GET /api/player/<androidId> Returns the details of the single
player, specified by the id parameter

GET /api/player/<androidId>/startedHunts Returns the details of the started
hunts by the player, specified by the
id parameter

GET /api/player/<androidId>/completedH
unts

Returns the details of the completed
hunts by the player, specified by the
id parameter

PUT /api/player/<androidId>/<huntID>/sta
r

Players can use the stars for game
related tasks, player ID and hunt id
must be specified.

PUT /api/player/<androidId>/<huntID>/
<int:step_num>/answer

Checks for the answer of the clue,
player id, hunt id and clue number
must be specified.

GET /api/player/<androidId>/<huntID>/sta
r

Returns the details of the stars used
by the player in the hunt, specified by
the player and hunt id parameter

GET /api/player/<androidId>/myassets Returns the details of the assets
owned by the player, specified by the
player id parameter

PUT /api/player/<androidId>/<huntID>/clu
es/
<int:step_num>/hint

Use a hint for the clue, specified by
the player id, hunt id and clue number
parameter

POST /api/hunts Creates new hunt for the game.

GET /api/hunt/<huntID> Returns the details of the hunts,
specified by the id parameter

PUT /api/hunt/<huntID>/rate Update the hunt rating using Id
specified.

GET /api/hunt/<huntID>/clues Returns the details of all the clues in
the hunt, specified by the hunt id
parameter.

GET /api/hunt/<huntID>/clues/<int:step_n
um>

Returns the details of the specific
clues in the hunt, specified by the
hunt id and clue number parameter.

GET /api/hunt/<huntID>/clues/<int:step_n
um>/hint

Returns the details of the specific
clues hint in the hunt, specified by the
hunt id and clue number parameter.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 61(90)

GET /api/hunt/<huntID>/task/<int:step_nu
m>

Returns the details of the specific task
in the hunt, specified by the hunt id
and instance id

GET /api/<androidID>/hunt/nearby Returns the details of all hunts near
the location of the player.

PUT /api/<androidID>/<huntID>/start Update the started hunts for the
player.

GET /api/asset/<assetId> Returns the details of the specific
assets, specified by id parameter.

GET /useritems/<username> Returns the details of the all the
assets owned by the player, specified
by id parameter.

PUT /updateEquip Update the equipped items of the
player.

PUT /updateOwn Update the owned items of the player.

POST /item Creates new item for the game.

POST /identity Enrolls the player identity in the
blockchain.

6.3 Validation results

Due to the COVID-19 situation, physical engagement of end users in the form of internal
playtesting has been interrupted. Therefore, we have instead shifted our focus to DLT and BLE
beacon performance tests. In addition, there has been progress in validation results regarding
the Scavenger Hunt and Blockmoji use cases.

6.3.1 Validation Results

To this date, we have validated a number of our pilot requirements, as seen inen as screenshots
in the table.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 62(90)

Table 9. Proof of requirement fulfilment are given as screenshots in the table.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 63(90)

Table 9: Requirement validation

Requirement
ID

Requirement
Description

Test Description Screenshot

REQ_
MRMG1.1

Game challenges
are accessible
using the Android
application

In the test, the user
opens the Scavenger
Hunt game application
and enters the Nearby
Challenges tab. The
user should see a list of
(uncompleted)
challenges that start in
GPS coordinates that
are within a set radius
from the user. The
requirement is met if
the nearby challenges
that exist on the
backend are indeed
visible in the Nearby
Challenges tab.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 64(90)

REQ_
MRMG1.2

Players can join
any nearby
challenge from
the game app.

The requirement is met
if a challenge is added
to the list of the player’s
current challenges,
after the player presses
the Start button in the
client.

REQ_
MRMG1.5

Players should
receive unique
tasks when near
the IoT beacons
based on their
challenge.

The requirement is
met if a user standing
next to a BLE beacon
receives a task in the
mobile application.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 65(90)

REQ_
MRMG1.6

Players should be
able to skip any
task and receive
the location of the
next IoT beacon
using the In-App
tokens.

If a player has Star
items in-game, they
can use one star to skip
a task. The
requirement is met if,
when presented with a
task and using a star,
the current task auto-
completes and the user
receives the clue to the
next beacon.

REQ_
MRMG1.8

System should
automatically
calculate rewards
after player has
completed a
challenge

After a player
completes a challenge,
the requirement is met
if the player sees
rewards in the client
application.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 66(90)

REQ_
MRMG7.1

Blockmoji item
rewards be can
offered to players
through
challenges

If a challenge offers a
Blockmoji item reward,
the player should see it
in their mobile
application reward
screen after completing
the challenge.

6.3.2 Technical performance tests

In this section, we evaluate how the new technologies, such as blockchains and IoT, perform in
the mobile gaming ecosystems. We describe experiments evaluating the proof of concept
implementation of the game on an AWS managed Hyperledger Fabric network. We have
performed multiple experiments measuring the time taken for the end-to-end process to execute
a transaction, and the throughput of the Fabric network. Our Hyperledger Fabric test network
consists of two organizations, each with one peering node. There is one channel where all the
entities perform the transactions and one solo ordering node for the creation of the blocks. The
chaincode was written in the Go programming language. We performed multiple experiments
to test the performance of Fabric with “creating new data”, “querying data” and “updating data”
using the custom chaincode written for the games.

6.3.2.1 Response Time

For a quantitative system performance evaluation, various measurable metrics are required.
The most common performance metric of any system is the response time required by the
system to execute read and write requests. In our case, where the gaming system utilized a
hybrid architecture of a centralized backend and a distributed ledger, the response time metric
corresponds to the time that the system performs read or write transactions of the various game
functions. We ran the experiment 50 times before taking an average and found that it takes on
average 2.247s for a write request with a confidence interval of 0.011s and on average read
request takes 0.026s with a confidence interval of 0.0007s.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 67(90)

Figure 29: Response time for Read requests

Figure 30: Response time for Write requests

The figures above illustrate the average read and write response times and the variation over
50 runs of the scenario. Blue dotted lines show the 95% confidence level for the mean. This
delay is closely linked with the average time for block generation in the Fabric network, i.e. 2s.
This shows that block generation has the highest impact on the writing requests.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 68(90)

6.3.2.2 Throughput

In order to determine the throughput of the proposed architecture, we used Hyperleder Caliper,
a blockchain performance benchmark framework, which allowed us to test different blockchain
solutions with custom use cases and get a set of performance test results.

Fixed Rate

In the first experiment, we measured the throughput of the architecture by submitting multiple
transactions to the blockchain at the Fixed Rate. We ran the test with a fixed rate of 250
transactions per second (TPS) until the total number of transactions reached 10000. We
performed individual tests for creating, querying, and updating the data.

With a fixed transaction arrival rate, the throughput for writing new data on the blockchain
increased linearly as expected until it flattened out at around 177 TPS, the saturation point.
When the arrival rate was close to or above the saturation point, the latency increased.

Table 10: Performance validation – fixed rate

Name

Send

Rate

Total # of

transactions

Failed

transactions

Max

Latency

Throughput

(TPS)

Create 250 TPS 10000

transactions

0 % - 177 TPS

Query 500 TPS 10000

transactions

0 % - 351 TPS

Update 250 TPS 10000

transactions

0.24 % - 191 TPS

As shown in Table 10 above, the send rate for querying the blockchain was set to 500 and it
reached its saturation point at around 351 transactions per second with the latency increasing
significantly around it. In the last test, throughput for updating the data on the blockchain came
to be 191 TPS, which is mainly depended on for writing the new data on the blockchain.

Composite rate

In the second experiment, we ran the tests to determine the throughput of the architecture by
submitting transactions at the Composite Rate. This was done to simulate a real-life scenario
and benchmark the blockchain network. We performed these tests with a duration-based round,
a total of 100 seconds. In this case, an initial 30 seconds normal workload is followed by a 30
seconds intensive workload, which is followed by 10 seconds of low workload and ending with
another 30 seconds of normal workload. We performed individual tests for creating, querying,
and updating the data.

Table 11: Performance validation – composite rate

Name

Total # of

transactions

Failed

transactions

Max Latency Throughput

(TPS)

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 69(90)

Create 100 seconds 0 % - 128 TPS

Query 100 seconds 0 % - 307 TPS

Update 100 Seconds 0.42 % - 135 TPS

6.3.2.3 Modeling Active Player Support

In order to support the game with a maximum number of active users without any performance
degradation, we calculated the daily active number of users supported by our hybrid architecture
and maximum number of concurrent users at a given time. We make the following assumptions
without loss of generality:

 Ideal network conditions of the Player.

 Centralized backend is fully scalable depending on the requests.

 An average user queries 10 read transactions and 6 write transactions per session on
blockchain.

 An average user plays for one hour per day.

 Throughput of the backend to be taken from composite rate tests i.e., Table 11

These transaction frequency numbers are consistent with early play tests that were performed
for the game. This number of transactions translates to completing one hunt in an hour, on a
daily average.

Maximum users supported / hour = (Maximum transactions / hour) / Average number of
transactions per hour

 Throughput Maximum transaction

/ hour

Maximum users

supported

Read transactions 307 TPS 1,105,200 110,520

Write Transactions 128 TPS 460,800 76,800

From the above calculation, it can be seen that the major limiting factor are the write transactions
on the blockchain. Using that, we calculated the maximum number of players that can play the
game throughout the day without any delays.

Maximum players / day = 76,800 x 24 = 1,843,200

6.3.2.4 Beacon Detection Time

In addition, detection times for BLE beacons have been measured. We measured how long it
takes for a mobile device to register a beacon in various room conditions. These results are
summarized in Table 12. A mobile device of the model Huawei Nova 3 was the detecting device
in the performance tests.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 70(90)

Table 12: Beacon performance results.

Case Average time Standard deviation Sample size

1: Phone and beacon
on the same table, with

5 other beacons
nearby

6.1 s 6.8 s 31

2: Case 1 repeated at a
later time of day

3.9 s 1.6 s 31

3: Lounge area. 5 m
distance with beacon

behind a concrete pillar

3.3 s 3.2 s 31

4: Open kitchen area.
10 m away from the

beacon

10.4 s 10.5 s 31

5: Sofa area, 3 m away
from the beacon

5.1 s 3.5 s 31

Total 5.8 s 6.4 s 155

These results show that BLE beacons are not necessarily appropriate for real-time location-
based games. Detection delays are very noticeable to the players. If the player is clearly in the
correct room and it takes several seconds to detect the beacon, the player might get confused
on whether or not they are in the correct room, or whether their mobile device only now detected
a beacon from the previous room. Indeed, localization may be ambiguous if players are walking
fast. In addition, as can be seen from the results, the deviation from the average detection time
is very wide. This can result in inconsistent performance results. Specifically, as Cases 1 and 2
show, detection results may in the same physical place may not be consistent over time. In
addition to the beacon detection delay, the player also experiences delay that is due to the
communication with the server. The Scavenger Hunt prototype is playable if the correct
locations are far apart and not in very precise locations, but the aforementioned quirks have
been noticed to negatively affect the player experience.

6.3.3 Future plans

For increased insight in the evaluation, we had planned a gameplay test, which is not part of
any REQ_MRMG requirements listed. The idea is that several playtesters would play an in-
office challenge and answer a feedback questionnaire after it. As mentioned before, this
playtesting was interrupted during spring 2020, but we plan to resume these tests in the second
part of 2020. The internal playtests should test the suitability of IoT beacons for general location-
based gaming from the perspective of players, and gauge player engagement. The current
feedback form includes the following questions:

● Points of frustration

● Points of enjoyment

● How noticeable are beacon delays to real players? Do beacons often position players in

incorrect rooms?

● What did players think of text tasks, and whether they have ideas for other kinds of tasks

● How interesting indoor location-based games are

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 71(90)

● Other application ideas. How can this infrastructure be used outside a Scavenger Hunt

game?

● Open feedback

In addition, several new requirements have been added to the validation matrix to accommodate
our new planned mobile ads use case. These requirements have IDs REQ_MRMG9.1-9.4 as
described in D4.4. As we work on this new use case in H2 2020, these requirements will be
fulfilled. The rest of the requirements that are not included in Table 9 shall also be validated for
D5.4.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 72(90)

7. SMAUG

7.1 Purpose and use case

The Secure Marketplace for Access to Ubiquitous Goods (SMAUG), is a decentralised and open
marketplace where smart locker owners can advertise their smart lockers for rent, and potential
smart locker renters can place bids, to get the authorisation to use those smart lockers. Smart
locker owners publish smart lockers on the marketplace by creating a request, i.e., a request
for offers. The bids that smart locker renters place for those requests are called offers.

SMAUG is intended as a reference implementation, to show how all the different SOFIE
components can be used together to develop a system that benefits from all the properties that
the SOFIE framework provides. Furthermore, SMAUG is being developed by LMF as a WP3
leader, and this means that an important target for SMAUG is to provide high-quality feedback
to SOFIE component developers about the set of features the components offer, their level of
reusability and extensibility, and their quality, related to how easily they can be integrated into
systems other than the four pilots under development. This is achieved by following a “learn by
doing” approach and testing the components via direct integration into a system developed from
scratch during the last year of the project. LMF will use SMAUG along with providing a CI/CD
environment, as already presented in D3.3, Integration Plan, to ensure high standards of quality
for all SOFIE components.

7.1.1 Use case

SMAUG showcases the potential unlocked by all the SOFIE components when combined into
a single use case. Specifically, the SMAUG use case concerns the creation of a marketplace
that is open, decentralised, and secure. The marketplace is open because it allows anyone to
put lockers for rent, and to find available lockers for rent by interacting with the marketplace,
where access to the smart locker can be purchased. The marketplace is decentralised because
it is rooted in a blockchain, which provides availability (by removing single points of failure) and
avoids the concentration of all the data about marketplace interactions and users into a single
place, with all the risks that this entails. Being rooted in a blockchain, the marketplace also
benefits from the security guarantees deriving from that. Specifically, a blockchain guarantees
non-repudiation of the actions performed by the different entities which, together with
immutability, provides a strong tool in case of dispute resolutions.

The goal of the marketplace is, like several existing marketplaces, to meet the supply and
demand of smart lockers. Three different actors are involved in SMAUG:

● marketplace owners (MPO): entities owning and managing one or more instances of a

decentralised marketplace that enables interactions between the supply and demand of

smart lockers. Each marketplace defines its own set of policies, such as what data is

written on the blockchain, who can interact directly with the blockchain, and what

operations require user authentication. Figure 31 illustrates this by showing that different

marketplace instances can co-exist within the global marketplace space.

● smart locker owners (SLO): entities willing to rent out their smart lockers and get

compensated for the service offered.

● smart locker renters (SLR): entities interacting with the marketplace to purchase

access to a smart locker for a given time frame.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 73(90)

Marketplace
A owner

Create, deploys and
manages marketplace A

Web client A

Marketplace
B owner

Create, deploys and
manages marketplace B

Web client B

MARKETPLACE A

Figure 31: There may be multiple instances of marketplaces in the global ecosystem.
Suppliers and renters of smart lockers can choose any of them depending on their

preferences and the policies implemented by each marketplace.

Smart locker
renter

Smart lockers
owner

Put for rent smart
lockers on the
marketplace

Find and rent available
smart lockers

Mobile client

Web client

MARKETPLACE Smart lockers

Figure 32: Smart locker owners can rent their smart lockers by publishing their availability on
the SMAUG marketplace. On the other hand, potential smart locker renters can discover

nearby available smart lockers and pay to purchase access.

7.1.1.1 Smart locker management

One of the two main features that SMAUG offers is to allow smart locker owners (SLO) to
manage the smart lockers (SL) they own. Specifically, once registered with one marketplace
provider, SLOs can monitor the status of their SLs in the marketplace, register new SLs, open
new requests for registered SLs, and close and decide previously opened requests. While the
monitoring of smart lockers and their status is an intuitive operation that deserves no in-depth
description, the remaining three operations are explained in more detail in the following sections.

Smart locker registration

A precondition for an SLO to manage marketplace details and operations for a specific smart
locker (SL) is to register the SL with the marketplace. Specifically, the SLO provides information
such as the unique identifier of a smart locker and its physical properties (e.g. width, height). All
the information specific to an SL must be compliant with the SOFIE semantic representation:
this allows SLs belonging to different marketplaces to be understood by potential smart locker
renters (SLR) without the need to use marketplace-specific client applications. Similarly, using

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 74(90)

a uniform way of representing smart lockers allows different clients to understand SL-related
information regardless of the specific marketplace. At the moment, no check is performed to
verify that the information provided by the SLO matches the real properties of the SL being
registered.

Request creation

From the marketplace management interface, SLOs can manage marketplace-related
information of the SLs previously registered. For instance, SLOs can create a new request for
an SL. This request will enable, on the other side, potentially interested SLRs to place offers to
access the SL. The details of these offers are specified below in the relevant section.

When creating a request, the SLO specifies some information related to the request, such as
the starting time of the request (e.g., at 6:00 PM of tomorrow), the deadline to receive offers
(e.g., offers can be made only within 15 minutes from when the request is published), the
maximum duration of the rental period (e.g., with this request, an SL can be rented for at most
30 minutes), and the identifier of the SL being rented.

Furthermore, the marketplace allows SLOs to open either auction-only or auction+instant rent
requests. The former only accept bids from competing SLRs, that can submit offers until the
request expiration time, after which the SLO can choose one or more winning offers that will be
granted access to the SL for the time indicated in the offer. Auction+instant rent requests allow
SLOs to publish auction requests, as just explained, and also instant rent requests: these
requests contain additional pricing information that the SLO provides when creating the request
(e.g. 1€/minute of usage if total rental time is less than or equal to 5 minutes, 0.75€/minute of
usage if total rental time is less than or equal to 15 minutes, etc.) and that give the possibility to
SLRs to instantly purchase access to a smart locker (if the conditions in the offer match the
required conditions specified in the request) without waiting for the expiration of a request and/or
the decision by the SLO.

Request decision

The SLO that has previously opened a request for a SL can close and decide it at any time,
either before or after the request expiration time. If an instant rent offer is presented that matches
the requirements of the request, the request is automatically closed and decided without the
intervention of the SLO.

When a request is decided, regardless of how the decision process took place, an access token
to use the SL is generated and logged (encrypted) on the marketplace blockchain. The
encryption allows only the authorised SLR, that paid to get that access token, to retrieve the
original access token, and the fact that it is logged on the blockchain makes it possible to use
the issued token for future dispute resolutions, in case something goes wrong along the chain
of events that should normally lead to the authorised SLRs accessing the SL for the time
purchased.

7.1.1.2 Smart locker discovery and access

Other than SL management, the other important feature that SMAUG offers is to discover
nearby SLs, place offers for them to get access to an SL storing space. Both interactions are
explained in more detail in the next sections.

Smart locker discovery

Although it is theoretically possible for SLRs to place offers for SLs they are not physically close
to, the most common scenario will involve potential SLRs in need to access, in a relatively short
time frame, an SL that is nearby. For instance, conference attendees might want to rent smart
lockers that are located within the venue.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 75(90)

For this purpose, SLRs use a mobile device that can discover nearby SLs that are advertising
their presence using Bluetooth Low Energy (BLE) communication. Since many devices use BLE
to communicate today, the device will filter only the relevant signals that are advertised by
SMAUG-compliant SLs. Since these SLs will all use the same semantic representation, a mobile
client can parse the information advertised regardless of the specific marketplace that manages
access to the SL.

The information that the client receives includes the information that the SLO provided, for that
specific SL, when registering the SL with the specific marketplace. In addition to locker-specific
information, the information also includes marketplace-specific information, such as the address
of the smart contract to which the SLR should send the rent offer.

At this stage, the client then queries the marketplace to check if there are any open requests for
the SL in question. This process takes place for each SL discovered and is transparent to the
SLR, which will only see the smart lockers that are available for rent.

Smart locker purchase and access

Assuming a SLR has found some nearby lockers that are available for rent for the time he
needs, an offer for that locker can be placed on the marketplace. As already described above
in the section relative to request creation, a request can support either only auction offers or
also instant rent offers. In the first case, the SLR will decide how much she is willing to pay, and
for how long she requests access. The offer is then added to the list of offers for the SL and will
be examined by the SLO against all the other offers placed for that specific request and that
specific SL. If, on the other hand, the SLR needs to get instant access to the SL, and the request
supports instant rent offers, then he can choose to pay the amount required as specified in the
request, according to the total duration of the rent. For instant rent offers, the feedback loop is
much shorter since the response is almost immediate: either the offer is accepted and the
relative access token is issued (unless something goes wrong), or the offer is rejected because
the request requirements are not met. Each offer contains additional information that allows the
party issuing the access token to access an SL to encrypt it so that it can only be used by the
offer creator (the only party authorised to make use of that access token).

Once the encrypted access token is retrieved and decrypted by the authorised SLR, it will then
be presented to the SL to unlock access to its storage space. The SL verifies that the access
token is valid and if so, grants access to the user.

7.2 Architecture

As previously presented, in a typical marketplace deployment three main entities are interacting
with each other: the Marketplace Owner (MPO) manages the marketplace platform and enables
SLOs and SLRs to interact via request and offer creations. The three main roles are also
reflected in the architecture of the resulting system, as shown in Figure 33.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 76(90)

Figure 33: SMAUG architecture.

The system is composed of three trust domains, i.e., the system components that each party
trusts and/or manages directly. At the left is the smart locker owner (SLO) trust domain. At the
centre-top is the marketplace (MP) trust domain. At the right is the smart locker renter (SLR)
domain. At the centre, the three clouds represent the three blockchains that the system relies
upon to provide its services: an Ethereum blockchain to run the marketplace, an Ethereum
blockchain to manage authorisation-related information, and an Hyperledger Indy blockchain to
manage the identities of both SLRs and SLOs.

7.2.1 MP domain

The marketplace (MP) domain includes components that are directly run and managed by the
MPO, or that are trusted by the MPO that relies on them to achieve some tasks. Specifically,
the MP domain is composed of:

 Backend (MP BE): the backend is used by SLOs to manage their SLs. Specifically, through

the backend, the SLOs can register new SLs and can manage their status (e.g., publishing

requests on the marketplace or deciding the winning offers for a given request).

 Authorisation Server (MP AS): the authorisation server manages access to the

marketplace platform. The MP BE relies on the MP AS to authenticate users and grant them

access to the platform. Authenticating users allow the MPO to track usage of the

marketplace by its customers (e.g. how many requests SLOs have created, or how much

money they have obtained from marketplace transactions).

 Interledger (MP IL): the interledger bridges the communication between the marketplace

blockchain and the authorisation blockchain. Specifically, the interledger will notify the

authorisation blockchain whenever a request is closed, and the winning offers decided.

Similarly, parties operating on the authorisation blockchain, after performing some actions

in response to the event received from the marketplace blockchain, can interact with the

interledger to send response data back to the marketplace blockchain.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 77(90)

7.2.2 SLO domain

The SLO domain includes components that are either owned and direct control of the SLO, or
that are trusted by the SLO to provide the agreed services. Specifically, the SLO domain is
composed of:

 Smart Locker (SL): the physical resource being rented and purchased on the marketplace.

They offer storage space service to authorised users for the duration they have purchased.

The presence of an SL is advertised via BLE, such that interested potential renters (SLR)

can discover them using a BLE-capable mobile phone and a compatible application. All the

communication between the SL and the SLR’s mobile device takes place via NFC

technology. At the time when SLRs wish to use an SL, they need to prove their authorisation

by presenting a valid attestation that the SL can verify and validate.

 Web client (SLO client): runs on the browser of the SLO’s device and allows the SLO to

perform SL management operations. To access the management interface, SLOs must

authenticate themselves and must be authorised to perform the required operation.

Furthermore, the SLO client allows the SLO to directly interact with the marketplace

blockchain to perform SL management operations.

 Authorisation Server (SL AS): this authorisation server manages access to one or more

smart lockers (SL). It includes an agent listening on the authorisation blockchain for

interledger events, and in response to those events logs an access token that the winning

users of that specific request can use to access the smart locker they have purchased

access for. The SL AS does not have to be directly managed by the SLOs (although nothing

prevents them from doing so), but can also be used following an as-a-Service model, where

the SLO delegates the management of one or more SLs to the SL AS.

7.2.3 SLR domain

The SLR domain includes only the mobile device that a potential SLR uses to discover nearby
SLs, purchase access for a specific time frame, and interact with the SL to access its enclosing
storage space. The SLR client, therefore, allows SLRs to discover nearby SMAUG-compliant
SLs using BLE, interact with the Ethereum marketplace where access to the SL can be
purchased, and interact with them using NFC.

7.3 SMAUG and SOFIE

As presented in the section introducing SMAUG, SMAUG places itself as a reference
implementation with the goal, among others, to showcase how all the SOFIE framework
components can be used together and how a system can be designed and developed to be
SOFIE-compliant from its conception. This is the key characteristic that sets SMAUG apart from
the other four pilots developed in the project. The four pilots have been designed and built as
IoT platforms that were purposefully siloed and independent from each other, to prove how
SOFIE opens up those borders and enables cross-platform communications and operations.
On the other side, SMAUG has been conceived starting from the set of features that the SOFIE
framework offers, so it could be said that SMAUG follows the SOFIE-by-design rules.

Even though not implemented in the scope of this project, the usage of SOFIE framework
components makes it theoretically possible for SMAUG to interact with other SOFIE-compliant
systems, e.g., the other four pilots developed in the project. For instance, in the context of the
energy flexibility marketplace pilot developed by the Italian partners, electric vehicle users that
need to leave their cars to charge for extended periods, but do not want to leave valuable objects
unsupervised in such vehicles, might want to rent available smart lockers around for the
estimated time that the car will take to fully charge. This is possible since SMAUG (and therefore

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 78(90)

SOFIE)-compliant smart lockers will all follow the same discovery rules and data semantics,
enabling different applications (e.g., the one provided by an energy retailer to its customers) to
interact with them in the same standard way.

7.3.1 Usage of SOFIE components

Following is a description of how the different SOFIE components are used within SMAUG, and
what benefits they bring.

7.3.1.1 Marketplace

The marketplace is a key component in SMAUG, without which no interaction can take place.
SMAUG integrates and extends the functionalities provided in the marketplace component
(particularly the set of Ethereum smart contracts) to fit SMAUG-specific needs. For instance,
the SMAUG marketplace smart contract allows SLOs to specify a set of pricing rules that makes
it possible for the smart contract to automatically and immediately select winning offers upon
their presentation by SLRs, reducing to only a few seconds the time the SLRs making valid
offers need to wait before having access to a smart locker, and also removing the need for the
SLO to be online and manually decide which offers to select for a given request.

7.3.1.2 Interledger

SMAUG uses the Interledger component to complement the marketplace functionality since it
allows to use a separate Ethereum blockchain for authorisation-related operations. Specifically,
the Interledger bridges the communication from and to either ledger. In one case (from the
marketplace to the authorisation ledger), Interledger propagates marketplace events on the
authorisation blockchain, so that interested parties can perform actions accordingly e.g., issue
a new access token. In the second case, the notified parties can trigger interledger events that
will communicate data back to the marketplace blockchain, typically communicating that the
access token for a specific offer has been logged, along with the access token. The marketplace
can then take action, e.g., moving the money to the SLO’s account, when it receives a
notification that an access token for a specific offer has been issued. A high-level description of
the flow is presented in Figure 34.

Figure 34: Interledger flow for a typical marketplace transaction

In a typical marketplace transaction, first, when an offer is decided, an event is emitted to start
the Interledger procedure (step 1) which is captured by the Interledger agent. Then, the agent
calls a smart contract on the authorisation blockchain (step 2) which, in turns, emits an event to

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 79(90)

notify potential listeners about the Interledger operation and its associated data (step 3).
Interested listeners can then perform custom actions (step 4) and, if they need to propagate the
result of the action back to the marketplace, interact with the Interledger smart contract (step 5),
which then propagates the information (step 6), which is captured by the Interledger agent and
forwarded to the marketplace smart contract (step 7).

7.3.1.3 Identity, Authentication and Authorisation (IAA)

The Identity, Authentication and Authorisation (IAA) component is used in several places for
different reasons. In one case, it is used in the SL to verify the validity of the access token
presented by potential users, or SLRs. In another case, IAA is also used in the marketplace
platform to validate web access tokens (JSON Web Tokens, or JWT) that SLOs must present
to access the marketplace web interface. Since IAA also provides the authorisation smart
contract used to log smart locker access tokens, it is used in SMAUG and deployed on the
authorisation blockchain.

7.3.1.4 Privacy and Data Sovereignty (PDS)

The Privacy and Data Sovereignty (PDS) component, similarly to IAA, is used in different parts
of the system. It is used as the authorisation server for the marketplace platform: SLRs must
interact with the authorisation server (hence with the PDS) and authenticate themselves using
a decentralised identifier (DID) previously registered (or register one in the case of new users)
to get a JWT that would grant them access to the marketplace web interface. Furthermore, PDS
is also used to log the smart locker access tokens in response to Interledger events originated
from the marketplace blockchain. Specifically, the PDS contains the logic of generating access
tokens to access a smart locker and knows the address of the smart locker authorisation smart
contract where those access tokens must be logged.

7.3.1.5 Provisioning and Discovery (P&D)

SMAUG utilises only the discovery functionality provided by the Provisioning and Discovery
(P&D) component. SMAUG-compliant smart lockers will use this component to advertise their
presence to nearby users using Bluetooth Low Energy (BLE) as the communication medium.
Once the discovery of a smart locker takes place, the information, which is compliant with the
SOFIE Semantic Representation format, is parsed by the smart locker renters who can then
decide to proceed further and interact with the marketplace to purchase access to that smart
locker.

7.3.1.6 Semantic Representation (SR)

The Semantic Representation (SR) is the key component that makes SMAUG open and
interoperable with external systems. The data that each smart locker advertises include its
physical properties (e.g., capacity, identification number) and information about the marketplace
that potential renters will interact with. By using the semantic representation defined in the
SOFIE framework, SMAUG smart lockers (like any other IoT system that uses the same
semantic representation) are easily integrable into and can easily communicate with other
systems that can parse and understand data semantically annotated following the SOFIE
representation.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 80(90)

8. Cross pilot scenarios and testing plan

In this section, we briefly describe cross pilot scenarios that will be implemented in the following
period. These cases will demonstrate and highlight the interoperability aspects between
different pilot cases. More detailed description about the cross-pilot cases will follow in the next
deliverable, D5.4 (Final Validation & Replication guidelines).

8.1 Cross pilot data exchange

In this scenario, we federate the Decentralized Energy Data Exchange (DEDE) pilot with the
Decentralized Energy Flexibility Marketplace (DEFM) pilot and enable secure data exchange
between them. We use the Federation Adapter (FA) developed for the DEDE pilot to achieve
this. Although the main goal of the DEDE pilot is to liberate energy data, the technical solution
is not limited to this single domain. The exchanged data can be anything, and the solution is
thus suitable for a cross-pilot scenario. The architecture of the DEDE pilot and its Federation
Adapter is described in Section 4.2.

No changes to the existing platforms of the federated pilots is necessary for this cross-pilot
scenario. The only requirement for each pilot is to be able to describe the services that it offers
in the OpenAPI 3.0 format. That is the only format currently supported by the FA. If the pilot
does not already offer services that can be described in OpenAPI 3.0 format, it is possible to
develop a converter on top of the existing platform services. Although all the federated pilots
could easily consume services offered by other pilots, we deploy a separate client dedicated to
the purpose of testing and evaluating this federation approach. This way, the cross-pilot testing
does not force the pilots to implement functionality that does not align with their business goals.
The setup is depicted in Figure 35.

Figure 35: The setup of cross-pilot testing using the FA from the DEDE pilot

The following services will be offered by the Decentralized Energy Flexibility Marketplace pilot:

 getChargingStation - returns charging station information given its ID

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 81(90)

 getChargingSession - returns a list of historical charging sessions given a charging
station ID or a detailed charging session data given a charging session ID

 getElectricVehicle - returns electric vehicle information given its ID

The following services will be offered by all the data sources in the Decentralized Energy Data
Exchange pilot:

 getMeteringPoints - returns a list of metering points this data source has data for
 getConsumptionData - returns electricity consumption data given a metering point ID

Both pilots give access to all their services for the Test Information System.

8.1.1 Test cases

8.1.1.1 Latency overhead of the FA

We measure the latency overhead (in milliseconds) added by both the service provider FA and
the service consumer FA of the request-response cycle. This metric is constant as the network
grows.

8.1.1.2 Throughput of the FA

We measure the throughput (in requests per second) of both the service provider FA and the
service consumer FA. This is important to estimate the load that a single FA can carry in a
production environment.

8.1.1.3 Integration Effort and Comparison to Current Situation

We evaluate the integration effort, separately for the service provider and service consumer.
We compare this to the current situation and possible alternative approaches.

8.2 Cross pilot reward exchange

In this scenario, we try to exchange the data between Mobile gaming and Decentralized Energy
Flexibility Marketplace pilot to make a collaborative ecosystem where users from one pilot can
earn reward by using the other pilot. The main goal of this cross-pilot scenario is to cultivate the
growth of both pilots and users who could be engaged by gamification elements to fuel their
motivation and make activities more interesting. Being able to trade, buy and sell goods for real
value will further encourage users to engage more time to earn virtual items, certain that they
will get a good return of investment.

In order to develop such a scenario, we will be leveraging SOFIE platform and its components.
The smart contracts will be developed to enable this cross pilot. No major changes to the
existing platforms of the pilots is necessary for the implementation of the possible scenarios.
Both pilots together will be developing a platform where users' information is shared in a secure
and anonymous way. In one probable scenario, Gaming pilot can create a specific challenge
and multiple unique virtual items that can be given to the users of Energy pilot. On the other
hand, in-game tokens can also be used on Energy marketplace for enabling trading. Another
scenario of a user acquiring tokens on Energy marketplace can be used in-game for buying
virtual items. Figure below illustrates the setup of the cross-pilot scenario.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 82(90)

Figure 36: The setup of cross-pilot testing

The following services will be offered by the Mobile gaming pilot:

● getPlayerInfo: returns Player information given its ID (preserving anonymity)
● claimItem: transferring virtual items for the EV users.

The following services will be offered by the Decentralized Energy Flexibility Marketplace pilot:

● getChargingSession - returns a list of charging sessions of specific user given a charging
station and user ID

8.2.1 Test cases

8.2.1.1 Validation

We will validate the cross-pilot scenario by running end-to-end process ensuring data
transferred is correct and useful and all the requirements are fulfilled.

8.2.1.2 Latency

We will measure the latency overhead (in milliseconds) added by both pilots when the data is
shared, and rewards are transferred between them.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 83(90)

9. Conclusions

WP5 aims at setting up the four pilots of the SOFIE project and validating its federation
architecture in real operating conditions. This deliverable has presented the technical system
implementation validation results, and the end-to-end (prototype integration) validation results
of the pilot platforms as well as the next steps of each pilot in terms of validation. Also, SMAUG,
a reference implementation of the SOFIE framework has been presented. In addition to the four
pilots, a cross-pilot case has been described, which will be further described and presented in
the final deliverable of WP5. The results of the validation of SOFIE components have also been
included in the Annex of this deliverable. The results provided in this document will be used as
a reference point for the last, overall pilot evaluation which will be reported near the end of the
project.

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 84(90)

10. References

[D2.4] T. Elo et al. “SOFIE Deliverable 2.4 - Federation Architecture, 2nd version”, June 2019.
Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D2.4-
Federation_Architecture_2nd_version_v1.10.pdf.

[D2.5] Y. Kortesniemi et al. “SOFIE Deliverable D2.5 – Federation Framework, 2nd version”,
August 2019. Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D2.5-
Federation_Framework%2C_2nd_version.pdf.

https://media.voog.com/0000/0042/0957/files/SOFIE_D2.4-Federation_Architecture_2nd_version_v1.10.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.4-Federation_Architecture_2nd_version_v1.10.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.4-Federation_Architecture_2nd_version_v1.10.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.5-Federation_Framework%2C_2nd_version.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.5-Federation_Framework%2C_2nd_version.pdf

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 85(90)

11. Appendix I: Validation of SOFIE components

ID Validation Process Result

Interledger

RF01

Requirement

Description
User interaction is not required for interledger operations.

OK

Test

approach
Functional test

Test

Description

Event on one ledger automatically triggers the transfer of

data/asset to another ledger

Test location Interledger: tests/system/test_interledger_ethereum.py

RF02

Requirement

Description
There should be support for atomic interledger operations.

OK

Test

approach
Functional test

Test

Description

Status of asset transfers is atomic, so that the asset can be

accessible only in one ledger

Test location
Interledger: tests/system/test_interledger_ethereum,

solidity/test/tokenTest (testing contract for GameToken)

Identification, Authentication, and Authorization (IAA)

RF03

Requirement

Description

Resource owners must be able to delegate the authentication

and authorisation tasks for their resources.

OK

Test

approach
Documentation

Test

Description

The IAA can be configured to operate with any authorization

server. Configuration examples will be provided

Test location IAA’s repository documentation, “Configuration” chapter

RF04

Requirement

Description

The IAA component must provide users the capability to

revoke authorisations.

OK

Test

approach
Functional test

Test

Description

A token is created, and it is logged in an ERC-721 smart

contract. Then it is marked as revoked in the smart contract.

IAA rejects the token.

Test location IAA tests/test_erc721.py

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 86(90)

RF05

Requirement

Description

The IAA component must allow individuals to control their

personal information and digital identities (e.g. support self-

sovereign identity technology).

OK

Test

approach
Functional test

Test

Description

The test is configured with a valid DID and a valid VC. It

interacts with indy_agent.py which generates a challenge. The

test sends a report to the challenge.

Test location IAA tests/test_indy_agent.py

RF06

Requirement

Description

The IAA component must support secure, tamper-proof, and

verifiable logging of transactions and events.

OK

Test

approach
Functional test

Test

Description

The test is configured with a valid token. It interacts with

iaa_logger.py which records the token in a configured

Ethereum smart contract. The test verifies the record.

Test location IAA test/test_logging.py

RF07

Requirement

Description

The IAA component must support Role Based Access Control

(RBAC).

OK

Test

approach
Documentation

Test

Description

RBAC is implemented with the use of VCs. IAA can be used to

verify a VC.

Test location IAA’s repository documentation, “Examples” chapter

RF08

Requirement

Description

Cryptographic algorithms used by SOFIE should be open-

source, transparent, and as independent as possible of any

particular architecture.

OK
Test

approach
Documentation

Test

Description
IAA supports standardized cryptographic algorithms.

Test location IAA’s repository documentation, “Key technologies” chapter

RF09

Requirement

Description

SOFIE should support the execution of authorisation and

authentication functionality on devices with constrained

processing, storage, battery, and network connectivity. OK

Test

approach
Functional test

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 87(90)

Test

Description

The test pre-configures IAA with the DID document of a DID.

Then IAA authenticates this DID using only local information,

and without needing network connectivity.

Test location IAA test/test_indy_api.py

Privacy & Data Sovereignty (PDS)

RF10

Requirement

Description

SOFIE must follow the data minimisation principle for personal

data and only request or process what is necessary for the

situation and purpose.

OK
Test

approach
Documentation

Test

Description
PDS can be configured with a specific proof request

Test location PDS’s repository documentation, “Configuration” chapter

RF11

Requirement

Description

Processing of an individual's personal data is justified by a

valid legal basis, e.g. a valid consent from the individual.

OK

Test

approach
Functional test

Test

Description

The test is configured with a valid VC. The test invokes the VC

verification, which generates a proof request. The test

generates the proof and outputs the verification result.

Test location PDS tests/test_indy_agent.py

RF12

Requirement

Description

Consent to process personal data must be revocable at any

time.

OK

Test

approach
Documentation

Test

Description

The documentation described how to set an expiration time on

a VC

Test location PDS’s repository documentation, “Examples” chapter

RF13

Requirement

Description

SOFIE must allow organisations and actors to manage

(create, update, delete) their own data privacy policies.

OK

Test

approach
Documentation

Test

Description
PDS can be configured with arbitrary VC schemas.

Test location PDS’s repository documentation, “Configuration” chapter

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 88(90)

RF14

Requirement

Description

SOFIE should support user privacy even when aggregate

statistics are made public (e.g. using differential privacy

mechanisms).

TBD

Test

approach
Documentation

Test

Description

PDS can be configured to apply RAPPOR local differential

privacy mechanism.

Test location TBD

Semantic Representation

RF15

Requirement

Description

SOFIE must define an IoT things description model based on

well-known standards (e.g. W3C standards).

OK

Test

approach
Functional test

Test

Description

The test shows that only objects conforming to the component

schema (W3C standards) are validated.

Test location
Semantic Representation: tests/test_api.py ->

test_api_validate()

RF16

Requirement

Description

SOFIE must implement standardised metadata and data

representation formats and support various data modalities.

OK

Test

approach
Documentation

Test

Description
The component uses JSON objects.

Test location
Semantic representation’s repository documentation, “Main

decision” chapter

RF17

Requirement

Description

The semantic representation model of the system must be

open and extensible by third parties (e.g. support the

extension of the existing knowledge base and associations by

extracting supplementary triples from RDF documents).

OK

Test

approach
Functional test

Test

Description

The test shows how is possible to add a schema and

subsequently add a schema extension. A message then is

validated against both the extended schema and the schema

extension.

Test location
Semantic Representation: tests/test_api.py ->

test_api_extended_validation()

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 89(90)

RF18

Requirement

Description

SOFIE must provide service discovery and resources

selection processes based on multiple criteria over the

features, associations, and interaction patterns of integrated

resources.

TBD Test

approach
TBD

Test

Description
TBD

Test location TBD

RF19

Requirement

Description

SOFIE should support the semantic update and enhancement

of resources’ descriptions and associations in a dynamic way.

OK

Test

approach
Functional tests

Test

Description

The test shows that a schema can be updated and enhanced

with improved semantics.

Test location
Semantic Representation: tests/test_api.py ->

test_api_update_schema()

Marketplace

RF20

Requirement

Description

The marketplace must log the configuration of all trading

actions (including offers, bids, parameters of resources,

transactions etc.).

OK

Test

approach
Functional test

Test

Description

The test sets up an auction, accepts bids, and decides which

offer wins - and verifies all the related information is stored on

the ledger.

Test location Marketplace: solidity/test/flowermarketplace

RF21

Requirement

Description

The marketplace must provide actors the capability to

post/claim offers and sell/negotiate/exchange/buy resources

and digital objects.

OK

Test

approach
Unit tests

Test

Description

The test sets up an auction, accepts bids, and decides which

offer wins (and verifies all the related information is stored on

the ledger).

Test location Marketplace: solidity/test/flowermarketplace

Document: H2020-IOT-2017-3-779984-SOFIE/D5.3 – End-to-end Platform Validation

Security: Public Date: 21.7.2020 Status: Completed Version: 1.00

SOFIE 90(90)

RF22

Requirement

Description

The marketplace must support transparent trading of

resources, i.e. the bids/offers matching process and the

payments must be transparent.

OK

Test

approach
Functional test

Test

Description

The test sets up an auction, accepts bids, and decides which

offer wins - and verifies all the related information is stored on

the ledger.

Test location Marketplace: solidity/test/flowermarketplace

RF23

Requirement

Description

The marketplace must provide evidence once trades have

been completed and resources have been properly delivered

to the buyers.

TBD

Test

approach
Functional test

Test

Description

The transaction determining the winning bid is logged on the

distributed ledger. Evidence of the delivery of resources must

also be logged on the distributed ledger by the winner and

seller, after which the evidence can be verified.

Test location TBD

RF24

Requirement

Description

The marketplace should allow integration of payment

technologies.

OK

Test

approach
Documentation

Test

Description

The marketplace component provides interfaces for integrating

payment solutions and an example from the Energy Flexibility

pilot provided by Engineering integrates the ERC20 tokens

payment in the energy marketplace.

Test location Marketplace: solidity/vendors/ENG/EnergyMarketPlace.sol

