
 
 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 779984. 

 
 

SOFIE - Secure Open Federation for Internet 
Everywhere 

779984 
 

DELIVERABLE D4.4 
 

Second Architecture and System Evaluation 
Report 

 

Project title:       SOFIE – Secure Open Federation for Internet Everywhere 

Contract Number:     H2020-IOT-2017-3-779984 

Duration       1.1.2018 – 31.12.2020 

Date of preparation:     28.04.2020 

Authors:  Vasilios A. Siris, Spyros Voulgaris, Nikos Fotiou, 
Dimitrios Dimopoulos, Iakovos Pittaras, Yiannis Thomas, 
Michalis Tsenos, George C. Polyzos (AUEB-RC), 
Tommi Elo, Ektor Arzoglou, Veria Hoseini, 
Dmitrij Lagutin (AALTO), Filippo Vimini (LMF) 

Responsible person:     Vasilios A. Siris (AUEB-RC, vsiris@aueb.gr) 

Target Dissemination Level:   Public  

Status of the Document:    Completed 

Version       1.00 

Project web-site:      https://www.sofie-iot.eu/  

 

 

 

 

  



 

 

 
SOFIE  2(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Table of Contents 

 Introduction....................................... ................................................. 11 

1.1 Goals of this deliverable ................................................................................... 11 

1.2 Methodologies and approach ........................................................................... 12 

1.3 Structure of this deliverable .............................................................................. 13 

 Architecture evaluation and KPIs .................. ................................... 15 

2.1 Architecture features ......................................................................................... 15 

2.1.1 Decentralization .......................................................................................... 15 

2.1.2 Open business platforms ............................................................................ 16 

2.1.3 Federation ................................................................................................... 16 

2.1.4 Multiple ledgers and interledger technology ................................................ 17 

2.1.5 Trust, security, transparency, availability, and accountability ...................... 18 

2.1.6 How features are fulfilled ............................................................................ 18 

2.2 Architecture and System Performance KPIs ..................................................... 19 

 Validation ........................................ ................................................... 33 

3.1 Validation strategy ............................................................................................ 33 

3.1.1 The Validation Matrix .................................................................................. 33 

3.1.2 Work package responsibilities .................................................................... 33 

3.2 Architecture Validation ...................................................................................... 35 

3.3 Component validation ....................................................................................... 36 

3.4 Pilot validation................................................................................................... 40 

3.4.1 FSC pilot ..................................................................................................... 40 

3.4.2 DEDE pilot .................................................................................................. 45 

3.4.3 DEFM pilot .................................................................................................. 46 

3.4.4 MRMG pilot ................................................................................................. 49 

 Component evaluation .............................. ........................................ 53 

4.1 Interledger ........................................................................................................ 53 

4.1.1 Experiment setup ........................................................................................ 54 

4.1.2 Results ........................................................................................................ 54 

4.2 Privacy and Data Sovereignty........................................................................... 56 

4.2.1 Experiment setup ........................................................................................ 57 

4.2.2 Results ........................................................................................................ 57 

4.3 Identification, Authentication, and Authorization ............................................... 59 

4.3.1 Experiment setup ........................................................................................ 60 

4.3.2 Results ........................................................................................................ 61 

4.4 Semantic Representation ................................................................................. 62 

4.5 Marketplace ...................................................................................................... 63 

4.5.1 Experiment setup ........................................................................................ 63 

4.5.2 Results ........................................................................................................ 64 

4.6 Provisioning and Discovery .............................................................................. 65 

 Further IoT resource access evaluation ............ .............................. 67 

5.1 Decentralized authorization for constrained IoT devices .................................. 68 

5.1.1 Evaluation ................................................................................................... 70 

5.2 Access control for multi-tenant IoT systems ..................................................... 74 



 

 

 
SOFIE  3(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

5.2.1 Evaluation ................................................................................................... 75 

5.3 Decentralized interledger gateway architectures .............................................. 76 

5.3.1 Multiple interledger gateways operated by the same organization ............. 77 

5.3.2 Multiple interledger gateways operated by different organizations ............. 78 

5.3.3 Use of Hyperledger Fabric in the interledger gateway system .................... 81 

5.3.4 Evaluation ................................................................................................... 82 

 Evaluation scenarios .............................. ........................................... 84 

6.1 Food Supply Chain ........................................................................................... 84 

6.1.1 Overview ..................................................................................................... 84 

6.1.2 Architecture space ...................................................................................... 86 

6.1.3 Emulation setup .......................................................................................... 88 

6.1.4 Emulation results ........................................................................................ 88 

6.1.5 Pilot requirements in emulation scenarios .................................................. 92 

6.1.6 Pilot system performance KPIs in emulation scenarios .............................. 94 

6.1.7 Conclusions ................................................................................................ 96 

6.2 Decentralised Energy Flexibility Marketplace ................................................... 96 

6.2.1 Overview ..................................................................................................... 96 

6.2.2 Emulation overview and setup .................................................................... 97 

6.2.3 Emulation scenario ..................................................................................... 98 

6.2.4 Emulation results ...................................................................................... 102 

6.2.5 Pilot requirements in emulation scenarios ................................................ 103 

6.2.6 Pilot system performance KPIs in emulation scenarios scenarios ............ 105 

6.2.7 Conclusions .............................................................................................. 106 

6.3 Decentralized Energy Data Exchange ............................................................ 106 

6.3.1 Overview ................................................................................................... 107 

6.3.2 Mapping of pilot actors to resource access entities .................................. 107 

6.3.3 Pilot and PDS/IAA requirements in emulation  scenarios ......................... 108 

6.3.4 Hash recording frequency and opportunity cost ........................................ 109 

6.3.5 Pilot system performance KPIs in emulation scenarios ............................ 115 

6.3.6 Conclusions .............................................................................................. 116 

6.4 Mixed Reality Mobile Gaming ......................................................................... 117 

6.4.1 Overview ................................................................................................... 117 

6.4.2 Emulation overview ................................................................................... 117 

6.4.3 Emulation scenarios ................................................................................. 119 

6.4.4 Evaluation results ..................................................................................... 123 

6.4.5 Pilot requirements in emulation scenarios ................................................ 129 

6.4.6 Pilot system performance KPIs in emulation scenarios ............................ 132 

6.4.7 Conclusions .............................................................................................. 132 

 Analysing SOFIE business platforms with System Dyna mics ..... 134  

7.1 Introduction ..................................................................................................... 134 

7.1.1 Business platform stages of maturity ........................................................ 134 

7.1.2 On how a federation creates value and the difficulties of federating ......... 135 

7.2 Models of individual SOFIE Business Platforms ............................................. 136 



 

 

 
SOFIE  4(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

7.2.1 Food Supply Chain ................................................................................... 137 

7.2.2 Decentralized Energy Data Exchange ...................................................... 142 

7.2.3 Decentralized Energy Flexibility Marketplace ........................................... 142 

7.2.4 Mixed Reality Mobile Gaming ................................................................... 144 

7.3 Conclusions from the System Dynamics study ............................................... 145 

 Conclusion ........................................ ............................................... 147 

 References ........................................ ............................................... 149 
 

  



 

 

 
SOFIE  5(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

List of Figures 

Figure 1: SOFIE validation process ....................................................................................... 34 

Figure 2: End-to-end delay when Hyperledger Fabric (authorization blockchain) is 
interconnected with the public Ethereum testnet Rinkeby (payment blockchain). .................. 55 

Figure 3: OAuth2.0 using VCs as an authorization grant. ...................................................... 56 

Figure 4: User authorization using JWT access token supported by ERC-721 tokens. .......... 60 

Figure 5: Decentralized authorization; each authorization grant requires m out of n AS 
responses ............................................................................................................................. 69 

Figure 6: Execution cost (gas) for the two policies, for the case of one and two blockchains. For 
two blockchains, the cost involves only the cost for transactions on the payment blockchain. 71 

Figure 7: End-to-end delay when Hyperledger Fabric (authorization blockchain) is 
interconnected with the public Ethereum Rinkeby testnet (payment blockchain). .................. 73 

Figure 8: Transaction delay on Hyperledger Fabric (authorization blockchain) for different 
implementations: i) independent module, ii) interledger gateway receiving individual event 
notifications when ASes respond, iii) interledger gateway and client sending initial request to 
the ASes rather than to the smart contract. ........................................................................... 73 

Figure 9: IoT hub access control using VCs. ......................................................................... 75 

Figure 10: A WoT-based device description that specifies VCs as the access control mechanism.
 .............................................................................................................................................. 76 

Figure 11: In a single ILG architecture an event notification from ledger A triggers the ILG to 
submit a transaction to ledger B. ........................................................................................... 77 

Figure 12: Decentralized interledger gateway architecture when the ILGs are operated by the 
same organization. When they receive an event notification from ledger A, all ILGs submit a 
transaction to ledger B using the same account (which corresponds to a public key PK). ..... 78 

Figure 13: Decentralized interledger gateway architecture where the ILGs are operated by 
different organizations. One of the N ILGs (ILG k in the figure) is selected to submit the 
transaction to ledger B. The selection is based on the hash of the last or the next block mined 
on ledger B. ILGs use different accounts to submit transactions to ledger B.......................... 79 

Figure 14: Use of Hyperledger Fabric in the ILG system. Compared to the previous two 
architectures, the interledger functionality is now split: Level 1 ILGs listen to events on ledger A 
and level 2 ILGs submit transactions to ledger B. .................................................................. 81 

Figure 15: Interledger delay for the architecture in Figure 13 with three ILGs in the presence of 
ILG errors. ............................................................................................................................. 83 

Figure 16: Food Supply Chain with five stages. ..................................................................... 85 

Figure 17: Scenario 1 – Public ledger: All sensor data (dashed green lines) and handover data 
(solid blue lines) are registered in a public ledger. ................................................................. 86 

Figure 18: Scenario 2 – Single shared ledger: All sensor and handover data are registered in a 
shared ledger operated by the entire consortium. .................................................................. 86 

Figure 19: Scenario 3 – One private ledger per pair: Each pair of consecutive stages maintain 
a separate ledger for recording box handovers between themselves. ................................... 87 

Figure 20: Scenario 4 – Private storage: Each stage maintains their own private storage. .... 87 

Figure 21: Isolated cost (in gas) for single execution of basic operations. ............................. 89 



 

 

 
SOFIE  6(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Figure 22: Aggregate cost (in gas) for a full session of a single box through the FSC. Colour 
coding denotes which ledger each cost fraction refers to. This corresponds to one ledger for 
Scenarios 1 and 2, and to four ledgers (hence the four different colours) for Scenario 3. ...... 89 

Figure 23: Public ledger gas costs incurred every 5 minutes due to periodic operations. For 
Scenario 1 this applies to the five sites directly recording sensor readings on the public ledger. 
For the other scenarios it applies to periodic storing of block hashes on the public ledger 
(anchoring). ........................................................................................................................... 90 

Figure 24: Total cost (in EUR) for a full day’s run in each scenario, as a function of the number 
of boxes transferred. Calculated based on an exchange rate of 200 EUR per 1 ETH, and a gas 
price of 10−8 ETH per gas unit. .............................................................................................. 91 

Figure 25: Box handling throughput ....................................................................................... 92 

Figure 26: Sequence diagram of the emulated Pull Flexibility Request Scenario. ................ 100 

Figure 27: Sequence diagram of the emulated Push Flexibility Request Scenario with EV users.
 ............................................................................................................................................ 101 

Figure 28: Sequence diagram of the emulated Push Flexibility Request Scenario with ERs. 102 

Figure 29: Cost as a function of frequency for a linear and logarithmic verification function V(f)
 ............................................................................................................................................ 111 

Figure 30: Optimal frequency as a function of the ratio cpub/cver ........................................... 111 

Figure 31: Ratio of optimal frequency for a linear and logarithmic verification cost as a function 
of the ratio cpub/cver ............................................................................................................... 112 

Figure 32: Optimal frequency as a function of rdata. The verification rate rver is constant and equal 
to one. ................................................................................................................................. 112 

Figure 33: EVM gas cost as a function of rdata when the optimal hash recording frequency is 
used. The verification rate rver is constant and equal to one. ................................................ 113 

Figure 34: Cost (€) as a function of rdata when the optimal hash recording frequency is used. The 
verification rate rver is equal to one verification per day. ....................................................... 113 

Figure 35: Cost as a function of frequency for a linear and logarithmic verification function V(f) 
and Q(D)=0.1*D .................................................................................................................. 114 

Figure 36: Cost as a function of frequency for a linear and logarithmic verification function V(f) 
and Q(D)=1*D ..................................................................................................................... 115 

Figure 37: Actors’ interaction with the mobile gaming system .............................................. 118 

Figure 38: UML component diagram for the first MRMG scenario ....................................... 120 

Figure 39: UML component diagram for the second MRMG scenario ................................. 121 

Figure 40: UML component diagram for the third MRMG scenario ...................................... 122 

Figure 41: UML component diagram for the fourth MRMG scenario .................................... 123 

Figure 42: EVM execution cost for the MRMG scenarios .................................................... 124 

Figure 43: Response time for write requests ....................................................................... 126 

Figure 44: Response time for read requests ........................................................................ 127 

Figure 45: Cost scalability ................................................................................................... 128 

Figure 46: Time scalability for scenarios utilizing Ethereum ................................................. 129 

Figure 47: Time scalability for scenarios utilizing Hyperledger Fabric .................................. 129 



 

 

 
SOFIE  7(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Figure 48. Federation adds to the revenue potential within an IoT business platform by 
increasing the number of devices connected to it. ............................................................... 135 

Figure 49. Two distinct value chains combined to produce the revenue (“bottom line”, bottom 
right) of a business platform: the cooperative value generation chain at the top of the diagram 
and the competitive value generation chain at the bottom. .................................................. 136 

Figure 50. CLD of FSC pilot business platform .................................................................... 137 

Figure 51. A simulation model of the food supply chain platform, presenting the core forces 
affecting the adoption and sustainability of the platform. ..................................................... 139 

Figure 52. Number of farmers in the platform (Status quo resistance power factor set to 0.2).
 ............................................................................................................................................ 140 

Figure 53. Number of farmers in the platform (Status quo resistance power factor set to 0.03).
 ............................................................................................................................................ 141 

Figure 54. DEFM platform CLD. .......................................................................................... 143 

Figure 55. CLD model of key determinants of platform growth via IoT-beacons, initiation by the 
parent company, and the technical quality degeneration as growth-limiting feedback loop (B1).
 ............................................................................................................................................ 144 

 

 

  



 

 

 
SOFIE  8(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

List of Tables 

Table 1: Architecture features ............................................................................................... 18 

Table 2: KPIs with targets...................................................................................................... 20 

Table 3: System performance KPIs ....................................................................................... 21 

Table 4: System performance KPIs for FSC scenarios .......................................................... 22 

Table 5: System performance KPIs for DEFM scenarios ....................................................... 23 

Table 6: System performance KPIs for DEDE scenarios ....................................................... 24 

Table 7: System performance KPIs for the MRMG scenarios ................................................ 26 

Table 8: Current status of the SOFIE architecture KPIs ......................................................... 32 

Table 9: SOFIE architecture validation matrix ........................................................................ 35 

Table 10: SOFIE components validation matrix ..................................................................... 36 

Table 11: FSC validation matrix............................................................................................. 40 

Table 12: DEDE validation matrix .......................................................................................... 45 

Table 13: DEFM validation matrix .......................................................................................... 46 

Table 14: MRMG validation matrix ........................................................................................ 49 

Table 15: Requirements for the SOFIE Interledger component ............................................. 55 

Table 16: Time required to perform a VC-related operation ................................................... 57 

Table 17: Requirements for the SOFIE PDS component ....................................................... 58 

Table 18: ERC-721 and ERC-721 metadata extension functions used by the PDS component
 .............................................................................................................................................. 59 

Table 19: Cost of ERC-721 token management functions ..................................................... 61 

Table 20: Requirements for the SOFIE IAA component ........................................................ 62 

Table 21: Requirements for the SOFIE SR component ......................................................... 62 

Table 22: Cost of MP component’s smart contract operations ............................................... 64 

Table 23: Requirements for the SOFIE MP component ......................................................... 65 

Table 24: Requirement for the SOFIE PaD component ......................................................... 66 

Table 25: Ledger B (Ethereum) transaction cost (gas) .......................................................... 83 

Table 26: The stages of the FSC pilot use case .................................................................... 85 

Table 27: Transaction types. ................................................................................................. 88 

Table 28: Fields associated with each transaction ................................................................. 88 

Table 29: Indicative costs for full-day operation ..................................................................... 90 

Table 30: FSC requirements and emulation scenarios .......................................................... 92 

Table 31: System performance KPIs for the FSC emulation scenarios .................................. 94 

Table 32: DEFM requirements and emulation scenarios ..................................................... 103 

Table 33: System performance KPIs for the DEFM emulation scenarios ............................. 105 

Table 34: DEDE requirements and emulation scenarios ..................................................... 108 

Table 35: System performance KPIs for the DEDE emulation scenarios ............................. 115 

Table 36: EVM execution cost for MRMG scenarios ............................................................ 124 

Table 37: Mean response time (s) for write requests (confidence intervals in parentheses) 125 

Table 38: Mean response time (s) for read requests (confidence intervals in parentheses) . 126 

Table 39: MRMG requirements and emulation scenarios .................................................... 130 

Table 40: System performance KPIs for the MRMG emulation scenarios ............................ 132 



 

 

 
SOFIE  9(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

List of Acronyms 
API   Application Program Interface 
AS   Authorization Server 
BLE   Bluetooth Low Energy 
BP   Business Platform  
CLD  Causal Loop Diagram 
CS   Charging Station 
DEDE  Decentralized Energy Data Exchange 
DEFM  Decentralized Energy Flexibility Marketplace 
DER  Distributed Energy Resource 
DID   Decentralized Identifier 
DLT   Distributed Ledger Technology 
DNS  Domain Name System 
DR   Demand Response 
DSO  Distribution System Operator 
eIDAS   Electronic Identification, Authentication and Trust Services 
ER   Electricity Retailer 
ERC  Ethereum Request for Comment 
ETH  Ether – Ethereum coin 
EV   Electric Vehicle 
EVSE  Electric Vehicle Supply Equipment 
EVM  Ethereum Virtual Machine 
FM   Fleet Manager 
FSC  Food Supply Chain 
GDPR  General Data Protection Regulation 
GW   Gateway 
Gwei  Gigawei – equivalent to one nanoether or 10-9 ETH 
IAA   Identify, Authentication, and Authorization  
ICT   Information and Communication Technology  
ID   Identifier 
ILG   Interledger Gateway 
IoT   Internet of Things 
JSON  JavaScript Object Notation 
JWT  JSON Web Token 
KPI   Key Performance Indicator 
MAC  Message Authentication Code 
MP   MarketPlace 
MRMG  Mixed Reality Mobile Gaming 
MS   MileStone 
OAuth   Open Authorization 
P2P   Peer-to-Peer 
PaD  Provisioning and Discovery 
PDS  Privacy and Data Sovereignty 



 

 

 
SOFIE  10(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

PoI   Point of Interest 
PoP   Proof of Possession  
PoW   Proof of Work 
PV   PhotoVoltaic 
RAXX  Requirement number XX of SOFIE Architecture 
RFXX  Requirement number XX of SOFIE Framework Component 
RBAC  Role Based Access Control 
RES  Renewable Energy Sources 
RP   Reference Platform 
SD   System Dynamics 
SoC  State-of-Charge 
SM   Supermarket 
SR   Semantic Representation 
TC   Test Case 
TSO  Transmission System Operator 
TR   Transportation 
UC   Use Case 
UML  Unified Modeling Language 
URI   Uniform Resource Identifier 
V2G   Vehicular to Grid 
VC   Verifiable Credential 
VP   Verifiable Presentation 
WH   Warehouse 
WoT   Web of Things 
WP   Work Package 
ZKP  Zero Knowledge Proof 



 

 

 
SOFIE  11(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Introduction 
This deliverable contains the evaluation results from WP4’s second evaluation cycle and its 
submission (April 2020/M28) coincides with the completion milestone of the second evaluation 
cycle (MS14). Since the first evaluation deliverable D4.3 (initial submission June 2019, revised 
in December 2019), the deliverables containing the second version of the SOFIE federation 
architecture (D2.4, initially submitted July 2019 and revised December 2019), the second 
version of the federation framework (D2.5 – August 2019), as well as the initial platform 
validation (D5.2 – June 2019) and business platforms – pilot release (D3.3 – September 2019) 
have been submitted. These deliverables contain a more stable description of the SOFIE 
architecture and federation framework components and of the pilot systems, including the pilot 
scenarios and their objectives. This has allowed the evaluation and validation results contained 
in the current deliverable to be more concrete and focused.  

Additionally, two previous WP4 deliverables, namely D4.1 (Validation and Evaluation Plan – 
initial submission September 2018) and D4.3 (First Architecture and System Evaluation Report 
- initial submission June 2019) were revised in December 2019. The revised D4.1 contains a 
detailed validation and evaluation planning that includes responsibilities, tools, and methods. 
This planning has been followed while conducting the evaluation and validation work reported 
in the current deliverable. Specifically, the validation work and results reported in Section 3 of 
this deliverable are tracked through three validation matrices, each matrix dedicated to the 
architecture, component, and pilot validation. The matrices are based on the requirements for 
the SOFIE architecture and components, defined in deliverable D2.4, and for the pilots, defined 
in deliverable D5.2.  

The revised D4.3 (First Architecture and System Evaluation Report) contains architecture KPIs 
and pilot-specific system performance KPIs, along with their target values. Section 2.2 of the 
current deliverable presents an update on the numbers achieved for the architecture KPIs 
(Table 8). The evaluation results for the framework components (Section 4) and the pilot 
emulation scenarios (Section 6) are related to their corresponding requirements (identified in 
deliverables D2.4 and D5.2 for the components and pilots, respectively), which are also 
considered in the validation matrices (Section 3). Furthermore, each pilot emulation scenario 
(Section 6) contains a subsection with a table that summarizes the performance results in 
relation to the corresponding system performance KPI targets.  

Finally, the evaluation results reported in Sections 4, 5, and 6 of this deliverable use the tools 
identified in D4.1 (Validation and Evaluation Plan) and were performed in the testbed 
environments described in D4.2 (Testbed and Emulation Environment Design and Setup).        

1.1 Goals of this deliverable 
The goals for this second architecture and system evaluation are the following: 

• to provide a second evaluation of the SOFIE approach, architecture, systems, and 
components, extending the results of the first evaluation, in order to promote the SOFIE 
approach and establish foundations for its impact on technology and business, 

• to provide new results for component evaluation and validation and for the evaluation of pilot 
emulation scenarios, offering experience with the approach and techniques that can provide 
guidelines to the pilot validation and evaluation activities, 

• to present results and tradeoffs that will help in the selection of the most appropriate ledger 
and interledger technologies for the SOFIE use cases and pilots, and in the selection of the 
specific use cases that are most appropriate for promoting the SOFIE approach, 

• to present the evaluation approach and techniques internally to the project so as to have 
them scrutinized, in order to determine if they will be adequate, or if they need to be modified 
or extended, for a convincing evaluation, and 



 

 

 
SOFIE  12(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

• to provide feedback that can assist in the further conceptual and technological design, 
development and evaluation (both regarding methodologies and their application). 

1.2 Methodologies and approach 
The methodologies employed for evaluation are many and diverse, from simple presentation of 
arguments and qualitative evaluation, through modelling, analytical evaluation and simulation, 
to implementation and measurements in real components and systems. The current deliverable 
followed the detailed validation and evaluation planning that includes responsibilities, tools, and 
methods contained in the revised D4.1 (Validation and Evaluation Plan – initial submission 
September 2018, revised submission December 2019). Additionally, the validation and 
evaluation results reported in this deliverable use the tools identified in D4.1 (Validation and 
Evaluation Plan) and were performed in the testbed environments described in deliverable D4.2 
(Testbed and Emulation Environment Design and Setup).        

Since the pilots have a central position in the SOFIE project, an important evaluation direction 
will be undertaken using each pilot, considering the actual system and evaluating it in a specific 
application context. These evaluations will be performed towards the end of the pilots’ lifetime 
and they will be integrated with other WP4 evaluation results in the final WP4 evaluation 
deliverable (D4.5). However, they also provide more concrete systems and applications in which 
we consider the SOFIE approach and evaluate it. We also generalize from the specific choices 
made in the pilots to the use cases from which they have been inspired, evaluating many 
potential alternatives around them. This was started with the first evaluation deliverable D4.3 
and continues with the results contained in the current deliverable. 

Thus, we are inspired and guided by the pilots and their use cases, as well as the software and 
solutions developed for them; however, WP4 aims to have a wider scope. It has chosen as one 
key approach for evaluation the emulation and/or simulation of the use cases considered in the 
pilots, but in a more general context, considering and evaluating various possible solutions and 
their parameters, going beyond what is possible within the actual pilots. On the other hand, in 
order to achieve this breadth, it needs to model and abstract out various aspects of the pilots, 
as will be explicitly described below. 

Since the first evaluation deliverable D4.3, the evaluation and validation approach has been 
adjusted. Specifically, the detailed description of the services and interfaces, along with the 
internal operation, of the framework components in D2.5 (Federation Framework, 2nd version 
– August 2019) has been taken into account in the validation and evaluation approach used to 
obtain the results in this deliverable. The mapping of pilot use cases to their corresponding 
application domains and the context of each pilot, as well as the initial platform validation results 
reported in D5.2 (Initial Platform Validation – June 2019) have been considered in adapting and 
extending the emulation scenarios considered in this deliverable. 

In addition to the use cases, the questions to be answered (i.e., the targets of the evaluation) 
are diverse. They range from traditional performance metrics, which typically have limited 
generality, as they must refer to fully specified systems, to more general questions such as 
security analysis, robustness, usability and even business analysis. It is therefore even more 
obvious that the tools to be used for evaluation must be diverse and applied at very different 
abstraction levels and under different assumptions. Our starting point for the evaluation are the 
KPIs, which initially appeared in deliverable D2.2 (Federation Architecture, 1st version – August 
2018) and were further refined and extended in the revised deliverable D4.3 (First Architecture 
and System Evaluation Report - initial submission June 2019, revised submission 
December 2019). The refinement and extension included the addition of target and pilot-specific 
system performance KPIs. 



 

 

 
SOFIE  13(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

1.3 Structure of this deliverable 
Below we present the structure of this deliverable, highlighting the new results compared to the 
previous (first) evaluation deliverable D4.3. 

Section 2 is a high-level architecture evaluation, focusing more on the style and desired 
properties of the architecture, rather than very specific architectural components and structure. 
The text is based on the previous deliverable D4.3, verifying that the features identified in the 
previous deliverable are still relevant. Its content has been updated to take into account the 
validation and evaluation work and results that have been obtained up to this point. 

Section 3 focuses on the validation of the SOFIE approach, including the architecture, 
component, and pilot validation. The results and current validation status are presented in three 
validation matrices, corresponding to the each of the three validation directions.   

Section 4 focuses on component evaluation. Compared to the first evaluation deliverable D4.3, 
further evaluation results are presented for the Interledger, Privacy and Data Sovereignty (PDS), 
and Identification, Authentication, and Authorization (IAA) components. A discussion and new 
results are also presented for the three other components: Semantic Representation (SR), 
Marketplace (MP), and Provisioning and Discovery (PaD). 

Section 5 contains further results on IoT resource access evaluation. The new results include 
decentralized authorization for constrained environments, where Ethereum is interconnected 
with Hyperledger Fabric, access control for multi-tenant IoT systems, and decentralized 
interledger gateway architectures for enhancing the reliability of the interledger functionality. 

Section 6 on evaluation scenarios follows the SOFIE pilots, generalizes them into pilot inspired 
use cases by including alternative options that are not necessarily considered in the SOFIE 
pilots, and uses emulation and simulation to consider the various tradeoffs of many potential 
alternative design decisions. The investigations include alternatives for the hierarchy and 
interconnection of different types of blockchains (public/private, or permissionless/permissioned, 
etc.) and the impact of these choices. The new results included in this deliverable compared to 
the previous evaluation deliverable D4.3 include the following: For the Food Supply Chain (FSC) 
scenario, we introduce the use of multiple ledgers and interledger technology, as well as the 
alternative of using arbitrary private storages and storing hashes in a public ledger, comparing 
the end-to-end performance and cost of all considered architectures. All the results in this 
deliverable for the Decentralized Energy Flexibility Marketplace (DEFM) are new. For the 
Decentralized Energy Data Exchange (DEDE) scenario the new results concern new evaluation 
scenarios for the PDS and IAA components, which implement the authentication and 
authorization functionality required by the pilot scenario, including the usage of verifiable 
credentials to support privacy and OAuth 2.0 access tokens based on Ethereum ERC-721 
tokens. We also extended the evaluation results of the previous deliverable that illustrate the 
tradeoffs involving the hash recording frequency and how they depend on various system 
parameters (transaction and verification costs, rate at which data are produced, and rate of 
verification requests). For the Mixed Reality Mobile Gaming (MRMG) scenario, we introduce 
two new emulation settings, the one utilizing Hyperledger Fabric, and the other combining the 
use of Hyperledger Fabric and public Ethereum, along with evaluation results considering 
execution cost, response time, throughput, and overall system scalability. 

Section 7 addresses business platform evaluation (decentralized, built on SOFIE principles and, 
eventually, with SOFIE components). A System Dynamics approach is employed, focusing on 
the pilot-based use cases and considering the interactions among elements and forces. The 
Food Supply Chain platform is developed to the point of detailed model and system simulation, 
where we have investigated the impact of one key parameter, the status-quo resistance power 
factor, which denotes the ratio of the negative publicity of the platform to all publicity of the 
platform that controls the reluctance to adoption of the platform, a force countering the forces in 



 

 

 
SOFIE  14(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

favour of the adoption of the platform. The other three pilot inspired business platform System 
Dynamics models are at different stages of development, with the context aware mobile gaming 
platform model being the next most developed one. 

Finally, the document concludes in Section 8 with a summary and outlook towards future WP4 
work, which will focus on jointly analysing emulation/simulation testbed performance results with 
pilot evaluation and validation results. 



 

 

 
SOFIE  15(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Architecture evaluation and KPIs 
In this section we discuss and bring out key aspects of the SOFIE architecture that are critical 
for the SOFIE approach to IoT system federation and open business platform success. In 
Section 2.1 we lay out the features of the SOFIE architecture, while in Section 2.2 we present 
the architecture KPIs and the system performance KPIs grouped by pilot. Table 8 shows the 
current status of the architecture KPIs. The status of the system performance KPIs are shown 
later, in the sections for each emulated pilot scenario, namely Sections 6.1.6 (Table 31 for FSC), 
6.2.6 (Table 33 for DEFM), 6.3.5 (Table 35 for DEDE), and 6.4.6 (Table 40 for MRMG). 

2.1 Architecture features 
In this section we discuss the key architecture features of the SOFIE architecture. The text is 
based on the previous deliverable D4.3, verifying that the features identified in the previous 
deliverable are still relevant. We have added references to the new results contained in the 
current second evaluation deliverable. One feature added in the current deliverable is federation. 
Federation is an inherent notion in SOFIE, as the building of trust, security, and collaboration 
across many different business entities in private silos (platforms) is central to the design of the 
project. For this reason, we discuss it in some detail. Finally, the architecture features discussed 
in this section are loosely related to the architecture KPIs defined in Table 2 and discussed later. 
For example, decentralization and multiple ledger and interledger technology is related to the 
ledger and interledger use KPIs. Open business platforms and federation is related to the IoT 
operability and interoperability KPIs, as well as the ledger and interledger use KPIs. Finally, 
trust, security, transparency, availability, and accountability are related to basic properties of 
DLTs and the privacy and data sovereignty KPIs. 

2.1.1 Decentralization   

Decentralization constitutes an intrinsic characteristic of most large-scale systems in our world, 
spanning from social structures and financial systems to telecommunication infrastructure and 
transportation networks. In computer science, decentralization is the core principle around 
which many applications are designed, including peer-to-peer (P2P) applications, large-scale 
distributed systems, and network-centric frameworks. Often decentralization brings in various 
desirable properties, most notably scalability, fault tolerance and resilience to failures, and 
elasticity with respect to the amount of resources needed and provided. 

In the case of blockchains, specifically, decentralization plays a key role in their cornerstone 
properties, namely trust and immutability. Cryptographic algorithms guarantee the dependable 
validation of transactions and trusted consensus protocols, but it is massive decentralization 
that translates trusted consensus into correct decisions, as the majority of the nodes are with 
very high probability unlikely to collude into cheating the system. 

In SOFIE, we rely on this form of decentralization for guaranteeing the trust and immutability of 
recorded transactions. Along these lines, SOFIE-enabled solutions explicitly make use of public 
ledgers, such as Ethereum, to inherit their immutability guarantees. 

There is a second flavour of decentralization pertaining to SOFIE-enabled solutions, namely the 
use of multiple distinct ledgers as opposed to a single one. This allows us to have more control 
over the required scalability, throughput, and availability of the system, as explained further in 
Sections 2.1.4 and 2.1.5.  

The results in this deliverable assess decentralization via the use of multiple ledgers within the 
context of the pilot evaluation scenarios considered. Specifically, the FSC scenario introduces 
the use of multiple ledgers and interledger technology, as well as the alternative of using 
arbitrary private storages and storing hashes in a public ledger, and compares the end-to-end 
performance and cost of all considered architectures. The DEFM scenario includes a completely 



 

 

 
SOFIE  16(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

new evaluation. The DEDE scenario adds new evaluation cases covering the PDS and IAA 
components, considering the use of Verifiable Credentials to support privacy and OAuth 2.0 
access tokens supported by Ethereum ERC-721 tokens, and contains new results on the 
tradeoffs involving the hash recording frequency and various system parameters (transaction 
and verification costs, rate at which data is produced, and rate of verification requests). Finally, 
the MRMG scenario introduces two new emulation settings, one utilizing Hyperledger Fabric 
and the other combining the use of Hyperledger Fabric and public Ethereum, and evaluates 
them in terms of the execution cost, response time, throughput, and overall system scalability. 

2.1.2 Open business platforms 

Further to decentralization, a key characteristic expected of future IoT and, more generally, 
business platforms, is openness. A business platform is a (software mainly) system where 
business transactions are undertaken with a high degree of automation. Maybe the best-known 
examples are the Apple App store and Google Play. In both these case (and almost all currently 
existing business platforms), Apple and Google, respectively, have a defining, central, all 
powerful, and rulemaking position, deciding on who can “play” and also extracting a hefty fee 
out of the platform. Not only is the platform not decentralized, but it is also not open, i.e., not 
open to other players without the explicit and typically not automatic agreement of the defining 
player and, in particular, not open to competitors or game changers. 

The SOFIE philosophy, and claim to be proven, is that open platforms are the future. They can 
support evolution and fast transformation and provide the correct incentives for players to 
participate and innovate and for society to benefit more and to better control the process through 
general rules applied equally to all. An investigation of decentralized open platforms is described 
in Section 7 of this document using the System Dynamics methodology and with the ultimate 
goal of determining the conditions under which such platforms can emerge, grow, and prosper. 
Compared to the previous deliverable D4.3, the results in Section 7 have been extended with 
more concrete Causal Loop Diagrams (CLDs) and simulation results for the FSC model. 

2.1.3 Federation 

Federation is primarily a political term. It is used to refer to a political entity characterized by a 
union of (other) partially self-governing entities (e.g., state governments) under typically a 
central (federal) government [Wik20a]. Also, typically the powers of the state and federal 
governments are explicitly (agreed to and) stated in an agreement, e.g., the constitution (of the 
federation). A related term is Confederation. A Confederation can be considered a looser 
federation, where the power of the federal government is much weaker than in the case of a 
Federation. The opposite of a Federation (or Confederation) is a unitary state. 

Our use of the term federation has a more technical flavour and applies to technical and 
business aspects. One can consider a group of component systems that are governed by either 
a single central authority or by distributed governance, in which each component system serves 
its own interests (but they can also demonstrate altruism, or desire for cooperation, sometimes 
against their narrowly defined self-interest). The analogy in real life is with a group of 
states/countries, e.g., (more like) the United States of America, or (in some respects also) the 
European Union. An example of a federated system in Information and Communication 
Technology (ICT) is the interconnection of mobile phone networks allowing roaming: each 
network operator runs their own network, but communications can happen also between them 
and various decisions are often made at the “federal” level (e.g., for rules on clearing procedures 
for roaming charges). 

We will refer to a group of interacting ICT systems or platforms (see above and Section 7.1 for 
a definition and discussion of digital and business platforms) as a federation, if the composing 
systems have governing structures and rules each, but they also participate in a large common 



 

 

 
SOFIE  17(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

platform, which governs (e.g., through pre-set rules or distributed governance) some aspects of 
the group, in particular the inter-platform exchanges and some common aspects of all 
composing systems/platforms that define the federation, i.e., the common, group platform.  

The IoT systems considered for this discussion are assumed to be business platforms relying 
on Distributed Ledger Technologies (DLTs) for trust and transactions immutability. In a 
federation of IoT systems, the platforms are connected via combining the distributed ledgers so 
that agreed upon transactions are valid and trusted, also from the point of view of others in the 
whole federation. SOFIE, in particular, employs DLTs to enable both the individual platforms 
and facilitate their federation. There is a straightforward economic logic of how a federation can 
scale up the ecosystem and, potentially, also increase the value generation, by what seems like 
a very straightforward governance action of deciding to share benefits and, thus, increase 
benefits for all participants. This relies on network effects, i.e., the value of the federation 
increasing super-linearly with the number of attached devices and users, therefore the value of 
the federation being higher than the sum of the values of its constituent platforms; Metcalfe’s 
law [Wik20b] claims that the value of the network increases quadratically with the number of 
endpoints.  

For a federation to be realised, e.g., among two or more commercial business platforms, in the 
past human social interaction and decision making were required, because federation is largely 
in the realm of governance. Until recently, technical methods were insufficient to bring about a 
successful federation on their own, since a federation relies on social and legal contracts and 
value sharing models outside the scope of the technical business platform enabling the 
federation. 

Interledger technologies can be technical enablers for federation and a technical solution in 
case DLTs are part of the constituent platforms. In particular, if these DLTs support smart 
contracts, most of the governance decisions of the federation can be set by some original parties 
and expressed as smart contracts, so that the decision for others to join or not might mostly 
require business analysis, with fewer legal negotiations. In some cases, in the future, one could 
imagine that the governance rules could be gradually modified by the parties through off-line 
discussions, but voted on and implemented through the consensus mechanisms of the 
federation DLT, or even imagine splits of the federation as has been observed in Bitcoin forks. 

2.1.4 Multiple ledgers and interledger technology  

The single-ledger model may be sufficient for specific, well-defined application types, such as 
exchanging money through Bitcoin or registering DNS name entries through NameCoin, but 
may prove to be a bottleneck for complex applications involving a number of distinct roles, 
diverse types of interaction, and a large volume of data being processed at a high rate. In such 
cases of complex applications, the key to adopting DLTs is flexibility.  

Public ledgers typically incur relatively high fees and exhibit longer latency to register a 
transaction, making them unsuitable for storing large volumes of data and at a high rate. Private 
ledgers, on the other hand, can register transactions at a negligible cost and are relatively faster 
than public ones, but their immutability guarantees are very low compared to those of public 
ledgers. A well-designed interaction between ledgers of both types can bring significant benefits 
to a deployed framework, combining low-cost and fast data storage with high immutability 
guarantees. This is why a key component of the SOFIE approach is the use of interledger 
technologies. We provide an up-to-date and comprehensive survey, review, characterization, 
and evaluation of interledger approaches in [Sir+19d].  

In this deliverable's evaluation scenarios (Section 6), we explore and evaluate the use of 
multiple ledgers and we compare it against the use of a single centralized ledger, be it public or 
private. Our evaluation considers various alternative interledger architectures, including 



 

 

 
SOFIE  18(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

combinations of public and private, as well as permissioned and permissionless ledgers, 
quantifying their pros and cons and exploring the tradeoffs stemming from them. 

2.1.5 Trust, security, transparency, availability, and accountability  

These are key properties of Distributed Ledgers, allowing transactions stored in blockchains to 
be considered trusted, final, and secure. However, some of them may be complementary. For 
example, a blockchain’s transparency property, that is, the fact that all data recorded in a 
blockchain is readily available to all nodes, may hurt security, for instance, when sensitive 
personal or business information needs to be stored in a ledger. 

Regarding availability, the fact that any participating node stores the entire history and state of 
a blockchain means that any interested entity can run one or more nodes in that blockchain, 
increasing availability. Finally, by using a blockchain for authorization and for acquiring the keys 
to access a service or a device, all accesses are recorded, providing accountability. These 
properties are particularly significant given the envisioned interactions among entities and 
businesses with diverse, and often conflicting interests. 

In this deliverable we explore and compare a number of different ledger organizations, involving 
a single public ledger, a public and a private ledger, and multiple private ledgers, shedding light 
on how the aforementioned properties are affected, and examining alternatives depending on 
an application’s specific requirements. 

Another relevant measure is usability, a qualitative measure that shows how easy it is for a 
system to be used, to be connected, etc. In this context it is important to also consider usability 
because DLTs might introduce significant complications in systems relying on them.1  

2.1.6 How features are fulfilled 

The following table presents how each of the aforementioned features are addressed in the 
SOFIE architecture. 

Table 1: Architecture features  

Feature  How feature is addressed  

Decentralization SOFIE is decentralized by design, pertaining to the collaboration of distinct 
business entities with private data silos. SOFIE's main target is to enable 
interaction in such a decentralized set of private silos. At an architectural 
level, decentralization refers to the segregation of SOFIE's architecture into 
multiple self-contained components, which are subsequently combined to 
serve SOFIE applications. It also refers to the use of multiple distinct ledgers 
to support SOFIE applications, distributing the load of ledger operations to 
multiple entities to increase scalability and throughput. Finally, at a low, 
implementation level, decentralization refers to the main technology behind 
SOFIE, blockchains, which are inherently decentralized; this is even more 
so when considering the interoperation of multiple diverse blockchains 
through the use of interledger technology. 

Open business 
platforms 

Openness is an intrinsic feature of the SOFIE project. The architecture, 
framework, and components proposed in SOFIE are open, with clearly 
defined operations and interfaces. Notably, SOFIE APIs are not hardcoded, 
but can be customized via SOFIE adapters. Moreover, the SOFIE 
architecture, framework, and components, enable open business platforms, 

                                                
1 ISO 9241-11:2018 provides usability definitions and guidelines. 



 

 

 
SOFIE  19(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

in the sense that these platforms can be open for all to join by simply 
conforming to the SOFIE architecture and using the SOFIE framework. 

Federation Federation is an inherent notion in SOFIE, as the building of trust, security, 
and collaboration across many different business entities in private silos 
(platforms) is central to the design of the project. In the case of SOFIE, more 
specifically, federation refers to the seamless collaboration across many 
entities with distinct administrations in such a way that the final result 
appears as a single, well-integrated platform. 

Multiple ledgers and 
interledger technology 

The use of multiple ledgers in SOFIE is dictated by two goals. First, in a 
multi-party business scenario, the use of multiple ledgers may reflect more 
accurately the interaction between different parties. For example, one 
blockchain could serve the interaction between parties A, B, and C, while a 
separate blockchain could serve parties X, Y, and Z. Second, different 
blockchains have different technical properties, such as transaction cost, 
block generation speed, smart contract capabilities, etc. Combining different 
blockchains offers SOFIE applications more flexibility in fulfilling specific 
requirements using best-of-both-worlds features. In our tests we conclude 
that there is no single universally best option, therefore we compare a wide 
range of architectures involving multiple ledgers to be able to assess the 
best option for each case. 

Trust and 
Accountability 

Trust and accountability are enforced in SOFIE via blockchains. For 
example, in the FSC pilot, recording box handovers in blockchains 
guarantees trust between trading parties, while parties responsible for 
inappropriate handling of produce can be held accountable based on 
ground-truth records. 

Security Security in SOFIE is managed by the IAA, and PDS components, which 
encompasses Hyperledger Indy, a popular Decentralized Identifiers (DIDs) 
and Verifiable Credentials (VCs) implementation, JSON web tokens, and 
OAuth2.0. This deliverable expands on the evaluation of these components. 

Transparency Transparency is enforced via the use of blockchains. For example, in the 
DEFM pilot, the Marketplace component is responsible to guarantee 
transparency regarding current energy prices among electric vehicles (EVs), 
charging stations (CSs) and distribution system operators (DSOs). This is 
demanded by pilot requirements and is tested in our corresponding 
evaluation scenarios. 

Availability Availability is an inherent feature of blockchains. As a blockchain is 
maintained by many nodes distributed across diverse geographic locations 
and administrative jurisdictions, the probability of all nodes crashing or 
becoming unresponsive simultaneously becomes extremely small. This is 
further strengthened when multiple distinct ledgers are used in parallel. 

 

2.2 Architecture and System Performance KPIs 
Deliverable D2.2, Annex 1, defined the KPIs to be used for the evaluation of the SOFIE 
architecture. In this section we further refine and extend these KPIs, and report our progress on 
the architecture evaluation, based on the emulated scenarios considered in previous deliverable 
D4.3 and in the current deliverable, with respect to the defined architecture KPIs. The system 
performance KPIs for the pilot scenarios will be investigated in Section 6.  



 

 

 
SOFIE  20(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

The KPIs are shown collectively in the table below. For each KPI, the table indicates the metric 
for measuring the KPI, the method of verification or measurement and the target value. The 
KPIs related to system performance are shown later, in individual tables for each pilot.  

Table 2: KPIs with targets 

KPI Goal Description Metric Method of verification Target 

1 IoT 
operability 

Prove operability of the 
implementation with 
IoT silos 

Number of IoT silos Detection of data flow in silos 
during implementation use 
case 

5 

2 IoT inter-
operability 

Prove interoperability 
across multiple IoT 
silos of the reference 
architecture 

Number of IoT silo 
pairs 

Implementation use case 
accesses data or actuates 
operations in different IoT 
silos 

3 

3 Ledger use Validate SOFIE 
implementation 
capability with multiple 
ledgers 

Number of distributed 
ledgers 

Ledgers have detectable data 
passing through SOFIE 
implementations 

5 

4 Interledger 
use 

Validate SOFIE 
implementation 
operating across 
multiple ledgers 

Number of distributed 
ledger pairs 

Implementation use case 
shown to result in operations 
across multiple ledgers 

3 

5 Ledger 
independen
ce 

Demonstrate capability 
of developing 
applications using 
ledgers, where a 
sufficient abstraction 
can be provided to 
applications to allow 
them to be targeted 
simultaneously to 
multiple ledger 
technologies 

Number of Business 
Platforms (BP) 
samples classified into 
success or partial 
success 

Demonstrate that a BP 
sample can be deployed on 
two ledgers with only 
configuration changes, and 
the BP sample users are able 
to use either one with only 
configuration item changes 

3 

6 Privacy 
designed in 
as a 
fundamental 
requirement 

Demonstrate GDPR 
compliance where 
relevant 

Number of operational 
GDPR features 
referenced and 
supported.  

Final specifications have clear 
references to features 
implementing named GDPR 
requirements. Relevant pilot 
specifications also refer to the 
needed features 

4 

7 Device 
owner 
payments 
across 
ledgers 

Ability of silo owners to 
send and receive 
payments or other 
value transfers 

Number of ledger pairs 
supporting value 
transfer 

Observation of value transfer 
as part of a use case in an 
implementation 

2 

8 Data 
sovereignty 

Ability of data owners 
to reject or allow 
access, possibly for a 
specific time interval, 
to their data  
 
Each datum has an 
accompanying 

Number of pilot use 
cases utilizing data 
owner data sovereignty 
features where data 
owner is from a 
different silo than the 
storage silo 

Count the number of use 
cases 
 

3 



 

 

 
SOFIE  21(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

authorization list, which 
the data owner can 
modify 

9 User 
responsiven
ess 

Apparent 
responsiveness of 
system for end users 

Number of seconds 
within which user gets 
response for an action 
initiated by the user 

Measuring from the onset of 
user action until the user gets 
a response by the system (to 
the user interface he or she is 
using) 

See 
system 
performa
nce KPI 
table. 

10 System 
performance 

Overall system 
performance reflecting 
the diverse needs and 
requirements of 
different use cases 

Acceptable system 
performance for users 
and pilots 

Qualitative evaluation of 
system metrics. 

See 
system 
performa
nce KPI 
table. 

 

The general system performance KPIs together with their method of measurement and target 
are shown in the table below. Later tables will adapt this table to present pilot scenario specific 
KPIs. 

Table 3: System performance KPIs 

KPI Name Description Metric Method of measurement Target 

10.1 Ledger 
execution 
cost 

Cost for executing 
operations on a ledger 

Ledger execution cost 
units (e.g., gas in 
Ethereum) 

Measure the total execution 
cost for all operations that a 
transaction involves 

As low as 
possible 

10.2 Configuratio
n time 

Time for configuration 
to complete 

Time units (e.g., 
seconds) 

Measure time between start of 
configuration until completion 
of configuration 

<15 s 

10.3 Response 
time or 
latency (or 
transaction 
delay) 

Time for the system to 
respond to a request or 
to execute a 
transaction 

Time units (e.g., 
seconds) 

Measure time between instant 
system receives a request or 
transaction until the instant 
that the system responds 

<5 s (if 
human 
involved) 
<1 s (if 
no 
human 
involved) 

10.4 Throughput Maximum number of 
transactions per time 
unit that the system 
can support 

Number of transactions 
per time unit 

Measure number of 
transactions per time unit that 
can be supported while the 
QoS (e.g., in terms of 
maximum response time) is 
satisfied  

Domain 
specific 

10.5 Scalability – 
cost 

Increase of cost as 
load (e.g., number of 
transactions per time 
unit, number of nodes) 
increases 

Ratio of delta cost over 
delta of load (number 
of transactions/nodes)  

Measure cost for different 
loads 

Linear or 
sublinear 

10.6 Scalability – 
time 

Increase of response 
time as load (e.g., 
number of transactions 
per time unit, number 
of nodes) increases 

Ratio of delta time over 
delta of load (number 
of transactions/nodes) 

Measure response time for 
different loads 

Linear or 
sublinear 



 

 

 
SOFIE  22(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 

A number of performance KPIs have been laid out for the evaluation of the FSC scenarios. 
These KPIs are presented in Table 4, below. 

Smart contract execution on public ledgers, such as Ethereum, incurs a cost. Thus, our first KPI 
refers to this cost, demanding that it is kept as low as possible. Apart from some monetary cost, 
each interaction with a ledger also incurs a time cost. Given that Ethereum blocks are being 
generated every 15 seconds on average (thus, they could occasionally take much longer), and 
that a transaction submitted to public Ethereum is not guaranteed to be included in the exact 
next block, we believe that a target of 1 minute for handover transactions and 0.5 minutes for 
internal state transitions, constitutes a reasonable target for the anticipated system. Besides 
cost and timing limits for individual transactions, the FSC scenario is mainly concerned with 
throughput, that is, the number of products that can be processed through the chain per time 
unit. Having received input from a large association of producers in Greece, a number of 6000 
boxes are produced per day during peak harvesting season. Thus, we set this number as a 
target for box processing throughput. Then follows the issue of scalability, which comes in two 
flavours, namely time and cost scalability. Scalability refers to the effect of the volume of box 
processing on the actual time delay and cost individual boxes incur. Time and cost per individual 
box should not increase by the volume of box transfers, which would render the system non-
scalable. This is expressed by the two scalability requirements demanding that time and cost 
for transactions involving a number of boxes grow at most linearly with the number of boxes. 
Finally, a KPI is defined for the time it takes to retrieve all data needed for auditing, that is, to 
resolve a potential dispute. Given that multiple blockchains might have to be accessed to 
retrieve all relevant data, this value should not be higher than 1 minute. 

Table 4: System performance KPIs for FSC scenarios 

KPI Name Description Metric Method of measurement Target 

KPI_FSC_1 Ledger 
execution 
cost in 
public 
ledger 

Cost for executing 
operations on a 
ledger 

Ledger execution 
cost units (e.g., 
gas in Ethereum) 

Measure the total execution 
cost per box 

As low as 
possible 

KPI_FSC_2 Handover 
time 

Time to register data 
to blockchain during 
a handover between 
two stages 

Time unit (e.g., 
seconds) 

Measure the total time 
required for blockchain-
related operations during a 
handover of a box between 
two stages 

<1 min 

KPI_FSC_3 Internal 
state 
transition 
time 

Time to register data 
to blockchain during 
a box's state 
transition occurring 
internally within a 
single stage 

Time units (e.g., 
seconds) 

Measure the total time 
required for blockchain-
related operations during a 
state transition of a box within 
a single stage 

<30 s 

KPI_FSC_4 Throughput Number of boxes 
that can be 
processed per time 
unit in any possible 
handover or internal 
state transition 

Number of boxes 
per time unit 

Measure the handover and 
state transition delays 

> 6000 
boxes 
per day 

KPI_FSC_5 Scalability - 
time 

Blockchain 
registration time for a 

Derivative of the 
blockchain 

Measure handover and state 
transition blockchain 

Linear or 
sublinear 



 

 

 
SOFIE  23(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

handover or internal 
state transition, as a 
function of the 
number of boxes 
involved 

registration time 
with respect to 
the number of 
boxes involved 

registration time as a function 
of the number of boxes 
involved 

KPI_FSC_6 Scalability - 
cost 
 

Public blockchain 
costs associated with 
box handovers or 
internal state 
transitions, as a 
function of the 
number of boxes 
involved 

Derivative of 
public ledger cost 
with respect to 
the number of 
boxes involved 
 

Measure public blockchain 
cost for handovers and state 
transitions as a function of the 
number of boxes involved 

Linear or 
sublinear 

KPI_FSC_7 Response 
time for 
audit 
requests 

The time it takes to 
respond to an audit 
request, by pulling 
out all data related to 
the box in question 

Time units (e.g., 
seconds) 

Measure the time it takes to 
pull out all records related to a 
given box, and to cross check 
them to identify potential 
issues 

<1 min 

 

The system performance KPIs for the DEFM scenarios are shown in the table below.  

As in the previous scenario, Smart contract execution on public ledgers, such as Ethereum, 
incurs a cost. Thus, our first KPI refers to this cost, demanding that it is kept as low as possible. 
The next three KPIs concern response time, which previous studies have identified as an 
important factor for energy trading, e.g. see [Haa+18]. Moreover, previous studies suggest that 
the maximum value for the latency is of the order of minutes [Smart16]. The throughput and 
scalability of an energy marketplace system is a significant metric that characterizes the 
capability of the system to handle energy transactions. Similar to the other pilot scenarios, the 
scalability of the system should be linear or sublinear. 

 

Table 5: System performance KPIs for DEFM scenarios 

KPI Name Description Metric Method of measurement Target 

KPI_DEFM_1 Ledger 
execution 
cost 

Cost for executing 
operations on a 
ledger 

Ledger execution 
cost units (e.g., 
gas in Ethereum) 

Measure the total execution 
cost for all operations involved 

As low as 
possible 

KPI_DEFM_2 Response 
time for 
requests, 
offers, and 
charging 
event 
notifications 

Latency of placing 
flexibility requests 
and offers on the 
marketplace 

Minutes Measure the time between the 
issuance of transaction by 
respective party until the 
transaction is recorded on the 
marketplace 

<5 min 

KPI_DEFM_3 Response 
time for 
determining 
the winner 
of the 
auction 

Latency of 
determining and 
notifying the winner 
of the marketplace 
auction  

Minutes Measure the time between the 
deadline of bids and offers 
until the winner of the auction 
has been determined and 
notified 

<5 min 



 

 

 
SOFIE  24(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

KPI_DEFM_4 Response 
time for 
verifying the 
winning bid 
and 
compensati
ng (or 
finding) the 
winner 

Latency of verifying 
the winning bid and 
compensating (or 
fining) the winner 

Minutes Measure the time between 
sufficient charging events 
have been recorded on the 
marketplace, until the events 
have been verified and the 
winner has been properly 
compensated. If recorded 
charging events did not satisfy 
the requirement of the bid 
during its timeframe, measure 
time between the end of the 
bid's deadline until the 
verification of the failure of the 
bid and finding the winner of 
the bid. 

<5 min 

KPI_DEFM_5 Throughput Number of 
transactions (bids, 
offers, selections of 
winning bid, charging 
event notifications, 
bid verifications, etc.) 

Number of 
transactions per 
time unit (hour) 

Measure number of 
transactions per time unit 
(hour) that can be supported 
while the QoS (e.g. in terms of 
maximum response time) is 
satisfied 

>100 per 
hour 

KPI_DEFM_6 Scalability – 
time 

Increase of response 
time as load (e.g., 
number of 
transactions per time 
unit, number of 
nodes) increases 

Ratio of delta 
time over delta of 
load (number of 
transactions/node
s) 

Measure response time for 
different loads 

Linear or 
sublinear 

 

The system performance KPIs for the DEDE scenarios are shown in the table below. 

As in the previous scenarios, Smart contract execution on public ledgers, such as Ethereum, 
incurs a cost. Thus, our first KPI refers to this cost, demanding that it is kept as low as possible. 
The response time metrics reflect the importance of latency in energy related marketplaces and 
data exchange platforms, e.g., see [SysFl19]. The scalability of data exchange systems is a 
significant metric that characterizes the capability of the system to handle data exchange 
transactions. Similar to the other pilot scenarios, the scalability of the system should be linear 
or sublinear. 

 

Table 6: System performance KPIs for DEDE scenarios 

KPI Name Description Metric Method of measurement Target 

KPI_DEDE_1 Cost for 
computing 
discounts 

Cost for executing 
discount operations 
on a ledger 

Ledger execution 
cost units (e.g., 
gas in Ethereum) 

Measure the total execution 
cost for all operations involved 

As low as 
possible 

KPI_DEDE_2 Cost for 
recording 
hashes 

Cost for recording 
hashes on a ledger 

Ledger execution 
cost units (e.g., 
gas in Ethereum) 

Measure the total execution 
cost for recording hashes 

As low as 
possible 

KPI_DEDE_3 Response 
time for 
access 
requests  

Time for the system 
to respond to 
metering data access 
requests  

Time units (e.g., 
seconds) 

Measure time between instant 
system receives a request 
until the instant that the 
system responds 

<5 s 



 

 

 
SOFIE  25(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

KPI_DEDE_4 Response 
time for DID 
operations 

Time for performing 
read/write operations 
on the identity ledger 
(Hyperledger Indy) 

Time units (e.g., 
seconds) 

Measure time between instant 
system receives a request 
until the instant that the 
system responds 

<5 s 

KPI_DEDE_5 Response 
time for KSI 
Blockchain 
signatures 

Time for retrieving 
KSI Blockchain 
signature 

Time units (e.g., 
seconds) 

Measure time between instant 
system receives a request 
until the instant that the 
system responds 

<2 s 

KPI_DEDE_6 Processing 
time of 
requests in 
adapter 

Time for the 
processing incoming 
requests in adapter - 
includes audit log 
entry, verifying 
credentials, setting 
up secure channel 

Time units (e.g. 
seconds) 

Measure time between instant 
system receives a request 
until the instant that the 
system responds 

<5 s 

KPI_DEDE_7 Response 
time for 
audit logs 

Time for the system 
to respond to audit 
log requests 

Time units (e.g., 
seconds) 

Measure time between instant 
system receives a request 
until the instant that the 
system responds 

<15 s 

KPI_DEDE_8 Scalability – 
cost 

Increase of cost as 
load (number of 
discount 
computations or hash 
recordings per time 
unit) increases 

Ratio of delta 
cost over delta of 
load (number of 
discount 
computations or 
hash recordings 
per time unit)  

Measure cost for different 
loads 

Linear or 
sublinear 

KPI_DEDE_9 Scalability – 
time 

Increase of response 
time as load (e.g. 
number of 
transactions per time 
unit, number of 
nodes) increases 

Ratio of delta 
time over delta of 
load (number of 
transactions/node
s) 

Measure response time for 
different loads 

Linear or 
sublinear 

 

For a quantitative performance evaluation of the emulated MRMG pilot, various measurable 
metrics are required. First, transactions on a public blockchain incur a transaction cost, which 
in Ethereum is expressed as the cost of gas for executing transactions on the Ethereum Virtual 
Machine (EVM). The desirable target for this metric is to have as low a cost as possible. 
Furthermore, the most common performance metric of any system is the response time required 
by the system to execute read and write requests. In our case, where the gaming system utilizes 
blockchains, the response time metric corresponds to the time that the system performs read 
and write transactions. Kalra et al. [KSD18], in the evaluation of their presented system, present 
the latency of various multiplayer FPS games. The average latency for these games is 250 
milliseconds. Moreover, Cai et al. [Cai+18] state that the desirable latency of any blockchain-
based system, even for games that utilize blockchains, is 2 to 3 seconds. Thus, for a blockchain-
based mobile game, the latency should be 3 seconds for write requests and 1 second for read 
requests, respectively.  

Other performance metrics that are important in mobile gaming include the time that an IoT 
device needs to detect the player arriving at a particular location. The average time for an 
Android smartphone to detect a beacon is 5 seconds. So, we believe that a reasonable target 
for this metric is 4 seconds. Finally, the throughput and scalability of the mobile gaming system 



 

 

 
SOFIE  26(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

is a significant metric, since it characterizes the capability of the system to handle many users 
and games. We believe that the scalability of the system should be linear or sublinear in order 
for the system to support many users and transactions.  

The aforementioned metrics along with their targets constitute the KPIs for the MRMG scenarios 
and are shown in the following table. 

Table 7: System performance KPIs for the MRMG scenarios 

KPI Name Description  Metric  Method of 
measurement 

Target  

KPI_MRMG_1 Public 
ledger 
execution 
cost 

Cost for executing 
operation on a public 
ledger 

Ledger 
execution cost 
units (e.g., gas 
in Ethereum) 

Measure the total 
execution cost for all 
operations that a 
transaction involves 

As low as 
possible  

KPI_MRMG_2 Response 
time for 
write 
requests 

Time for the system 
to respond to game 
state altering 
transactions, such as 
challenge creation & 
completion, skipping 
tasks and buying in-
game items 

Time units 
(e.g., 
seconds) 

Measure time between 
instant system receives a 
request or transaction until 
the instant that the system 
responds 

< 3 s 

KPI_MRMG_3 Response 
time for 
read 
requests 

Time for the system 
to respond to non-
altering requests such 
as getting player’s 
currencies and items 

Time units 
(e.g., 
seconds) 

Measure time between 
instant system receives a 
request or transaction until 
the instant that the system 
responds 

 

< 1 s 

KPI_MRMG_4 BLE 
beacon 
detection 
time 

The time player has 
to wait between 
walking into the 
correct location and 
receiving the context-
dependent task 

Time units 
(e.g., 
seconds)  

Measure average time 
between the instant player 
walks into the correct 
location and the client 
detects the beacon 

< 4 s 

KPI_MRMG_5 Throughpu
t 

Maximum number of 
transactions per time 
unit that the system 
can support 

Number of 
transactions 
per time unit 

Measure transactions per 
time unit  

> 222 read 
and > 133 
write 
transactions 
per second 

KPI_MRMG_6 Scalability 
– cost 

Increase of cost as 
number of challenges 
or active users 
increases 

Ratio of delta 
cost over delta 
of challenges 
or active users 

Measure cost for different 
numbers of challenges or 
active users 

Linear or 
sublinear 

KPI_MRMG_7 Scalability  
– time 

Increase of response 
time as number of 
challenges or active 
users or increases 

Ratio of delta 
time over delta 
of challenges 
or active users 

Measure response time 
for different numbers of 
challenges or active users 

Linear or 
sublinear 

 

Next, we discuss each system architecture KPI in Table 2, identifying their current values; they 
are summarized in Table 8. The user response and overall system performance KPIs will be 
presented in Sections 4, 5, and 6. 

 

 



 

 

 
SOFIE  27(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

KPI Goal Description Metric Method of verification 

1 IoT operability Prove operability of the 
implementation with IoT 
silos 

Number of IoT silos Detection of data flow in 
silos during 
implementation use 
case 

The objective of this KPI is to prove the applicability of the SOFIE federation architecture and 
its components to existing IoT silos. The corresponding metric is the number of IoT silos where 
the architecture has been applied. The current version of the architecture and a subset of its 
components have been applied and evaluated to the following five scenarios/silos: 

• IoT resource access 
• FSC 
• DEFM 
• DEDE 
• MRMG 

Each scenario utilizes different features of the architecture and its components, such as 
authentication and authorization, recording of data or hashes and execution of smart contracts 
in private/permissioned and public DLTs.  

In the current deliverable we present new evaluation results for the five aforementioned 
scenarios: for IoT resource access in Section 5 and for the four pilot scenarios in Section 6. 
Hence, the achieved number of this KPI is 5. 

 

KPI Goal Description Metric Method of verification 

2 IoT inter-
operability 

Prove interoperability 
across multiple IoT silos of 
the reference architecture 

Number of IoT silo pairs Implementation use 
case accesses data or 
actuates operations in 
different IoT silos 

This KPI focuses on the application of the architecture and its components to allow 
communication between different silos. For example, these silos can involve the IoT platforms 
of different entities, such as the smart farming platform, the transportation platform, and the 
logistics platform in the FSC scenario. The corresponding metric that represents this KPI is the 
number of IoT silo (platforms) pairs that exchange data through the SOFIE architecture. The 
interoperability of the IoT platforms will necessarily consider the SR component. The evaluation 
results for the pilot scenarios that are reported in Section 6 emulate the various entities (IoT 
platforms) and focus on the cross-ledger interactions. They do not consider the interoperability 
of the platforms at the semantic level. Based on this, the evaluation scenarios do not contribute 
to this KPI. Rather, the IoT platform interoperability KPI is addressed by the SOFIE pilot 
evaluation work. Specifically, as reported in deliverable D2.5 (Federation Framework, 2nd 
version) and D5.2 (Initial Platform Validation), the FSC pilot will demonstrate the interoperability 
of three IoT platforms, namely the smart farming IoT platform, the transportation IoT platform, 
and the logistics IoT platform, hence two IoT platform pairs. The DEFM pilot will demonstrate 
the interoperability of the electric vehicle and supply equipment platforms. The DEDE pilot will 
demonstrate the interoperability of a national data hub platform with smart meter platforms. The 
MRMG pilot will demonstrate the interoperability of the gaming, IoT beacon services, and asset 
platforms, hence two IoT platform pairs. The above give a total of six IoT platform pairs. 

Finally, it is worth mentioning that the SOFIE project within WP5 will investigate cross-pilot use 
cases that involve the transfer of data and/or value between pilots.  



 

 

 
SOFIE  28(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

KPI Goal Description Metric Method of verification 

3 Ledger use Validate SOFIE 
implementation capability 
with multiple ledgers 

Number of distributed 
ledgers2 

Ledgers have 
detectable data passing 
through SOFIE 
implementations 

A key goal of the SOFIE platform is to utilize different DLTs with different performance tradeoffs 
(execution cost and transaction time) and features, such as privacy, transparency, and trust. 
The DLTs that have been used in the evaluation experiments reported in deliverable D4.3 and 
in the current deliverable, along with the pilots defined in WP5, include the following ledgers: 

• Public Ethereum, including the Rinkeby and Ropsten public Ethereum test networks 
• Private Ethereum network 
• Hyperledger Fabric 
• Hyperledger Indy 
• Sovrin 
• KSI blockchain 

This deliverable contains evaluation results for the first four DLTs. The PDS and IAA code 
related to DIDs and VCs has been tested and works with Sovrin. The interaction with Sovrin is 
orthogonal (since Sovrin is a registry and all calculations take place locally, in the entities 
considered in our evaluation scenarios) and does not affect the performance results reported in 
the current deliverable. 

KSI is utilized in the decentralized data exchange pilot. Although not considered directly in the 
current deliverable, KSI can be the public ledger considered in the hierarchical ledger 
architectures for the food supply chain investigated in Section 6.1 and the public ledger in the 
high level model capturing the tradeoffs for the hash recording frequency that are presented in 
Section 6.3.4.  

Based on the above, the current number achieved for the ledger use KPI is 5.  

KPI Goal Description Metric Method of verification 

4 Interledger 
use 

Validate SOFIE 
implementation operating 
across multiple ledgers 

Number of distributed 
ledger pairs 

Implementation use 
case shown to result in 
operations across 
multiple ledgers 

A primary goal of SOFIE is to enable the interoperation and exchange of information across 
different DLTs with different performance tradeoffs and features. The evaluation experiments 
reported in the previous deliverable D4.3 focused on the interoperation of the Rinkeby and 
Ropsten public Ethereum testnets with a private Ethereum network. This deliverable contains 
new results investigating the cross-ledger interaction of public Ethereum testnets and a private 
Ethereum network for the food supply chain (Section 6.1) and mobile gaming (Section 6.4). 

The current deliverable also reports evaluation experiments considering the interoperation of 
the public Ethereum testnets with a Hyperledger Fabric permissioned ledger. Specifically, this 
cross-ledger interaction is investigated for the interledger component in Section 4.1, the 
decentralized authorization for constrained IoT resource in Section 5.1, the interledger gateway 
architectures investigated in Section 5.3, and the MRMG evaluation results in Section 6.4.  

                                                
2 Across significantly different ledger technologies; e.g., Ethereum and Ethereum Classic are not considered different 
ledgers, as their differences are small enough to allow applications developed on Ethereum to be deployed on 
Ethereum Classic with only minor changes. 



 

 

 
SOFIE  29(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

The PDS component, as described in Section 4.2., can generate an access token based on the 
verification of a client’s credentials, using Hyperledger Indy. Then this access token can be 
recorded in an Ethereum smart contract and used by the IAA components, as discussed in 
Section 4.3. 

Based on the above, our results have demonstrated the interaction between two ledger pairs: 
1) public Ethereum and private Ethereum and 2) Ethereum (both public and private) and 
Hyperledger Fabric. Hence, the current number achieved for the interledger KPI is 2. 

Ongoing evaluation work is investigating the interaction between the following pairs of DLTs: 

• Private Ethereum - KSI blockchain  
• Hyperledger Fabric - KSI blockchain 

KPI Goal Description Metric Method of verification 

5 Ledger 
independence 

Demonstrate capability of 
developing applications 
using ledgers, where a 
sufficient abstraction can be 
provided to applications to 
allow them to be targeted 
simultaneously to multiple 
ledger technologies 

Number of Business 
Platforms (BP) samples 
classified into success 
or partial success 

Demonstrate that a BP 
sample can be deployed 
on two ledgers with only 
configuration changes, 
and the BP sample 
users are able to use 
either one with only 
configuration item 
changes 

The goal of this KPI is to demonstrate the capability of developing applications using sufficient 
abstractions that allow the applications to run over multiple ledger technologies. 

The experiments in the previous deliverable D4.3 and the current deliverable (Sections 4.1 and 
5.1) demonstrate the implementation of functions and services related to IoT resource access 
both in a private Ethereum network and a Hyperledger Fabric permissioned ledger. The results 
in Section 4.2 utilize VCs as an authorization grant compatible with the OAuth 2.0 authorization 
framework. The proposed approach should be compatible with any ledger technology that 
follows W3C specifications; we have verified our constructions in Hyperledger Indy and in 
Sovrin’s testing network. Section 4.3 investigates the use of authorization tokens backed by 
Ethereum ERC-721 tokens. On the other hand, the results in the previous deliverable D4.3 
considered off-chain authorization tokens. Based on the above, our experimental results have 
demonstrated that subcomponents of the IoT resource access application, and both the PDS 
and the IAA can be deployed on different ledgers (Ethereum, Hyperledger Fabric, and 
Hyperledger Indy) 

The usage of different DLTs for implementing various services is demonstrated by the results 
for MRMG in Section 6.4, where various functions that include main gaming functions, 
advertisement functions, and token and reward functions can be implemented on both an 
Ethereum network (private and public) and Hyperledger Fabric. 

Based on the above, the current number achieved for the ledger independence KPI is 2 (IoT 
resource access and mobile gaming scenarios). 

KPI Goal Description Metric Method of verification 

6 Privacy 
designed in as 
a fundamental 
requirement 

Demonstrate GDPR 
compliance where relevant 

Number of operational 
GDPR features 

Final specifications have 
clear references to 
features implementing 
named GDPR 



 

 

 
SOFIE  30(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

referenced and 
supported.3  

requirements. Relevant 
pilot specifications also 
refer to the needed 
features 

This KPI concerns the compliance of the SOFIE architecture with the GDPR and its metric is 
the number of operational GDPR features referenced and supported. There are various features 
of the SOFIE architecture that are related to privacy and GDPR. The relevant GDPR articles 
based on the GPDR checklist 4  are identified in parentheses. Firstly, as discussed and 
investigated in Section 4, the SOFIE architecture does not record personal data to immutable 
ledgers. This is necessary to support the “right to be forgotten” (GDPR Article 17 – Right to 
erasure (‘right to be forgotten’)). Instead, the immutability of data recorded in local databases is 
ensured by recording hashes of the data in public ledgers. Secondly, in the various scenarios 
only the minimum set of data is stored in a public ledger, in order to ensure the correct operation 
and functionality that pertains to the specific scenario. Also, based on DIDs the SOFIE 
architecture can support pseudonymisation (GDPR Article 25 – Data protection by design and 
by default, GDPR Article 32 – Security of processing). 

SOFIE’s applications do not process data without having permissions granted by users 
(consent), e.g., in the MRMG scenario when the user installs the app, a pop-up screen is 
displayed asking for Storage, Access location, etc., permission. Furthermore, in the IoT 
resource access use case consent is provided through access tokens, which can be revoked or 
valid for a specific time duration, and whenever VCs are used as authorization grants, a user 
can select which claims of a VC can be revealed (GDPR Article 7.3 – Conditions for consent). 
Authorizations are recorded in an immutable manner on a DLT, which allows verification in a 
non-repudiated way that the user (owner of data) provided consent (GDPR Article 7.1 – 
Conditions for consent, Article 6 – Lawfulness of processing). Moreover, through the PDS and 
IAA components, IoT resource owners can provide access to clients (GDPR Article 20 – Right 
to data portability). 

Based on the above discussion, the following GDPR features are referenced and supported by 
the SOFIE architecture: 1) ‘right to be forgotten’, 2) pseudonymisation, 3) user selects which 
claims can be revealed, 4) authorizations immutably recorded on a DLT serve as proof of user 
consent, and 5) users can provide access to their data. This gives a total of 5 operational GDPR 
features referenced and supported by the SOFIE architecture. 

KPI Goal Description Metric Method of verification 

7 Device owner 
payments 
across ledgers 

Ability of silo owners to 
send and receive payments 
or other value transfers 

Number of ledger pairs 
supporting value 
transfer 

Observation of value 
transfer as part of a use 
case in an 
implementation 

Whereas KPI 4 on “Interledger use” focuses on the interoperability, in general, between different 
ledgers, this KPI concerns the transfer or, more accurately, the exchange of value, between 
different ledgers. An example of such an exchange of value is discussed in detail in the previous 
deliverable D4.3, which involved the exchange of a payment token, stored in a public Ethereum 
blockchain, with an access token stored in a private Ethereum blockchain. This exchange is 
performed using functionality of the interledger component. The exchange of value between 

                                                
3 The number of GDPR articles which lead to operational goals is generally thought to be about 10. See e.g., 
https://iapp.org/resources/article/top-10-operational-impacts-of-the-gdpr/   
4 GDPR checklist for data controllers: https://gdpr.eu/checklist/  



 

 

 
SOFIE  31(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Ethereum and Hyperledger Fabric utilizing the interledger component is illustrated in the IoT 
resource access scenarios reported in Sections 4.1 and 5.1).  

Based on the above, our results have demonstrated value transfer between two ledger pairs: 1) 
public Ethereum and private Ethereum and 2) Ethereum (both public and private) and 
Hyperledger Fabric.  

KPI Goal Description Metric Method of verification 

8 Data 
sovereignty 

Ability of data owners to 
reject or allow access, 
possibly for a specific time 
interval, to their data  
 
Each datum has an 
accompanying 
authorization list, which the 
data owner can modify 

Number of pilot use 
cases utilizing data 
owner data sovereignty 
features and data 
owner is from a 
different silo than the 
storage silo 

Count the number of 
use cases 
 

 

This KPI is related to the ability of data owners to reject or allow access, possibly for a specific 
time interval, to their data. This KPI can be verified with the number of pilot use cases utilizing 
data owner data sovereignty features, where the owner can be in a different silo than the storage 
silo. 

All scenarios presented in the previous deliverable and Section 6 can leverage the PDS 
component of the SOFIE architecture to achieve data sovereignty. Solutions related to IoT 
resource access with specific functionality and features are investigated in detail in the previous 
deliverable D4.3 and in Section 5 of the current deliverable. The number reported for this KPI is 
4 (same as in previous deliverable), based on the emulated scenarios considered. 

The table below summarizes the project’s current achieved numbers for the architecture KPIs. 
The specific achieved numbers for each architecture KPI are discussed above. The values in 
the table include the emulated scenarios (i.e., scenarios that include emulated entities such as 
IoT devices/platforms and users) reported in this report. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
SOFIE  32(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Table 8: Current status of the SOFIE architecture KPIs 

KPI Goal  Metric  Target  Number in 
D4.3 

Current 
achieved 
number 

1 IoT operability Number of IoT silos 5 5 5 

2 IoT interoperability Number of IoT silo pairs 3 - -5 

3 Ledger use Number of distributed ledgers 5 4 5 

4 Interledger use Number of distributed ledger pairs 3 1 2 

5 Ledger independence Number of BP samples classified 
into success or partial success 

3 - 2 

6 Privacy designed in 
as a fundamental 
requirement 

Number of operational GDPR 
features referenced and supported 

5 3 5 

7 Device owner 
payments across 
ledgers 

Number of ledger pairs supporting 
value transfer 

2 1 2 

8 Data sovereignty Number of pilot use cases utilizing 
data owner data sovereignty 
features and data owner is from a 
different silo than the storage silo 

3 4 46 

9 User responsiveness Number of seconds user gets 
response for an action initiated by 
the user 

  Evaluation 
measurements 
are reported in 
Sections 4 and 6   

10 System performance Acceptable system performance 
for users and pilots 

  Evaluation 
measurements 
are reported in 
Sections 4 and 6   

 

                                                
5 This KPI will be addressed by the WP5 pilot validation work. See deliverable 2.5 (Federation Framework, 2nd 
version) and 5.2 (Initial Platform Validation) for more details. The evaluation results in the current deliverable consider 
emulation/simulation scenarios, hence do not consider this metric. 
6  This number refers to emulated pilot scenarios presented in the previous deliverable D4.3 and the current 
deliverable. 



 

 

 
SOFIE  33(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Validation 
The validation work focuses on checking whether the SOFIE platform meets the stakeholders’ 
requirements. The validation process includes quantitative and qualitative tests of all 
components, pilots and KPIs. The specific tests considered are identified in the corresponding 
validation matrices that are presented in this section. 

3.1 Validation strategy 
The validation process is divided into internal validation and external validation. Internal 
validation consists of testing the SOFIE architecture, components and pilots against the 
requirements, while external validation uses the pilot to demonstrate SOFIE capabilities to the 
end-users and other relevant stakeholders, as defined by the corresponding pilot requirements. 
The requirements to perform internal validation are used as a starting point to create tests which 
are then run in the validation environment (more information about validation tools are found in 
D4.1 and information about the validation environment are found in WP3 documentation). The 
external validation is performed for the pilots and KPIs. 

The validation work is an ongoing process. In this deliverable we report the initial outcomes of 
the validation work. The final outcomes of the validation can be found in D5.3, for SOFIE 
components and D5.4, for the pilots and KPIs.  

3.1.1 The Validation Matrix 

The validation work is tracked using the validation matrix. The validation matrix is a table which 
reports all relevant information of the validation process. The purpose of the matrix is to facilitate 
the validation process among SOFIE partners and, later, auditing from an external reader. The 
validation process is defined in four main steps and for each step the matrix collects the outcome 
and important information:  

1. What is validated; the focus of the validation is SOFIE requirements, the matrix defines 
the requirement ID and requirement description. These fields are coherent with the 
corresponding fields found in D2.4 for the SOFIE architecture and components, and in 
D5.2 for the pilots. 

2. How the requirements are met; the matrix defines the test approach used to assure the 
requirements are met. The test approaches can be software testing (functional test, unit-
test, integration test), documentation or field test. In addition to the test approach, the 
table includes the test description and a rationale which describes why the test approach 
is compelling for validating a requirement.   

3. How to verify our claim; for every test the test location is defined which, as the name 
suggests, points to the location of the test/s. The software tests for component and pilots 
are in the SOFIE GitHub repositories; for these tests, the table defines the name of the 
repository and the directory path of the repository where a specific test if located. 

4. Validation results; the matrix define the outcome produced by the validation process. 

In the following chapters of this deliverable we present the initial version of the validation matrix 
for components and pilots. 

3.1.2 Work package responsibilities 

The validation is a combined work between WP2, WP3, WP4 and WP5. Each work package is 
responsible for handling different aspects of the validation process. For instance: 

• WP2 is responsible for creating the internal validation tests for the SOFIE components  
• WP3 is in charge of the development, the set up and maintenance of the validation 

environment 



 

 

 
SOFIE  34(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

• WP4 acts as the initial validator and validation process orchestrator 
• WP5 is responsible for handling the pilots and KPI external validation process 

 

 
Figure 1: SOFIE validation process 

Figure 1 provides an overview of the validation process. WP2 and WP3 define the tests used to 
validate, respectively, components and pilots and a rationale describing why these tests are 
feasible for the validation process. These tests are then handled by WP4 which analyses their 
acceptability and returns feedback to the test creators. When the tests are acceptable, WP4 
creates the validation matrix and WP3, together with WP2 implements the tests in the validation 
environment. The validation environment returns quantitative results, which will be used by 
relevant work packages to understand the validation status of the requirements. 



 

 

 
SOFIE  35(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

3.2 Architecture Validation 
This section defines the validation matrix for the SOFIE architecture. This matrix is a table 
composed by the ID of the architecture requirements found in D2.4. For each requirement ID 
we define the approach used to test a requirement, which may be unit test, functional test, 
integration test, documentation or any other valid approach to validate a requirement. The table 
is then completed by a short description of the approach used in each requirement. 

Table 9: SOFIE architecture validation matrix 

ID Validation Process Result 
RA01 Requirement 

Description 
SOFIE architecture must define a clear separation between data 
management, control, and representation processes. 

OK 

Test 
approach 

Documentation 

Test 
Description  

Architecture is divided into multiple components that carry out the different 
processes independently from each other. 

Test location D2.4, Section 2.1, page 7 
RA02 Requirement 

Description 
SOFIE architecture must be modular to enable different use cases and reuse 
of components. 

OK 

Test 
approach 

Documentation 

Test 
Description  

Architecture is divided into extendable components. SOFIE pilots are 
examples of how the components can be used for different use cases. 

Test location D2.4, Section 2.1, page 7 & Section 3, page 18- 
RA03 Requirement 

Description 
The interfaces of the SOFIE components must be well-defined and fully 
documented. 

OK 

Test 
approach 

Documentation 

Test 
Description  

Component interfaces are described in the Framework documentation. 

Test location D2.5, Sections 3-8, page 9- 
RA04 Requirement 

Description 
Transactions must be immutable and verifiable. Parties must not be able to 
modify existing transactions without other parties noticing it. Every party 
should be able to independently verify the validity of transactions. 

OK 

Test 
approach 

Functional test 

Test 
Description  

Event on one ledger automatically triggers the transfer of data/asset to 
another ledger. All information (initiation of transfer, acceptance of transfer, 
confirmation of acceptance) is stored on the ledgers, which makes the 
information immutable and verifiable. 

Test location Interledger: tests/system/test_interledger_ethereum.py 
RA05 Requirement 

Description 
The system must provide auditability. TBD 

Test 
approach 

Functional test 

Test 
Description  

TBD 

Test location TBD 



 

 

 
SOFIE  36(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

RA06 Requirement 
Description 

Support for transactions, where only authorized entities can participate. 
Minimal amount of information should be disclosed during authentication. 

OK 

Test 
approach 

Documentation 

Test 
Description  

Architecture (through the IAA component) can be configured to support any 
type of authorization server including servers supporting minimal disclosure 
of information. 

Test location D2.4, Section 4.2, page 31 
RA07 Requirement 

Description 
All external and internal interfaces and communication links of the system 
must conform to the principle of least privilege. 

OK 

Test 
approach 

Documentation 

Test 
Description  

Architecture has been designed with the principle of least privilege. 

Test location D2.4, Section 4.3, page 31 
RA08 Requirement 

Description 
The SOFIE architecture should be flexible and support different means of 
user authentication, including password-based, certification-based, and 
token-based. 

OK 

Test 
approach 

Documentation 

Test 
Description  

IAA component can be configured to support any type of authorization server 
including servers supporting different means of authentication. 

Test location D2.4, Section 4.2, page 31 
 

3.3 Component validation 
Similarly to the architecture validation matrix, the component validation matrix is a table indexed 
by the ID of the architecture requirements found in D2.4. This table is identical to the architecture 
matrix in its form and purpose.  

Table 10: SOFIE components validation matrix 

ID Validation Process Result 
Interledger 

RF01 Requirement 
Description 

User interaction is not required for interledger operations. OK 

Test approach Functional test 
Test 
Description  

Event on one ledger automatically triggers the transfer of data/asset to 
another ledger 

Test location Interledger: tests/system/test_interledger_ethereum.py 
RF02 Requirement 

Description 
There should be support for atomic interledger operations. OK 

Test approach Functional test 
Test 
Description  

Status of asset transfers is atomic, so that the asset can be accessible only 
in one ledger 

Test location Interledger: tests/system/test_interledger_ethereum, solidity/test/tokenTest 
(testing contract for gameToken) 



 

 

 
SOFIE  37(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Identification, Authentication, and Authorization (IAA) 
RF03 Requirement 

Description 
Resource owners must be able to delegate the authentication and 
authorization tasks for their resources. 

 
OK 

Test approach Documentation 
Test 
Description  

The IAA is configured with the public key of the preferred authorization server 

Test location IAA’s repository documentation, “Configuration” chapter 
RF04 Requirement 

Description 
The IAA component must provide users the capability to revoke 
authorizations. 

 
TBD 

Test approach Functional test 
Test 
Description  

A token is created, and it is logged in an ERC-721 smart contract. Then it is 
marked as revoked in the smart contract. IAA rejects the token. 

Test location TBD 
RF05 Requirement 

Description 
The IAA component must allow individuals to control their personal 
information and digital identities (e.g., support self-sovereign identity 
technology). 

 
OK 

Test approach Functional test 
Test 
Description  

The test is configured with a valid DID and a valid VC. It interacts with 
indy_agent.py which generates a challenge. The test sends a report to the 
challenge.  

Test location IAA tests/test_indy_agent.py 
RF06 Requirement 

Description 
The IAA component must support secure, tamper-proof, and verifiable 
logging of transactions and events. 

 
OK 

Test approach Functional test 
Test 
Description  

The test is configured with a valid token. It interacts with iaa_logger.py which 
records the token in a configured Ethereum smart contract. The test verifies 
the record.  

Test location IAA test/test_logging.py 
RF07 Requirement 

Description 
The IAA component must support Role Based Access Control (RBAC).  

OK 
Test approach Documentation 
Test 
Description  

RBAC is implemented with the use of VCs. IAA can be used to verify a VC. 

Test location IAA’s repository documentation, “Examples” chapter  
RF08 Requirement 

Description 
Cryptographic algorithms used by SOFIE should be open-source, 
transparent, and as independent as possible of any particular architecture. 

 
OK 

Test approach Documentation 
Test 
Description  

IAA supports standardized cryptographic algorithms. 

Test location IAA’s repository documentation, “Key technologies” chapter  
RF09 Requirement 

Description 
SOFIE should support the execution of authorization and authentication 
functionality on devices with constrained processing, storage, battery, and 
network connectivity. 

 
TBD 

Test approach Functional test 
Test 
Description  

The test and IAA are pre-configured with a shared key. The test executes 
the token verification function of iaa.py. 

Test location TBD 



 

 

 
SOFIE  38(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Privacy & Data Sovereignty (PDS) 
RF10 Requirement 

Description 
SOFIE must follow the data minimization principle for personal data and only 
request or process what is necessary for the situation and purpose. 

 
OK 

Test approach Documentation 
Test 
Description  

PDS can be configured with a specific proof request 

Test location PDS’s repository documentation, “Configuration” chapter 
RF11 Requirement 

Description 
Processing of an individual's personal data is justified by a valid legal basis, 
e.g., a valid consent from the individual. 

 
OK 

Test approach Functional test 
Test 
Description  

The test is configured with a valid VC. The test invokes the VC verification, 
which generates a proof request. The test generates the proof and outputs 
the verification result. 

Test location PDS tests/test_indy_agent.py 
RF12 Requirement 

Description 
Consent to process personal data must be revocable at any time.  

OK 
Test approach Documentation 
Test 
Description  

The documentation described how to set an expiration time on a VC 

Test location PDS’s repository documentation, “Examples” chapter 
RF13 Requirement 

Description 
SOFIE must allow organisations and actors to manage (create, update, 
delete) their own data privacy policies. 

 
OK 

Test approach Documentation 
Test 
Description  

PDS can be configured with arbitrary VC schemas.  

Test location PDS’s repository documentation, “Configuration” chapter 
RF14 Requirement 

Description 
SOFIE should support user privacy even when aggregate statistics are made 
public (e.g., using differential privacy mechanisms). 

TBD 
 
 Test approach TBD 

Test 
Description  

TBD 

Test location TBD 
Semantic Representation (SR) 
RF15 Requirement 

Description 
SOFIE must define an IoT things description model based on well-known 
standards (e.g. W3C standards). 

OK 

Test approach Functional test 
Test 
Description  

The test shows that only objects conforming to the component schema (W3C 
standards) are validated. 

Test location SR: tests/test_validation.py 
RF16 Requirement 

Description 
SOFIE must implement standardised metadata and data representation 
formats and support various data modalities. 

OK 

Test approach Documentation 
Test 
Description  

The component uses JSON objects. 

Test location SR’s repository documentation, “Main decision” chapter 
RF17 Requirement 

Description 
The SR model of the system must be open and extensible by third parties 
(e.g., support the extension of the existing knowledge base and associations 
by extracting supplementary triples from RDF documents). 

TBD 

Test approach TBD 



 

 

 
SOFIE  39(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Test 
Description  

TBD 

Test location TBD 
RF18 Requirement 

Description 
SOFIE must provide service discovery and resources selection processes 
based on multiple criteria over the features, associations, and interaction 
patterns of integrated resources. 

TBD 

Test approach TBD 
Test 
Description  

TBD 

Test location TBD 
RF19 Requirement 

Description 
SOFIE should support the semantic update and enhancement of resources’ 
descriptions and associations in a dynamic way. 

TBD 

Test approach Functional tests 
Test 
Description  

Same SR tests will pass using different schema implementation 

Test location TBD 
Marketplace (MP) 
RF20 Requirement 

Description 
The marketplace must log the configuration of all trading actions (including 
offers, bids, parameters of resources, transactions etc.). 

OK 

Test approach Functional test 
Test 
Description  

The test sets up an auction, accepts bids, and decides which offer wins - and 
verifies all the related information is stored on the ledger. 

Test location Marketplace: solidity/test/flowermarketplace 

RF21 Requirement 
Description 

The marketplace must provide actors the capability to post/claim offers and 
sell/negotiate/exchange/buy resources and digital objects. 

OK 

Test approach Unit tests 
Test 
Description  

The test sets up an auction, accepts bids, and decides which offer wins - and 
verifies all the related information is stored on the ledger. 

Test location Marketplace: solidity/test/flowermarketplace 

RF22 Requirement 
Description 

The marketplace must support transparent trading of resources, i.e. the 
bids/offers matching process and the payments must be transparent. 

OK 

Test approach Functional test 
Test 
Description  

The test sets up an auction, accepts bids, and decides which offer wins - and 
verifies all the related information is stored on the ledger. 

Test location Marketplace: solidity/test/flowermarketplace 

RF23 Requirement 
Description 

The marketplace must provide evidence once trades have been completed 
and resources have been properly delivered to the buyers. 

TBD 

Test approach Functional test 
Test 
Description  

The transaction determining the winning bid is logged on the distributed 
ledger. Evidence of the delivery of resources must also be logged on the 
distributed ledger by the winner and seller, after which the evidence can be 
verified. 

Test location TBD 
RF24 Requirement 

Description 
The marketplace should allow integration of payment technologies. TBD 

Test approach Documentation 
Test 
Description  

The marketplace component provides interfaces for integrating payment 
solutions; an example will be provided. 

Test location TBD 
 



 

 

 
SOFIE  40(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

3.4 Pilot validation 
The pilot validation matrix is a table indexed by the ID of the architecture requirements found in 
D5.2. Its structure and purpose are similar to the architecture and component validation matrices. 
Pilot validation will be reported in deliverables D5.3 and D5.4. 

3.4.1 FSC pilot 

Table 11: FSC validation matrix 

ID Validation Process Result 

REQ_F
SC0.1 

Requirement 
Description 

The services must be provided (to the actors) through the same web 
application. 

TBD 
 

Test 
approach 

Field test 

Test 
Description  

Each registered actor of any type (e.g., producer, transporter, warehouse, 
supermarket employee) can access and perform all the services provided 
by the FSC web application based on its role. 

Test location This requirement is tested as part of the FSC_TC02, as defined in D5.1. 

REQ_F
SC0.2 

Requirement 
Description 

The services must be accessible (by the actors) under a Role-based 
Access Control (RBAC) policy. 

TBD 
 

Test 
approach 

Field test 

Test 
Description  

Each registered actor of any type (e.g. producer, transporter, warehouse, 
supermarket employee) can access and perform all the services provided 
by the FSC web application based on its role. 
The actors have already registered on the pilot platform. Roles for the actors 
are granted by the Keycloak server (which is a component of the platform) 
during their registration. 
 

Test location This requirement is tested as part of the FSC_TC02, as defined in D5.1. 

REQ_F
SC0.3 

Requirement 
Description 

Each actor must be identified in a unique way TBD 
 

Test 
approach 

Unit test 

Test 
Description  

Authorization server is configured so each registered actor is bound to a 
unique ID. One of the attributes in an actor's profile (e.g., name) is used as 
a key to avoid duplicate IDs for the same actor. 

Test location TBD 

REQ_F
SC0.4 

Requirement 
Description 

Each federated IoT environment must have a unique identifier in the 
system architecture. 

TBD 
 

Test 
approach 

Unit test 

Test 
Description  

Each federated IoT platform is bound to a unique ID. Federated platforms 
register themselves by using an Ethereum client such as Geth to create 
accounts by using built-in encryption policies. The smart contract executed 
in the private ledger (consortium ledger) implements multiple checks to 
verify the identities of the IoT platforms requesting transactions. The test 
will compare datasets which are sent by each federated platform for a 
specific period to the records in the consortium ledger to decide whether 
each IoT platform is bound to a unique ID or not. 

Test location TBD 

REQ_F
SC0.5 

Requirement 
Description 

Authentication and access control logic must be applied to 
common storage resources. 



 

 

 
SOFIE  41(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Test 
approach 

Documentation TBD 
 

Test 
Description  

An authorization and access management server had been integrated to 
enable the actors’ registration in the supervisor data management layer 
and establish role-based accessibility to the provided services (D5.2, 
Chapter 3.3.2, page 38). The test will verify that each registered actor can 
make transactions to the private ledger based on its role (and the defined 
use cases). 

Test location This requirement is tested as part of the FSC_TC06, as defined in D5.1. 

REQ_F
SC1.1 

Requirement 
Description 

Registration of a crop must be timestamped. TBD 
 

Test 
approach 

Integration test 

Test 
Description  

Data and metadata provided by the actors through the FSC web 
application are recorded in DLTs. The payload of any transaction is 
verified. 

Test location This requirement is tested as part of the FSC_TC06, as defined in D5.1. 

REQ_F
SC2.1 

Requirement 
Description 

The QR code that summarizes product history must include farm location, 
harvesting date, used fertilizers (dates), and the type of the product (from 
the perspective of the farming system) 

TBD 
 

Test 
approach 

Functional test 

Test 
Description 

Readability of all included information in QR codes is confirmed. 

Test location This requirement is tested as part of the FSC_TC08, as defined in D5.1. 

REQ_F
SC3.1 

Requirement 
Description 

Handovers must be recorded in an immutable way where all federated IoT 
environments must have access. 

TBD 
 

Test 
approach 

Integration test 

Test 
Description  

Data and metadata provided by the actors through the FSC web 
application are recorded in DLTs. The payload of any transaction is 
verified. 

Test location This requirement is tested as part of the FSC_TC06, as defined in D5.1. 

REQ_F
SC3.2 

Requirement 
Description 

The boxes could be sealed upon the delivery to the transportation 
company (from the producers). 

TBD 

Test 
approach 

TBD 

Test 
Description  

TBD 

Test location TBD 

REQ_F
SC4.1 

Requirement 
Description 

Upon delivery to the WH employee, boxes could be unsealed by the TR 
employee. 

TBD 

Test 
approach 

TBD 

Test 
Description  

TBD 

Test location TBD 



 

 

 
SOFIE  42(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_F
SC5.1 

Requirement 
Description 

Each box must have a unique RFID tag identifier. TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Test that box reuse is possible (after its release) and that registration of a 
box with an ID that is already used by another box is impossible (box 
unique identifier). 

Test location This requirement is tested as part of the FSC_TC05, as defined in D5.1. 

REQ_F
SC5.2 

Requirement 
Description 

Boxes must be considered as things of the transportation IoT platform. TBD 
 

Test 
approach 

Functional test 
 

Test 
Description  

An RFID tag is attached to each box. The test will verify that the RFID 
reader detects all tags which are placed within its range at any moment. 

Test location This requirement is tested as part of the FSC_TC06, as defined in D5.1. 

REQ_F
SC5.3 

Requirement 
Description 

Box registration in the supply chain must define also the producer from 
whom it will be used. 

TBD 
 

Test 
approach 

Integration test 

Test 
Description  

The payload of the transaction which corresponds to the specific use case 
(FSC_UC5 “register session”) is verified to include also the ID of the 
farmer who will use the boxes. 

Test location This requirement is tested as part of the FSC_TC06, as defined in D5.1. 

REQ_F
SC5.4 

Requirement 
Description 

Registration of a box must be timestamped. TBD 
 

Test 
approach 

Integration test 

Test 
Description  

The payload of the transaction which corresponds to the specific use case 
(FSC_UC5 “register session”) is verified to also include a timestamp. 

Test location This requirement is tested as part of the FSC_TC06, as defined in D5.1. 

REQ_F
SC6.1 

Requirement 
Description 

Transportation trucks must have internet connection to communicate and 
exchange data with the transportation IoT platform. 

TBD 
 

Test 
approach 

Field test 

Test 
Description  

The SOFIE platform receives data from the transportation GW deployed in 
the truck i) as the vehicle moves, and ii) as the vehicle engine is turned off. 

Test location This requirement is tested as part of the FSC_TC05, as defined in D5.1. 

REQ_F
SC6.2 

Requirement 
Description 

A TR employee (driver) must be able to use different transportation trucks 
on different occasions. 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

By using the FSC web application, the TR employees can select any of the 
available trucks to transport boxes between two sites. 

Test location This requirement is tested as part of the FSC_TC05, as defined in D5.1. 

REQ_F
SC7.1 

Requirement 
Description 

Measurements from IoT devices are stored locally in the corresponding IoT 
platform. 

TBD 

 
Test 
approach 

Integration test 

Test 
Description  

Measurements from each deployed sensing device are collected by the 
corresponding IoT platform and they are properly stored in its database 
system. 

Test location This requirement is tested as part of the FSC_TC01, as defined in D5.1. 



 

 

 
SOFIE  43(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_F
SC8.1 

Requirement 
Description 

Upon delivery to the SM employee, boxes could be unsealed by the TR 
employee. 

TBD 

Test 
approach 

TBD 

Test 
Description  

TBD 

Test location TBD 

REQ_F
SC9.1 

Requirement 
Description 

The temperature within each storage room of the WH must be continually 
monitored. 

TBD 
 

Test 
approach 

Integration test 

Test 
Description  

The test will verify that temperature measurements from each deployed 
sensing device are collected by the corresponding IoT platform 

Test location This requirement is tested as part of the FSC_TC01, as defined in D5.1. 
REQ_F
SC9.2 

Requirement 
Description 

In the WH, a notification appears in the monitoring service of the Aberon 
IoT platform each time a predefined temperature range is violated. 

TBD 
 

Test 
approach 

Integration test 

Test 
Description  

The test will create datasets that include some values out of the predefined 
temperature domain and verify that corresponding notifications are 
created. 

Test location This requirement is tested as part of the FSC_TC01, as defined in D5.1. 

REQ_F
SC10.1 

Requirement 
Description 

The (unreleased) boxes in the WH must contain either raw or packetized 
products. 

TBD 
 

Test 
approach 

Documentation 

Test 
Description  

This requirement has been merged into the workflow (action in the physical 
space) that accompanies the use of services. Not a technical requirement, 
no test is applied 

Test location N/A 

REQ_F
SC11.1 

Requirement 
Description 

QR codes must include data collected from the federated IoT 
environments, as well as provided by the actors through the FSC web 
application 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Creation of QR codes by using the FSC web application. 

Test location This requirement is tested as part of the FSC_TC08, as defined in D5.1. 

REQ_F
SC11.2 

Requirement 
Description 

The same QR label must be attached to every packet containing grapes 
which were transferred into the same box. 

TBD 
 

Test 
approach 

Documentation 

Test 
Description  

This requirement has been merged into the workflow (action in the physical 
space) that accompanies the use of services. Not a technical requirement, 
no test is applied 

Test location N/A 



 

 

 
SOFIE  44(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_F
SC11.3 

Requirement 
Description 

Labelling of products must be based on a common vocabulary for the food 
supply domain that maximizes reuse of data and acceptance by the 
customers. 

TBD 
 

Test 
approach 

Documentation 

Test 
Description  

TBD 

Test location TBD 

REQ_F
SC11.4 

Requirement 
Description 

The QR codes must be self-contained, so internet connection is not 
needed to read their content. 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Multiple QR codes are scanned and it is verified that they include product 
information from all segments of the supply chain 

Test location This requirement is tested as part of the FSC_TC08, as defined in D5.1. 

REQ_F
SC11.5 

Requirement 
Description 

The QR codes must contain product information relate to all the segments 
of the chain. 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Multiple  QR codes are scanned and it is verified that they include product 
information from all segments of the supply chain 

Test location This requirement is tested as part of the FSC_TC08, as defined in D5.1. 

REQ_F
SC12.1 

Requirement 
Description 

Boxes must be able to be re-used in the future (to carry other products) 
after they have been released of the current transfer. 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Test that box reuse is possible (after its release) and that registration of a 
box with an ID that is already used by another box is impossible (box 
unique identifier). 

Test location This requirement is tested as part of the FSC_TC03, as defined in D5.1. 

REQ_F
SC13.1 

Requirement 
Description 

QR labels must be accessible by everyone by using a smartphone device. TBD 
 

Test 
approach 

Functional test 

Test 
Description  

A QR code which is created by the supermarket employee using the FSC 
web application can be read offline by using different smartphones 
devices. Readability of all included information is confirmed. 

Test location This requirement is tested as part of the FSC_TC08, as defined in D5.1. 

REQ_F
SC14.1 

Requirement 
Description 

In case of an audit, requested organizations must be able to provide proof 
of their claims about the historic data of assets which are stored locally. 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

The test verifies that all measurements of interest can be retrieved by the 
API of the corresponding IoT platform 

Test location This requirement is tested as part of the FSC_TC09, as defined in D5.1. 
REQ_F
SC14.2 

Requirement 
Description 

Transfer of responsibility over boxes (assets) must be timestamped. TBD 
 

Test 
approach 

Functional test 

Test 
Description  

The payload of transactions is verified to include correct timestamps. 

Test location This requirement is tested as part of the FSC_TC06, as defined in D5.1. 



 

 

 
SOFIE  45(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_F
SC14.3 

Requirement 
Description 

A transaction must be confirmed by both transacting parties. TBD 
 

Test 
approach 

Functional test 

Test 
Description  

TBD 

Test location TBD 

REQ_F
SC14.4 

Requirement 
Description 

Both parties of a transaction must be able to access the details of the 
transaction at any time. 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Metadata related to an actor’s activity (in the FSC app.) is accessible by 
that actor at any time and is invisible to any other actor. 

Test location This requirement is tested as part of the FSC_TC07, as defined in D5.1. 

3.4.2 DEDE pilot 

Table 12: DEDE validation matrix 

ID Validation Process Result 

REQ_
DEDE
1.1 

Requirement 
Description 

Data owner can access info about his data, full visibility of data use.  

TBD 

 Test 
approach 

Functional test 

Test 
Description  

Data owner will have an overview about the usage of the metering data. 

Test location TBD 

REQ_
DEDE
1.2 

Requirement 
Description 

Each actor must be identified. TBD 

 
 Test 

approach 
Functional test 

Test 
Description  

All actors in the pilot system will have unique identifiers (DIDs). 

Test location TBD 

REQ_
DEDE
2.1 

Requirement 
Description 

Owner must be able to decide who gets access to his/her data. TBD 
 

Test 
approach 

Functional test 

Test 
Description  

TBD 

Test location TBD 

REQ_
DEDE
2.2 

Requirement 
Description 

All user info handling must be GDPR compliant. TBD 
 

Test 
approach 

Documentation 

Test 
Description  

Data handling in the system will be GDPR compliant 

Test location D5.2, Chapter 4.2.2.1, page 55 

REQ_
DEDE
2.3 

Requirement 
Description 

Data handover must be registered and proved at every transaction. TBD 
 

Test 
approach 

Functional test 



 

 

 
SOFIE  46(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Test 
Description  

Architecture supports transactions involving ledgers to achieve immutability 
and transparency. 

Test location TBD 

REQ_
DEDE
2.4 

Requirement 
Description 

Service provider must be able to define the energy consumption data 
parameters. 

TBD 
 

Test 
approach 

Integration test 

Test 
Description  

Service provider has full control over the offered services. 

Test location TBD 

REQ_
DEDE
2.5 

Requirement 
Description 

Service provider must be able to download the energy consumption data. TBD 
 

Test 
approach 

Integration test 

Test 
Description  

When secure connection is established and credentials exchanged, 
consumption data can be fetched and validated. 

Test location TBD 

REQ_
DEDE
2.6 

Requirement 
Description 

Authentication toolkit for all actors (eIDAS compliant). TBD 
 

Test 
approach 

Documentation 

Test 
Description  

Authentication with existing approaches (e.g., eIDAS) will be supported 

Test location D5.2, Chapter 4.2.2.1, page 55 

REQ_
DEDE
2.7 

Requirement 
Description 

Processes monitoring the system must be logged, stored (in local 
environment) 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Adapter audit log 

Test location TBD 

REQ_
DEDE
5.1 

Requirement 
Description 

Service provider must be able to get proof of receiving the energy 
consumption data 

TBD 
 

Test 
approach 

Functional test 

Test 
Description  

Proofs can be downloaded and verified 

Test location TBD 

REQ_
DEDE
5.2 

Requirement 
Description 

System logs integrity must be 3rd party verifiable (auditor) TBD 
 

Test 
approach 

Functional test 

Test 
Description  

3rd parties can verify the interactions 

Test location TBD 

3.4.3 DEFM pilot 

Table 13: DEFM validation matrix 

ID Validation Process Result 

Requirement 
Description 

DSO shall be able to forecast of electricity production/consumption TBD 
 



 

 

 
SOFIE  47(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_ 
DEF
M1.1 

Test approach Integration test 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC01 and DEFM_TC03 

Test location TBD 

REQ_ 
DEF
M1.2 

Requirement 
Description 

DSO shall be able to check the load and production forecasting of the 
whole distribution grid 

TBD 
 

Test approach Integration test 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC01 and DEFM_TC03 

Test location TBD 

REQ_ 
DEF
M1.3 

Requirement 
Description 

DSO shall be able to forecast of electricity production / consumption at the 
grid level 

TBD 
 

Test approach Integration test 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC01 and DEFM_TC03 

Test location TBD 

REQ_ 
DEF
M1.4 

Requirement 
Description 

DSO shall be able to shave peaks of energy produced locally the day after 
so that instability of the system, overvoltage on the feeder, protection 
discoordination, increased fault currents, and incorrect operation of 
equipment could be avoided 

TBD 
 

Test approach Integration test 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC01 and DEFM_TC03 

Test location TBD 

REQ_ 
DEF
M1.5 

Requirement 
Description 

DSO shall be able to estimate the energy flexibility availability; assess 
flexibility availability by using available historical data. 

TBD 
 

Test approach Integration test 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC01 and DEFM_TC03 

Test location TBD 

REQ_ 
DEF
M1.6 

Requirement 
Description 

DSO shall be able to forecast that system indicates a potential reverse 
power flow to be mitigated and DSO system is connected to the flexibility 
marketplace. 
The DSO system is connected to the flexibility marketplace. 

TBD 
 

Test approach Integration test 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC01 and DEFM_TC03 

Test location TBD 

REQ_ 
DEF
M2.1 

Requirement 
Description 

When the Fleet Manager obtains the responsibility to provide the flexibility 
required by the DSO, a micro contract between the Fleet Manager and the 
DSO is executed. 

TBD 
 

Test approach Integration test 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC02 

Test location TBD 

REQ_ 
DEF
M2.2 

Requirement 
Description 

When the Fleet Manager obtains the responsibility to provide the flexibility 
required by the DSO and EV users not belonging to the fleet manager EV 
fleet are involved in the DR campaign, a micro contract between the Fleet 
Manager and the EV user is executed. 

TBD 
 

Test approach Integration test 



 

 

 
SOFIE  48(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Test 
Description  

Described in D5.1 v2.0 as DEFM_TC01 

Test location TBD 

REQ_ 
DEF
M4.1 

Requirement 
Description 

With the objective of performing Demand Response (DR) campaigns, it is 
necessary that the management systems of electric vehicles and charging 
stations communicate with each other, so that it is possible to verify in real 
time the interaction between the two systems. 

TBD 
 

Test approach TBD 

Test 
Description  

TBD 

Test location TBD 

REQ_ 
DEF
M4.2 

Requirement 
Description 

To provide DSO flexibility in an efficient way, the data of electric vehicles 
and charging stations must be collected in real time (or very close to real 
time). Data coming from EVSEs and the EVs should be consistent, 
reliable, transparent and accessible to the partners. Furthermore, to 
perform optimized DR campaigns it is necessary to constantly calculate 
EV load forecasting to estimate the amount of energy that electric vehicles 
could consume to meet the DSO's flexibility demand. 

TBD 
 

Test approach Functional test 

Test 
Description  

When secure connection is established, data from electric vehicles and 
charging stations are collected 

Test location TBD 

REQ_ 
DEF
M4.3 

Requirement 
Description 

It is necessary that the data of electric vehicles and charging stations are 
stored so that they can then be reprocessed, producing charts that show 
the effectiveness for the purposes of the DSO of DR campaigns performed 
during the trial. 

TBD 
 

Test approach Integration test 

Test 
Description  

Data collected from electric vehicles and charging stations are stored in 
the fleet manager server 

Test location TBD 

REQ_ 
DEF
M4.4 

Requirement 
Description 

As there will be more than one charging station on the pilot site, each 
individual charging station must have its own unique identifier. 

TBD 
 

Test approach Unit test 

Test 
Description  

All charging stations in the pilot system will have unique identifiers (IDs) 

Test location TBD 

REQ_ 
DEF
M4.5 

Requirement 
Description 

As there will be more than one electric vehicle on the pilot site, each 
individual electric vehicle must have its own unique identifier. 

TBD 
 

Test approach Unit test 

Test 
Description  

All electric vehicles in the pilot system will have unique identifiers (IDs) 

Test location TBD 

REQ_ 
DEF
M4.6 

Requirement 
Description 

To allow the EV user to realize the available charging stations and the fees 
associated with them, a web platform is required. 

TBD 

Test approach Integration test 

Test 
Description  

Fleet manager and EV users can authenticate on the web platform and 
check the electric vehicles and charging stations real time status and 
historical data 

Test location TBD 

REQ_ 
DEF
M4.7 

Requirement 
Description 

Both charging stations and electric vehicles must be connected to the 
internet in order to send data. 

TBD 
 

Test approach Integration test 



 

 

 
SOFIE  49(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Test 
Description  

Charging stations and electric vehicles must be connected to internet to 
communicate with the fleet manager server 

Test location TBD 

REQ_ 
DEF
M5.1 

Requirement 
Description 

The charging station must be remotely controlled to start/stop charging 
sessions and to modulate the power output. 

TBD 
 

Test approach Unit test 

Test 
Description  

TBD 

Test location TBD 

REQ_ 
DEF
M7.1 

Requirement 
Description 

DSO shall be able to constantly calculate building consumption 
forecasting, PV production forecasting and manage batteries to estimate 
the amount of energy demand at ASM substation. Forecasting will be 
calculated periodically (every day). Need to reduce undesired reverse 
power flows 

TBD 
 

Test approach Integration test 

Test 
Description  

From the DSO local network, load forecast for the two network zones can 
be fetched 

Test location TBD 

REQ_ 
DEF
M8.1 

Requirement 
Description 

When the Fleet Manager obtains the responsibility to provide the flexibility 
required by the DSO, a micro contract between the Fleet Manager and the 
Retailer is executed for the energy supply to charge electric vehicles 

TBD 
 

Test approach Integration test 

Test 
Description  

The marketplace backend exposes the APIs needed by the actors for 
interacting with the system, participating with requests and offers. 

Test location TBD 

3.4.4 MRMG pilot 

Table 14: MRMG validation matrix 

ID Validation Process Result 

REQ
_ 
MRM
G0.1 

Requirement 
Description 

Each person interacting with the game should have a unique identifier. TBD 
 

Test approach Unit test 

Test 
Description  

The test passes if all player IDs are different. 

Test location TBD 

REQ
_ 
MRM
G1.1 

Requirement 
Description 

Game challenges are accessible using the Android application  TBD 
 

Test approach Field test 

Test 
Description  

In the test, the user opens the Scavenger Hunt game application and 
enters the Nearby Challenges tab. The user should see a list of 
(uncompleted) challenges that start in GPS coordinates that are within a 
set radius from the user. The requirement is met if the nearby challenges 
that exist on the backend are indeed visible in the Nearby Challenges tab. 

Test location TBD 

REQ
_ 
MRM
G1.2 

Requirement 
Description 

Players can join any nearby challenge from the game app. TBD 
 

Test approach Field test 

Test 
Description  

The requirement is met if a challenge is added to the list of the player’s 
current challenges, after the player presses the Start button in the client. 

Test location TBD 



 

 

 
SOFIE  50(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ
_ 
MRM
G1.3 

Requirement 
Description 

Each challenge should have a unique identifier TBD 
 

Test approach Unit test 

Test 
Description  

The test passes if the IDs of all Scavenger Hunt challenges are different. 

Test location TBD 

REQ
_ 
MRM
G1.4 

Requirement 
Description 

Time should be recorded for each player, starting after joining the 
challenge till the player completes it. 

TBD 
 

Test approach Field test 

Test 
Description  

The requirement is met if, after a user plays the challenge, the completed 
challenge’s start and end time fields are populated. 

Test location TBD 

REQ
_ 
MRM
G1.5 

Requirement 
Description 

Players should receive unique tasks when near the IoT beacons based on 
their challenge. 

TBD 
 

Test approach Field test 

Test 
Description  

The requirement is met if a user standing next to a BLE beacon receives a 
task in the mobile application. 

Test location TBD 

REQ
_ 
MRM
G1.6 

Requirement 
Description 

Players should be able to skip any task and receive location of next IoT 
beacon using the In-App tokens. 

TBD 
 

Test approach Field test 

Test 
Description  

If a player has Star items in-game, they can use one start to skip a task. 
The requirement is met if, when presented with a task and using a star, the 
current task auto-completes and the user receives the clue to the next 
beacon. 

Test location TBD 

REQ
_ 
MRM
G1.7 

Requirement 
Description 

Players can buy In-App tokens using in-game currency TBD 
 

Test approach Field test 

Test 
Description  

The requirement is met if the player can spend in-game coins in the 
application to buy Gem and Star tokens - increasing Gem and Star 
amounts in possession and decreasing Coins in possession. 

Test location TBD 

REQ
_ 
MRM
G1.8 

Requirement 
Description 

System should automatically calculate rewards after player has completed 
a challenge 

TBD 
 

Test approach Field test 

Test 
Description  

After a player completes a challenge, the requirement is met if the player 
sees rewards in the client application. 

Test location TBD 

REQ
_ 
MRM
G2.2 

Requirement 
Description 

System should automatically add the rewards to the player’s account after 
the challenge ends. 

TBD 
 

Test approach Functional test 

Test 
Description  

The test passes if, after the reward transaction, the amount of coins in the 
escrow has decreased and the amount of coins in the player’s account has 
increased by the reward amount. 

Test location TBD 

REQ
_ 
MRM
G3.1 

Requirement 
Description 

Player should be given the option to view advertisements while playing a 
challenge. 

N/A 
 

Test approach N/A 

Test 
Description  

This requirement has been replaced with REQ_MRMG 9 



 

 

 
SOFIE  51(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Test location N/A 

REQ
_ 
MRM
G3.2 

Requirement 
Description 

Player should receive tokens for viewing the advertisement. N/A 
 

Test approach N/A 

Test 
Description  

This requirement has been replaced with REQ_MRMG 9 

Test location N/A 

REQ
_ 
MRM
G3.3 

Requirement 
Description 

Every ad viewability data should be recorded as a transaction on the 
blockchain. 

TBD 
 

Test approach Functional test 

Test 
Description  

This requirement has been replaced with REQ_MRMG 9 

Test location TBD 

REQ
_ 
MRM
G4.1 

Requirement 
Description 

Players can buy and sell Blockmoji assets on the blockchain TBD 
 

Test approach Field tests 

Test 
Description  

The requirement is met if players can buy and sell Blockmoji items on the 
blockchain. 

Test location TBD 

REQ
_ 
MRM
G4.2 

Requirement 
Description 

Every asset traded on the platform should be recorded as a transaction on 
the blockchain. 

TBD 
 

Test approach Functional test 

Test 
Description  

The test passes if, after a Blockmoji trading transaction has occurred, that 
transaction can be read from the blockchain. 

Test location TBD 

REQ
_ 
MRM
G5.1 

Requirement 
Description 

Web application for designing new challenges and uploading 
advertisements. 

N/A 
 

Test approach N/A 

Test 
Description  

This requirement has been replaced with REQ_MRMG 9 

Test location N/A 

REQ
_ 
MRM
G5.2 

Requirement 
Description 

Access control to the web services based on the role of the user. N/A 
 

Test approach N/A 

Test 
Description  

This requirement has been replaced with REQ_MRMG 9 

Test location N/A 

REQ
_ 
MRM
G7.1 

Requirement 
Description 

Blockmoji item rewards be can offered to players through challenges TBD 

Test approach Field test 

Test 
Description  

If a challenge offers a Blockmoji item reward, the player should see it in 
their mobile application reward screen after completing the challenge. 

Test location TBD 

REQ
_ 
MRM
G7.2 

Requirement 
Description 

Blockmoji rewards should be added and recorded on the blockchain. TBD 
 

Test approach Functional test 

Test 
Description  

The requirement is met if, after a player completes a challenge that awards 
a Blockmoji item, the receiving of the item can be read as a transaction on 
the blockchain. 

Test location TBD 



 

 

 
SOFIE  52(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ
_ 
MRM
G8.1 

Requirement 
Description 

Ads manager should publish any ad video using the web application N/A 
 

Test approach N/A 

Test 
Description  

This requirement has been replaced with REQ_MRMG 9 

Test location N/A 

REQ
_ 
New 
REQ
_ 
MRM
G9.1 

Requirement 
Description 

Every user that signs in with Decent ID should have a unique 
decentralized ID with the connection. 

TBD 
 

Test approach Unit test 

Test 
Description  

The test passes if all connection DIDs of a user are different. 

Test location TBD 

New 
REQ
_ 
MRM
G9.2 

Requirement 
Description 

Companies send pieces of the user’s ad profile data to the user as 
credentials 

TBD 
 

Test approach Functional test 

Test 
Description  

The test validates that ad profile data is received by the connection if the 
user has allowed the request. 

Test location TBD 

New 
REQ
_ 
MRM
G9.3  

Requirement 
Description 

Companies request access to the user’s ad profile credentials, and user 
can accept them 

TBD 
 

Test approach Field test 

Test 
Description  

The requirement is met if, after a service requests for credentials, the user 
sees a prompt in the mobile application to accept the request. 

Test location TBD 

New 
REQ
_ 
MRM
G9.4  

 
 

Requirement 
Description 

User can revoke connections’ access to credentials by resetting the 
decentralized ID for the connection 

TBD 
 

Test approach Field test 

Test 
Description  

The requirement is met if the player can unlink connections from the 
mobile application. 

Test location TBD 

 



 

 

 
SOFIE  53(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Component evaluation 
This section presents evaluation results for SOFIE’s framework components. The results 
presented in this section focus on the internal (basic) functionality of the components. Evaluation 
results that consider the functionality of the components within the pilots are presented in 
Section 6. Furthermore, in this section we also present the requirements of each component, 
defined in deliverable D2.4, and the related evaluation/emulation scenarios and/or how these 
requirements are met. The Provisioning and Discovery (PaD) component will be used and 
demonstrated in the MRMG pilot, where it is used to discover and provision new IoT devices, 
such as BLE beacons. This component is not evaluated in the emulation scenarios of the current 
deliverable, but will be considered in the corresponding MRMG pilot validation work. Finally, we 
note that the evaluation results presented in this and in the next two sections consider simulation 
and emulation scenarios that have been implemented in corresponding testbeds. These 
scenarios are distinct from the functional and documentation tests and the pilot integration and 
field tests identified in Section 3, since the evaluation work in WP4 has a wider scope than the 
pilots, seeking to evaluate many potential alternatives going beyond what is possible within the 
pilots.   

4.1 Interledger 
The main purpose of the SOFIE interledger component is to enable transactions between actors 
and devices belonging to different (isolated) IoT platforms or silos. Each IoT silo either utilizes 
or is connected to one or more DLTs. The interledger component then enables interaction 
between these DLTs. The first system evaluation in deliverable D4.3 focused on evaluating the 
transaction cost (gas) and delay in the case where a single (public) blockchain is used and in 
the case where two blockchains, a public and a private one, are used. The second system 
evaluation contained in the current deliverable focuses on evaluating the interledger 
functionality, which involves transferring information from one ledger to another, and the end-
to-end delay when a public ledger (Ethereum) is interconnected with Hyperledger Fabric, which 
is a permissioned ledger. Note that the transaction cost for the public Ethereum ledger in this 
scenario is the same as in the scenario where the public Ethereum ledger is interconnected with 
some other private or permissioned DLT. Hence, the results for the transaction cost presented 
in the previous deliverable D4.3 continue to apply when public Ethereum is interconnected with 
Hyperledger Fabric. 

The interledger component can utilize different mechanisms depending on the specific scenario 
and its requirements. For example, interactions between a public and a permissioned ledger 
can use hashed time-lock contracts to cryptographically link transactions and events on the two 
ledgers. In such a scenario, the public ledger can record payments while the permissioned 
ledger can record authorization transactions and events. Alternatively, hashes of records stored 
on the permissioned ledger can be periodically recorded on the public ledger in order to provide 
a timestamped anchoring point, exploiting the wide-scale decentralized trust provided by the 
public ledger. This functionality is considered in the FSC and DEDE scenarios in Section 6. 
Finally, interactions between a public or permissioned ledger and a ledger storing DID 
documents can focus on the resolution of DIDs to DID documents. The interledger functionality 
can be implemented in different entities, which include the entities that are interacting, a third 
party, or multiple third parties. In the latter case, some coordination between the entities may 
be necessary. A detailed survey of interledger approaches is contained in [Sir+19d]. Below we 
provide more details on the hash-lock and time-lock mechanisms, which are utilized by the 
interledger component evaluated in this section. 

A hash-lock  is a cryptographic lock that can be unlocked by revealing a secret whose hash is 
equal to the lock’s value, h. Unlocking a hash-lock can be one of the conditions for performing 
a transaction or for executing a smart contract function. On a single blockchain, a hash-lock can 



 

 

 
SOFIE  54(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

be linked to an off-chain capability, e.g., message decryption, if the hash-lock secret is the secret 
key that can decrypt the message. Hash-locks can be used on two or more blockchains, which 
support the same hash function, to link a transaction on one chain to a transaction on the other 
chain: if the two transactions have hash-locks with the same value, then unlocking one hash-
lock would reveal the secret that unlocks the other; hence, the two transactions are 
cryptographically linked through a dependence relation. More generally, hash-locks combined 
with AND/OR logic operators can implement elaborate dependencies involving transactions on 
multiple chains. 

Time-locks  are blockchain locks that can be unlocked only after an interval has elapsed. This 
interval can be measured in absolute time or in the number of blocks mined after a specific 
block. One usage of time-locks are refunds: a user (payer) can make a deposit to a smart 
contract address. The smart contract can have a function, which typically also includes a hash-
lock, for a second user to transfer the deposit to another account (the payee’s account). 
However, if the second user never calls this function, then the first user’s deposit could be locked 
indefinitely in the smart contract’s account. To avoid this, the smart contract can also include a 
refund function that allows the first user to transfer the amount he/she deposited back to his/her 
account; however, this function can be called only after some time interval, which is the interval 
in which the second user must transfer the deposit from the smart contract account to the 
payee’s account. 

4.1.1 Experiment setup  

For the evaluation of we deployed an instance of the component that implements the interledger 
functionality and is connected to a Hyperledger Fabric permissioned blockchain and to the 
Rinkeby public Ethereum testnet. The version of Hyperledger Fabric used in the experiments 
was 1.4. A key feature of Hyperledger Fabric permissioned ledger is that smart contracts, called 
chaincode, are executed in a distributed manner following an execute-order-commit flow pattern 
instead of the common order-execute-commit pattern. The chain-code is submitted by clients to 
special nodes, called endorsing nodes, that execute (or simulate) the chaincode. This execution 
identifies the read-write dependencies and can involve checking that a transaction conforms to 
business rules identified in the chaincode. After a transaction has received a sufficient number 
of endorsements, it is sent to ordering nodes that order and group the transactions in blocks. 
Finally, the transactions are validated to ensure the consistency of the read-write dependencies. 
After the transactions are validated, they are committed, i.e., the ledger is updated. 

We consider the authorization use case for constrained IoT resources presented in Section 5.1, 
where users deposit some funds in order to receive a decryption key for accessing an IoT 
resource. The payment transaction is performed on the Ethereum blockchain (Rinkeby 
Ethereum public testnet) while the authorization transaction is performed on the Hyperledger 
Fabric permissioned blockchain. The transactions on the two ledgers are cryptographically 
linked using the hash-lock and time-lock mechanisms described above. The focus of this section 
is on evaluating the end-to-end delay for the transactions on the public ledger (Ethereum) and 
Hyperledger Fabric, which are interconnected with the interledger component. On the other 
hand, the results in Section 5.1 consider the interaction with other components and 
functionalities related to decentralized authorization in constrained IoT environments.  

4.1.2 Results 

The previous deliverable D4.3 contained results showing the gains in terms of smaller 
transaction costs when an Ethereum network (public Ethereum testnet) is interconnected with 
a permissioned ledger, thus reducing the transactions that need to be conducted on the public 
ledger. The new results presented below show the gain in terms of reduced end-to-end delay, 
in the case of an authorization scenario that involves the interconnection of two ledgers, the 
public Ethereum testnet and the Hyperledger Fabric permissioned ledger [Sir+20]. Because the 



 

 

 
SOFIE  55(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

processing delay at the interledger component is minimal, the end-to-end delay is determined 
by the transaction delay on the Ethereum and Fabric ledgers.  

The end-to-end delay is shown in Figure 2. The results show that the delay due to Fabric is 
approximately 13% of the total delay. Moreover, our results show that each transaction on the 
Hyperledger Fabric network has a delay of approximately 2 seconds. In Section 5.1.1 we 
present evaluation results for the delay and the Ethereum transaction in more complex IoT 
authorization scenarios involving multiple authorization servers. 

 

Figure 2: End-to-end delay when Hyperledger Fabric (authorization blockchain) is interconnected with 
the public Ethereum testnet Rinkeby (payment blockchain). 

 

The table below relates the evaluation scenarios to the corresponding interledger component 
requirements identified in deliverable D2.4 and describes how each requirement is achieved.  

Table 15: Requirements for the SOFIE Interledger component  

Req. ID Requirement Description Priority Evaluation/Emulation Scenarios 
and how the requirement is 
achieved 

Interledger 
RF01 User interaction is not required for 

interledger operations. 
MUST Sections 5.1 and 5.3. The 

procedures of this component are 
event-triggered and the user 
interaction is not required. 

RF02 There should be support for atomic 
interledger operations. 

SHOUL
D 

Sections 5.1 and 5.3. The 
scenarios investigated involve 
hashed time-lock contracts, 
which support atomic cross-chain 
operations. 

 

0

10

20

30

40

50

60

D
e

la
y
 (

se
co

n
d

s)

Rinkeby

Fabric



 

 

 
SOFIE  56(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

4.2 Privacy and Data Sovereignty 
The Privacy and Data Sovereignty (PDS) component achieves data sovereignty using the 
OAuth 2.0 authorization framework and privacy by using verifiable technologies. In this section, 
we discuss and evaluate how these two concepts can be combined. The evaluation considers 
the time required for implementing VC (Verifiable Credential) related operations. 

VCs in PDS can play the role of the “authorization grant.” This design choice, illustrated in the 
following figure, is compatible with the OAuth 2.0 RFC, which specifies that “client credentials 
(or other forms of client authentication) can be used as an authorization grant”. Using PDS, a 
resource owner generates VCs for the clients authorized to access a resource (step 1 in Figure 
3). VC generation is performed independently of the authorization server (AS). Then, a client 
can request an access token from an authorization server by presenting a VC (steps 2 in Figure 
3): the authorization server issues a VC proof request and the client generates the appropriate 
proof. If the latter proof is valid, the AS proceeds with the token generation process (step 3). 
The whole process does not require interaction with the resource owner. Furthermore, the 
authorization server learns no information about the client, apart from the fact that it is 
authorized to access a resource: even if the same client tries to generate a new token, for the 
same resource, the AS will not be able to tell if this is the same client or not. In this way, the 
data minimization requirement for this component is achieved.  Finally, authorization servers 
can be preconfigured with the appropriate proof request parameters: in this case, the only 
operation an authorization server has to perform is the verification of the correctness of a proof. 

The generated token can be used for accessing a protected resource: the validity of the 
presented token is verified by the IAA component (see next section). 

 
Figure 3: OAuth2.0 using VCs as an authorization grant. 



 

 

 
SOFIE  57(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 

4.2.1 Experiment setup  

The main computation intensive operations of our system are the following: 

• key-pair generation: each client must generate a public/private key pair before 
requesting a VC. Similarly, each owner must generate such a key-pair once. The keys 
used in our implementation are based on Curve25519. This key is associated with a 
Decentralized Identifier (DID): the DID of an owner is included in the generated VCs, so 
that the provenance of a VC can be verified.  

• VC generation: a resource owner should generate a VC for each authorized client.  
• verifiable presentation generation: a client can prove the possession of one or more VCs 

to an AS by generating a “verifiable presentation” (VP). A VP includes data from one or 
more VCs and is packaged in such a way that the authorship of the data is verifiable.  

• verifiable presentation validation: each AS must verify the validity of a VP using 
interactive Zero Knowledge Proofs.   

Each VC is described by a “schema” that includes the number and the type of claims included 
in a VC. Our VC schema includes a single attribute used for storing the URIs of the resources 
a client can access. We have implemented our solution using Hyperledger Indy python3 SDK. 
Hyperledger Indy (henceforth, simply Indy), which is hosted by the Linux foundation, aims at 
providing a blockchain-based system for decentralized identification. Indy offers tools, libraries, 
and reusable components for implementing W3C compatible DIDs and VCs. Indy’s blockchain, 
which holds the role of the registry, is public, in the sense that anybody can read from it, and 
permissioned, in the sense that only entities that hold a “special” role have write access. We 
have measured the performance of our implementation in a Xubuntu 18.04 virtual machine that 
uses two cores with an Intel-i7 7700 CPU and 4GB RAM. 

4.2.2 Results 

Table 16 shows the time (in milliseconds) required to perform each operation identified in the 
previous section. 

Table 16: Time required to perform a VC-related operation 

Operation Time to complete 

Key generation 191.26 

VC generation 82.37 

VP generation 101.46 

VP validation 58.32 

 

Furthermore, the use of VCs as an authorization grant has the following security related 
properties:  

Users’ secret information protection . User entities (i.e., owners and clients) generate and 
store the required secret information by themselves, i.e., at no point the involvement of a 3rd 
party is required. This property contributes to the self-sovereignty of users’ personal information 
and decreases the probability of a data breach. Furthermore, by including the DID of an owner 
in VCs, instead of their public key, the owner’s key can be refreshed: since the DID of an owner 
remains always the same, an owner can update his key without needing to update all issued 
credentials (recall that the owner’s DID is used for looking up his public key in the registry).  



 

 

 
SOFIE  58(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Client privacy preservation.  Every time a client requests a VC, he generates a new key-pair. 
Therefore, it is not possible, even for the same authorization server, to tell if two VCs belong to 
the same client. Hence, clients are protected against tracking. Moreover, by using zero-
knowledge proofs, clients can control the amount of information they reveal when constructing 
a VP. For example, a client does not have to include in a VP all the resources he is authorized 
to access.  

Attack surface reduction.  The amount of verifications an authorization server needs to perform 
is less compared to a traditional access control system. Indeed, in our system, an authorization 
server has only to verify the validity of a VC, whereas in most legacy access control systems an 
authorization server would have to verify an access control policy as well. Furthermore, 
authorization servers are not required to store any additional secret information in order to 
implement our protocols, neither do they have to maintain user accounts. Similarly, IoT 
resources do not have to be modified. Moreover, an owner does not have to participate in the 
access control process; indeed, after VC generation an owner can go offline.  

Fast revocation.  Every time a client requests access, he must provide a proof that his VC has 
not been revoked. In our implementation, the verification of this proof requires a lookup in a data 
structure stored in the registry. Whenever a VC is revoked, an owner updates this data structure: 
after the update, the VC cannot be used. Therefore, as long as an owner keeps the information 
stored in the registry up-to-date, VC revocation is instantaneous. 

Further evaluation scenarios concerning the PDS component functionality are presented in 
subsequent subsections. The table below relates the evaluation scenarios to the corresponding 
PDS component requirements identified in deliverable D2.4 and describes how each 
requirement is achieved. 

Table 17: Requirements for the SOFIE PDS component  

Req. ID Requirement Description Priority Evaluation/Emulation Scenarios 
and how the requirement is 
achieved 

PDS 
RF10 SOFIE must follow the data minimisation 

principle for personal data and only 
request or process what is necessary for 
the situation and purpose. 

MUST Using VCs as an authorization 
grant (evaluated in this section) 
allows a user to disclose only the 
required information. 

RF11 Processing of individual’s personal data 
is justified by a valid legal basis, e.g., a 
valid consent from the individual. 

MUST Using VCs as an authorization 
grant (evaluated in this section) 
requires the user’s consent. 

RF12 Consent to process personal data must 
be revocable at any time. 

MUST VCs can contain an expiration 
time after which they are not 
valid. 

RF13 SOFIE must allow organisations and 
actors to manage (create, update, delete) 
their own data privacy policies. 

MUST Privacy policies are expressed 
using VC schemas (evaluated in 
this section). There is no 
restriction on the format of the 
schema. 

RF14 SOFIE should support user privacy even 
when aggregate statistics are made 
public (e.g., using differential privacy 
mechanisms). 

SHOULD Not evaluated in the current 
deliverable. 

 



 

 

 
SOFIE  59(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

4.3 Identification, Authentication, and Authorizati on  
In D4.3 we presented and evaluated how the Identification, Authentication and Authorization 
(IAA) component can be used to authenticate users using Decentralized Identifiers (DIDs). In 
this section we evaluate the ability of the IAA component to authorize users based on JSON 
Web Tokens (JWTs), which are generated by the PDS component (presented in the previous 
section). In particular, we consider JWT access tokens supported by ERC-721 Ethereum tokens 
as presented in [Fot+20].    

ERC-721 is an open standard that describes how to build “non-fungible or unique tokens on the 
Ethereum blockchain.” This standard is in many ways similar to ERC-20, which is probably the 
most popular Ethereum standard and is used for creating custom Ethereum tokens. However, 
in contrast to ERC-20 tokens, ERC-721 tokens are “unique” and non-interchangeable with other 
tokens (non-fungibility). Many Ethereum wallets, such as Metamask, can handle these tokens. 
All ERC-721-based tokens are identified by a unique identifier and can be owned by one user 
only. This standard, like every other token standard in Ethereum, defines some functions that a 
smart contract should implement in order to be able to create and handle ERC-721 tokens. 
Furthermore, the ERC-721 metadata extension defines some additional functions that can be 
used for associating an ERC-721 token with metadata. The following table describes the 
functions used by the PDS component and defined in the ERC-721 standard and in the ERC-
721 metadata extension. Additionally, functions transferFrom and approve, when invoked 
generate an event, named Transfer and Approval respectively. Both these events have three 
attributes; the attributes of the Transfer event are the from address, the to address, and the 
tokenid, while the attributes of the Approval event are the owner address, the approved address, 
and the tokenid. 

Table 18: ERC-721 and ERC-721 metadata extension functions used by the PDS component 

Function Purpose 

ownerOf(tokenid) Accepts as input a tokenid and returns the address of the 
token owner 

transferFrom(from, to, tokenid) Transfers a tokenid from one Ethereum address to another 

approve(address, tokenid) Approves an Ethereum address to manage a tokenid on the 
owner’s behalf 

getApproved(tokenid) Retrieves the Ethereum address allowed to manage tokened 

tokenURI(tokenid) Accepts as input a tokenid and returns a URI that points to 
the token’s metadata 

 

From a high-level perspective, a system with the PDS component operates as follows. Using 
the PDS component, the client requests an access token from the authorization server, which 
first generates a JWT and an ERC-721 token, then transfers the ERC-721 token to the 
Ethereum address of the client, and finally sends the JWT to the client. The client requests 
access from the resource server, providing the JWT. The resource server uses the IAA 
component and retrieves the corresponding ERC-721 token which is used for verifying the 
validity and ownership of the JWT: if all verifications are successful the resource server allows 
the client request. This process is illustrated in the following figure. 



 

 

 
SOFIE  60(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 4: User authorization using JWT access token supported by ERC-721 tokens. 

 

4.3.1 Experiment setup 

The experiment scenario considers the case of an IoT gateway access, whose owner wishes to 
grant access to client users. As an IoT gateway, we used Mozilla’s WebThings Gateway that 
implements the Web of Things (WoT) standard. For our proof of concept, we chose not to modify 
the gateway itself; we instead developed an application that acts as a proxy, between the client, 
the blockchain, and the gateway (which holds the role of the resource server). For an Ethereum 
wallet, we used the Metamask Firefox extension, which can handle ERC-721-based tokens. We 
implemented clients as JavaScript web applications using the web3.js Ethereum JavaScript API. 

The main component of our system is the smart contract that implements the functions of the 
ERC-721 interface. In addition to the functions specified in the previous section, we 
implemented two more functions. The first one, named mint, is for creating new tokens, and the 
second, named burn, is for “burning” tokens, i.e., destroying them.  

 



 

 

 
SOFIE  61(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

4.3.2 Results 

We tested our proposed system in the Rinkeby Ethereum test network. The smart contract 
transaction cost is measured in gas, which is Ethereum’s unit for measuring the computational 
and the storage resources consumed by a smart contract. Each operation of a smart contract 
costs a fix amount of gas. Gas cost is the number of units of gas required to perform an action, 
while gas price is the amount of “ether” (i.e., Ethereum’s specific coin) a client is willing to pay 
per unit of gas. The average price of a unit of gas when the experiment was executed was 
$0.011 × 10−4. The following table shows the cost of deploying the smart contract in the 
blockchain network, as well as the cost of the operations performed by our system in terms of 
gas units. 

Table 19: Cost of ERC-721 token management functions 

Operation Cost measured in gas 

Contract Deployment 1 585 444 

Create a token 254 141 

Burn a token 85 791 

Transfer a token 63 858 

Approve 45 735 

 
When a Client performs an access request, the Resource server has to lookup a token in the 
blockchain and calculate a random number (the challenge); both operations are instantaneous 
and they are bound to the communication delay between the resource server and the Ethereum 
RPC point. Then, the client has to compute a digital signature over the challenge and transmit 
the response. Finally, the Resource server has to verify the signature. All cryptographic 
operations require a few ms.  

With the above implementation of the IAA component, the authorization server does not 
communicate directly with the resource server, not even in the case of a token revocation. The 
authorization server learns only the URI of the resource that a client wants to access, which 
does not have to be the publicly known URI of the resource: any pseudonym that the resource 
server can understand can be used instead. On the other hand, the metadata of an ERC-721 
token are immutable and visible to anybody, constituting a privacy threat. In order to address 
this shortcoming and enhance the clients’ privacy, metadata stored on the public blockchain can 
be encrypted using a key known only to the resource owner, the client, and the resource server. 

ERC-721 specifications define a method approve that allows the token owner to specify a 
different Ethereum address that will manage its token. However, in our system a delegee never 
interacts with the blockchain, therefore the input to the approve method does not have to be an 
Ethereum address. Other types of delegee identifiers can be considered, such as legacy public 
keys, or even contemporary forms of authentication such as VCs. This increases the flexibility 
of the current implementation of the IAA component. 

Further evaluation scenarios concerning the IAA component functionality are presented in 
subsequent subsections. The table below relates the evaluation scenarios to the corresponding 
IAA component requirements identified in deliverable D2.4 and describes how each requirement 
is achieved. 



 

 

 
SOFIE  62(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Table 20: Requirements for the SOFIE IAA component  

Req. ID Requirement Description Priority Evaluation/Emulation Scenarios 
and how the requirement is 
achieved 

IAA 
RF03 Resource owners must be able to 

delegate the authentication and 
authorization tasks for their resources. 

MUST The way access token validation 
is implemented in the IAA 
component allows configuring it 
with the smart contract of any 
authorization server.  

RF04 The IAA component must provide users 
the capability to revoke authorizations. 

MUST This can be achieved by 
transferring the corresponding 
ERC-721 token (evaluated in the 
current section) 

RF05 The IAA component must allow 
individuals to control their personal 
information and digital identities (e.g., 
support self-sovereign identity 
technology). 

MUST The IAA component also 
supports user authentication 
using VCs (evaluated in Section 
5.2) 

RF06 The IAA component must support 
secure, tamper-proof, and verifiable 
logging of transactions and events. 

MUST All operation on ERC-721 tokens 
are recorded in the blockchain 
(evaluated in the current section) 

RF07 The IAA component must support Role 
Based Access Control (RBAC). 

MUST RBAC can be implemented using 
VCs (evaluated in Section 5.2) 

 

4.4 Semantic Representation 
The main purpose of the SOFIE Semantic Representation (SR) component is to define a 
common representation model for IoT devices (Things), their services, and their data. The goal 
of this component is to enable interoperability and automation among different IoT environments.  

This component will not be a separate software module, it is more of a logical component that 
will be implemented as part of other components or pilots. For this reason, we do not include 
an experimental setup in this section. All the pilots use the W3C Web of Things (WoT) standard 
[Kov+19]. The following table lists the requirements for the SR component and describes how 
each requirement is achieved. 

Table 21: Requirements for the SOFIE SR component  

Req. ID Requirement Description Priority Evaluation/Emulation Scenarios 
and how the requirement is 
achieved 

Semantic Representation 
RF15 SOFIE must define an IoT things 

description model based on well-known 
standards (e.g., W3C standards) 

MUST The component uses the W3C 
Web of Things standard, and, in 
particular, the WoT’s Thing 
Description (TD), which defines 
an information model based on a 
semantic vocabulary and 
representation using JSON.  



 

 

 
SOFIE  63(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

RF16 SOFIE must implement standardized 
metadata and data representation 
formats and support various data 
modalities. 

MUST The WoT TD provides metadata 
for Things in both a human-
readable as well as in machine 
readable format (evaluated in 
Section 5.2) 

RF17 The semantic representation model of 
the system must be open and extensible 
by third parties (e.g., support the 
extension of the existing knowledge base 
and associations by extracting 
supplementary triples from RDF 
documents). 

MUST The W3C WoT TD is open, and is 
extensible by definition.  

RF18 SOFIE must provide service discovery 
and resources selection processes 
based on multiple criteria over the 
features, associations, and interaction 
patterns of integrated resources. 

MUST The W3C WoT enables clients to 
learn a Thing’s attributes, 
functionalities and its access 
points, prior to accessing the 
Thing itself. It allows any client to 
search for Things by their 
attributes and functions or to 
perform a semantic search based 
on a unified vocabulary 
(evaluated in Section 5.2). 

RF19 SOFIE should support the semantic 
update and enhancement of resources’ 
descriptions and associations in a 
dynamic way. 

SHOULD As mentioned above, the 
semantic representation of a 
Thing, using the W3C WoT 
standard, can be extended and 
updated any time. 

 
As we can observe in the above table, all the requirements for the SR component can be met 
by the W3C WoT standard. The use of the WoT standard is evaluated for access control in 
multitenant IoT systems Section 5.2. 

4.5 Marketplace 
The goal of the SOFIE Marketplace (MP) component is to enable the trade of different types of 
assets in an automated, decentralized, and flexible way. The actors (buyers and sellers) can 
carry out trades by placing bids and offers using the MP component, which utilizes Ethereum 
smart contracts. 

The implementation of the MP component exposes an API that offers two actions: a request 
and an offer. Through the request action an actor declares that an asset is available for sale, 
thus creating an auction, while through the offer action an actor declares his interest in buying 
an asset, thus placing a bid. These two actions are highly parametrizable, thus supporting the 
needs of diverse services. The performance results presented in this section consider two 
metrics: the response time, which is the time until a transaction is mined, and the execution cost. 

4.5.1 Experiment setup 

The prototype implementation of the MP component introduces a series of Solidity-based smart 
contracts that are deployed in an Ethereum node. These smart contracts define the basic 
functionality of the marketplace, forming the foundation upon which sophisticated services can 



 

 

 
SOFIE  64(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

be build. For instance, the prototype implementation of the smart contract, which is used in the 
decentralized energy flexibility marketplace pilot, extends the prototype implementation of the 
marketplace component by inheriting and implementing the component’s contracts and 
interfaces (or abstract contracts), respectively. Thereupon, the component implementation 
includes basically the source code for submitting a request and an offer, while providing the 
template for developing other necessary functions that can be specific to a service. For example, 
the function that decides an offer is left abstract, allowing the specific service to define it 
according to its individual requirements. 

We have tested the prototype implementation of the MP component in a local Ethereum node 
that is built with the Ganache blockchain. With respect to the parameters of Ganache, we fixed 
the average block mining time to 15 s and set the block gas limit to 10,000,000 gas units. Both 
these values reflect the corresponding values in the public Ethereum main net. We deployed 
the smart contract and invoked the available functions through a JavaScript script that utilizes 
the web3.js Ethereum API.  

4.5.2 Results 

We assess the performance of the MP component in two directions: the response time, which 
is the time until a transaction is mined, and the execution cost, since transactions in Ethereum 
incur a cost. Regarding the response time, all functions that result in blockchain transactions, 
are mined within one mining period, which is 15 seconds, hence their expected response time 
is 7.5 seconds. 

The actions of our system that involve the invocation of the smart contract functions incur some 
computational overhead. The following table shows the cost of deploying the smart contract in 
the Ethereum network, as well as the cost of operations performed by our system measured in 
gas units. 

Table 22: Cost of MP component’s smart contract operations 

Operation Cost measured in gas 

Contract Deployment 2 117 971 

Submit Request 137 875 

Submit Offer 142 634 

Close Request 88 954 

Delete Request 75 476 

 

The above results can be considered as the minimum cost for operating a marketplace-based 
service. Depending on the requirements of the service, e.g., the amount of data that an offer 
includes, the cost is expected to be higher. The execution costs of a realistic service is presented 
in Section 6.2Decentralised Energy Flexibility  where we assess the execution cost of the 
emulated decentralized energy flexibility marketplace pilot. 

The table below relates the evaluation scenarios to the corresponding MP component 
requirements identified in deliverable D2.4 and describes how each requirement is achieved. 



 

 

 
SOFIE  65(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Table 23: Requirements for the SOFIE MP component  

Req. ID Requirement Description Priority Evaluation/Emulation Scenarios 
and how the requirement is 
achieved 

Marketplace 
RF20 The marketplace must log the 

configuration of all trading actions 
(including offers, bids, parameters of 
resources, transactions etc.). 

MUST The pilot emulation scenario is 
investigated Section 6.2. The 
marketplace component is 
implemented in Ethereum smart 
contracts. Hence, trading 
actions are recorded in the 
Ethereum blockchain, making 
them traceable. This is also 
discussed in deliverable D5.2. 

RF21 The marketplace must provide actors 
the capability to post/claim offers and 
sell/negotiate/exchange/buy resources 
and digital objects. 

MUST The marketplace component 
offers two interfaces: Request 
Maker for sellers to create, 
manage and conclude auctions, 
and Offer Maker for buyers to 
participate and bid in auctions. 
These functions are illustrated in 
the emulation scenario of 
Section 6.2. 

RF22 The marketplace must support 
transparent trading of resources, i.e. the 
bids/offers matching process and the 
payments must be transparent. 

MUST The marketplace component 
utilizes Ethereum smart 
contracts to record bid/offers 
and payments, thus supporting 
transparency. This functionality 
is illustrated in Section 6.2. 

RF23 The marketplace must provide evidence 
once trades have been completed and 
resources have been properly delivered 
to the buyers. 

MUST Ethereum transaction receipts, 
that describe the state of the 
blockchain after a transaction 
took place, can be used as 
evidence of a trade. This 
functionality is illustrated in 
Section 6.2. 

RF24 The marketplace should allow 
integration of payment technologies.  

SHOULD Currently, the emulation of the 
marketplace component, as 
described in Sect.6.2, supports 
transferring ETH coins and 
ERC20 tokens. The prototype 
implementation of the 
component does not disallow 
the integration of other payment 
technologies.  

 
As we can observe from the above table, the requirements for the MP component can be met, 
since it is based on Ethereum, which, as any public blockchain technology, natively offers the 
majority of the required features. 

4.6  Provisioning and Discovery 
The goal of the Provisioning and Discovery (PaD) component is to enable the discovery of IoT 
resources and their metadata. This component provides service discovery using Bluetooth and 



 

 

 
SOFIE  66(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

DNS, and device and license provisioning. The following table presents the requirement, defined 
in Deliverable 2.5, for this component.  

Table 24: Requirement for the SOFIE PaD component 

Req. ID Requirement Description Priority Scenarios and how the 
requirement is 
achieved 

Provisioning and Discovery 
RF18 SOFIE must provide service discovery and 

resources selection processes based on multiple 
criteria over the features, associations, and 
interaction patterns of integrated resources. 

MUST The component will 
use W3C’s WoT 
standard. It will be 
used and 
demonstrated in the 
MRMG pilot (WP5) 

 

The PaD component uses Bluetooth and DNS service discovery protocols to search for IoT 
devices. When the component finds a new IoT device it checks the device’s semantic 
description, which is defined with the W3C WoT standard. If the description matches the search 
requirements, the device can be provisioned. Based on the above functionality, the component 
can meet its requirement. The PaD component will be used and demonstrated in the MRMG 
pilot and is not evaluated in the emulation scenarios of the current deliverable.    
 
 
 
 
 



 

 

 
SOFIE  67(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Further IoT resource access evaluation 
In this section we present further evaluation results for IoT resource access scenarios and 
solutions. Similar to the corresponding section in the previous evaluation deliverable D4.3, this 
section goes to much more depth and considers more alternatives and their tradeoffs than what 
we have seen in Section 4, which focuses on SOFIE’s framework components. Other sections 
of this deliverable do not intimately depend on the results of this section. But, this section shows 
that more detailed design and evaluation is possible and can uncover many useful alternatives 
in the IoT world, which includes a multitude of use cases with different restrictions and 
requirements, which, in turn, need solutions with different tradeoffs in terms of complexity, 
performance (cost and delay), reliability, privacy, and transparency.  

The first two solutions utilize the OAuth 2.0 authorization framework combined with blockchain 
functionality. Specifically, in Section 5.1 we present results for decentralized authorization in 
constrained IoT environments that extend the results presented in the previous evaluation 
deliverable D4.3. The new results consider scenarios where the interledger component 
interconnects a public Ethereum testnet with a Hyperledger Fabric network. Moreover, the new 
results investigate two policies for selecting the subset of the authorization servers that are 
required for authorization. In Section 5.2 we present an access control solution for Web of 
Things (WoT) IoT “hubs” based on Verifiable Credentials (VCs). This solution is planned to be 
included in the IAA component and is suitable for scenarios where a resource owner owns a 
few (usually a single) resource, powerful enough to implement public key cryptographic 
operations.  

These solutions consider OAuth 2.0, which is a framework for delegating authorization to access 
a protected resource [Har+12]. It enables a third-party application (client) to obtain access with 
specific permissions to a resource, with the consent of the resource owner. Access to the 
resource is achieved through access tokens, created by an authorization server. The specific 
format of the access tokens is opaque to the clients and to OAuth 2.0. The authorization consent 
by the resource owner is provided after the owner is authenticated; however, the authentication 
procedure is not part of OAuth 2.0. Authorization is provided for different levels of access, such 
as read and write/modify, which are termed scopes, and for a specific time interval. 

The advantages of combining authorization based on frameworks such as OAuth 2.0 with 
blockchains and smart contracts are the following:      

• Blockchains can immutably record hashes of the information exchanged during 
authorization and cryptographically link authorization grants to payments and other IoT 
events recorded on the blockchain. These records serve as indisputable receipts in case 
of disagreement. 

• Smart contracts can encode authorization policies in an immutable and transparent 
manner. Policies can depend on payments as well as on other IoT events recorded on 
the same or on different blockchains. 

• Smart contracts run on all nodes of a blockchain. Hence, sending resource access 
requests to smart contracts can protect against DoS attacks that involve a very high 
resource request rate, since requests are not handled by one node, which would be a 
single point of failure. 

Further advantages are identified in the subsections below. Moreover, the solutions can 
leverage the hash-lock and time-lock mechanisms presented in Section 4.1. 

Finally, in Section 5.3 we present decentralized interledger gateway architectures for IoT 
authorization scenarios involving the interconnection of two ledgers: an authorization ledger and 
a payment ledger, which is similar to the scenario considered in Section 5.1 for constrained IoT 
environments. The proposed architectures differ in their complexity, transaction cost, and ability 
to handle transactions involving multiple ledgers. 



 

 

 
SOFIE  68(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

5.1 Decentralized authorization for constrained IoT  devices 
In Deliverable D4.3 (First Architecture and System Evaluation Report), we presented four 
models that we have developed [Sir+19a] for decentralized authorization in environments with 
constrained IoT devices that provide different tradeoffs in terms of cost, delay, complexity, and 
privacy:  

1. Linking authorization grants to blockchain payments 
2. Smart contract handling of authorization requests 
3. Smart contract and two blockchains for authorization and payment with interledger 

mechanisms 
4. Decentralized authorization with multiple Authorization Servers  

The first two models are our baseline scenarios: in the first, only hashes of authorization 
information are immutably recorded on the blockchain and smart contracts are not used, 
whereas the second model utilizes a smart contract, but on a single (public) blockchain. The 
third model exploits two blockchains whose transactions are securely linked using interledger 
mechanisms provided by the interledger component and quantifies the significant cost reduction 
that can be achieved by moving smart contract authorization functionality to a permissioned or 
private blockchain. The fourth model focuses on decentralized authorization for constrained IoT 
devices utilizing two blockchains with interledger mechanisms. 

Below we present new results for the fourth model, which considers decentralized authorization 
for constrained IoT environments involving multiple Authorization Servers (ASes) [Sir+20]. The 
new results consider scenarios where the interledger component interconnects a public 
Ethereum testnet with a Hyperledger Fabric network. Moreover, the new results investigate two 
policies for selecting the subset of ASes, i.e., the m-out-of-n ASes, that are required for 
authorization.  

We first recall the model that involves multiple ASes in the authorization procedure. The client 
sends a resource access request to the address of the smart contract responsible for handling 
access to the IoT device. The smart contract address can be obtained by the client sending a 
query to the IoT device or, e.g., reading a QR code on it. However, this approach cannot ensure 
that the legitimate URL or smart contract address is provided by the IoT device. This can be 
ensured if the client uses a registry service that resides on the blockchain and contains a binding 
between the IoT device’s URI and the URL of the AS or the smart contract address handling 
authorization, or by including this information in Decentralized Identifier (DID) documents 
[Ree19]. Furthermore, we assume that the client, the resource owner, and the ASes have an 
account (public/private key pair) on both the authorization blockchain, which is implemented on 
Hyperledger Fabric, and the payment blockchain, which is implemented on the public Ethereum 
testnet. 

Let n be the number of ASes that are collectively responsible for providing authorization. Each 
AS i shares a different secret key, KThingi, with the protected resource (Thing). Authorized 
access to the Thing requires tokens from m out of n servers. The policy specifying the required 
number of ASes is defined in the smart contract and is also known to the Thing. Fault tolerance 
is provided by having n ASes which can respond to requests, but requiring only m < n for 
authorization to proceed. Compared to having a single AS, the proposed scheme provides 
higher security since m ASes need to agree for the client to access the protected resource. We 
investigate two policies for how the m servers are selected. With the first, the smart contract 
selects the specific m servers, based on their previous behaviour that can involve response time 
or transaction cost. The second policy selects the first m servers that respond to an authorization 
request. We describe the two policies in more detail below. 

In response to the client’s authorization request, each AS sends a different PoP key PoPi, 
encrypted with the Thing’s secret key and the client’s public key, and an access token with a 



 

 

 
SOFIE  69(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

MAC tag to ensure its integrity (Figure 5). The client thus obtains m different PoP keys, which it 
XORs to obtain the secret PoP key that will be used to establish a secure communication link 
with the Thing. These m PoP keys, encrypted with the Thing’s key KThingi that it shares with 
each of the m ASes, are also sent to the Thing. Hence, if the Thing performs the same XOR 
function on the m PoP keys, it will obtain the same PoP key as the client. 

In order to reduce the amount of data transmitted to constrained devices we propose two 
schemes for reducing the authorization information the client sends to the Thing: (a) aggregate 
MAC tags and (b) transmission of common token fields once. With aggregate MAC tags [KL08], 
the client does not send to the Thing the token payloads received from the m ASes, but only 
one aggregate MAC tag that is computed by taking the XOR of the m MAC tags the client 
receives from the m ASes. With the second optimization, the client sends the token fields that 
are common to all ASes only once (these correspond to token1, . . . tokenm in Figure 5). The 
common token fields include the subject (Thing) the token refers to, the scope of access, the 
token creation time, the token validity time, and the token type. The fields which are different 
include the AS and token ID fields. 

 
Figure 5: Decentralized authorization; each authorization grant requires m out of n AS responses 

 

Policy 1: Selection of the m ASes based on previous performance 

This policy requires that the smart contract handling the requests maintains the list of ASes 
along with their performance for previous authorization requests. The performance can be in 
terms of the time they took to respond to requests or their transaction cost. Such information 
allows the smart contract to prioritize ASes in order to select those that respond quickly, hence 
avoiding ASes that have a high delay, are faulty, or have a high transaction cost. This intelligent 



 

 

 
SOFIE  70(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

selection of ASes requires maintaining historic information, which would require higher memory 
and processing by the smart contract at the authorization ledger. 

This policy can be implemented by including in the notification event in step 2 of Figure 5 the 
information for the m ASes that were selected by the smart contract. Moreover, in step 3 the 
hashes corresponding to the secrets of the selected m ASes are included in the payment 
contract. Hence, in step 6 only the selected m ASes can respond. Note that in case of an error 
or fault of one of the selected m ASes, the client can use a timeout to restart the authorization 
procedure from the beginning. Moreover, in the case of an error or fault the smart contract can 
keep information for the faulty AS, in order to avoid it in subsequent authorization requests. 

Policy 2: Selection of the m ASes that respond first 

With the second policy the smart contract allows all ASes to respond to the authorization request 
in step 3 of Figure 5, and selects the first m ASes that respond. With this approach the smart 
contract does not need to maintain the list of ASes, nor information of their performance for 
previous authorization requests. However, there is a possibility that the smart contract receives 
more than m responses. This depends on the duration for mining a block on the blockchain (in 
the case of public blockchains with Proof-of-Work consensus) or for obtaining consensus to add 
it to the blockchain (in the case of permissioned blockchains). In public blockchains, these 
responses can incur a gas cost independent of whether the ASes that gave the response were 
among the m ASes to provide decentralized authorization. Once the first m AS responses are 
received, then in step 4 of Figure 5 the hashes corresponding to the secrets of the first m ASes 
that responded are included in the payment contract. Hence, in step 6 only the first m ASes that 
responded in step 3 can submit the secret corresponding to their hash. As in the previous policy, 
to handle the case where an AS exhibits an error or is faulty in step 6, the client has a timeout 
after which it restarts the authorization procedure from the beginning. 

By exploiting the simplicity of the procedure for selecting the subset of ASes, a variant of the 
second policy is to avoid having the client send the initial request to the smart contract on the 
authorization chain in step 1. Instead, the client can send the request directly to all ASes; this 
requires that the client knows the ASes. The advantage of this variant of the second policy, as 
we will see in the evaluation results below, is the lower total delay, since the number of 
transactions on the authorization chain is reduced by one. 

5.1.1 Evaluation 

The evaluation results considered the interledger component that interconnects a Hyperledger 
Fabric permissioned blockchain and the Rinkeby public Ethereum testnet. The version of 
Hyperledger Fabric used in the experiments was 1.4. The AS functionality was based on a PHP 
implementation of the OAuth 2.0 framework, extended to support CWT’s CBOR encoding. The 
client used Web3.js to interact with the blockchain. 

Comparison of the two policies for selecting m ASes 

We compare the two policies discussed above for selecting m ASes, in terms of the execution 
cost. The first policy requires that the past performance of all ASes is maintained and the smart 
contract selects the subset of ASes based on this performance. Unlike the first policy, the 
second policy allows all ASes to respond to authorization requests and selects the subset of 
ASes that responded first. The two policies are implemented in the smart contract that handles 
authorization requests in step 1 of Figure 5. The results we present below consider the case 
where the authorization contract and the payment contract run both in the Ethereum public 
testnet and the case where the authorization contract runs on a private blockchain and only the 
payment contract runs on the Ethereum public testnet. 

Figure 6 shows that in the case of one blockchain, i.e., both the authorization smart contract 
and the payment contract run on the public Ethereum testnet, the first policy has a higher 



 

 

 
SOFIE  71(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

execution cost, measured in terms of the execution cost of the smart contract running on the 
Ethereum network, compared to the second policy. This is due to the past history that this policy 
maintains in order to select the ASes for authorization; maintaining the past history incurs a high 
execution and storage cost when it is maintained on a public blockchain. On the other hand, the 
second policy does not maintain historic information but rather selects the first m ASes that 
respond. As expected, when more ASes need to send authorizations the execution cost is 
higher. Moreover, the incremental cost is the same for both policies. The higher execution cost 
is exchanged with the higher level of security and trust when more ASes are required to send 
authorizations.  

The figure below also shows that both policies have the same execution cost in the case of two 
blockchains, a public and a private/permissioned blockchain, since in this case only the payment 
transactions on the Rinkeby testnet, which are the same for both policies, incur an execution 
cost. The results for two blockchains illustrate the gains from utilizing a private/permissioned 
and a public ledger: The private/permissioned ledger can implement more elaborate 
authorization policies and store information that would incur a high cost on a public ledger. Of 
course, in a private/permissioned ledger, trust is maintained among the participating nodes 
rather than on a wide-scale, as in the case of public ledgers. Depending on the application 
requirements, trust among a limited set of nodes may be sufficient, making the combination of 
private and public ledgers an attractive and practical approach. 

 
Figure 6: Execution cost (gas) for the two policies, for the case of one and two blockchains. For two 

blockchains, the cost involves only the cost for transactions on the payment blockchain. 

 

  



 

 

 
SOFIE  72(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

End-to-end delay when Hyperledger Fabric is interco nnected with the Rinkeby public 
Ethereum testnet 

Next, we investigate the delay induced when the authorization contract is implemented on the 
Hyperledger Fabric permissioned ledger, identifying how different implementation choices 
influence this delay. Fabric's execute-order-commit flow pattern allows faster execution of 
parallel transactions. However, when concurrent transactions access the same state variable 
then a commit error may occur. Specifically, if prior to committing a transaction that modifies a 
variable, a second transaction that modifies the same variable is executed and endorsed, then 
the second transaction will fail validation and a commit error will occur. Concurrent transactions 
occur in our scenario, since multiple ASes can respond to an authorization request. One 
approach to address the issue of concurrent transactions is to add a FIFO (First-In-First-Out) 
module that serializes the transactions from ASes and sends them to the underlying Fabric 
system with a small delay between consecutive transactions. A disadvantage with this approach 
is that the serialization operation adds delay, which increases as the number of ASes that need 
to respond for authorization increases. 

An alternative approach, which is the approach we consider in the evaluation results shown in 
Figure 7, is to maintain separate state, in the form of a table, where the information submitted 
by each AS is stored. This table also maintains a boolean variable indicating whether the 
specific AS has responded to the authorization request. Then, a module external to Hyperledger 
Fabric periodically reads the aforementioned boolean variables to determine whether the 
necessary number of ASes has responded; this corresponds to steps 3.1 to 3.m in Figure 5. 
Once the required number of ASes has responded, the procedure can continue with step 4.  

Finally, a third approach is to perform the above functionality in the interledger gateway. The 
interledger gateway is responsible for reading the price and hash h from the authorization chain 
and submitting it to the payment chain to initiate a payment. After the secret is submitted by the 
ASes on the payment blockchain, the interledger gateway reads the m secrets s1 to sm from 
the payment chain and submits them to the authorization chain. Moreover, instead of 
periodically reading the number of ASes that responded as done by the external module in the 
second approach described above, the interledger gateway can be made aware of the number 
of ASes m that need to respond, hence can wait for m events that correspond to the responses 
3.1 to 3.m of the m ASes in Figure 5. After the interledger gateway receives the m events, the 
procedure can continue with step 4. 

Note that all three of the approaches presented above for handling concurrent transactions from 
multiple ASes can be used to implement the two policies presented above. Indeed, the 
performance in terms of delay is the same for both policies. 

Figure 7 shows the end-to-end delay when Hyperledger Fabric (authorization blockchain) is 
interconnected with Rinkeby (payment blockchain), when the second approach described 
above is used for handling concurrent transactions on Hyperledger Fabric. The 95% confidence 
interval for these results are less than 2% of the average value shown. Moreover, the figure 
shows that approximately 16-18% of the total delay is due to Hyperledger Fabric. With the third 
approach presented above, which requires that the interledger gateway is aware of the number 
of ASes that need to respond and receives individual event notifications from  the ASes that 
respond to authorization requests, the delay on the Hyperledger Fabric network is further  
reduced by approximately 28% (Figure 8) and becomes 12.5-13.5% of the total delay. 

The above delay results apply to both policies for selecting the subset of ASes that participate 
in the authorization. However, the simplicity of the second policy allows an alternative 
implementation that avoids having the client send the request to the smart contract on the 
authorization chain in step 1 of Figure 5. Instead, the client can send the request directly to all 
ASes. This variant, which is only possible with the second policy, can further reduce the delay 
on the Hyperledger Fabric network by approximately 29% (Figure 8). 



 

 

 
SOFIE  73(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

A conclusion from the above evaluation results is that combining public and 
private/permissioned ledgers can reduce the overall delay. Moreover, the results also show that 
the delay on the private/permissioned ledger can be influenced by various implementation 
choices. 

 
Figure 7: End-to-end delay when Hyperledger Fabric (authorization blockchain) is interconnected with 

the public Ethereum Rinkeby testnet (payment blockchain). 

 
Figure 8: Transaction delay on Hyperledger Fabric (authorization blockchain) for different 

implementations: i) independent module, ii) interledger gateway receiving individual event notifications 
when ASes respond, iii) interledger gateway and client sending initial request to the ASes rather than to 

the smart contract. 

 

 

 

0

10

20

30

40

50

60

2-of-8 4-of-8 6-of-8

D
e

la
y
 (

se
co

n
d

s)

Number of ASes

Rinkeby

Fabric

0

2

4

6

8

10

independent module interledger gateway -

multiple events

interledger gateway -

multiple events -

direct request to ASes

D
e

la
y
 (

se
co

n
d

s)



 

 

 
SOFIE  74(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

5.2 Access control for multi-tenant IoT systems  
In this section we present an access control solution for WoT IoT “hubs”, based on VCs. This 
solution is planned to be included in the IAA component and it is suitable for scenarios where a 
resource owner owns a few (usually a single) resource, powerful enough to implement public 
key cryptographic operations.   

Our solution considers an IoT system composed of the following entities: an IoT hub connected 
to multiple IoT resources, a hub owner who administrates the hub, and multiple client users 
wishing to gain access to the hub in order to interact with an IoT resource. Moreover, we 
consider a verifiable data registry built using a permissioned distributed ledger. Owners are the 
only entities that must be able to perform write operations in the registry, whereas hubs and 
clients need only read access. For this reason, owners own a wallet used for performing secure 
transactions with the ledger. Each resource and the hub have their own authentication and 
authorization systems; hence the owner has an “account” in all these systems. Furthermore, 
the owner has “linked” the hub account with all other accounts using OAuth 2.0 (or any other 
similar protocol). In other words, the owner has authorized the hub to communicate with the 
resources on his behalf. Our goal is to apply the same principle for clients who, however, do not 
have, neither plan to have, an account with the hub or the resources.  

Owners are assumed to maintain a DID in the registry. The key that corresponds to this DID is 
used for signing the generated VCs.  

The WoT paradigm is used for interacting with hubs, hence, each resource is identified by a 
URI-encoded identifier. Additionally, the properties, actions, and events of a resource are 
accessed using a REST API. IoT resources use their own (proprietary or open) protocol, 
therefore, an authorized client sends an appropriate HTTP request to the hub, and the hub 
translates it to the resource specific message. However, the communication between the hub 
and the resources is out of the scope of the discussion in this section.  

From a high-level perspective, the entities interact with each other as follows (see also Figure 
9). Clients ask an owner to access a particular resource. The owner creates and signs a VC 
that “claims” that a client is authorized to access the requested resource identifier; if required, 
the VC can define for which specific properties, actions, and events of a resource the client is 
authorized. The VC is bound to a public key owned by the client, which is used for generating 
the verifiable presentation (VP) of the VC. Then, the owner sends the VC to the client and stores 
all necessary auxiliary information in the registry. As a next step, the client performs an HTTP 
request to the hub, and the hub responds with a VP request. The client creates the VP and 
sends it to the hub. Finally, the hub verifies the validity of the VP (including that the VC has not 
been revoked), and if the client is authorized the hub proceeds with the appropriate operations. 



 

 

 
SOFIE  75(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 9: IoT hub access control using VCs. 

5.2.1 Evaluation  

We have implemented the proposed solution using Hyperledger Indy, and Mozilla’s WebThings 
gateway. In our implementation only owners have “write” access to Indy’s blockchain (i.e., the 
registry). VCs in Indy are based on the privacy preserving Idemix credential system developed 
by IBM. This credential system enhances the degree of privacy provided to credential holders 
by enabling pseudonimity: a credential holder is never known by two different parties with the 
same identity.  

For our implementation we have selected to not modify the WebThings gateway, instead we 
have used a proxy-based approach. In particular, we have implemented a proxy, using Node.js, 
that intercepts the communication between a guest and the WebThings gateway (i.e., the hub), 
and implements the requires protocols. Eventually, the proxy forwards all approved requests to 
the hub. The proxy is configured using a Thing description file that includes elements of the 
WoT Security Ontology, i.e., for each resource (and optionally for each property, attribute, and 
event) a security scheme is defined. For example, the following listing contains a snippet of a 
description file, where access to the toggle action requires a valid VC. In more detail, at lines 4-
8 a security method is defined, whereas at line 16 it is declared that this action is protected by 
the defined security mechanism. 



 

 

 
SOFIE  76(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 10: A WoT-based device description that specifies VCs as the access control mechanism. 

So far, we have applied the same implementation used for the PDS component AS. Therefore, 
the performance and security evaluation of Section 4.2.2 also applies here.  

5.3 Decentralized interledger gateway architectures  
In this section we present decentralized architectures for an interledger gateway (ILG) system 
that ensure that the interledger operations are performed in a reliable and trusted manner. The 
functionality of a single ILG can be implemented by the interledger component. The goal of this 
section is to consider architectures that go beyond that of a single ILG, hence go beyond the 
design and functionality of the interledger component considered in Sections 3 and 4. 

Although the decentralized ILG architectures are presented within the context of IoT 
authorization scenarios that include the interconnection of two ledgers (an authorization ledger 
and a payment ledger), they are applicable in a more general context where transactions on 
multiple blockchains are cryptographically linked with hash-lock and time-lock mechanisms. In 
the case where transactions on different chains are not linked through such mechanisms, 
additional mechanisms for verifying that transactions have been performed on different chains 
would be necessary.  

In the case of a single ILG shown in Figure 11, the ILG is responsible for i) listening to events 
generated on ledger A and ii) submitting transactions to ledger B. An event on ledger A can be 
generated when the secret to a hash-lock is submitted on this ledger. When the event on ledger 
A is generated, the gateway can obtain the secret and submit it to ledger B. Submission of the 



 

 

 
SOFIE  77(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

secret to ledger B is performed as a transaction using the account that the ILG has on ledger B. 
The verification that the gateway receives from ledger B can be a confirmation that the 
transaction was added to the transaction pool or a confirmation that the transaction was included 
in a mined block. In the latter case, the verification can be received by having the ILG listen to 
an event on ledger B that is generated when the block containing the submitted transaction is 
mined. 

 

 
Figure 11: In a single ILG architecture an event notification from ledger A triggers the ILG to submit a 

transaction to ledger B. 

A key problem with a single ILG system is that the ILG is a single point of failure: If the ILG fails, 
then the interaction between the two ledgers is not possible. Below we present three 
decentralized ILG architectures that address the aforementioned problem and which differ in 
their complexity, transaction cost, and ability to handle transactions involving multiple ledgers. 
The first involves multiple ILGs that are operated by the same organization and the ILGs use 
the same account for submitting transactions to a ledger. The second architecture involves 
multiple ILGs that are operated by different organizations and the ILGs use different accounts 
for submitting transactions to a ledger. Finally, the third architecture utilizes a Hyperledger 
Fabric permissioned ledger for coordinating the interledger functions. 

5.3.1 Multiple interledger gateways operated by the  same organization 

In this architecture multiple ILGs that are operated by the same organization, as shown in Figure 
12, perform the interledger functions that include the following: 

• Listen to events on ledger A indicating that the secret for a hash-lock is recorded on 
ledger A. These events will trigger the interledger operations. 

• All ILGs submit transactions to ledger B using the same account. 
• All ILGs listen to an event on ledger B to confirm that the transaction has been 

successfully performed. 

Every transaction in Ethereum has a nonce, which corresponds to the number of transactions 
that are sent from a given account. Each time a transaction is submitted, the nonce value 
increases by one. Furthermore, transactions from the same account must be ordered according 
to their nonce values and nonce values cannot be skipped. Because the same account is used 
by all ILGs for submitting transactions to ledger B, if ledger B is an Ethereum blockchain, 
synchronization of the nonce values is necessary to satisfy the above rules. Specifically, the 
ILGs need to use the same nonce in transactions that correspond to the same event (e.g., 
recording of the same secret) on ledger A. Synchronization of the nonce values can be achieved 
in a centralized manner by the organization managing the ILGs. Because the ILGs use the same 
account, even though N transactions are submitted to ledger B, only one will be included in the 
mined block; hence, the transaction fee will be incurred once. Based on the above, this solution 
provides decentralization of the interledger operations, but does not provide decentralization at 
the organization level since the ILGs are managed by a single organization. The architecture 



 

 

 
SOFIE  78(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

presented in the next section provides decentralization of both the interledger functions and the 
management of the ILGs. 

 
Figure 12: Decentralized interledger gateway architecture when the ILGs are operated by the same 
organization. When they receive an event notification from ledger A, all ILGs submit a transaction to 

ledger B using the same account (which corresponds to a public key PK). 

5.3.1.1 Management of ILGs 

The management of ILGs is performed by a single organization and includes managing the 
nonce value that the ILGs include in the transactions they submit to ledger B using the same 
account. The organization managing the ILGs must be trusted in order to achieve reliable 
interledger gateway operation. Note, however, that in the authorization scenario discussed in 
this section the interledger operation involves copying a secret from ledger A to ledger B. 
Copying the correct secret is ensured since ledger B will check that the submitted secret's hash 
is equal  to the hash of the hash-lock in the smart contract on ledger B. 

Instead of using the same account on ledger B, each ILG can use a different account. With this 
approach, synchronization of the nonce values if ledger B is an Ethereum network is not 
necessary. Moreover, only one (or a few) ILGs can be selected in a centralized manner to submit 
transactions to ledger B, making this scheme more efficient from this perspective. 

5.3.1.2 Reliability 

Reliability is achieved by having all ILGs submit a transaction to ledger B, once they receive an 
event notification from ledger A. Moreover, after they submit a transaction to ledger B, all ILGs 
listen to an event on ledger B that confirms that the transaction with the hash-lock's secret is 
included in a mined block of ledger B. In this way, ILGs can verify that the transaction is 
successfully submitted to ledger B. If the ILGs do not receive an event verifying the submission 
of the transaction until some timeout, they resubmit the transaction to ledger B. 

5.3.2 Multiple interledger gateways operated by dif ferent organizations 

The decentralized interledger gateway architecture when the ILGs are operated by different 
organizations is shown in Figure 13. In this architecture, the interledger functions that need to 
be supported include the following: 

• Listen to events on ledger A indicating that the secret for a hash-lock is recorded on 
ledger A. These events will trigger the interledger operations.  

• Selection of one (or more) ILG(s) that will submit transaction(s) to ledger B. These 
transactions contain the secret copied from ledger A.  

• The selected ILG (or ILGs) submits the transaction to ledger B. 
• The ILGs verify that the transaction was successfully submitted to ledger B. If the 

submission is not verified after some timeout, a new ILG (or ILGs) is selected to submit 
the transaction. 



 

 

 
SOFIE  79(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

In this model, N ILGs listen for an event on ledger A indicating that the hash-lock's secret has 
been submitted. The ILGs are operated by different organizations and use different accounts to 
submit transactions to ledger B. Because the ILGs use different accounts, synchronization of 
the nonce values if ledger B is an Ethereum network is not necessary. 

Once the event notification is received by the ILGs, one of them (ILG k in the figure) is selected 
to submit a transaction to ledger B containing the secret recorded on ledger A. The selection 
can be made by taking the modulo N of the last or the next block on ledger B. Specifically, each 
of the N ILG is assigned a unique identifier from 0 to N-1 and the result of the ledger B's block 
hash modulo N operation determines the ILG that is responsible for submitting the transaction 
to ledger B. The hash of ledger B's block must be used because ledger B must also verify that 
the correct ILG submitted the transaction. Below we discuss alternatives for managing the 
bindings of ILGs to unique identifiers. 

 
Figure 13: Decentralized interledger gateway architecture where the ILGs are operated by different 

organizations. One of the N ILGs (ILG k in the figure) is selected to submit the transaction to ledger B. 
The selection is based on the hash of the last or the next block mined on ledger B. ILGs use different 

accounts to submit transactions to ledger B. 

Next, we discuss the implications from using the hash of the last or the next mined block of 
ledger B for determining the ILG that is responsible for submitting the transaction to ledger B. If 
the hash of the last block is used, then anyone can know which of the ILGs is responsible for 
submitting the transaction to ledger B that corresponds to the next event on ledger A. This allows 
the possibility of a DoS attack to the ILG responsible for sending the transaction before the 
event on ledger A occurs. On the other hand, if the ILG selection uses the hash of the next block 
that is mined, then the ILG that is responsible for submitting the transaction on ledger B is known 
after the next block on ledger B is mined. Assuming that the selected ILG submits a transaction 
immediately after the next block is mined, the window for conducting a DoS attack on this ILG 
can be very small. Finally, we note that the generation of new blocks is determined by miners 
based on the PoW in blockchains such as Ethereum and Bitcoin. As long as the fees for 
interledger services are much lower than the block mining fees, the approach described above 
is not susceptible to attacks by miners withholding new blocks. The requirement that the 
economic gains from withholding blocks is lower than the mining fees does not hold for high-
stake lottery applications, hence mined block hash approaches for generating random numbers 
are not appropriate in such applications. 

Because the N ILGs are operated by different organizations, their trustworthy operation must 
be ensured, i.e., the system must ensure that an ILG must not submit a transaction to ledger B 
if it is not entitled to do so. Two observations can be made regarding this issue: First, even if 
more than one ILGs submit transactions with the hash-lock secret to ledger B, the interledger 
operation is still executed correctly. Moreover, if ledger B is a public blockchain such as 



 

 

 
SOFIE  80(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Ethereum, multiple transactions would incur an execution cost for the ILGs that submit the 
transactions. Second, checking that the transaction is submitted by the ILG that is entitled to do 
so is necessary if the ILGs receive some compensation for their services. To achieve this, the 
smart contract on ledger B must verify that the ILG submitting the transaction is the one that 
was entitled to do so; the smart contract can perform this verification based on the hash of the 
last block mined on ledger B and the ILG's ID. Moreover, once the smart contract verifies that 
the transaction was submitted by the correct ILG, it can proceed to automatically reimburse that 
ILG for its interledger services. 

5.3.2.1 Management of ILGs 

Next, we discuss how the ILGs that perform the interledger transactions can be managed. In 
the scenario described in the introduction that includes linking payments to authorizations for 
accessing IoT resources, the two parties involved are the client (buyer) and the IoT resource 
owner (seller). The scenario requires that smart contracts containing hash-locks and time-locks 
are created on the two ledgers: the payment ledger and the authorization ledger. The interledger 
services for obtaining authorization to an IoT resource can be managed by the IoT resource 
owner, which is the interledger services client. This IoT resource owner can determine the ILGs 
that can provide interledger services. One approach to achieve this is to submit to the smart 
contract on ledger B the list of ILGs that can submit transactions for interledger services related 
to the owner's IoT resource. Alternatively, the ILGs can obtain a signed credential from the 
owner that allows them to submit transactions to the smart contract on ledger B. Such 
credentials can be based on the Verifiable Credentials Model developed by W3C's Credentials 
Community Group [Spo++19]. The credential can be submitted inside each transaction and the 
smart contract on ledger B can verify the IoT resource owner's signature to ensure that the ILG 
submitting the transaction has authorization from the owner. The two options for determining 
the set of ILGs that can submit interledger transactions differ in terms of privacy and the 
operations and cost for performing revocation. Namely, recording the set of legitimate ILGs in 
the smart contract allows all entities that have read access on the ledger, which in the case of 
public ledgers is anyone, to know the ILGs that provide interledger services for a particular IoT 
resource. Revocation, i.e., removing an ILG from the list of ILGs, would incur the cost of a 
transaction to update the list in the smart contract. On the other hand, using credentials has 
higher privacy, since in this case the smart contract does not contain the list of ILGs. However, 
the credential-based approach requires different actions to perform revocation. One approach 
is to have credentials with fixed time validity, which implies that they must be periodically 
renewed for an ILG to continue to provide interledger services. 

An additional management task is the assignment of unique numbers 0 to N-1, which is 
necessary for the ILG selection discussed above. The assignment needs be known, in a reliable 
manner, by the smart contract running on ledger B. This can be achieved by including the 
number assigned to each ILG in the list maintained by the smart contract or include the number 
in the credential that the interledger services client provides to each ILG. 

5.3.2.2 Reliability 

After an event is generated on ledger A, all ILGs, including the ILG that was selected to submit 
the transaction to ledger B, listen to an event on ledger B that verifies that the transaction with 
the hash-lock's secret is included in a mined block of ledger B. In this way, ILGs can verify that 
the transaction is successfully submitted to ledger B. If the ILGs do not receive an event verifying 
the submission of the transaction until some timeout, then a new ILG can be selected, using the 
same procedure as the one described above, which will (re)submit the transaction to ledger B. 

Above, we assumed that one ILG is selected for submitting the transaction to ledger B. 
Alternatively, more than one ILGs can be selected and submit transactions from their accounts. 
Such an approach can yield a smaller delay for completing the interledger operations, if the 
probability of faulty or misbehaving ILGs is high. The tradeoff is that if more than one ILGs are 



 

 

 
SOFIE  81(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

selected then, in the case of the Ethereum blockchain, the total transaction cost would increase 
with the number of submitted transactions. One way to reduce this cost in Ethereum is for the 
smart contract to use Solidity's Revert call, with which duplicate transactions incur only the cost 
(gas) of the transaction invocation. 

5.3.3 Use of Hyperledger Fabric in the interledger gateway system 

In this section we discuss the use of Hyperledger Fabric, which is a permissioned distributed 
ledger that is part of the Linux Foundation's open-source Hyperledger project, for coordinating 
the interledger operations. The advantages of using a permissioned ledger for interledger 
operations are the following: 

• A permissioned ledger can implement elaborate consensus logic and rules that can 
jointly consider events from different ledgers. This is necessary if the interledger 
operations involve more than copying a hash-lock secret between two ledgers. 

• A permissioned ledger can record, in a reliable and immutable manner, transactions 
across different ledgers.  

• Even though some of the logic can be implemented in ledger B (provided it supports 
smart contracts), the execution cost when the logic is implemented in a permissioned 
ledger will be significantly lower compared to the cost if ledger B is a public ledger. 

These advantages allow a permissioned ledger such as Hyperledger Fabric to serve as a hub 
for interledger services among multiple ledgers. The above advantages are achieved with a 
higher complexity compared to the two previous architectures, since Fabric is used for 
coordinating the functionality of the interledger mechanisms. 

Figure 14 shows the architecture for an interledger system based on Hyperledger Fabric. 
Observe that the functionality of the interledger gateways of the first two architectures has been 
separated. The architecture shown in this figure has two types of ILGs: level 1 ILGs listen to 
events on Ledger A and level 2 ILGs submit transactions to ledger B. Hyperledger Fabric can 
implement elaborate consensus rules that can include selecting one or more  level 2 ILGs that 
are responsible for submitting transactions to ledger B. From an implementation perspective, 
level 2 ILGs can run on the same nodes where Fabric peers reside. Similarly, level 1 ILGs can 
also reside on Fabric peer nodes. 

 
Figure 14: Use of Hyperledger Fabric in the ILG system. Compared to the previous two architectures, 

the interledger functionality is now split: Level 1 ILGs listen to events on ledger A and level 2 ILGs 
submit transactions to ledger B. 

 



 

 

 
SOFIE  82(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 

5.3.3.1 Management of ILGs 

In this architecture the management of ILGs can be performed as in the previous architecture. 
A difference is that the Fabric peers now select the level 2 ILG that will be responsible for 
submitting the transaction to ledger B. In this step we utilize the capability of Fabric peers that 
all execute the same smart contract (called chaincode in Fabric) to call an external API. Hence, 
in the above figure the selected level 2 ILG receives a call from all M Fabric peer nodes. 

5.3.3.2 Reliability 

The reliability of the functionality of level 1 ILGs, namely of sending a transaction to the Fabric 
network when an event occurs on ledger A, is ensured by having all level 1 ILGs send a 
transaction to Fabric (denoted duplicate transactions in the figure). Fabric can handle multiple 
concurrent transactions but cannot handle concurrent transactions that affect the same key in 
the ledger. Hence, only one transaction from Level 1 ILGs will eventually be valid and the others 
will cause Multi Version Concurrency Control (MVCC) failures. Nevertheless, only one valid 
transaction is necessary for the interledger functionality to operate correctly, hence the above 
behaviour is sufficient. Note that, since this section focuses on interledger functions that involve 
copying hash-lock secrets from one ledger to another,  it is not necessary for the Fabric network 
to verify  the  transaction on ledger A that reveals the hash-lock secret; if the secret was not 
revealed on ledger A, then the corresponding transaction on ledger B would fail. 

The reliability of submitting transactions to ledger B is achieved differently than in the approach 
discussed for the previous architecture, since in this model the Fabric peers select the ILG that 
will submit the transaction to ledger B. Specifically, recall that all Fabric peers select the same 
level 2 ILG to submit the transaction to ledger B, hence the selected level 2 ILG receives a call 
from all M Fabric peer nodes. Once this level 2 ILG submits the transaction to ledger B, it returns 
the transaction hash (Tx hash in the figure) to the Fabric peer nodes. The Fabric peer nodes 
check ledger B to verify that a valid transaction with the transaction hash (Tx hash) has indeed 
appeared in a mined block. If the transaction is not verified, then the Fabric peer nodes select 
a new level 2 ILG to submit the transaction. The Fabric peer nodes also select a new level 2 
ILG to submit the transaction to ledger B if the original level 2 ILG does not respond after some 
timeout. 

Finally, as in the previous architecture, more than one level 2 ILGs can be selected for 
transmitted transactions to ledger B. This can increase the reliability and reduce the delay, at 
the expense of a higher transaction cost on ledger B. 

5.3.4 Evaluation 

The evaluation results presented in this section consider the architecture shown in Figure 13. 
The evaluation setup consists of the Rinkeby public Ethereum testnet that was ledger B in the 
figure. We used the Infura Ethereum node cluster for submitting transactions to the Rinkeby. 
For ledger A in the figure we used Hyperledger Fabric. We consider the case of 3 ILGs and 
investigate the reliability of the interledger functionality that the architecture shown in Figure 13 
can support in the presence of ILG errors. 

Figure 15 shows the interledger delay for different ILG error percentages. The results are the 
average from 20 executions. Also shown are the 95% confidence intervals. The interledger 
delay is the time interval from the point an event on ledger A (Hyperledger Fabric) is generated 
until the time that a transaction is successfully submitted to ledger B (Ethereum). Since ledger 
B is an Ethereum network, the interledger delay is determined by the Ethereum transaction 
delay, which depends on the Ethereum block mining time. Hence, for zero errors, the figure 
shows that the delay is approximately 15 seconds, which is the average time for mining a new 
Ethereum block. In the presence of errors, Figure 15 shows that the delay increases by 



 

 

 
SOFIE  83(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

approximately 70% and 270% when the percentage of ILG errors is 20% and 50%, respectively. 
The transaction delay in the presence of ILG errors can be reduced by having more than one 
ILGs submit interledger transactions to ledger B. 

The delay results shown in Figure 15 also pertain to the architecture in Figure 12, since the 
interledger delay is determined by the transaction delay on ledger B and the differences of the 
interledger operations in Figure 12 and Figure 13 do not influence this delay. 

 
Figure 15: Interledger delay for the architecture in Figure 13 with three ILGs in the presence of ILG 

errors. 

Table 25 shows the gas, which quantifies the amount of EVM (Ethereum Virtual Machine) 
resources, for the transaction on ledger B (Ethereum testnet) that the ILG submits for three 
cases: i) the architecture in Figure 12, ii) the architecture in Figure 13, and iii) the architecture 
in Figure 13 when a revert is called in the transaction. The transactions are submitted with gas 
price 2.5 Gwei. The results show that the transaction cost for the architecture in Figure 13 is 
higher than the architecture in Figure 12. This occurs because of the additional checks in the 
latter architecture that is necessary to ensure that the correct ILG has submitted the transaction. 
Specifically, we assume that the smart contract has a table containing the address of the ILGs 
that can submit an interledger transaction and their corresponding identifiers. The specific ILG 
that should submit the transaction is selected as described in Section 5.3.2, and is based on 
the modulo 4 (since the number of ILGs is 3) of the hash of the last block on ledger B. 

The table also shows that the transaction cost with a revert is less than 40% of the transaction 
cost without a revert (for the architecture in Figure 13). The revert can be used when more than 
one ILGs are selected to submit transactions to ledger B, in order to increase the reliability and 
reduce the delay of the interledger operation. 

 

Table 25: Ledger B (Ethereum) transaction cost (gas) 

Transaction Cost measured in gas 

Architecture in Figure 12 64 425 

Architecture in Figure 13 66 968 

Architecture in Figure 13 with revert 27 132 

 

0

10

20

30

40

50

60

0% 20% 50%

D
e

la
y

 (
se

co
n

d
s)

Error percentage



 

 

 
SOFIE  84(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Evaluation scenarios 
This section considers the SOFIE pilots and generalizes them into pilot-inspired scenarios by 
including alternatives not selected in the SOFIE pilots, while also abstracting various aspects to 
an appropriate degree, so that they can be emulated and/or simulated. Our focus is on 
identifying and quantifying the various tradeoffs of many potential alternative design decisions 
and the impact of various system parameters on the resulting performance. We relate the 
specific use cases considered to pilot requirements identified in deliverable D5.2 (Initial Platform 
Validation) and our performance results are presented in terms of the pilot-specific system 
performance KPIs and targets, which were initially presented in the revision of deliverable D4.3 
(First Architecture and System Evaluation Report) and included in Section 2.2 of this deliverable. 

6.1 Food Supply Chain 
The Food Supply Chain (FSC) pilot aims at leveraging distributed ledgers to provide traditional 
supply chains with reliable and tamper-proof provenance and tracing data. More specifically, it 
targets an FSC transferring agricultural products from producers to supermarkets and it aims at 
providing the following features: 

• Traceability of agricultural products from the producer to the consumer 
• Traceability of transport and storage conditions 
• Resolution of disputes in case of customer complaints 

The new results contained in this deliverable compared to the first evaluation deliverable D4.3 
include two new emulation scenarios. The first one employs four distinct private Ethereum 
blockchains, each registering the handovers between two consecutive stages, while the second 
one considers the case where each stage utilizes a custom local storage, and periodically stores 
hashes of newly added data to a public Ethereum ledger. Notably, our emulation is substantially 
extended from evaluating individual transactions (like handovers, or sensor logs) in D4.3 to 
providing an end-to-end evaluation of the entire FSC, and comparing all scenarios with respect 
to their cost (in gas and euros) and their throughput. 

6.1.1 Overview 

This pilot assumes smart boxes (or, simply, boxes) as the end-to-end unit of transfer. That is, 
products are packaged into boxes by the producer and they remain in these boxes throughout 
the entire transfer until they reach the consumer. Each box is equipped with an RFID tag, which 
is scanned and registered when the box is handed over by one stage of the supply chain to 
another. 

The chain consists of five stages, shown in the following table. 



 

 

 
SOFIE  85(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Table 26: The stages of the FSC pilot use case 

Stage 
no. 

Stage name Abbreviation Role 

1 Farm 
(Table Grapes Field) 

TGF Grows table grapes and packs them 
into boxes 

2 Transport A TRA Transfers boxes from TGF to SDC 

3 Depot 
(Storage & Distribution Centre) 

SDC Collects, stores, and dispatches boxes 

4 Transport B TRB Transfers boxes from SDC to SM 

5 Supermarket SM Displays boxes and sells them to 
consumers 

 

Figure 16 Illustrates the FSC model described above. Each stage of the FSC is equipped with 
a number of sensors, periodically reporting data concerning the conditions at this stage. 

 
Figure 16: Food Supply Chain with five stages. 

 

Data collected, recorded, and processed in our FSC model can be split into three types: 

• Box data constitutes the first type. It concerns all data related to individual boxes in the 
FSC, such as a box’ entry in the first stage to start a new transport session, its 
consecutive handovers between adjacent stages, and its exit from the FSC when this 
session is complete. Metadata of all aforementioned actions are also part of this data 
type, such as which employees were involved in each action, at which time each action 
happened, and some box state at that point, such as the box’ weight. Handover data are 
recorded on demand, as soon as a handover action takes place. 

• Sensor data forms the second type. It refers to all environmental and location data 
collected by each individual stage concerning the conditions that may affect produce 
quality. Sensor data are recorded periodically. 

• Anchoring metadata constitutes the third type. Anchoring per se does not directly 
represent any state or action taking place in our model. Instead, it refers to a series of 
block hashes of any private ledger(s) employed in our model, which is expected to be 
stored in a public ledger to provide strong immutability guarantees. More on anchoring 
in the following section. 



 

 

 
SOFIE  86(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

6.1.2 Architecture space 

We consider four different architectures for the proposed FSC framework. Two of them use a 
single public ledger, while the other two employ hierarchical designs involving a combination of 
public and private ledgers. 

More specifically, we consider the following four architecture scenarios: 

Scenario 1 – Public ledger:  In this scenario (Figure 17), both handover data and sensor 
readings, are directly stored in a public ledger. This is a straightforward architecture, inherently 
guaranteeing immutability and trust among chain members. However, as we will see in our 
evaluation results, the large volume of data to be stored place an enormous burden in terms of 
cost and increase delay.  

 
Figure 17: Scenario 1 – Public ledger: All sensor data (dashed green lines) and handover data (solid 

blue lines) are registered in a public ledger. 

 

Scenario 2 – Single shared ledger:  Architecturally this scenario (Figure 18) is identical to the 
previous one, other than using a shared private ledger (run collaboratively by all chain members) 
in place of a public ledger, to avoid high costs and delays. A public ledger, however, is still 
needed to add strong immutability guarantees to the private ledger. More specifically, the private 
ledger’s latest block hash is periodically stored on the public ledger to strengthen the former’s 
immutability, a process referred to as anchoring. 

 
Figure 18: Scenario 2 – Single shared ledger: All sensor and handover data are registered in a shared 

ledger operated by the entire consortium.  

 



 

 

 
SOFIE  87(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Scenario 3 – One private ledger per pair: This scenario (Figure 19) employs multiple private 
ledgers, one per pair of adjacent chain stages. It improves on Scenario 2 with respect to data 
privacy, as well as in overall throughput, as we show in the evaluation results. Anchoring to a 
public ledger is necessary here too, to guarantee immutability.  

 
Figure 19: Scenario 3 – One private ledger per pair: Each pair of consecutive stages maintain a 

separate ledger for recording box handovers between themselves.  

 

Scenario 4 – Private storage: This scenario (Figure 20) maximizes privacy with respect to 
sensitive data, by each business entity storing all their data in private storages. These storages 
need not be ledgers (although they could be). They can be local databases, cloud storage, or 
even local permissioned ledgers. In the absence of a ledger to store mutually approved 
handover transactions between adjacent stages, handover records should be signed by both 
stages involved, and stored individually by both. In order to guarantee immutability of private 
storages, each stage is responsible to implement anchoring for their private storage by 
periodically storing a hash digest (Merkle tree root or alternative cryptographic tool of their 
choice) of their contents. 

 
Figure 20: Scenario 4 – Private storage: Each stage maintains their own private storage.  

 

Clearly, an unlimited number of architecture designs can be devised, either as combinations of 
the above, or by introducing completely new schemes. However, the selected scenarios form a 
wide range of clearly defined baselines, whose evaluation identifies their strengths and 
weaknesses, and help us make educated decisions in using them as is or in combinations.  



 

 

 
SOFIE  88(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

6.1.3 Emulation setup 

We evaluated and compared all four scenarios, implementing the required smart contracts in 
Solidity (the mainstream Ethereum language) and deploying them on Ethereum. More 
specifically, we spawned our own private Ethereum instances for Scenarios 2 and 3, while we 
used the Ethereum Ropsten testnet as a public ledger. 

We made some configuration decisions to reduce the parameter space and to allow for a fair 
comparison. With respect to the parameters of our local Ethereum instances, we fixed the 
average block mining time to 15 seconds, and we set the block gas limit to 10,000,000 gas units. 
Both values reflect the respective values in the public Ethereum main net. 

With respect to our implementation, we fixed the data schema of transactions across all four 
scenarios, as well as the lengths of several fields. We also fixed both the anchoring period and 
the sensor logging period to 5 minutes, for all stages in all scenarios. 

The following five types of transactions, grouped by the type of data they produce, form the 
basis for the FSC functionality supported in all considered scenarios. 

Table 27: Transaction types. 

Type of data Transaction Description 

Box 

Box entry 
Marks the start of a new session for a given box and assigns this 
box to a given farmer. 

Handover 
Hands over a box from one stage to the next, recording the two 
employee IDs involved, the box weight, and a timestamp. 

Box exit 
Marks the end of the current session of a given box. Called when 
the box is emptied and ready for a new session. 

Sensor Logging 
Logs a stage’s sensor readings to the ledger. Applied periodically, 
every 5 minutes. 

Anchoring Anchoring Stores a private Ethereum’s latest block hash into the public 
Ethereum. Called periodically, every 5 minutes. 

 

Finally, Table 28 below, shows, for each of the basic transactions, the fields it stores in the 
ledger. Note that we assumed a uniform format across all four handovers, and a uniform length 
across all five stages of the sensor logging transactions. 

 

Table 28: Fields associated with each transaction 

 

6.1.4 Emulation results 

6.1.4.1 Transaction cost evaluation 

We start our evaluation by focusing on the transaction cost associated with each scenario for 
executing smart contracts. 

In Ethereum, each call to a smart contract function incurs a cost to the caller, measured in gas 
units. Gas has no fixed monetary value. Instead, when calling a smart contract you are expected 
to specify the rate (in ETH, i.e., the Ethereum coin) you are willing to pay per gas unit to whoever 



 

 

 
SOFIE  89(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

mines a block that includes your transaction. This policy serves as an incentive for miners to 
include your transaction. 

In Figure 21 we present the gas cost of an individual call to each basic operation. 
Implementations are similar across different scenarios. However, box entry and handovers are 
slightly more costly when multiple ledgers are used (Scenario 3), as the box ID has to be stored 
anew with each handover. 

 
Figure 21: Isolated cost (in gas) for single execution of basic operations. 

 

Figure 22 shows the aggregate gas spent for an entire route of a single box through the FSC. 
Only the costs directly associated with tracing a box are included (i.e., box entry/exit and the 
four handovers), leaving out the costs of periodic anchoring and sensor logging. As expected, 
the first two scenarios exhibit precisely the same costs, in gas. The third scenario incurs a 
slightly higher overall gas cost, however this cost is distributed among the four pairs of ledgers. 

 
Figure 22: Aggregate cost (in gas) for a full session of a single box through the FSC. Colour coding 

denotes which ledger each cost fraction refers to. This corresponds to one ledger for Scenarios 1 and 2, 
and to four ledgers (hence the four different colours) for Scenario 3. 

It is important to realize that only the gas spent in Scenario 1 translates into actual monetary 
value (in ETH, and indirectly in EUR). Gas spent on privately managed Ethereum instances can 



 

 

 
SOFIE  90(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

be paid for with ethers collected through very lightweight mining or an ether faucet. However, 
as we will see below, the gas required by each operation has an effect on the overall throughput 
of the system in all scenarios, as each mined block can include a limited amount of gas. 

Figure 23 shows the public ledger gas costs associated with each periodic action (anchoring 
and sensor logging). Note that Scenario 1 incurs periodic costs only for sensor logging, while 
anchoring is irrelevant to it as data is recorded directly in the public ledger. In contrast, Scenarios 
2, 3, and 4 incur only periodic anchoring costs to the public ledger, as all sensor logging takes 
places in private ledgers or private storage. 

 
Figure 23: Public ledger gas costs incurred every 5 minutes due to periodic operations. For Scenario 1 

this applies to the five sites directly recording sensor readings on the public ledger. For the other 
scenarios it applies to periodic storing of block hashes on the public ledger (anchoring). 

Table 29 summarizes the costs presented above, giving an estimate of the total cost for a full 
day’s (24 hours) operation in each scenario. We assume a typical daily turnover of 6000 boxes. 
For the conversion of gas to ether, we assume a price of 10−8 ETH per gas unit (referred to as 
10 nanoether or 10 gwei). Finally, for the conversion to euros, we assume the price of €200 per 
Ether, an average price for the last few months. 

Table 29: Indicative costs for full-day operation 

 
Cost for 6000 boxes Full-day periodic costs Total 

Gas Ether EUR Gas Ether EUR EUR 

Scenario 1 2040M 20.4 €4080 71.5M 0.715 €143 €4223 

Scenario 2 0 0 €0 14.3M 0.143 €28 €28 

Scenario 3 0 0 €0 57.2M 0.572 €114 €114 

Scenario 4 0 0 €0 71.5M 0.715 €143 €143 

 

Finally, Figure 24 illustrates these costs as a function of the number of boxes processed through 
the supply chain. 



 

 

 
SOFIE  91(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 24: Total cost (in EUR) for a full day’s run in each scenario, as a function of the number of boxes 
transferred. Calculated based on an exchange rate of 200 EUR per 1 ETH, and a gas price of 10−8 ETH 

per gas unit. 

 

6.1.4.2 Throughput evaluation 

Cost is not the only concern when employing blockchains in a real-world application. The time 
to execute a transaction, and, in particular, the volume of transactions the system can process 
in a given time window (i.e., the system’s throughput), may be a deciding factor on designing its 
architecture. 

The limitations on transaction delay and throughput are explicitly imposed by blockchain rules 
that prevent the creation of arbitrary-size blocks. In the case of Ethereum, this limit is imposed 
by means of a maximum amount of gas a miner is willing to pack in a single block. Although this 
is a miner-specific parameter rather than a globally configured one, in main net public Ethereum 
it has converged to a maximum of 10 million gas units per block. In that regard, optimizing smart 
contract functions to spend less gas allows us to fit more calls per block, thus increasing the 
overall throughput. 

To assess the throughput of different scenarios, we ran experiments in which we submitted 
1000 boxes at once at the beginning of the FSC, and we let the system run as fast as possible 
to record the rate at which boxes go through the chain. In these experiments, we emulated all 
harvesting, transportation, storage, and selling times to be zero, in order to assess the net 
delays imposed by our tracing system. 

Figure 25 presents results of these experiments, namely the number of boxes that have 
traversed the entire FSC as a function of time. The stepwise shape of these plots is due to the 
grouping of multiple transactions in blocks, which are being generated roughly every 15 seconds. 
As each box needs six transactions to traverse the entire FSC, no box makes it to the end before 
the sixth block (at ~90 seconds). 



 

 

 
SOFIE  92(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 25: Box handling throughput 

Scenario 3 has a clear advantage over the rest, with a throughput of around 285 boxes per 
minute, while Scenarios 1 and 2 perform at around 111 and 133 boxes per minute, respectively. 

Although intuitively one might expect Scenario 3's throughput to be four times as high as that of 
Scenario 2, given the fact that transactions are distributed across four private ledgers instead 
of just one, it is in fact just over twice as high. The reason for this is that in queuing systems 
throughput is governed by the speed of the slowest component in a chain, i.e., its bottleneck. In 
this case, Scenario 3's bottleneck is the leftmost pair ledger (shared between stages 1 and 2), 
as it registers both box entry transactions for registering new boxes, as well as handovers from 
stage 1 to stage 2. As shown in Figure 22, the total gas used on the single shared ledger of 
Scenario 2 (which is what determines how many transactions fit in one block) is a bit over twice 
as much as the total gas spent on the leftmost pair ledger of Scenario 3, a ratio reflected on 
their respective throughputs. 

Finally, Scenario 1 seems to perform slightly worse than Scenario 2. This is because it ran on 
a public Ethereum instance, Ropsten, where our transactions were not guaranteed to be 
included in the next block as they were competing against other users’ transactions. 

6.1.5 Pilot requirements in emulation scenarios 

The following table, based on Table 5 of D5.2, lists the requirements for the FSC pilot, and 
which of our emulation scenarios address each of them. Note that many of the requirements 
refer to specific features the final pilot application should support and are orthogonal to the 
performance evaluation done through emulation. Such requirements will be investigated and 
demonstrated in the pilot validation of WP5 and are marked as “Not Applicable”. 

Table 30: FSC requirements and emulation scenarios 

 ID Name Description  Emulation 
Scenarios 

REQ_FSC0.1 FSC Web 
application 

The services must be provided (to the actors) 
through the same web application. 

Not Applicable 

REQ_FSC0.2 RBAC over 
provided services 

The services must be accessible (by the actors) 
under a Role-based Access Control (RBAC) policy. 

Not Applicable 

REQ_FSC0.3 Actors unique 
identifiers 

Each actor must be identified in a unique way All scenarios 



 

 

 
SOFIE  93(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_FSC0.4 IoT environments 
unique identifiers 

Each federated IoT environment must have a unique 
identifier in the system architecture. 

All scenarios 

REQ_FSC0.5 Authentication 
management  

Authentication and access control logic must be 
applied to common storage resources. 

Not Applicable 

REQ_FSC1.1 Timestamped 
crop registration 

Registration of a crop must be timestamped. All scenarios 

REQ_FSC2.1 Farming 
(meta)data of 
boxes 

The QR code that summarizes product history must 
include farm location, harvesting date, used fertilizers 
(dates), and the type of the product (from the 
perspective of the farming system),  

Not Applicable 

 

REQ_FSC3.1 Record of 
handovers  

Handovers must be recorded in an immutable way 
where all federated IoT environments must have 
access.  

All scenarios 

REQ_FSC3.2 Sealing of boxes The boxes could be sealed upon the delivery to the 
transportation company (from the producers). 

Not Applicable 

REQ_FSC4.1 Unsealing 
Box(es) at the 
WH 

Upon delivery to the WH employee, boxes could be 
unsealed by the TR employee. 

Not Applicable 

 
REQ_FSC5.1 Box unique 

identifier 
Each box must have a unique RFID tag identifier. All scenarios 

REQ_FSC5.2 Boxes as Things Boxes must be considered as things of the 
transportation IoT platform.  

All scenarios 

REQ_FSC5.3 Box registration Box registration in the supply chain must define also 
the producer from whom it will be used. 

All scenarios 

REQ_FSC5.4 Timestamped box 
registration 

Registration of a box must be timestamped. All scenarios 

REQ_FSC6.1 Transportation 
truck connectivity 

Transportation trucks must have internet connection 
to communicate and exchange data with the 
transportation IoT platform. 

All scenarios 

REQ_FSC6.2 Use of 
transportation 
truck 

A TR employee (driver) must be able to use different 
transportation trucks on different occasions. 

Not Applicable 

 
REQ_FSC7.1 Local storage of 

IoT data 
Measurements from IoT devices are stored locally in 
the corresponding IoT platform. 

Scenario 4 

REQ_FSC8.1 Unsealing 
Box(es) at the SM 

Upon delivery to the SM employee, boxes could be 
unsealed by the TR employee. 

Not Applicable 

REQ_FSC9.1 Tracking 
warehouse 
conditions  

The temperature within each storage room of the WH 
must be continually monitored. 

All scenarios 

 
REQ_FSC9.2 Warehouse 

alarms 
In the WH, a notification appears in the monitoring 
service of the Aberon IoT platform each time a 
predefined temperature range is violated. 

Not Applicable 

 
REQ_FSC10.1 Packetizing 

products 
The (unreleased) boxes in the WH must contain 
either raw or packetized products. 

Not Applicable 

REQ_FSC11.1 QR code creation QR codes must include data which is collected from 
the federated IoT environments, as well as provided 
by the actors through the FSC web application 

Not Applicable 

REQ_FSC11.2 QR labels of 
packets 

The same QR label must be attached to every packet 
containing grapes which were transferred into the 
same box. 

Not Applicable 

 
REQ_FSC11.3 Vocabulary of QR 

labels 
Labelling of products must be based on a common 
vocabulary for the food supply domain that 

Not Applicable 



 

 

 
SOFIE  94(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

maximises reuse of data and acceptance by the 
customers. 

 

REQ_FSC11.4 Self-contained 
QR codes 

The QR codes must be self-contained, so Internet 
connection is not needed to read their content. 

Not Applicable 

 
REQ_FSC11.5 Information 

recorded in QR 
codes 

The QR codes must contain product information 
related to all the segments of the chain. 

Not Applicable 

 
REQ_FSC12.1 Boxes reuse Boxes must be able to be re-used in the future (to 

carry other products) after they have been released 
of the current transfer. 

All scenarios 

 
REQ_FSC13.1 QR code reading QR labels must be accessible by everyone by using 

a smartphone device. 
Not Applicable 

REQ_FSC14.1 Traceability of 
historic data 

In the case of an audit, requested organizations must 
be able to provide proof of their claims about the 
historic data of assets which are stored locally.  

All scenarios 

REQ_FSC14.2 Timestamps of 
handovers 

Transfer of responsibility over boxes (assets) must 
be timestamped. 

All scenarios 

REQ_FSC14.3 Confirmation of 
transactions 

A transaction must be confirmed by both transacting 
parties.  

All scenarios 

REQ_FSC14.4 Retrieve of past 
transactions 

Both parties of a transaction must be able to access 
the details of the transaction at any time. 

All scenarios 

 

6.1.6 Pilot system performance KPIs in emulation sc enarios 

The following table, based on Table 4 of this deliverable, summarizes our emulation results 
regarding the respective pilot system performance KPIs. 

Table 31: System performance KPIs for the FSC emulation scenarios 

KPI Name Description Metric Method of 
measurement 

Target Results 

KPI_FSC_1 Ledger 
execution 
cost in 
public 
ledger 

Cost for 
executing 
operations on 
a ledger 

Ledger 
execution 
cost units 
(e.g., gas in 
Ethereum) 

Measure the total 
execution cost per 
box 

As low as 
possible 

Managed to reduce 
indicative daily cost 
to the order of 
~€100 per day, as 
opposed to the 
direct use of public 
Ethereum 
(Scenario 1) 
incurring a cost of 
over €4000 a day. 
See Table 29, 
Figure 24. 

KPI_FSC_2 Handover 
time 

Time to 
register data 
to blockchain 
during a 
handover 
between two 
stages 

Time unit 
(e.g., 
seconds) 

Measure the total 
time required for 
blockchain-related 
operations during 
a handover of a 
box between two 
stages 

<1 min In Scenarios 2, 3, 
and 4, handovers 
are registered in 
private Ethereum 
instances, where 
transactions are 
included in the 
following block, 
generated within 



 

 

 
SOFIE  95(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

the following 15 
seconds. 

KPI_FSC_3 Internal 
state 
transition 
time 

Time to 
register data 
to blockchain 
during a box' 
state transition 
occurring 
internally 
within a single 
stage 

Time units 
(e.g. 
seconds) 

Measure the total 
time required for 
blockchain-related 
operations during 
a state transition 
of a box within a 
single stage 

<30 sec See previous result 
(KPI_FSC_2). 

KPI_FSC_4 Throughput Number of 
boxes that can 
be processed 
per time unit 
in any 
possible 
handover or 
internal state 
transition 

Number of 
boxes per 
time unit 

Measure the 
handover and 
state transition 
delays 

> 6000 
boxes per 
day 

In Scenarios 1, 2, 
and 3, respectively, 
6000 boxes can be 
processed end-to-
end within 3720 s 
(~1h), 3240 s 
(<1h), and 1800 s 
(30 min), 
respectively, as 
deduced by 
extrapolation on 
Figure 25. Scenario 
4 has virtually 
unlimited speed, as 
transactions are 
only recorded in 
local databases, 
not ledgers. 

KPI_FSC_5 Time 
scalability 

Blockchain 
registration 
time for a 
handover or 
internal state 
transition, as a 
function of the 
number of 
boxes 
involved 

Derivative of 
the 
blockchain 
registration 
time with 
respect to the 
number of 
boxes 
involved 

Measure handover 
and state 
transition 
blockchain 
registration time 
as a function of 
the number of 
boxes involved 

Linear or 
sublinear 

Processing time 
increases linearly 
for Scenarios 1, 2, 
and 3 (Figure 25), 
while it is negligible 
for Scenario 4, 
where transactions 
are stored in local 
databases instead 
of ledgers. 

KPI_FSC_6 Cost 
scalability 
 

Public 
blockchain 
costs 
associated 
with box 
handovers or 
internal state 
transitions, as 
a function of 
the number of 
boxes 
involved 

Derivative of 
public ledger 
cost with 
respect to the 
number of 
boxes 
involved 
 

Measure public 
blockchain cost for 
handovers and 
state transitions as 
a function of the 
number of boxes 
involved 

Linear or 
sublinear 

Cost increases 
linearly as a 
function of the 
number of boxes 
for Scenario 1, 
while it is constant 
for Scenarios 2, 3, 
and 4, where it only 
depends on the 
periodic logging of 
sensors and 
anchors, 
irrespectively of the 



 

 

 
SOFIE  96(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

number of boxes 
being processed. 

KPI_FSC_7 Response 
time for 
audit 
requests 

The time it 
takes to 
respond to an 
audit request, 
by pulling out 
all data 
related to the 
box in 
question 

Time units 
(e.g., 
seconds) 

Measure the time 
it takes to pull out 
all records related 
to a given box, 
and to cross check 
them to identify 
potential issues 

<1 min All data from one or 
more ledgers 
and/or local 
databases can be 
accessed in 
parallel, with 
negligible latency, 
as reading from a 
ledger is performed 
instantaneously 
and does not 
involve any 
transaction 
processing. 

 

6.1.7 Conclusions 

It turns out that the use of a public ledger to directly store FSC data (Scenario 1) is exorbitantly 
expensive, prohibiting this option from further consideration. Even worse, it demonstrates the 
lowest throughput of all options. 

Using a single shared private ledger based on a local Ethereum instance (Scenario 2) to store 
FSC data and periodically anchoring it to a public ledger is the least expensive solution. 
However, it demonstrates mediocre throughput, which might prove detrimental if the system 
scales up with a large number of farms, supermarkets, and transportation companies getting on 
board. 

Splitting a single shared ledger into multiple ones, each serving a subset of the chain (Scenario 
3), has a very positive effect on the system’s throughput, while the cost remains within very 
reasonable levels. This approach is expected to demonstrate unlimited scalability with respect 
to the number of businesses joining the FSC, as each new pair may spawn a new private ledger. 

Finally, using local private storages (Scenario 4) for FSC data appears to be the simplest 
architecture, as entities may manage them independently without having to maintain a joint 
ledger. Additionally, throughput is not hindered by any ledger operation in this architecture. 
However, availability is expected to be lower compared to the other scenarios, a topic that is 
hard to quantify, and which deserves more attention in future work. 

6.2 Decentralised Energy Flexibility Marketplace 
The Decentralized Energy Flexibility Marketplace (DEFM) pilot aims to balance the load on a 
real energy network, namely the distribution grid of the city of Terni, located in central Italy, by 
charging electrical vehicles. 

Note that the evaluation results presented in the current deliverable for the decentralized energy 
flexibility marketplace are new. 

6.2.1 Overview 

In Terni, a significant amount of energy is produced locally by distributed photovoltaic plants, 
which on occasion can cause Reverse Power Flow, when imbalances between produced and 
consumed energy occur. To avoid this abnormal operation, Electric Vehicles (EVs) will be 
offered incentives to match their charging needs with the distribution network’s requirements, 



 

 

 
SOFIE  97(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

through a decentralized marketplace that allows electricity producers and consumers to place 
offers and bids for selling and buying electricity. 

The actors of the pilot use case are the following: 

DSO: Distribution System (Grid) Operator, responsible for grid management 

CSO: Charging Station Operator, operates multiple charging stations 

CS: Charging Station, that can charge electric vehicles 

EV: Electric Vehicle 

EVU: EV User 

FM: Fleet Manager, represents a group of EVs in the energy price negotiations 

ER: Electricity Retailer (that may be included in a later stage of the pilot, but is included 
in the use case and) that would act between the DSO, CSOs, and electricity users, 
such as FMs  

The flow of the use case is: 

1. The DSO puts flexibility requests to the decentralized marketplace (which utilizes a 
blockchain), asking for a specific amount of energy (kWh) to be drawn at specific time 
intervals, at a specific location (expressed as GPS coordinates), while providing specific 
incentives (expressed as tokens) in order to shave peaks of locally produced energy. 

2. The FM places offers to the marketplace in order to maximize the incentives. The offers 
include user type (e.g., electricity load imposed), current location, residual autonomy 
(i.e., how long the vehicle can continue before it has to be charged), and the EV's current 
status (e.g., parked). 

3. The marketplace identifies potential candidates taking both offers (by DSO and FM) into 
account and notifies selected EV users that they will receive a token incentive if they 
fulfil the conditions of the DSO's offer (i.e., charge the vehicle with a specific amount of 
electricity, using the assigned charging station, or group of charging stations, within a 
specific time interval). 

4. Some EV users accept the offer and the acceptance is recorded in the blockchain used 
by the marketplace. 

5. The EV user (who has accepted the offer) charges the EV to fulfil the conditions of the 
offer. The charging event will be recorded in the blockchain. 

6. The smart contract (running on the Ethereum blockchain) notices that the conditions of 
the accepted offer have been satisfied and sends the agreed amount of incentive tokens 
to the EVU on the (Ethereum) blockchain. 

7. For accepted bids that failed to fulfil their requirements, the EVU should be “fined” by 
sending a corresponding transaction on the (Ethereum) blockchain. 

6.2.2 Emulation overview and setup 

The design of the software that emulates the DEFM pilot is driven by the KPIs and requirements 
that are defined in D4.3 and D5.2, respectively. The use case scenarios that define the 
functionality of the pilot are presented in D5.1 and D5.2. In this section, we first introduce the 
design of the emulated setup and then we discuss the satisfaction of the (qualitative) 
requirements and the assessment of the (quantitative) KPIs.  

The design of the emulated pilot is based on the scenarios that (jointly) cover the specified 
requirements and KPIs, namely, we focus on the Pull scenario (D5.1, Section 3.3.3.1), the Push 
scenario (D5.1, Section 3.3.3.2) and the Electricity Supply Offer use case (D5.2, Section 5.2.1.2).   

In order to enhance the flexibility of our evaluation, we exploit our own implementation of the 
marketplace smart contract (emuEnergyFlexibilityMarketPlace), which allows us to explore 



 

 

 
SOFIE  98(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

clean-slate solutions for managing the energy requests and offers. We discuss the specifics of 
the emuEnergyFlexibilityMarketPlace smart contract in the following section. 

Emulation setup  

In order to evaluate and compare the emulated pilot, the emuEnergyFlexibilityMarketPlace 
smart contract was implemented in Solidity (the mainstream Ethereum language) and deployed 
on Ethereum. In order to experiment with numerous Ethereum accounts, thus being able to 
emulate multiple FM offers and DSO requests, we exploit a local Ethereum node, that was 
implemented through the Ganache ledger. This setup allows efficient investigation of the 
quantitative requirements. To assess the qualitative KPIs, we use the Ethereum Ropsten testnet 
as a public ledger, which induces realistic latency and throughput.  

We made some configuration decisions to reduce the parameter space and to allow for a fair 
comparison. With respect to parameters of our local Ethereum instances, we fixed the average 
block mining time to 15 seconds, and we set the block gas limit to 10,000,000 gas units. Both 
these values reflect the respective values in the public Ethereum main net. 

The emuEnergyFlexibilityMarketPlace smart contract offers the required functions and events 
in order to meet and explore the defined requirements and KPIs, respectively. The fact that the 
methods of smart contracts can be called by asynchronous methods allows the development of 
scripts that can implement complex sequences of function calls, thus implementing diverse 
scenarios with low development overhead. We orchestrated the emulation scenario using a 
single JavaScript script, named EmuApp, that emulates the actions of all involved actors (DSO, 
FM, EVuser and ER). The main gain of exploiting a single script is that development is relieved 
from the burden of interprocess communication, which is required for emulating the off-band 
communication, that is, communication that does not go through the blockchain. The monitoring 
of the fleet of vehicles and the status of the EVSEs qualifies in this category. Being emulated 
by the same process, thus sharing the same memory, inconsistencies of memory state among 
the actors are unlikely to occur. Finally, in the local node setup, we exploit different Ethereum 
account addresses in order to emulate the different users and, in turn, actors.  

The status of the actors is synthetic, being initialized in the beginning of the experiment; we 
currently introduce some random variables, such as the amount of energy offered flexibility 
requests, the probability of an EV to accept an offer, the price of the energy supply offer, and 
some fixed ones, such as the number of users per actor type that participate in an experiment. 
We can create numerous synthetic traces in order to stress test the pilot, but our design foresees 
the exploitation of realistic (or even real) traces in order to position our results with precision 
under real-life conditions. 

In the following we describe the emulated scenario and then summarize the fundamental parts 
of the contract. 

6.2.3 Emulation scenario 

We assume that the DSO adds a flexibility request in the marketplace used by the FMs for 
placing offers. The flexibility request carries two deadline timers (among other parameters), one 
for configuring when the best offer must be selected and a second for determining the timeframe 
within which energy must be consumed. When the first deadline expires, the marketplace is 
instructed by the DSO to accept an offer. If the offer includes transferring ETH coins, the 
marketplace executes the trade. At the same time, two events are emitted, one event notifies 
the FMs which offer has been accepted and a second event notifies EV users that there are 
available offers for them (EVoffers). At this point, two parallel procedures can take place. First, 
the FM can initiate an off-band auction with a set of ERs requesting for energy supply 
(SupplyOffers). The outcome of the auction is registered in the marketplace by both parties and 
then the trade of ETH coins takes place. Second, the EV users can notify the marketplace that 
they accept an offer and then their response is associated with the FM’s accepted offer and 



 

 

 
SOFIE  99(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

registered in the Ethereum blockchain. When the second deadline expires, the FM requests 
from the marketplace to check if the EV users did charge their vehicles and accordingly apply 
the corresponding meters: transfer the tokens to users or mark that the user did not comply with 
the terms of the agreement. The integrity and consistency of the offers and requests (including 
EVoffers and SupplyOffers) is guaranteed by the marketplace, e.g., the positive response of an 
EV user will be rejected if a number of previous ER supply offers and EV responses did cover 
the amount of energy specified in the flexibility request. 

The fundamental functions and events of the emuEnergyFlexibilityMarketPlace smart contract 
are the following: 

• Getter/setter flexibility request functions: setter is used by the DSO for adding a flexibility 
request, getter is used by the FM for reading the available flexibility request. 

• Getter/setter offer functions: setter is used by the FM for adding an offer to an available 
flexibility request, getter is used by the marketplace when emitting events in order to 
notify the EV users.  

• Decide function: used be the DSO to request by the marketplace that an offer must be 
selected (if the corresponding deadline has passed). 

• Getter/setter EV user response functions: setter is used by the DSO for adding a user’s 
positive response to an accepted FM offer, getter is used by the marketplace for 
checking that EV user conformed to the terms of agreement. 

• ConfirmCharging function: used by the EVSE for registering that an EV user fulfilled its 
commitment. 

• Transfer token function: used be the marketplace for pushing the agreed number of 
tokens to the EV user or mark that user did not comply with the agreed terms. 

The public “getter” functions return the state of the related trading action (flexibility request, offer 
etc.) in the blockchain, which also includes the result of the trade, therefore making publicly 
accessible the outcome of any marketplace trade. 

6.2.3.1 Sequence diagrams 

A more technical representation of the evaluation scenario is depicted in the following figures 
that illustrate the sequence diagrams of the procedure. The sequence diagrams define two 
actors, the EmuApp and the emuMarketplace, which is short for the 
emuEnergyFlexibilityMarketplace. In the label of the function calls, the name of the emulated 
actor is also indicated in order to make the procedure easier to follow. Without loss of 
correctness, the figures suggest that the functions of marketplace contract return data to the 
EmuApp, which is not always possible in Ethereum. In these cases, the EmuApp reads the 
result of the function via a function-specific solidity event or a solidity “view” function. 

In Figure 26, we present the sequence diagram of the emulated scenario until an FM’s offer is 
decided.  The figure reveals that our design supports multiple DSOs and FMs per deployment; 
multiple flexibility requests and offers per DSO and FM, respectively, are supported, albeit not 
being presented in this diagram. Currently, one deadline for all flexibility offers is supported. 
Finally, for reasons of convenience, the reading of the event is presented as a blocking function, 
albeit being implemented as a non-blocking call with a registered call-back function. 



 

 

 
SOFIE  100(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 26: Sequence diagram of the emulated Pull Flexibility Request Scenario. 

 



 

 

 
SOFIE  101(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Figure 27 presents the sequence diagram for the DR campaign with the EV users. The diagram 
shows that EV users can accept an offer given that they are compatible with the offer, based on 
their location and autonomy, and interested in the offer, based on a random variable. Then, they 
can fulfil the agreement, again based on a random variable, and, finally, receive the agreed 
number of tokens. The parameters of the EVoffer, such as the number of tokens, are determined 
by the marketplace. If the positive responses by the EV users surpass the number of tokens or 
energy of the flexibility request, only a subset of responses will be accepted following the “First 
Come First Serve” policy. 

 

Figure 27: Sequence diagram of the emulated Push Flexibility Request Scenario with EV users. 



 

 

 
SOFIE  102(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Finally, Figure 28 illustrates the sequence diagram for the DR campaign with the ERs. This 
procedure emulates the auction with the ER bids, which constitutes an off-band communication, 
hence each bid is determined by a random variable. Thereon, the winner of the auction is 
determined and the two parties, the FM and the winner ER, establish an agreement that is 
registered in the marketplace and, in turn, in the blockchain. 

 
Figure 28: Sequence diagram of the emulated Push Flexibility Request Scenario with ERs. 

6.2.4 Emulation results 

We preliminarily explore the performance of the emulated pilot based on the indicated pilot-
specific KPIs. We first discuss the performance assessment in detail and then summarize the 
results in Table 33. 

In order to assess the KPIs, we deployed the smart contracts that implement the emulated 
marketplace in a local Ethereum node, which is set up through the Ganache software tool (Linux 
64-bit, 4 cores @ 3.40 Ghz, 4GB RAM), and in the Ropsten public testnet. The performance 
was found to be similar in both setups, therefore we discuss only the results that were measured 
in the local node. 

We measure “response time” by subtracting the time that the smart contract function was called 
from the time the response of the function is received. We measure “execution cost” through 
the Ganache logging system, that offers the complete description of transactions. We measure 
“throughput” through the Ganache logging system, that documents all the transactions of the 
smart contract. 

6.2.4.1 Response Time 

In all the runs that we performed, the response time of any individual execution of a smart 
contract function was defined by the mining period of the Ethereum node, therefore it was less 
than 15 seconds. The result differs in case of multiple executions of a smart contract function. 
Specificcally, as discussed in the “Throughput” section, we observe that up to 40 transactions 
(caused by the most expensive function, which is to add a new flexibility request) can be mined 
in every mining round, hence in case of 41 cumulative executions, the 41th will be mined in the 
following mining round. In this case, the response time in seconds, R, is a function of the number 
of (roughly) simultaneous transactions, t, that are sent to the marketplace, increasing linearly 
by 15 seconds for every 40 transactions: 

� = 15⎿�: 6⏌ 

 



 

 

 
SOFIE  103(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

6.2.4.2 Execution Cost 

First, we measure the execution cost of the smart contract functions that write to the blockchain. 
The functions are invoked through a local script that exploits the Ethereum JavaScript API 
web3.js. In the list below, we present the results per function. The careful reader may notice 
that we also present the response latency of each function (in the parenthesis); we configured 
Ganache to auto-mine transactions (only for this experiment) in order to tentatively examine the 
processing overhead per request. 

• smart contract deployment: 1800k gas 

• add_flexibility_request: 220k gas (200ms) 
• add_flexibility_offer: 210k (200ms) 
• add_EVuser_response: 210k (200ms) 
• decide_flexibility_request: (1/ 50/ 100 offers): 60/ 150/ 250k (140/ 700/ 1200ms)  

Notice that the costs are bound to change if requirements are modified, e.g., we assume that 
offer and request identifiers are unique (through an out-of-band mechanism), hence we do not 
check for duplicate entries when adding flexibility requests and offers, thus reducing the cost.  

Also, we expect a reasonable increase of the execution cost of stateful functions that read the 
blockchain, such as a flexibility request which examines the “active” offers.  The “active” offers 
are a (redundant) struct that is used similarly to a cache: it keeps the identifiers of the requests 
and offers that have not yet expired in order to conduct stateful operations with reduced cost. 
As presented in the results, the execution cost (and processing latency) of deciding a request 
increases linearly as the number of offers increases, requiring roughly 90k more gas for every 
50 active offers. 

6.2.4.3 Throughput 

The logging system of Ganache yields that up to 40 marketplace transactions are written in the 
blockchain every mining round, which is 15 seconds. The estimation is based on adding new 
flexibility requests and offers, which cost roughly 220k gas, for two reasons. First, they are 
expected to be the most frequently executed contract functions, thus constituting the primary 
factors regarding service scalability. Second, the other actions, such as deciding a request, 
presuppose specific Blockchain state that is hard to orchestrate in large numbers. Our results 
yield that the throughput of the marketplace for adding new flexibility requests and offers can 
be roughly 9600 transactions per hour. 

6.2.5 Pilot requirements in emulation scenarios 

In the following table, we summarize how the requirements for the emulated pilot are addressed 
by the introduced design. The requirements that are not addressed by the emulated pilot (being 
described as “Not applicable”) are specific to the infrastructure of the energy grid; they are not 
related to the software implementation of the marketplace component, which assesses the 
performance of the system regarding the exploitation of the Ethereum blockchain. 

Table 32: DEFM requirements and emulation scenarios 

ID Name Description Emulation 
scenarios 

REQ_ DEFM1.1 DR strategies 
assessment 

DSO shall be able to forecast of electricity 
production/consumption 

Not applicable 

REQ_ DEFM1.2 Checking load and 
production forecast 

DSO shall be able to check the load and 
production forecasting of the whole distribution 
grid 

Not applicable 
 



 

 

 
SOFIE  104(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_ DEFM1.3 Grid System 
flexibility DR 
services 

DSO shall be able to forecast of electricity 
production / consumption at the grid level 

Not applicable 
 

REQ_ DEFM1.4 DSO foresees and 
provides flexibility 

DSO shall be able to shave picks of energy 
produced locally the day after so that instability 
of the system, overvoltage on the feeder, 
protection discoordination, increased fault 
currents, and incorrect operation of equipment 
could be avoided 

Not applicable 

REQ_ DEFM1.5 Flexibility estimation DSO shall be able to estimate the energy 
flexibility availability; 
Assess flexibility availability by using available 
historical data. 

Not applicable 
 

REQ_ DEFM1.6 Flexibility Request DSO shall be able to forecast system indicates 
a potential reverse power flow to be mitigated 
and DSO system is connected with the flexibility 
marketplace. 
The DSO system is connected with the flexibility 
marketplace 

Yes.  

Using synthetic 
statuses, the DOS 
estimates flexibility 
request and sends it 
to the marketplace. 

REQ_ DEFM2.1 DSO/Fleet Manager 
Micro-Contract 

When the Fleet Manager obtains the 
responsibility to provide the flexibility required 
by the DSO, a micro contract between the Fleet 
Manager and the DSO is executed 

Yes.  

The acceptance of the 
FM’s offer is 
registered in the 
blockchain. 

REQ_ DEFM2.2 Fleet Manager/ EV 
User Micro-Contract 

When the Fleet Manager obtains the 
responsibility to provide the flexibility required 
by the DSO and EV users not belonging to the 
fleet manager EV fleet are involved in the DR 
campaign, a micro contract between the Fleet 
Manager and the EV user is executed 

Yes. 

When the user 
accepts an offer, the 
acceptance is 
associated with the 
concerning FM and is 
registered in the 
blockchain. 

REQ_ DEFM4.1 EV/EVSE Systems 
Interoperability 

With the objective of performing Demand 
Response (DR) campaigns, it is necessary that 
the management systems of electric vehicles 
and charging stations communicate with each 
other, so that it is possible to verify in real time 
the interaction between the two systems. 

Yes. 

All the actor types are 
emulated by a single 
deployment script, 
thus sharing the same 
memory. 

REQ_ DEFM4.2 EV/EVSE Data 
Collection 

To provide DSO flexibility in an efficient way, the 
data of electric vehicles and charging stations 
must be collected in real time (or very close to 
real time). Data coming from EVSEs and the 
EVs should be consistent, reliable, transparent 
and accessible to the partners. Furthermore, to 
perform optimized DR campaign it is necessary 
to constantly calculate EV load forecasting to 
estimate the amount of energy that electric 

Not applicable 
 



 

 

 
SOFIE  105(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

vehicles could consume to meet the DSO's 
flexibility demand. 

REQ_ DEFM4.3 EV/EVSE Data 
Storage 

It is necessary that the data of electric vehicles 
and charging stations are stored so that they 
can then be reprocessed, giving fruit to charts 
that show the effectiveness for the purposes of 
the DSO of DR campaigns performed during the 
trial. 

Not applicable 
 

REQ_ DEFM4.4 EVSE Unique 
Identifier 

As there will be more than one charging station 
on the pilot site, each individual charging station 
must have its own unique identifier. 

Not applicable 
 

REQ_ DEFM4.5 EV Unique Identifier As there will be more than one electric vehicle 
on the pilot site, each individual electric vehicle 
must have its own unique identifier. 

Not applicable 
 
 

REQ_ DEFM4.6 EV/EVSE Web 
Platform 

To allow the EV user to realize the available 
charging stations and the fees associated with 
them, a web platform is required. 

Not applicable 

REQ_ DEFM4.7 EV/EVSE 
Connectivity 

Both charging stations and electric vehicles 
must be connected to the internet in order to 
send data. 

Not applicable 
 

REQ_ DEFM5.1 EVSE Remote 
Control 

The charging station must be remotely 
controlled to start/stop charging sessions and to 
modulate the power output. 

Not applicable 
 

REQ_ DEFM7.1 District forecasting DSO shall be able to have to constantly 
calculate building consumption forecasting, PV 
production forecasting and manage batteries to 
estimate the amount of energy demand at ASM 
substation. Forecasting will be calculated 
periodically (every day). Need to reduce 
undesired reverse power flows 

Not applicable 

REQ_ DEFM8.1 Fleet Manager/ 
Retailer Micro-
Contract 

When the Fleet Manager obtains the 
responsibility to provide the flexibility required 
by the DSO, a micro contract between the Fleet 
Manager and the Retailer is executed for the 
energy supply to charge electric vehicles 

Yes. 

When the winning ER 
is found, the energy 
supply is associated 
with the concerning 
FM and is registered 
in the blockchain. 

 

6.2.6 Pilot system performance KPIs in emulation sc enarios scenarios 

The experimental evaluation reveals the preliminarily operational cost and gains of the DEFM 
service when it exploits a public or private Ethereum blockchain node. The performance of the 
emulated pilot regarding the related KPIs is summarized on the following table. 

Table 33: System performance KPIs for the DEFM emulation scenarios 

ID Name  Target Result 

KPI_DEFM_1 Ledger execution 
cost 

 As low as possible Roughly 250k gas 
for write functions 



 

 

 
SOFIE  106(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

KPI_DEFM_2 Response time for 
requests and offers 

 < 5 min 7.5 s 

KPI_DEFM_3 Response time for 
determining the 
winner of the auction 

 < 5 min 

 

7.5 s 

 

KPI_DEFM_4 Response time for 
verifying the winning 
bid and 
compensating (or 
fining) the winner 

 < 5 min 

 

7.5 s 

 

KPI_DEFM_5 Throughput  > 100 per hour 

 

40 transactions per 
15 s (which is 
equivalent to 9600 
transactions per 
hour)  

KPI_DEFM_6 Scalability - time  Linear of sublinear Linear 

6.2.7 Conclusions 

The emulation results for the DEFM scenario showed that the response time of any individual 
execution of a smart contract function was determined by the mining period of the Ethereum 
node, therefore being less than 15 seconds. The result differs in case of multiple executions of 
a smart contract function. Specifically, as discussed in the “Throughput” section, we observe 
that up to 6 transactions can be mined every mining round, hence in case of 7 cumulative 
executions, the 7th will be mined in the following mining round. 

Regarding execution cost, we presented the cost for each function of a smart contract. These 
costs depend on the specific implementation and will increase if additional functionality is added 
to the smart contract. Nevertheless, our results show that the execution cost (and processing 
latency) of deciding a request increases linearly as the number of offers increases, requiring 
roughly 90k more gas for every 50 active offers. 

Finally, regarding the system throughput, our results show that the logging system supports up 
to 6 marketplace transactions are written in the blockchain every mining round (15 seconds), 
which is an estimation based on adding new flexibility requests and offers, which are expected 
to be the most frequently executed contract functions, thus constituting the primal factors 
regarding service scalability. Our results show that, for the system parameters considered in 
the emulation, the throughput of the marketplace for adding new flexibility requests and offers 
can be up to 1440 transactions per hour. 

6.3 Decentralized Energy Data Exchange 
The aim of the Decentralized Energy Data Exchange (DEDE) pilot is to enable trust between 
parties who exchange energy meter readings. The work related to this pilot included in this 
section consists of two directions. The first direction involves mapping the pilot scenarios to 
PDS and IAA scenarios presented in different sections of this deliverable. This mapping is 
discussed in Section 6.3.2. The second direction focuses on the verification of smart meter data, 
which is a function highlighted in one of the pilot scenarios. The latter work involves developing 
and evaluating a model that captures the cost tradeoffs related to the frequency with which 
hashes of the smart meter measurements are recorded on a public blockchain and is presented 
in Section 6.3.4.  

For the DEDE scenario, the new results concern new evaluation scenarios for the PDS and IAA 
components, which implement the authentication and authorization functionality required by the 



 

 

 
SOFIE  107(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

pilot scenario. The new scenarios consider the usage of VCs to support privacy (for the PDS 
component) and OAuth 2.0 access tokens supported by Ethereum ERC-721 tokens (for the IAA 
component). We also extended the evaluation results that illustrate the tradeoffs involving the 
hash recording frequency and how they depend on various system parameters (transaction and 
verification costs, rate at which data is produced, and rate of verification requests. 

6.3.1 Overview 

The four actors of the pilot are the following: 

• Smart meter system operator: this is the entity responsible for some part of the energy grid. 
This entity is also the smart meter data collector (granted by data owner) and provides 
access to the smart meter data to third parties (Data consumers - energy service providers), 
after the request of the data owner. 

• Smart meter data owner: this is the entity who is legally bound to the smart metering point 
and has the right to allow access to its smart meter data to third parties (Data consumers - 
energy service providers). 

• Data consumer - energy service provider: this entity is responsible for providing the energy 
service to the end-user (data owner) and is the main user of the smart meter data to which 
the smart meter data operator, after the request of the smart meter data owner, provides 
access to. 

• Auditor: this entity has an auditing role in energy grid operations and handles disputes 
between parties. 

The aim of the pilot can be expressed in the following two high level scenarios identified in 
deliverable D5.2 (Initial Platform Validation):  

• Data exchange scenario, which covers the sequence from identification, authorization to 
granting, requesting access and exchanging the smart meter data 

• Data exchange verification scenario, which includes audit logging, maintaining tamper-proof 
evidence in case of disputes, and verification of the integrity of smart meter data. 

6.3.2 Mapping of pilot actors to resource access en tities 

The pilot actors identified above have the following relation to the entities in the resource access 
scenarios of PDS and IAA components, shown in the message exchange diagrams of Figure 3 
and Figure 4: 

• Smart meter system operator: This entity can implement the authorization server (AS) and 
the resource server. Indeed, the OAuth 2.0 framework indicates that the authorization server 
may be the same as the resource server [Har+12]. 

• Smart meter data owner: This entity corresponds to the resource owner. 
• Data consumer - energy service provider: This entity corresponds to the client, who requests 

access to smart meter data (one type of resource). This entity would participate in the data 
exchange scenario mentioned in the previous subsection (and defined in D5.2) 

• Auditor: This entity can correspond to another client, who requests access to audit logs 
(another type of resource). This entity would participate in the data exchange verification 
scenario mentioned in the previous subsection (and identified in D5.2). 

Hence, from the above it is clear that both the data exchange and data exchange verification 
scenarios correspond to PDS and IAA authentication and authorization scenarios. In the next 
subsection we discuss how the pilot requirements are met by the PDS and IAA component 
features and the corresponding evaluation scenarios. 



 

 

 
SOFIE  108(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

6.3.3 Pilot and PDS/IAA requirements in emulation s cenarios 

The corresponding DEDE requirements from deliverable D5.2 are shown below, together with 
a description of how each requirement is considered and the corresponding evaluation 
scenarios. Note that the access control functionality is provided through the Privacy and Data 
Sovereignty (PDS, Section 3.2) and Identification, Authentication, and Authorization (IAA, 
Section 3.3) components, hence the corresponding requirements refer to those components. 

 

Table 34: DEDE requirements and emulation scenarios 

ID Name Description IAA & PDS requirements and 
Emulation Scenarios 

REQ_DEDE1.1  Data access Data owner can access info 
about his data, full visibility of 
data use 

Achieved by RF06 in Table 20 with 
IAA component requirements. 

IAA evaluation in Section 4.3. 

REQ_DEDE1.2  Unique identifiers for 
actors 

Each actor must be identified   Achieved by RF05 in Table 20 with 
IAA component requirements. 

IAA evaluation in Section 4.3 and 
Section 5.2. 

REQ_DEDE2.1  Data access Owner must be able to decide 
who gets access to his/her 
data 

Achieved by RF13 in Table 17 with 
PDS component requirements. 

PDS evaluation in Section 4.2. 

REQ_DEDE2.2  Auditability / Security All user info must be GDPR 
compliant 

Achieved by RF10-14 in Table 17 
with PDS component requirements. 

PDS evaluation in Section 4.2. 

REQ_DEDE2.3  Auditability / Security Data handover must be 
registered and proved at 
every transaction 

Achieved by RF06 in Table 20 with 
IAA component requirements. 

IAA evaluation in Section 4.3. 

REQ_DEDE2.4  Data access Service provider must be able 
to define the energy 
consumption data 
parameters 

Achieved by RF06-07 in Table 20 
with IAA component requirements. 

IAA evaluation in Section 4.3 and 
Section 5.2. 

REQ_DEDE2.5  Data transfer Service provider must be able 
to download the energy 
consumption data 

Achieved by RF06-07 in Table 20 
with IAA component requirements. 

IAA evaluation in Section 4.3 and 
Section 5.2. 

REQ_DEDE2.6  Authentication Authentication toolkit for all 
actors (eIDAS compliant) 

Achieved by RF07-08 in Table 20 
with IAA component requirements. 

IAA evaluation in Section 4.3 and 
Section 5.2. 

REQ_DEDE2.7  

 

Auditability / Security  

 

Processes monitoring the 
system must be logged, 
stored (in local environment) 

Achieved by RF06 in Table 20 with 
IAA component requirements. 

IAA evaluation in Section 4.3. 



 

 

 
SOFIE  109(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_DEDE5.1  

 

Auditability / Security  

 

Service provider must be able 
to get proof of receiving the 
energy consumption data 

Achieved by RF06 in Table 20 with 
IAA component requirements. 

IAA evaluation in Section 4.3. 

REQ_DEDE5.2  

 

Auditability / Security  

 

System logs integrity must be 
3rd party verifiable (auditor) 

Achieved by RF06 in Table 20 with 
IAA component requirements. 

IAA evaluation in Section 4.3. 

 

6.3.4 Hash recording frequency and opportunity cost  

In this subsection we present a simple model that captures the cost tradeoffs and the impact of 
the frequency with which hashes of the smart meter measurements are recorded on a public 
blockchain. Compared to the previous deliverable D4.3, the current report contains new 
numerical results that illustrate the tradeoffs involving the hash recording frequency and how 
they depend on various system parameters such as the public ledger transaction costs, the 
verification costs, the rate at which data is produced, and the rate of verification requests.  

The proposed model captures the following costs:  

• Cost (monetary) for recording data on a public blockchain. Alternatively, this can refer to 
the cost for using a timestamping service, which records data together with a timestamp 
on some immutable ledger.  

• Cost for verifying that the data (e.g., smart meter measurements stored on the platform) 
is consistent with the hashes recorded on the public blockchain. This cost corresponds 
to the processing cost or consumed power for performing the verification computations. 

• Cost that quantifies the opportunity to modify or the impact from actually modifying the 
data from the time the last hash was recorded on the public chain until the time the next 
hash will be recorded. 

The cost per unit of time for recording hashes on the public chain (or for using a timestamping 
service) can be expressed as a function P(f), which we assume is a linear function of the hash 
recording rate f. Alternatively, the function P(f) can be a concave function, if the incremental 
cost for recording hashes decreases as the hash recording rate f increases. 

The verification cost can be expressed as rverV(D) where rver is the rate of verification requests 
and V(D) is a function of the amount of data D required to perform verification. The verification 
cost is expressed as a cost per unit of time, similar to the hash recording cost. The shape of the 
function V() depends on how the hashes are computed. If the hash that is recorded on the public 
chain is computed by applying a hash function on all the data that has been produced since the 
last hash was recorded, then the verification cost V(D) is a linear function of the amount of data 
D produced between two consecutive hash recordings. D is equal to rdata/f, where rdata is the rate 
at which data is produced and f is the hash recording rate. On the other hand, if a Merkle tree 
is used to compute the hashes that are recorded on the public chain, then the verification cost 
V(D) is a logarithmic function of D=rdata/f. 

The cost that quantifies the opportunity to modify or the impact from modifying the data from the 
time the last hash was recorded on the public chain until the time the next hash will be recorded 
can be expressed as a function Q(D) of the amount of data D produced between consecutive 
hash recordings. The actual shape of Q() is application and scenario specific. Possible shapes 
are the following: 

• Linear: Such a shape corresponds to the case where the impact of modifying additional 
data is independent of the total amount of data modified. 



 

 

 
SOFIE  110(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

• Concave: Such a shape corresponds to the case where modifying data initially has a 
large impact, which becomes smaller as more data is modified. 

• Convex: This shape corresponds to the case where modifying data has a small impact 
up to some amount of modified data, after which the impact increases when more data 
is modified. 

• Sigmoid or stepwise function: In this case, initially modifying data has a small impact (or 
zero impact in the case of a stepwise function), which increases sharply at some point. 
Then the impact from modifying additional data is smaller (or zero in the case of a 
stepwise function). 

6.3.4.1 Evaluation results 

In this subsection we present numerical results for the model presented above. Our goal is to 
illustrate how the overall cost and tradeoffs involving the hash recording frequency and how 
they depend on various system parameters such as the public ledger transaction costs, the 
verification costs, the rate at which data is produced, and the rate of verification requests. 

Based on the model presented in the previous subsection, if cpub is the cost for recording a hash 
on the public ledger, then the cost per unit of time for recording hashes on the public chain is 
P(f)=f cpub. The verification cost is rver V(rdata/f) cver, where rver is the rate of verification requests, 
rdata is the rate at which data is produced, and cver is the cost for each verification. The cost cver 
represents the cost for a unit of computation that is necessary for performing verification, while 
the function V() depicts the amount of computation necessary for performing the verification. In 
the numerical results presented below, we assume that cpub/cver = 2. 

The function V() depends on how the hash recorded on the public ledger is recorded. If the hash 
recorded on the public blockchain is computed by applying a hash function on all the data that 
has been produced since the last hash was recorded, then V(rdata/f) is a linear function. On the 
other hand, if a Merkle tree is used, then V(rdata/f) is a logarithm of rdata/f. 

The verification cost rverV(rdata/f) and the total cost P(f) + rverV(rdata/f) as a function of the hash 
recording rate f in the case of a linear function V() are depicted by the lines containing the label 
“linear” in the figure below. We have assumed that rdata/rver=1000. Observe that the optimal hash 
recording frequency, which is the frequency with the lowest total cost, is approximately 16. Note 
that the time units for the hash recording frequency are the same time units that the rate rdata 
data is produced and the verification request rate rver. The verification cost and total cost for the 
case of a logarithmic function V() correspond to the lines with the label that includes “log”. 
Observe that in this case, the optimal frequency is smaller than one, i.e., it is much smaller than 
the optimal frequency in the case of a linear function V(). The reason for the smaller optimal 
frequency in the case of a logarithmic function V() is because of the concave dependence of 
the corresponding verification cost on the hash recording frequency. 



 

 

 
SOFIE  111(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 29: Cost as a function of frequency for a linear and logarithmic verification function V(f) 

 

The optimal frequency as a function of the ratio cpub/cver when the verification cost is a linear and 
logarithmic function is shown in the figure below. Note that the optimal frequency depends on 
the values of cpub, cver only through their ratio and not separately on the absolute values of these 
parameters. The figure shows that for both types of verification cost functions, the optimal 
frequency decreases. However, Figure 31 shows that the optimal frequency decreases slower 
in the case of a linear verification function, compared to a logarithmic verification function.  

 
Figure 30: Optimal frequency as a function of the ratio cpub/cver  

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

frequency (f)

P

V linear

P+V linear

V log

P+V log

0

5

10

15

20

25

0 10 20 30 40 50

O
p

ti
m

a
l 

fr
e

q
u

e
n

cy

cpub/cver

V linear

V log



 

 

 
SOFIE  112(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 31: Ratio of optimal frequency for a linear and logarithmic verification cost as a function of the 

ratio cpub/cver  

 

The optimal frequency as a function of rdata, when rver is constant and equal to one, for a linear 
and logarithmic verification function is shown in the figure below. Observe that for a linear 
verification cost, the optimal frequency increases with rdata. On the other hand, in the case of a 
logarithmic verification cost the optimal frequency is independent of rdata. This is because the 
optimal cost depends on the logarithm of rdata. 

 

 
Figure 32: Optimal frequency as a function of rdata. The verification rate rver is constant and equal to one. 

 

The EVM cost for recording a 32-bit hash on the Rinkeby public is approximately 22,600. Hence, 
if the optimal hash recording frequency is used, the EVM cost for recording hashes as a function 
of rdata is shown in the figure below, whose shape follows that of Figure 32. 

0

20

40

60

80

100

120

0 10 20 30 40 50

f*
 l

in
e

a
r 

/ 
f*

 l
o

g

cpub/cver

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

O
p

ti
m

a
l 

fr
e

q
u

e
n

cy

rdata

V linear

V log



 

 

 
SOFIE  113(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 33: EVM gas cost as a function of rdata when the optimal hash recording frequency is used. The 

verification rate rver is constant and equal to one. 

 

Nex,t we estimate the cost in euros that corresponds to the above model for selecting the 
optimal hash frequency. We take the time unit of rdata and rver to be one day, hence rver=1 
corresponds to one verification request per day and rdata=720 (=12*60) is the number of smart 
meter measurements in one day, if a smart meter measurement is taken once every minute. 
For the conversion of gas to ether, we assume a price of 10−8 ETH per gas unit (referred to as 
10 nanoether or 10 gwei) and the price of €200 per ETH. The resulting cost as a function of rdata 
is shown in the figure below. As the above figure, the shape of the figure below follows that of 
Figure 32. 

 
Figure 34: Cost (€) as a function of rdata when the optimal hash recording frequency is used. The 

verification rate rver is equal to one verification per day. 

 

Our next investigation considers the cost of the opportunity for modifying data before a hash is 
recorded on the public ledger. We consider two cases for the function Q(D), where D is the 

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000

E
xe

cu
ti

o
n

 c
o

st
 (

x
1

0
0

0
 g

a
s)

rdata

V linear

V log

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000

C
o

st
 (

€
)

rdata

V linear

V log



 

 

 
SOFIE  114(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

amount of data produced between consecutive hash recordings, that models the opportunity 
cost: 0.1*D and 1*D. The second function reflects the case where the opportunity cost is ten 
times higher than the first function. The amount of data D between two consecutive hash 
recordings is D=rdata/f. 

Figure 35 shows that for opportunity cost Q(D)=0.1*D and a linear verification cost V(), the 
optimal hash recording frequency is approximately 35, which is higher than the value 16 when 
the opportunity cost is not considered. For a logarithmic verification cost the optimal recording 
frequency is approximately 15, compared to less than one in the case where the verification 
cost is not considered. Hence, we observe that the opportunity cost has a comparatively higher 
impact in the case where the verification cost is a logarithmic function. 

 
Figure 35: Cost as a function of frequency for a linear and logarithmic verification function V(f) and 

Q(D)=0.1*D  

Figure 36 shows that results when the opportunity cost Q(D)=1*D is considered. Compared to 
the previous figure, we see that, as expected, the impact of the opportunity cost is higher. 
Moreover, the figure illustrates that as the opportunity cost becomes higher, the difference of 
the optimal hash recording frequency for the linear and logarithmic verification cost functions 
becomes smaller. 

 

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100

frequency (f)

P+V linear

P+V log

Q

P+V+Q linear

P+V+Q log



 

 

 
SOFIE  115(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 36: Cost as a function of frequency for a linear and logarithmic verification function V(f) and 

Q(D)=1*D  

Finally, we discuss the maximum throughput for recording hashes. For a private Ethereum 
network, the throughput is determined by the maximum number of transactions that can be 
recorded in one block and the block mining time. The number of transactions that can be 
recorded in one block depends on the block gas limit and the gas required for the transaction 
that records hashes. If we assume that the block gas limit is 10,000,000 gas (which is the default 
value for the public Ethereum main net) and the hash recording transaction requires 22,600 gas 
units, then approximately 440 hash transactions can be recorded in one block. If we assume 
that a new block is mined once every 15 seconds (default average value for the public Ethereum 
main net), then we have a throughput of 1,760 hash recording transactions per second. The 
above throughput estimate refers to a private Ethereum network which is used solely for hash 
recording transactions. A public Ethereum network is shared by many users submitting 
transactions, hence the hash recording throughput would depend on the rate that these users 
submit transaction. 

6.3.5 Pilot system performance KPIs in emulation sc enarios 

The evaluation results for scenarios related to this pilot and the corresponding system 
performance KPIs are presented in the following table. 

Table 35: System performance KPIs for the DEDE emulation scenarios 

KPI Name Target Results 

KPI_DEDE_1 Cost for 
computing 
discounts 

As low as 
possible 

Results presented in D4.3 (Section 5.3.1). When only hashes 
are recorded on the public blockchain cost can be more than 
80% lower compared to having smart contracts handle 
discounts. Moreover, the cost for recording hashes is 
proportional to the hash recording frequency (see also Section 
6.3.4).  

KPI_DEDE_2 Cost for 
recording 
hashes 

As low as 
possible 

Cost for recording hashes on public DLT is proportional to the 
hash recording frequency. The tradeoff with the verification cost 
is investigated in Section 6.3.4. 

KPI_DEDE_3 Response 
time for 

<5 s Responding to a resource access request for the first time 
requires 2 roundtrips, one lookup in the blockchain, one 

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100

frequency (f)

P+V linear

P+V log

Q

P+V+Q linear

P+V+Q log



 

 

 
SOFIE  116(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

access 
requests  

signature generation, and one signature verification (see Section 
4.3.2). All operations can be done in less than 1 s.  

KPI_DEDE_4 Response 
time for DID 
operations 

<5 s DID operations are evaluated in D4.3, Section 3.3.2 and they 
required less than 200 ms, even in constrained devices.  

KPI_DEDE_5 Response 
time for KSI 
Blockchain 
signatures 

<2 s Will be investigated in pilot (WP5 and D5.3). 

KPI_DEDE_6 Processing 
time of 
requests in 
adapter 

<5 s Will be investigated in pilot (WP5 and D5.3). 

KPI_DEDE_7 Response 
time for 
audit logs 

<15 s Will be investigated in pilot (WP5 and D5.3). 

KPI_DEDE_8 Scalability – 
cost 

linear or 
sublinear 

Results presented in D4.3 (Section 5.3.1) showed linear 
dependence of transaction cost on the frequency of discounts 
computations and hash recording frequency. The tradeoff with 
the verification cost is investigated in Section 6.3.4. If the optimal 
hash frequency is considered, the public ledger transaction cost 
as a function of the data rate is sublinear for a linear verification 
cost and constant for a logarithmic verification cost (Figure 33 
and Figure 34). 

KPI_DEDE_9 Scalability – 
time 

Linear or 
sublinear 

The computational cost and delay of IAA and PDS is linear to 
the number of clients. Nevertheless, with respect to a single 
client, the computational cost and delay are sublinear to the 
number of requests, since a VC (in the case of PDS) and an 
access token (in the case of IAA) can be re-used.  

 

6.3.6 Conclusions 

For the DEDE scenario the new results include new evaluation scenarios for the PDS and IAA 
components, which implement the authentication and authorization functionality required by the 
pilot scenario. The new scenarios consider the usage of VCs to support privacy (for the PDS 
component) and OAuth 2.0 access tokens based on Ethereum ERC-721 tokens (for the IAA 
component).  

We also extended the evaluation results that illustrate the tradeoffs involving the hash recording 
frequency and how they depend on various system parameters such as the public ledger 
transaction costs, the verification costs, the rate at which data is produced, and the rate of 
verification requests. The results show that the tradeoffs and optimal system performance 
depends on how the hash recorded on the public blockchain is recorded. Namely, if the hash is 
computed by applying a hash function on all the data that has been produced since the last 
hash was recorded or if a Merkle tree is used to compute the hashes that are recorded on the 
public chain. The optimal hash recording frequency is significantly smaller in the latter case 
(Merkle tree) compared to the former case (linear computation of hashes). 

Furthermore, new results include the influence of the opportunity cost (or gain) for modifying 
data before a hash is recorded on the public ledger. These results show that the opportunity 
cost has a comparatively higher impact when the hashes are computed using a Merkle tree. 



 

 

 
SOFIE  117(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Moreover, when the opportunity cost increases, the difference of the optimal hash recording 
frequency for the linear computation of hashes and computation of hashes using a Merkel tree 
becomes smaller. 

6.4 Mixed Reality Mobile Gaming 
The Mixed Reality Mobile Gaming (MRMG) pilot will prototype a scavenger hunt location-based 
game. The goal of this game is to explore various use cases of blockchains within gaming, like 
payments based on cryptocurrency or cryptocash (regulated real-world money) and 
advertisements. The game is based on IoT devices (e.g., IoT beacons) and on an open 
ecosystem built on top of DLTs. 

The new results contained in this deliverable compared to the first evaluation deliverable D4.3 
include two new emulation scenarios. The first of these scenarios utilizes the Hyperledger Fabric 
blockchain to support the functionality of the mobile gaming pilot, while the second newly added 
scenario leverages both public Ethereum and Hyperledger Fabric. Furthermore, we extended 
the evaluation results of the scenarios defined in previous deliverable D4.3. In particular, the 
evaluation results, in this deliverable, contain execution cost, response time, throughput and 
scalability of the system.  

6.4.1 Overview 

The goal of the scavenger hunt location-based game, described in Deliverable 5.1 is for the 
players to collect as many points as they can, in order to get rewards. In order to collect points, 
a player must physically visit an area where an IoT device is deployed. When he visits the 
location, then a riddle alongside with some clues, provided by the gaming company or other 
players, are shown on his mobile phone. Solving the riddle will reveal the location of the next 
Point of Interest (PoI), in order for the player to go there, collect his points and download the 
next riddle. This procedure continues until the last IoT device is reached.  

In addition to the main functionality of the game described above, the mobile game provides 
some additional features. A player will be able to skip any challenge he wants by viewing an 
advertisement, by paying in in-app tokens or in real-world money. Furthermore, if a player 
watches an advertisement, irrespective of skipping the challenge, he will get a reward given by 
the ads company. Moreover, the player is able to get in-app tokens by paying or by viewing an 
advertisement. Finally, the player can, at any point of the game, redeem his points in order to 
get rewards given by the game company. The rewards can be assets (e.g., a sword or a shield) 
that can be used in the game or in any other games that use the same blockchain platform, 
thanks to the blockchain’s properties (immutability, transparency, etc.). 

For the IoT part of the game, IoT beacons will be used to provide the proximity location of a 
player when he visits the appropriate location. The beacons will communicate with the 
smartphone of the player using Bluetooth Low Energy (BLE).  

6.4.2 Emulation overview 

To evaluate the performance of the aforementioned MRMG use case, we used an emulation 
environment. The emulation will help us obtain a better understanding of the application of 
blockchain to mobile gaming and compare different DLT setups that utilize public and 
private/permissioned blockchains. Specifically, our emulation environment supports public 
(Rinkeby public Ethereum testnet) and private (private Ethereum or Hyperledger Fabric) ledgers, 
allowing us to compare different configurations with the two types of blockchain that have 
different properties and trade-offs, in terms of transaction cost, latency, transparency and 
privacy. Our evaluation focuses on the system performance metrics, defined on the KPIs 
(Chapter 2.2) for this specific pilot. On the other hand, with the emulation environment we cannot 



 

 

 
SOFIE  118(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

investigate the beacon detection time or other metrics such as the deployment of IoT beacons 
or business-oriented metrics such as player satisfaction. 

To start with, the mobile gaming client was emulated as a Web application (implemented in 
React, which is a JavaScript library for building user interfaces) in some scenarios and as a 
JavaScript application in others. The client application has a simple UI that both the players and 
the game administrators use. For emulation purposes, we assume that the players already have 
created an account in the gaming system and a blockchain wallet too. The latter corresponds 
to a public/private key pair for performing transactions on the Ethereum or Fabric blockchain 
network. Each challenge is identified by a unique identifier. Players can select the challenges 
they wish to play by choosing the corresponding challenge ID. The client application has a 
complete button, which emulates the solution of the challenge’s riddle. To emulate the in-app 
tokens, we developed a smart contract that implements the required functionality. In Ethereum, 
this smart contract implements the ERC20 token standard. Finally, the action of viewing 
advertisements is emulated as a function of a smart contract. 

The following figure shows the use case diagram of the emulation environment. The figure 
shows the actors of the mobile gaming ecosystem and the functions of the emulated mobile 
gaming system they can perform or interact with.  As mentioned above, the IoT related functions 
(such as beacon discovery) are not included in the gaming emulation and for this reason the 
use case diagram does not include such functions nor the corresponding entities (e.g., POI 
employee). 

 
Figure 37: Actors’ interaction with the mobile gaming system 

The core functionality of the scavenger hunt location-based mobile game, described above, was 
emulated by three smart contracts. The first smart contract, named game smart contract, 
communicates directly with the client application. It implements the functionality related to the 



 

 

 
SOFIE  119(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

challenges and rewards. Specifically, it records the challenges on the blockchain and the 
mapping of players and challenges and whether a particular player has completed a challenge 
or not. Furthermore, the smart contract automatically calculates the points each player obtains 
from completing a challenge and implements the function for skipping a challenge. Finally, it 
has a function for redeeming the rewards. The second smart contract is the ads smart contract, 
which checks whether the user “watched” an advertisement or not. The last smart contract, 
called token smart contract creates and manages the in-app tokens. 

6.4.3 Emulation scenarios 

One of the advantages of using emulation is that we can experiment with various configurations 
and scenarios involving different DLTs setups. We evaluate the scavenger hunt location-based 
mobile game in four different scenarios, presented below. 

6.4.3.1 Scenario 1 

The first scenario considers a single (public) Ethereum blockchain, which implements all the 
gaming functions of the three smart contracts. The experiments in this scenario took place on 
the Rinkeby testnet. The components of this scenario are: 

• Web application: This component performs the interaction between the actors and the 
functions of the mobile game. 

• Ads smart contract: This component checks whether a user “watched” the advertisement 
or not. 

• Tokens smart contract: This component implements the ERC20 standard. It creates and 
manages the in-app tokens. 

• Game smart contract: This component implements all the main functionality of the game. 

In this scenario, all the smart contracts are deployed on the same (public) Ethereum network, 
thus there is no need for an Interledger Gateway (ILG) for the contracts to communicate with 
each other. The UML class diagram for this scenario is shown below. 



 

 

 
SOFIE  120(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 38: UML component diagram for the first MRMG scenario 

6.4.3.2 Scenario 2 

The second scenario implements the class diagram shown in the following figure and 
investigates the gains from utilizing two types of blockchain, a public blockchain and a 
private/permissioned blockchain. In this scenario, the first blockchain is a public Ethereum, while 
the second blockchain is a private instance of Ethereum. The components of this scenario are 
the same ones shown above for Scenario 1. However, in this scenario the smart contracts are 
deployed on different blockchain networks: the game smart contract is deployed on the private 
Ethereum blockchain, while the other two smart contracts are deployed on the public Ethereum. 
The interconnection of these two ledgers is performed through an ILG. 

• ILG: “listens” for events on both Ethereum blockchains. Such events are generated each 
time a player invokes a function of the game smart contract that needs to perform an 
action involving the in-app tokens or advertisements. 



 

 

 
SOFIE  121(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 39: UML component diagram for the second MRMG scenario 

6.4.3.3 Scenario 3 

The third scenario considers a single ledger, but differs from the first scenario in that the 
blockchain is a permissioned blockchain, namely Hyperledger Fabric, rather than the public 
Ethereum. The components of this scenario are the same as the first scenario, so there is no 
need for an ILG. However, there are some differences between these two scenarios, due to the 
different blockchain technology used. In particular, in this scenario a player cannot skip a 
challenge by paying in cryptocurrency, because Fabric does not support cryptocurrencies. The 
UML class diagram of this scenario that shows the actions, the function, etc., is presented in 
the following figure. 



 

 

 
SOFIE  122(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 40: UML component diagram for the third MRMG scenario 

 

6.4.3.4 Scenario 4 

Finally, the last scenario that will be evaluated utilizes two (different) blockchains instead of one. 
The first one is the public Ethereum, while the second one is Hyperledger Fabric. The game 
smart contract is deployed on Fabric, while the ads and tokens smart contracts are deployed 
on the public Ethereum. In this scenario we need an ILG for the communication between the 
two ledgers. The ILG implements both the Fabric SDK, as well as the communication with the 
Ethereum blockchain, using the web3 library. The class diagram of this scenario is shown below. 
The smart contracts of this scenario are the same as in the other scenarios, thus the diagram 
does not show the functions and the parameters of each smart contract. 



 

 

 
SOFIE  123(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 41: UML component diagram for the fourth MRMG scenario 

6.4.4 Evaluation results 

In Deliverable 4.3, we presented some preliminary results from the evaluation of the MRMG 
pilot. Specifically, we presented the execution cost in terms of gas for Scenarios 1 and 2 of our 
emulation. Moreover, we showed how the emulation of the pilot meets the defined requirements. 
In this deliverable, we present a more comprehensive system performance evaluation of the 
mobile game, based on the KPIs we have defined, for all four scenarios.  

The first KPI involves the cost for executing operations on a public ledger. All the 
aforementioned scenarios involve the invocation of a smart contract. This invocation is achieved 
through a transaction. Transactions on a public blockchain incur a transaction cost, which in 
Ethereum is expressed as the cost of gas for executing transaction on the Ethereum Virtual 
Machine (EVM). On the other hand, transactions on a private/permissioned blockchain (private 
Ethereum and Fabric) do not entail an execution cost. The execution cost for the scenarios is 
shown in the following table. 

 

  



 

 

 
SOFIE  124(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Table 36: EVM execution cost for MRMG scenarios 

Function Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Add challenge 47050 N/A N/A N/A 

Begin challenge 52432 N/A N/A N/A 

Complete challenge 53529 N/A N/A N/A 

Skip challenge by paying 61867 N/A N/A N/A 

Skip challenge by paying in In-
App tokens 

63877 33438 N/A 33438 

Skip challenge by viewing 
advertisements 

53926 21462 N/A 21462 

Get tokens by paying 44199 35274 N/A 35274 

Get tokens by viewing 
advertisements 

37981 56736 N/A 56736 

Redeem rewards 36618 35274 N/A 35274 

 
The transaction cost (gas) for the Scenarios 1, 2 and 4 is shown in the following figure. Note 
that the execution cost for the functions of the Scenario 2 and 4 is exactly the same, because 
the smart contracts are the same. 

 

 
Figure 42: EVM execution cost for the MRMG scenarios 

From the figure above, we observe that for all the functions except one, the execution cost is 
smaller in the second and fourth scenario, which involve a public and private ledger. That is 
happening, because these actions involve the interaction of the game smart contract with the 

0

10000

20000

30000

40000

50000

60000

70000

Scenario 1 Scenario 2,4

E
xe

cu
ti

o
n

 c
o

st
 (

g
a

s)

Add challenge Begin challenge Complete challenge

Skip challenge (ether) Skip challenge (tokens) Skip challenge (ads)

Get tokens Get tokens (ads) Redeem rewards



 

 

 
SOFIE  125(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

ads or the token smart contract. On Scenarios 2 and 4, these two smart contracts are deployed 
in the private blockchains, so they impose no execution cost. For this reason, the total amount 
of cost required for these specific actions is the gas consumed only by the public ledger. 

The function that has a higher execution cost on the 2nd and 4th scenario is for getting in-app 
tokens by viewing advertisements. This function involves the invocation of all the three smart 
contracts. The player first calls the function of the game smart contract to alert the system that 
he wants to watch an advertisement in order to get tokens, then the game smart contract will 
invoke the ads smart contract and finally when the ads smart contract finishes the execution, 
the game smart contract will invoke the token smart contract to give the tokens to the player. In 
the first scenario, all these invocations need only one transaction for invoking the game smart 
contract; the game smart contract will invoke the other smart contracts internally, without the 
need of a new transaction. In the other scenarios, that cannot happen because the smart 
contracts are on different ledgers. Thus, we need more transactions. First, we invoke the game 
smart contract, which will trigger an event that will be “caught” by the ILG. Then, the ILG will 
send a transaction to the ads smart contract and when the execution finishes, it will send a 
transaction back to the game smart contract to inform it that the user watched the advertisement 
and it can proceed with the payment. This procedure will happen with the token smart contract 
too. So, for this particular action these two scenarios add an overhead of two more transactions 
to the game smart contract. 

The most common performance metric of any system is the response time required by the 
system to execute read and write requests. In our case, where the gaming system utilized 
blockchains, the response time metric corresponds to the time that the system performs read 
or write transactions. The second KPI refers to the time for the system to respond to game sate 
altering transactions. In addition to gas, the use of Ethereum blockchain incurs a transaction 
delay, which depends on the block mining. The average time for mining a new block on 
Ethereum is ~ 15 seconds. Therefore, the response time for write requests on Ethereum is ~ 15 
seconds, so with the first and the second scenario we cannot achieve the desirable result, which 
is 3 seconds. However, we have performed experiments in the Rinkeby public testnet to 
measure the transaction delay. These results depend on factors such as the load of the 
Ethereum network. The results in the table are the average from 10 executions for each of the 
actions. For a better understanding of the results, we calculated the 95% confidence interval. 
The results and the 95% confidence interval (in parenthesis) are shown in the table below. 

Table 37: Mean response time (s) for write requests (confidence intervals in parentheses) 

Function Scenario 1  Scenario 2 Scenario 3 Scenario 4  

Add challenge 14.55 (2.48) 14.55 (2.48) 2.209 (0.029) 2.209 (0.029) 

Begin challenge 15.38 (3.14) 15.38 (3.14) 2.195 (0.009) 2.195 (0.009) 

Complete challenge 14.14 (3.57) 14.14 (3.57) 2.187 (0.011) 2.187 (0.011) 

Skip challenge by ads 15.14 (3.39) 15.14 (3.39) 2.182 (0.016) 15.14 (3.39) 

Get tokens (redeem reward) 11.12 (2.05) 11.12 (2.05) 2.187 (0.015) 11.12 (2.05) 

Skip challenge by tokens 12.96 (2.90) 12.96 (2.90) 2.176 (0.014) 12.96 (2.90) 

 

The above table shows that the response time for all the write requests, for the Scenario 3, is 
less than 3 seconds, thus this scenario achieves the target for the specific KPI. On the other 
hand, Scenario 4 achieves the target, only for the functions that are executed on the Fabric 



 

 

 
SOFIE  126(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

blockchain. The response time for altering transactions of all scenarios is shown in the following 
figure. 

 
Figure 43: Response time for write requests 

On the other hand, the third KPI refers to the response time for read requests, namely non-
altering transactions. Read requests in Ethereum do not broadcast or publish anything on the 
blockchain, and the response is returned instantaneously, since the requests are local, and they 
do not need the Ethereum network. Thus, for this KPI, we can achieve the desirable target for 
all scenarios, even for the scenarios that involve Ethereum. The results with the 95% confidence 
interval are shown in the table below. Again, we performed each experiment 10 times to take 
the average value. 

Table 38: Mean response time (s) for read requests (confidence intervals in parentheses) 

Function Scenario 1  Scenario 2  Scenario 3  Scenario 4  

Query points 1.106 (0.053) 1.106 (0.053) 0.0241 
(0.0019) 

0.0241 
(0.0019) 

Query challenge 1.085 (0.036) 1.085 (0.036) 0.0256 
(0.0062) 

0.0256 
(0.0062) 

Query tokens 1.124 (0.058) 1.124 (0.058) 0.0211 
(0.0012) 

1.1239 
(0.0583) 

 

As we can see from the above table, the response time in scenarios that utilize Ethereum is not 
negligible. That is happening because in our emulation, we do not run an Ethereum (full or light) 
node. So, to connect with the Ethereum blockchain we communicate with another node of the 
Ethereum network. For this reason, we have an addition overhead introduced by the network. 
However, we did some experiments with local Ethereum, in order to find out the exact value for 
the response time in non-altering transactions, which is 0.0450 second. The following figure 
presents the response time for read requests for the four scenarios. 

 

0

2

4

6

8

10

12

14

16

18

Add challenge Begin challenge Complete

challenge

Skip challenge

by ads

Get tokens Skip challenge

by tokens

R
e

sp
o

n
se

 t
im

e
 (

se
co

n
d

s)

Scenario 1 Scenario 2 Scenario 3 Scenario 4



 

 

 
SOFIE  127(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 44: Response time for read requests 

The fourth KPI is the BLE beacon detection time. As we have already mentioned above, our 
emulation does not consider IoT related metrics, thus we do not have results about this specific 
KPI. The next KPI is about throughput, which is defined as the maximum number of transactions 
per time unit. The target for this KPI is 222 read transactions per second and 133 write 
transactions per second. 

It is clear that for the first and the second scenario we cannot achieve the desired results, due 
to the time constraints that the Ethereum blockchain introduces. However, for the other two 
scenarios the target is achievable. 

To measure the throughput in Fabric, we set the number of transactions per block equal to 20, 
with a maximum transaction size equal to 99 MB. From the experiments, we observed that a 
block is added on the ledger in ~ 100 ms. It takes ~ 30 ms to validate a block and ~ 70 ms for 
the multiversion concurrency control mechanism and the mechanism that commits the block to 
the ledger. 

In our case, the write transaction size is ~ 500 KB, thus for a write request we need one 
transaction. To store 133 transactions, we need 7 blocks. As we have already mentioned above, 
1 block is added on the ledger in ~ 100 ms, so 7 blocks need 0.7 seconds. Thus, the system 
can support 190 write transactions per second. Therefore, we can easily achieve the desirable 
target for the write requests, which is 133 write transactions per second.  

On the other hand, for the read requests, the process is slightly different. The transaction flow 
in Hyperledger Fabric is: 

1. The client sends a transaction proposal. 
2. The endorsing peers execute the transaction and send back as a proposal response the 

signed result. No updates are made to the ledger. 
3. The client broadcasts the transaction proposal and response to the ordering service. 
4. The ordering service orders the transactions and creates blocks. 
5. The blocks are broadcasted to all peers, are validated and each peer appends the new 

block to the chain. 

However, if the transaction is a query (read transaction), the flow ends on step 2. So, the 
throughput for the read requests depends only on the network and not on the blockchain itself. 

0

0,2

0,4

0,6

0,8

1

1,2

Query points Query challenge Query tokens

R
e

sp
o

n
se

 t
im

e
 (

se
co

n
d

s)

Scenario 1 Scenario 2 Scenario 3 Scenario 4



 

 

 
SOFIE  128(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

To measure the throughput for the read requests in Fabric, we performed some experiments. 
The experimental results show that for 222 read transactions, we need 1.9053137 seconds, so 
the system can support 117 transactions per second. However, note that these transactions are 
sent sequentially, thus if we send the requests in parallel, we can achieve the desirable target. 

The remaining KPIs refer to scalability. In particular, the sixth KPI is the cost scalability. This 
KPI is applied only to the scenarios that utilize the Ethereum public blockchain, that incurs a 
transaction cost.  We defined the cost scalability as the ratio of gas cost over the number of 
challenges. The results are shown in the following figure. 

 

 
Figure 45: Cost scalability 

As we can see from the figure above, cost scalability is linear, which is desirable. The cost 
scalability will be remained linear in all the scenarios that involve the public Ethereum blockchain.  
The last KPI is the time scalability. In Ethereum, to record a new challenge on the blockchain 
we send a transaction. A block in private Ethereum can store 74 transactions related to 
challenges. Each block is mined in ~ 15 seconds. So, the time scalability for the scenarios that 
involve private Ethereum is sub-linear. On the other hand, in public Ethereum, we cannot find 
out the exact number of transactions that can be stored in a block, because it depends on many 
external factors, such as the gas and the transactions sent by other nodes in the network. 
However, the scalability will remain sub-linear. In Fabric, we have already mentioned that a 
block can store 20 transactions and a block is added on the ledger on ~ 100 milliseconds. The 
time scalability for the scenarios is shown in the figures below. 

 

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

10 20 30 40 50 60 70 80 90 100

G
a

s

Number of Challenges

Ethereum



 

 

 
SOFIE  129(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 46: Time scalability for scenarios utilizing Ethereum 

 

 
Figure 47: Time scalability for scenarios utilizing Hyperledger Fabric 

 

6.4.5 Pilot requirements in emulation scenarios 

The following table lists the requirements for the MRMG pilot from Deliverable 5.2 and presents 
how the emulation scenarios address these requirements. Some of the presented requirements 
refer to the final pilot application and are out of scope of the emulation. Such requirements are 
marked as “Not Applicable”. 

 

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400

T
im

e
 (

se
c.

)

Number of challenges

Ethereum

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 20 40 60 80 100 120 140 160

T
im

e
 (

se
c.

)

Number of challenges

Fabric



 

 

 
SOFIE  130(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Table 39: MRMG requirements and emulation scenarios 

ID Name Description Emulation Scenarios 

REQ_ MRMG0.1 Unique identifiers for 
every actor 

Each person interacting 
with the game or web 
application should have a 
unique identifier. 

Each actor has a unique 
identifier (wallet)  

All scenarios 

REQ_ MRMG1.1 Game Mobile application Game challenges are 
accessible using the 
Android application   

The mobile application is 
emulated as a React or 
JS application and every 
challenge is accessible 
through it 

All scenarios 

REQ_ MRMG1.2 Joining any game 
challenge 

Players can join any 
challenge by scanning 
the QR code or manually 
entering challenge ID. 

Any player can join any 
challenge by entering the 
challenge unique ID 

All scenarios 

REQ_ MRMG1.3 Unique identifier for 
challenges 

Each challenge should 
have a unique identifier 

Each challenge has a 
unique integer identifier 

All scenarios 

REQ_ MRMG1.4 Record the time taken to 
complete a challenge.  

Time should be recorded 
for each player, starting 
after joining the challenge 
till the player completes it. 

Not Applicable  

REQ_ MRMG1.5 Receive Clues / tasks Players should receive 
unique clues / task when 
near the IoT beacons 
based on their challenge. 

Not Applicable 

REQ_ MRMG1.6 Skip any task Players should be able to 
skip any task and receive 
location of next IoT 
beacon using the In-App 
tokens. 

Players can skip any task 
by paying with In-App 
tokens 

All scenarios 

REQ_ MRMG1.7 Purchase In-App tokens Players can buy an 
unlimited amount of In-
App token using the fiat 
currency  

Players can buy In-App 
tokens using fiat currency 

In Scenario 1,2.4 

REQ_ MRMG1.8 Points calculation  System should 
automatically calculate 
the points based on the 
time taken to complete 
any challenge 

When a player completes 
a challenge, a fixed 
amount of points is 
automatically added to 
his account 

All scenarios 

REQ_ MRMG2.2 Rewards distribution System should 
automatically add the 
rewards to the players 
account after the 
challenge ends. 

Players get rewards 
based on their collected 
points  

All scenarios 



 

 

 
SOFIE  131(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

REQ_ MRMG3.1 In-App Advertisement 
video 

Player should be given 
the option to view 
advertisements while 
playing a challenge. 

A player can view an 
advertisement at any time 

All scenarios 

REQ_ MRMG3.2 Advertisement reward Player should receive 
tokens for viewing the 
advertisement. 

A player receives In-App 
tokens when he watches 
an advertisement 

All scenarios 

REQ_ MRMG3.3 Advertising viewability 
data 

Every ad viewability data 
should be recorded as a 
transaction on the 
blockchain. 

Advertisements are 
emulated as smart 
contracts, thus viewability 
data is recorded on the 
blockchain 

All scenarios 

REQ_ MRMG4.1 Assert marketplace Players can buy and sell 
In-App asserts on the 
blockchain 

Not Applicable 

REQ_ MRMG4.2 Assert trading data Every asset traded on the 
platform should be 
recorded as a transaction 
on the blockchain. 

Not Applicable 

REQ_ MRMG5.1 Web Application  Web application for 
designing new challenges 
and uploading 
advertisements. 

In the emulation, there is 
a client application where 
an actor can upload a 
new challenge and new 
advertisements 

All scenarios 

REQ_ MRMG5.2 Access control to the web 
services 

Access control to the web 
services, based on the 
role of the user.  

Not Applicable 

REQ_ MRMG7.1 Offer rewards Rewards can be offered 
to the players through 
challenges and 
advertisement videos. 

Players get rewards, 
when they complete a 
challenge or watch an 
advertisement 

All scenarios 

REQ_ MRMG7.2 Rewards data Rewards should be 
added and recorded on 
the blockchain. 

Every reward for every 
player is recorded on the 
blockchain 

All scenarios 

REQ_ MRMG8.1 Publish new 
advertisements 

Ads manager should 
publish any ad video 
using the web application 

An ads manager can 
publish an advertisement 
at any time 

All scenarios 

 



 

 

 
SOFIE  132(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

6.4.6 Pilot system performance KPIs in emulation sc enarios  

The results for all the KPIs and scenarios are summarized on the following table. 

Table 40: System performance KPIs for the MRMG emulation scenarios 

KPI Name Target  Scenario 1  Scenario 2  Scenario 3  Scenario 4  

KPI_MRMG_1 Public 
ledger 
execution 
cost 

As low as 
possible  

Achieved. 
50164 gas 
used on 
average. 

Achieved. 
Zero cost for 
actions in 
private 
Ethereum and 
36437 gas used 
on average for 
actions in public 
Ethereum. 

Achieved. 
Zero cost. 

Achieved. 
Zero cost for 
actions in 
Fabric and 
36437 gas 
used on 
average for 
actions in 
public 
Ethereum. 
 

KPI_MRMG_2 Response 
time for 
write 
requests 

< 3 s Not achieved. 
15 s on 
average due to 
the use of 
public 
Ethereum, 
where a block 
is generated 
within 15 s. 

Not achieved. 
15 seconds on 
average due to 
the use of 
public 
Ethereum, 
where a block 
is generated 
within 15 
seconds. 

Achieved. 
2.1993 s on 
average. 
 

Achieved 
partially. 
2.1692 s on 
average for 
actions in 
Fabric and 
15 s for 
actions in 
Ethereum. 
 

KPI_MRMG_3 Response 
time for 
read 
requests 

< 1 s Not achieved7 
1.5836 s on 
average, due 
to the 
communication 
with an RPC 
server.  

Not achieved. 

1.5836 s on 
average, due to 
the 
communication 
with an RPC 
server. 
 

Achieved. 
0.0242 s on 
average. 

Achieved 
partially. 
0.0255 s on 
average for 
actions in 
Fabric and 
1.4738 s for 
actions in 
Ethereum. 

KPI_MRMG_4 BLE 
beacon 
detection 
time 

< 4 s Not Applicable Not Applicable Not 
Applicable 

Not 
Applicable 

KPI_MRMG_5 Throughput > 222 read 
and > 133 
write 
transactions 
per second 

Not achieved Not achieved Achieved for 
both read 
and write 
transactions. 

Achieved 
partially.     
Only for 
actions in 
Fabric. 

KPI_MRMG_6 Scalability 
– cost 

Linear or 
sublinear 

Achieved. 
Linear 

Achieved. 
Linear 

Not 
applicable 

Not 
applicable 

KPI_MRMG_7 Scalability 
– time 

Linear or 
sublinear 

Achieved. 
Sublinear 

Achieved. 
Sublinear 

Achieved. 
Sublinear 

Achieved. 
Sublinear 

 

6.4.7 Conclusions 

As in other pilot-inspired scenarios, the experimental evaluation of the MRMG scenarios shows 
the gains, in terms of transaction cost and time, that can be achieved for the mobile gaming use 
case when a private ledger is used instead of a public ledger or when public and private ledgers 

                                                
7 Not achieved for the current implementation. However, if we had a node in Ethereum the average time would be 
0.0450 second 



 

 

 
SOFIE  133(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

are combined. Nevertheless, we should also consider the properties of each ledger type, in 
terms of trust, privacy, security and transparency. Therefore, using only one private ledger is 
better for implementing the main functionality of the mobile game, while utilizing two ledgers is 
better for managing tokens, redeeming rewards and processing advertisements, because these 
actions require a higher level of trust and transparency, which the public ledger can support. 



 

 

 
SOFIE  134(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Analysing SOFIE business platforms with System 
Dynamics  

7.1 Introduction 
The term platform, as in digital business platform, was first introduced to economics by Rochet 
and Tirole in 2006 [RT06]. A business platform is a business model that creates value by 
facilitating interactions between two or more interdependent groups, usually consumers and 
producers. The term digital business platform was actually introduced before the term business 
platform. Therefore, they do not have generally distinct meanings. 

An example of such digital business platforms is the modern smart phone with its added function 
of the (per platform) application store. In smartphones, the more consumers use a certain 
platform, say Apple’s iPhone, the more interesting and valuable it is also to the app producers, 
and vice versa. In order to make this value creation happen, platforms harness and create large, 
scalable networks of users and resources that can be accessed on demand. 

SOFIE aims to provide a secure open federation of IoT systems so that those systems can 
exchange data under their own rules and voluntarily cooperate to achieve their goals. Many of 
the rules and impediments, but also incentives and opportunities, are about business aspects, 
rather than about technical issues. Therefore, a business perspective evaluation of the SOFIE 
architecture, and the mechanisms being developed in its context, is prudent. In addition to the 
aspects discussed earlier, such as those of a distributed system and an open (business) 
platform, additional business aspects are also discussed and evaluated here. 

Key questions to understand include whether and under what conditions a Federated Open 
Platform (System) can successfully be bootstrapped, grown, and sustained. In addition, whether 
the constituting subsystems also grow and prosper and how potential gains are sustainably 
distributed across the constituents. 

The remainder of this section deals with these questions in the following order: 

1. What are the key forces that determine digital business platform adoption, and 
sustainable growth for each SOFIE pilot (or use-case more generally)? This is 
answered with pilot-specific models in each business platform model, as part of 
section 7.2. 

2. Why federation is difficult to achieve, even if the value proposition of the federation is 
notable? This question is explored in section 7.1.2. 

3. How the security provided by the SOFIE federation model affects platform adoption?  

The System Dynamics [Ste00] approach is used to investigate these questions. In section 7.2, 
a brief introduction on how to read System Dynamics diagrams is provided. 

This deliverable cannot and will not present a general model of a digital business platform 
success factors and forces, because SOFIE provides a framework architecture and not a 
specific platform architecture. Thus, the business platforms are always business area specific. 
Such generalized models could be sketched in deliverable D4.5. 

7.1.1 Business platform stages of maturity  

This report proposes to view the lifecycle of the business platform in three main phases. Most 
notably, this life cycle is not linear, but new phases are added as the platform matures and new 
versions of the platform are produced iteratively [RBM09]:  

1. The R&D stage is about studying and applying research methodologies and conceptualizing 
the digital business platform, explaining general information about it, defining system 
boundaries, determining the prominent entities and key factors, detecting the causal 



 

 

 
SOFIE  135(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

relationships and underlying plausible processes among them, studying regulatory 
conditions, consulting with technology providers, and finally, depicting the system dynamics 
regarding technical issues and commercial strategies.   

2. The implementation stage is about launching the small-scale pilot to evaluate its functionality 
with actual data. In this phase, the network paths between entities are examined to detect 
the barriers and potential sources of failures. Further, a generalised model of a federated 
business platform is presented.  

3. The commercialization stage: In this stage, commercial, monetary logic dominates, and 
technical activities consist of maintenance and customer support. Owners of the platform try 
to retain their market share and improve the number of customers and producers.  

In a modern commercialized stage business platform, all the stages – R&D, implementation, 
and commercial activity – exist simultaneously and are ongoing. Thus, later stages are typically 
added to the activity of the entity providing the business platform and none of the earlier stages 
are completely removed. 

7.1.2 On how a federation creates value and the dif ficulties of federating 

We have defined and discussed business platforms federation and IoT systems federation in 
Section 2.1.3. In a federation of IoT systems (silos), which in the SOFIE sense are considered 
to be DLT based business platforms, they are connected together via combining the DLTs so 
that agreed upon transactions are valid and trusted also from the point of view of other ledgers 
in the whole federation.  

 
Figure 48. Federation adds to the revenue potential within an IoT business platform by increasing the 

number of devices connected to it.  

Figure 48 demonstrates the straightforward economic logic of how the federation can scale up 
the ecosystem and potentially also the value generation with basically a flip of a federation 
switch. 

On the other hand, Figure 49 illustrates the difficulty in actually enabling such a collaborative 
effort from a business platform owner point of view. While competitive logic can directly capture 
the value of revenue as money in double entry bookkeeping, the cooperative logic of a 
federation requires that a perception of value acts as an input flow to a monetary stock, which 
is formed via accounting rules subject to interpretation. This hypothesis is described with the 
System Dynamics stocks and flow model in Figure 49. In this figure, the value chain that 
produces monetary value via straightforward value capture as money from the competitive logic 
of the markets, is shorter and (more) deterministic. While the value chain producing value from 
cooperation, (the topmost chain of stocks and flows), is lengthier, and more importantly, subject 
to unclear interpretative rules, thus uncertain. This diagram shows why federation is difficult, 
even though it provides potentially enormous value for the federating platforms. 

 



 

 

 
SOFIE  136(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 49. Two distinct value chains combined to produce the revenue (“bottom line”, bottom right) of a 
business platform: the cooperative value generation chain at the top of the diagram and the competitive 

value generation chain at the bottom. 

In addition, the time dimension differs for these two value chains [Kap00] due to the accounting 
interpretation rules expressing perceived value from cooperation as monetary value to be 
transferred to the bottom line. Our position is that if we had better accounting units of non-rival 
currencies [NE19], the demonstration of such value would be easier than it is now. Currently, 
we are forced to rely on transforming the abundance-based value created in the cooperation 
value chain, to the units of the competitive value chain, which has scarcity-based units of 
account and economic logic. 

7.2 Models of individual SOFIE Business Platforms 
This section describes the SOFIE Business platforms in terms of System Dynamics. The aim is 
to provide a high-level business-oriented evaluation, which is based on a scientifically rigorous 
modelling methodology. We start by introducing System Dynamics and its core concepts briefly. 

System Dynamics (SD) is a modelling methodology, which can be used to model and 
understand the dynamic, typically time dependent, behaviour of complex systems. It recognises 
the interconnected, circular relationship in any complex system. It can thus model properties 
about the whole system, which do not easily emerge by looking at the systems’ individual 
elements. Systems can be presented as Causal Loop Diagrams (CLD), where elements of the 
system are presented as nodes of a graph, and causalities connecting them as arrows. These 
can be extended to stock and flow diagrams, which make quantitative analysis and thus 
simulations possible.  

One noteworthy factor is that the success of a business platform typically depends on other 
systems or platforms. The methodology used can take into account other involved ecosystems, 
such as, in our case, the decentralised Ethereum network or social consensus such as 
reputation, which can impact the success of the SOFIE framework, and thus the SOFIE 



 

 

 
SOFIE  137(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

business platforms. The business platforms studied in the following sections are based on the 
SOFIE framework utilising business platforms serving as the pilots of the SOFIE project.  

7.2.1 Food Supply Chain  

The goals for this platform are: 

1. To accelerate automation, digitalization and secure information sharing among the 
participants in the food supply chain. 

2. To enhance food supply chain accountability by adding to the integrity of the workflows 
and relationships, and by engaging food consumers throughout the value chain. 

3. To provide food business networks and consumers the means to verify product quality 
and safety, as those are transferred from the field to the market. 

4. To build trust and support collaboration between companies in the supply chain, each 
with its own processes and operations, without the need of a centralized authority. 

 
 

 
Figure 50. CLD of FSC pilot business platform 

The workings of the food supply chain platform are summarized in the causal loop diagram in 
Figure 50. A transparent food chain provides the means for ensuring accountability and integrity 
of the workflows and for the verification of food quality and safety. Food quality and safety can 
be additionally safeguarded with third-party audits. 

Network effects (reinforcing loop R1): The larger the platform’s producer base, the higher the 
food chain’s transparency, as a result of the producers’ profile of openness8. A transparent food 
chain in turn adds to the platform’s attractiveness. 

                                                
8 We note that such causality will require governance action from the consortium organization: there should be rules 
on how openness is practiced and what are the associated benefits. SOFIE expects IoT devices to massively 
proliferate. If these devices are connected and measure important quality attributes in the food supply chain and then 
automatically and massively write them into a sufficiently open trustworthy accounting ledger, such as a DLT, radical 



 

 

 
SOFIE  138(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

Food quality (reinforcing loop R2): A transparent food chain is incentivising producers and 
retailers to follow a rigorous approach with respect to the products that they decide to release 
to the market. Therefore, transparency preserves the safety of the food chain and the quality of 
the food that is being produced and supplied to consumers, adding to the platform’s 
attractiveness.  

Platform flaws (balancing loop B1): A transparent and safe food chain may lessen the motivation 
for safety checks. However, the system will always present flaws, irrespective of its 
transparency. Flaws in the FSC may impact the food’s quality and, in turn, the platform’s 
attractiveness. 

Safety outsourcing (reinforcing loop R3): The more flaws in the system, the higher the need for 
third party audits. These will, finally, offer an additional layer of protection for the quality of the 
food. 

Adoption reluctance (balancing loop B2): The more producers in the platform, the more they will 
promote its new market model. However, a new market model always comes with uncertainty, 
which may raise a reluctance to follow, especially from non-adopters with a settled business in 
agriculture. 

In summary, for the FSC, trustworthy transparency in the food chain is a crucial determinant for 
its success. Transparency is vital for the food’s quality and safety, through which reinforcing 
loops R1 and R2 will dominate the balancing loops. Reinforcing loop R3 is complementing the 
platform’s transparency by adding an extra layer of control. On the other hand, dominance of 
the balancing loops implies a platform sustainability failure. We also note that creating such a 
radical transparency platform as envisioned in this pilot may best start with a group of roughly 
equal peer producers, who have high mutual trust. This would require a level of confidentiality, 
which a DLT approach coupled with federation can provide.  

7.2.1.1 Simulation of the FSC platform as a Stock and Flow model  

Figure 51 extends the model of Figure 50 to a more detailed simulation model. The new model 
can demonstrate and simulate some of the hypothesized key forces affecting the success of the 
food supply chain platform. The simulation model depicted in Figure 51 is an augmentation and 
modification of the CLD depicted in Figure 50, also introducing stock variables. The most 
important stock in the model, is the stock Platform Producers S in the upper left-hand corner. 
This is the number of producers (farmers) who have joined the platform, and thus one of the 
main success metrics for the FSC platform from the business point of view. 

 

                                                
openness may become a good business strategy. Regulatory oversight is likely required to utilize such transparency 
to systematically benefit the overall quality. 
 



 

 

 
SOFIE  139(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 

Figure 51. A simulation model of the food supply chain platform, presenting the core forces affecting the 
adoption and sustainability of the platform. 

Via loop R1, Network Effects, the Platform Producers S (stock) drives and produces 
greater Food Chain Transparency 9  for those who have joined. This added Food Chain 
Transparency increases the reputation in feedback loop R1, and also to added Food Chain 
Safety, which in turn leads to self-reinforcing dynamics of accumulating Food Quality S (R2). 
Both loops R1 and R2 contribute to Rate of reputations fundamentals accumulation, which 
together determine the inflow of stock Platform Reputations Fundamentals S, which is the 
accumulated reputation of the platform. This can be deflated via the separate outflow of Rate of 
reputation fundamentals depletion, which is regulated by the exogenous action of Statusquo 
resistance power factor (we discuss this below). 

The created greater Food Chain Safety, via the complacency of all participants, leads to 
reduced Number of Quality Checks in balancing loop B1, Transparency Induced 
Complacency. This leads to Missed Routine Flaws, which deplete the quality via Quality 
degeneration completing the endogenous success mitigating loop B1. A typical governance 
action attempting to mitigate the B1 dynamic is to tailor order tests with a significant reaction 
delay, thus creating the R3 loop, Emergency Improvement Audits. 

Adoption Reluctancy, or the success hindering loop B2, is kickstarted when the Platform 
Producers S via publicity (or otherwise) engage the Leverage of New Market Model; this causes 
those who have invested in status quo business models (both in real terms and in psychological 
terms) to oppose the new business platform. This is depicted in Non-Platform Producers Actions 
To Resist New Market Model causing Rate of reputation fundamentals depletion. The power of 
such action is regulated by the Status quo resistance power factor, which can be modelled via 
the ratio of negative publicity to all publicity. 

 

 

                                                
9 We assume governance rules in support of such behaviour. 



 

 

 
SOFIE  140(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

7.2.1.2 The simulation runs and the status quo resi stance power factor 

The variable which controls the effect of the B2 loop, to exit the valve depleting Platform 
Reputation Fundamentals S, and thus negatively affecting the reputation accumulation, is 
named Status quo resistance power factor. It describes the ratio of negative publicity of the 
platform to all publicity of the platform. This parameter can be quantitatively approximated by 
surveying the major news outlets, e.g., at least in the past, the major newspapers. The number 
of all articles mentioning the platform is observed, as well as the number of the articles classified 
as being “negative” by a human observer. This way a ratio can be calculated. We assume that 
this variable is exogenous, not directly controlled by the other “forces” described in this model. 

It is well known that many large organisations seek to understand and affect the amount of 
negative and positive publicity with respect to their business area. In the established area of 
FSC, a large retailer may already be engaged in it, while the regulator may also be engaged in 
such publicity observation. Those are some of the existing players within an existing business 
ecosystem. And whoever seeks to disrupt such established markets, by means of radical 
transparency through the studied platform, for example, would easily face resistance to building 
a reputation for the new business model and its corresponding platform. 

We studied the impact of the Status quo resistance power factor parameter through simulation. 
Figure 52 shows results for a simulation run with Status quo 0.2, and Figure 53 with Status 
quo 0.03. We see that when varying this parameter by a factor of about 10, we can affect the 
Platform Producers S stock (i.e. the number of farmers adopting and contributing to the 
platform), which is a direct reflection of the success of the platform, quite drastically in the long 
run. With Status quo resistance power factor 0.2, as shown in Figure 52, the platform fails, while 
with 0.03, as shown in Figure 53, it succeeds in capturing the market. Note that the failure in 
the first case would happen no matter the technical merits, quality and safety improvements, 
and regardless of their exponential accumulating nature. In the latter case, the effect of the 
decrease in negativity in the publicity is large enough to the point of making the platform 
successful, as the reputation is not depleted. 

 
Figure 52. Number of farmers in the platform (Status quo resistance power factor set to 0.2). 

 



 

 

 
SOFIE  141(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 53. Number of farmers in the platform (Status quo resistance power factor set to 0.03). 

In order to more thoroughly validate our model, we need to feed it with enough empirical data 
of important variables and run enough simulation runs, so that we can see if the model, with 
properly calibrated constants, can reproduce the observed time dependent behaviour of the 
other variables. The results observed here demonstrate the power and potential significance of 
the approach in general and of this study in particular, but are only indications since the 
employed data is synthetic. Expert interviews (conducted by the System Dynamics study team 
during the January 2020 SOFIE plenary and expanded later) have validated the model 
qualitatively to some extent, but empirical calibration via simulations remains as required future 
work.  

Future work for this platform will concentrate on how the bootstrapping and accumulation of the 
reputation of the platform could be designed to be as resistant to such exogenous inputs as 
possible. Note that many aspects have been abstracted out, including DLTs, federation, and 
interledger aspects. Such aspects will be considered in the future and, even if not explicitly 
introduced in the model, they could be accounted for through proxy variables and different 
parameter choices. 

However, already at this stage, it can be said that exponential real-world growth feedback 
should be engaged as early as possible, to create a publicity dynamic which is self-sustaining. 
Intuitively, the earlier in the growth process the status quo power affects such growth loops 
exogenously, the more efficiently it can hinder the growth of the endogenous reputation 
fundamentals. A key question to be answered via simulations with synthetic and real-world data 
is, what time dependent distributions make the exogenous publicity parameter least impacting 
the long-term reputation. 

Another practical observation from studying this platform in detail through SD is the following: If 
one seeks to make such platforms dominant in the market, an appropriate strategy would be to 
make every effort for the new business model to be complementary, not directly competing with 
the business of those who decide not to join early. 

 



 

 

 
SOFIE  142(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

7.2.2 Decentralized Energy Data Exchange  

The vision for business in this pilot is to enable seamless access to data with a few clicks of the 
(citizen) data owner, regardless of where the person lives, or what existing energy networks are 
in place [Sof20]. The pilot exploitation plans and activities are directed towards smart meter data 
operators (TSOs/DSOs). The idea is to make a novel digital infrastructure available that will 
allow TSOs/DSOs to grant access to data, track the process of who provides and receives data 
through their platform and create immutable evidence for auditing and security purposes. 

The business model under investigation focuses on the DSOs/TSOs operating the access 
control of energy consumption data and providing them with SOFIE based digital infrastructure 
on an annual licence fee. The solution would add value to existing, running platforms, so that 
the DSOs/TSOs can make a shortcut into sharing data and skip the planning/development 
phase on their existing platform. The second step of the business plan consists of getting 
various service providers to start using SOFIE adapters and components to get consumer data 
through the DSOs/TSOs and sell, e.g., flexibility services. The business model with the service 
providers would be based on sharing the revenue stream based on the new customer base and 
their data that they get through the digital infrastructure enabled through the SOFIE adapters 
and components. 

The SD model of the DEDE pilot is under development and it and its results are planned to be 
reported in D4.5. 

7.2.3 Decentralized Energy Flexibility Marketplace  

The business vision [Sof20] in this pilot is that via the IoT and sensors proliferation it is possible 
to obtain useful information to achieve accurate power forecasts, avoid reverse power flows, 
and otherwise balance the grid loads based through mitigating actions. 

Specific intermediate goals of this platform are:  

1. Flexibility management of Distributed Energy Resources (DERs). A key energy resource 
exploited in the pilot is Electrical Vehicles (EVs). A particular property exploited is the 
fact that EVs are mobile and can (within limits) balance loads at various points of the 
grid. 

2. To accelerate automation and automated communications between Distribution System 
Operators (DSOs) and DERs. Another specific and exploited feature of the pilot is the 
hierarchical communication, command and control model enabled by the fleet of EVs. 

An initial causal loop diagram for the DEFM pilot has been developed and is shown in Figure 
54. 

 



 

 

 
SOFIE  143(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 
Figure 54. DEFM platform CLD. 

For this diagram, the definitions of and the relations between components of the platform are 
described as follows: 

Network Effect (Reinforcing loop R1):  More EVs enhance the number of fleet managers which, 
in turn, increase the number of localized renewable energy producers, DERs, to satisfy the 
electricity demand in the market. In fact, DERs are producers in the electricity producer-
consumer digital business platform. Due to the increase of the number of DERs, the retail 
competition in the market also increases. The DERs compete to react to a demand-response 
signal and generate more local electrical energy which is supplied in the auction market through 
a recommendation system with incentives. These flows of causality form a network effect for 
EVs and DERs in Figure 54. Similarly, the growth on the DERs side, results in an increased 
number of EVs to join the platform. 

Cooperation Effect (Reinforcing loop R2): In addition to incentivizing EVs to join the platform via 
the recommendation system, the cooperation loop leads to improvement of other boundary 
resources [Sti+20], which are either useful technologies or cooperative agreements. Those 
resources can be used to promote system effectiveness and attractiveness, for example, 
automation for smart grids, fixed-term smart contract agreement, using the fleet of batteries, 
machine learning to predict patterns, etc.    

Price Effect (Reinforcing loop R3): The profit price in the auction market recommended by the 
system should be reasonable enough to be accepted by both the buyer and the seller. If the 
asking price is lower than the marginal cost, the market fails [Hag09].  

Feedback loop (reinforcing R4) indicates that the more localized and renewable energy DERs 
produce, the more the platform can invest in attracting an increased number of DERs.  



 

 

 
SOFIE  144(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

In addition to platform attractiveness, factors which are presented by the technical foundation 
of SOFIE for either of DERs or EVs, for instance, accessibility and billing services, the price 
strategy is another vital factor in this pilot. The business process in this pilot is the bidding market. 
The offered price by DERs should be properly set so it is both profitable and able to attract EVs 
to join to the platform. 

The SD Stock and Flow model for the DEFM pilot is also under development and will be reported 
together with its results in D4.5. 

7.2.4 Mixed Reality Mobile Gaming 

This platform seeks to achieve the following business goals [Sof20]: 

1. Game discovery: How to reach a mass market given mobile application ecosystem 
restrictions. 

2. Player Value: Making the gaming experience fun and valued by the player.  
3. Revenue opportunity: New business case with potential revenues from real-world elements. 
4. IoT device scale: Identify devices fit for gaming use cases that can easily grow to a global 

scale. 

 

 

  

Figure 55. CLD model of key determinants of platform growth via IoT-beacons, initiation by the parent 
company, and the technical quality degeneration as growth-limiting feedback loop (B1). 

   
Figure 55 presents a CLD model of how IoT-beacons and gamers interact in the MRMG platform. 
Beacons are local network elements, which have a specific and distinct location and can, at the 
minimum, provide an anchor for the mobile game ensuring that the user has physically been 
close to the IoT-beacon. This makes mobile gaming interesting because it combines strong 
physical location checks with the gaming logic. 



 

 

 
SOFIE  145(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

The logic of Figure 55 can be described as follows. Increasing the Number of connected 
beacons increases the gaming variety and geographical spread for the players, which increases 
the positive reputation among potential players (positive word of mouth). This, in turn increases 
the number of players of the game, who are the first early adopters of beacons, thus increasing 
the number of potential beacon owners. This will of course increase the number of connected 
beacons again. Together these elements and causalities form a reinforcing gaming network 
effects (R1) loop. 

The description of the leftmost reinforcing loop of beacon federation business network effects 
(R2) is as follows: As the number of connected beacons increases, the number of beacon 
business providers also increases, which has the positive effect of some of those manufacturers 
joining this specific (federation) platform via the number of beacon business federations. This 
will naturally increase the number of connected beacons in this business platform ecosystem. 

Loop B1, quality debt platform degeneration, has its main start in the element technical solutions 
not checked due to delivery pressure. This variable feeds on all the promises the advertising 
pushes to market. Without sufficient quality checks, technical quality debt increases, increasing 
all kinds of factors limiting connecting (e.g., user-interface not being good enough, subcontractor 
not knowledgeable, ineffective installation guide, connectivity problems, etc.). This will start to 
decrease the number of connected beacons, a loop detrimental to the success of the platform. 

Loop R3, beacon federation value sharing feedback loop, depicts the notion that the beacons 
are included in the game via federation. Thus, federation rules can establish an entry fee or 
operating fee type of payment. A portion of these payments can be used to fund advertising, 
thus bringing more attention and connections to the federation. 

The CLD models are not detailed enough for simulation; so, at best we can offer qualitative 
insights at this stage. Successfully bootstrapping and maintaining a two-sided market, as 
depicted in Figure 55, will create a growing business. The main self-reinforcing dynamic is loop 
R1, which depicts the main growth cycle of the gaming company’s successful game. If the 
negative exogenous factors in R1, gaming platform limitations and gaming competition, or the 
business depleting loop B1 dominate, the platform might never properly enter the exponential 
self-reinforcing growth cycle. 

We note that in this platform federation is an explicit tool to promote the success of the platform 
by making it possible from the ground up to build a meta-platform—a federation based platform 
of IoT silos—which does not in any way prevent beacons being connected also to other 
business platforms (or performing other functions). To answer the question of what makes the 
growth of the federation difficult in this case, the answer is that some initial investment is needed 
to properly kick-start the federation. 

7.3 Conclusions from the System Dynamics study 
One of our models was developed all the way to a simulation model: the FSC business platform 
model. From the early simulation results based on synthetic data, we were able to determine 
that negative publicity actions by those who invested in earlier, competing, non-transparent 
business models, can have a detrimental effect to platform growth, to the point of “killing” the 
platform. Also, that transparency makes the regulator’s job more cost effective.  

The other presented (CLD) models offer qualitative insights. In general, bootstrapping and 
reinforcing growth loops of the most important value generative properties of any platform will 
also lead to a thriving platform. The balancing loops can dampen or overcome the reinforcing 
dynamics, thus creating hindered growth or even demise of the platform business.  

Federation potentially multiplies the ecosystem size fast. But enabling federation on a business 
platform of a significant commercial size, requires careful balancing of competitive and 



 

 

 
SOFIE  146(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

cooperative forces and value generation. Having non-rival goods as key units of account is 
hypothesized to help such efforts. 



 

 

 
SOFIE  147(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 Conclusion 
This deliverable contains the evaluation results from WP4’s second evaluation cycle and its 
submission (April 2020/M28) coincides with the second evaluation cycle completion milestone 
(MS14). Since the first evaluation deliverable D4.3 (initial submission June 2019, revised in 
December 2019), the deliverables containing the second version of the SOFIE federation 
architecture (D2.4, initially submitted July 2019 and revised December 2019), the second 
version of the federation framework (D2.5 – August 2019), as well as the initial platform 
validation (D5.2 – June 2019) and business platforms – pilot release (D3.3 – September 2019) 
have been submitted. These deliverables contain a more stable description of the SOFIE 
architecture and federation framework components and of the pilot systems, including the pilot 
scenarios and their objectives. This has allowed the evaluation and validation results contained 
in the current deliverable to be more concrete and focused. 

Section 2 presented a high-level architecture evaluation, focusing more on the style and desired 
properties of the architecture, rather than very specific architectural components and structure. 
The text is based on the previous deliverable D4.3, confirming that the features identified in the 
previous deliverable remain relevant. Its content has been updated to take into account the 
validation and evaluation work and results that have been obtained up to this point. 

Section 3 focused on the validation of the SOFIE approach, including the architecture, 
component, and pilot validation. The results and current validation status were presented in 
three validation matrices, corresponding to each of the three validation directions.  

Section 4 focused on component evaluation. Compared to the first evaluation deliverable D4.3, 
further evaluation results were presented for the Interledger, Privacy and Data Sovereignty 
(PDS), and Identification, Authentication, and Authorization (IAA) components. A discussion 
and new results are also presented for the three other components: Semantic Representation 
(SR), Marketplace (MP), and Provisioning and Discovery (PaD). 

Section 5 contained further results on IoT resource access evaluation. The new results include 
decentralized authorization for constrained environments, where Ethereum is interconnected 
with Hyperledger Fabric, access control for multi-tenant IoT systems, and decentralized 
interledger gateway architectures for enhancing the reliability of the interledger functionality. 

Section 6 on evaluation scenarios followed the SOFIE pilots, generalizing them into pilot 
inspired use cases by including alternatives that are not necessarily selected in the SOFIE pilots, 
and uses emulation and simulation to consider the various tradeoffs of many potential 
alternative design decisions. The investigations include alternatives for a hierarchy and 
interconnection of different types of blockchains (public/private, or permissionless/permissioned, 
etc) and the impact of these choices. The new results included in this deliverable compared to 
the previous evaluation deliverable D4.3 include new evaluation scenario involving multiple 
ledgers (which include public/private Ethereum, Hyperledger Fabric, and Hyperledger Indy) and 
interledger technology, as well as end-to-end performance (execution cost, response time), 
throughput, and overall scalability results based on the defined system performance KPIs. The 
experience and results from the emulation scenarios will provide guidance to the pilot validation 
work in WP5. 

Section 7 addressed business platform evaluation using the System Dynamics methodology. 
We first provided models of platform federation illustrating the benefits, but also explaining the 
difficulty in federating. Then we presented the results of our efforts to date to model the platforms 
inspired from the four SOFIE pilots through this methodology. For the FSC platform, we have 
been able to refine the models all the way to the point to obtain simulation-based investigations 
of key parameters using synthetic data and demonstrate the sensitivity of the model and the 
platform to a key exogeneous parameter. Our next most advanced model is for the MRMG 
platform, for which we still have qualitative results, but they are much more detailed and include 



 

 

 
SOFIE  148(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

the notion of federation. Modelling for the platforms will continue with the goal of having 
reasonably detailed models at least for the key aspects of the platforms validated through 
parameters obtained through the pilots and thoroughly investigated in deliverable D4.5. 

The WP4 work that will be performed in the remainder of the project includes the completion of 
the validation activities and further extension of the evaluation results, which will take into 
account ongoing pilot validation work in WP5. This will include extending and introducing new 
scenarios alongside those considered in the evaluation work up to now. The key research work 
will focus on the joint analysis and comparison of emulation results and pilot validation results. 
This will verify the performance gains of the SOFIE platform in real conditions and validate its 
advantages. Also, it will make the final evaluation results available in a single comprehensive 
document, which includes the component requirements and the pilot requirements and KPIs 
considering both the emulation/simulation results of WP4 and the pilot validation results of WP5. 
This will be useful for the final overall architecture evaluation and the final version of the 
federation framework. 



 

 

 
SOFIE  149(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

 References 
[AEN19]  E. Arzoglou, T. Elo, and P. Nikander, “The Case of iOS and Android: Applying 

System Dynamics to Digital Business Platforms,” Proc. ICCS 2019. In: J. Rodrigues 
et al. (eds) Computational Science – ICCS 2019, Lecture Notes in Computer 
Science, Vol. 11540, Springer, Cham, 2019. 

[AJM14]  R. Azarderakhsh, K.U. Järvinen, and M. Mozaffari-Kermani, “Efficient Algorithm and 
Architecture for Elliptic Curve Cryptography for Extremely Constrained Secure 
Applications,” IEEE Transactions on Circuits and Systems, Vol. 61, No. 4, pp. 1144–
1155, 2014. 

[Ber06]  D.J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” Proc. 9th 
International Conference on Theory and Practice of Public-Key Cryptography (PKC 
2006), pp. 207–228, New York, NY, USA, April 2006. 

[Ber+12]  D.J. Bernstein et al., “High-speed high-security signatures,” Journal of 
Cryptographic Engineering, Springer, Vol. 2, No. 2, pp. 77–89, 2012. 

[But16] V. Buterin, “Chain Interoperability,” R3 Report, September 2016. Available online: 
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf  

[Cai+18]  W. Cai, Z. Wang, J.B. Ernst, Z. Hong, C. Feng and V.C.M. Leung, "Decentralized 
Applications: The Blockchain-Empowered Software System," IEEE Access, Vol. 6, 
pp. 53019-53033, 2018. 

[Cle+14]  R. de Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede, “Ultra low-power 
implementation of ECC on the ARM Cortex-M0+,” Proc. 51st ACM/EDAC/IEEE 
Design Automation Conference (DAC), San Francisco, CA, USA, June 2014. 

[RBM09]  M. de Reuver, H. Bouwman, and I. Maclnnes, “Business model dynamics: a case 
survey,” Journal of theoretical and applied electronic commerce research, Vol. 4, 
No. 1, pp. 1–11, April 2009. 

[Del+16]  A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Cinderella: Turning 
Shabby X.509 Certificates into Elegant Anonymous Credentials with the Magic of 
Verifiable Computation,” Proc. IEEE Symposium on Security and Privacy (SP), May 
2016. 

[Dül+15]  M. Düll et al., “High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers,” 
in Designs, Codes and Cryptography, Springer, Vol. 77, No. 2-3, pp. 493-514, 2015. 

[Fot+16]  N. Fotiou, T. Kotsonis, G.F. Marias, G.C. Polyzos, “Access control for the Internet 
of Things,” Proc. ESORICS International Workshop on Secure Internet of Things, 
pp. 29–38, 2016.  

[Fot+19]  N. Fotiou, I. Pittaras, V.A. Siris, S. Voulgaris, G.C. Polyzos, “Secure IoT access at 
scale using blockchains and smart contracts,” Proc. 8th IEEE WoWMoM Workshop 
on the Internet of Things: Smart Objects and Services (IoT-SoS), Washington DC, 
USA, June 2019. 

[Fot+20] N. Fotiou, I. Pittaras, V.A. Siris, S. Voulgaris, G.C. Polyzos, “OAuth 2.0 
authorization using blockchain-based tokens,” NDSS Workshop on Decentralized 
IoT Systems and Security (DISS), San Diego, CA, USA, February 2020. 

[FSP18]  N. Fotiou, V.A. Siris, G.C. Polyzos, “Interacting with the Internet of Things using 
Smart Contracts and Blockchain Technologies", Proc. Security, Privacy, and 
Anonymity in Computation, Communication, and Storage (SpaCCS 2018), 
Melbourne, Australia, December 2018. 

[Ger+18]  S. Gerdes et al., “An architecture for authorization in constrained environments,” 
IETF Draft, October 2018. 



 

 

 
SOFIE  150(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

[GH01] J.F. Gubrium and J.A. Holstein, Handbook of interview research: Context and 
method, Sage Publications, 2001. 

[Glo18]  Global Platform, “TEE System Architecture v1.2,” December 2018. Available online: 
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/. 

[Hag09]  A. Hagiu, “Two-Sided Platforms: Product Variety and Pricing Structures,” Journal of 
Economics & Management Strategy, Vol. 18, No. 4, pp. 1011–1043, 2009. Available 
online: https://www.onlinelibrary.wiley.com/doi/full/10.1111/j.1530-
9134.2009.00236.x/ 

[Haa+18] J. Haapola et al., “Peer-to-Peer Energy Trading and Grid Control Communications 
Solutions' Feasibility Assessment Based on Key Performance Indicators,” Proc. 87th 
IEEE Vehicular Technology Conference (VTC Spring), 2018. 

[Har+12]  D. Hardt et al., “The OAuth 2.0 Authorization Framework,” RFC 6749, Standards 
Track, IETF, October 2012. 

[HS13]  M. Hutter and P. Schwabe, “NaCl on 8-Bit AVR Microcontrollers,” Proc. International 
Conference on Cryptology in Africa, published in Progress in Cryptology – 
AFRICACRYPT 2013, A. Youssef, A. Nitaj, and A.E. Hassanien (eds), Lecture 
Notes in Computer Science, Vol. 7918, Springer, 2013. 

[JBS15a]  M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC 7519, 
Standards Track, IETF, May 2015. 

[Kor+19]  Y. Kortesniemi, D. Lagutin, T. Elo, N. Fotiou, “Improving the Privacy of IoT with 
Decentralised Identifiers (DIDs),” Journal of Computer Networks and 
Communications, Hindawi, 2019. 

[Kov+19]  M. Kovatsch et al., “Web of Things (WoT) Architecture,” retrieved August 2019. 
Available at: https://www.w3.org/TR/wot-architecture/. 

[KL08]  J. Katz and A.Y. Lindell, “Aggregate message authentication codes,” Proc. The 
Cryptographers’ Track at the RSA conference on Topics in Cryptology (CT-RSA), 
2008. 

[KM00] R. Kaplinsky and M. Morris, “A handbook for value chain research,” University of 
Sussex, Institute of Development Studies, 2000. Available online:  
http://www.fao.org/fileadmin/user_upload/fisheries/docs/Value_Chain_Handbool.pdf 

[KSD18]  S. Kalra, R. Sanghi, and M. Dhawan, “Blockchain-based real-time cheat prevention 
and robustness for multi-player online games,” Proc. 14th International ACM 
Conference on emerging Networking EXperiments and  Technologies (CoNEXT), 
pp. 178–190, Heraklion, Greece, December 2018.  

[Lag+19]  D. Lagutin, Y. Kortesniemi, N. Fotiou, V.A. Siris, “Enabling Decentralized Identifiers 
and Verifiable Credentials for Constrained Internet-of-Things Devices using OAuth-
based Delegation,” NDSS Workshop on Decentralized IoT Systems and Security 
(DISS), San Diego, CA, USA, February 2019. 

[Nak08]  S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” White Paper, 
October 2008. Available online: https://bitcoin.org/bitcoin.pdf 

[NE19]  P. Nikander and T. Elo, “Will the data markets necessarily fail? A position paper,” 
Proc. 30th International Telecommunications Society (ITS) European Conference, 
Espoo, Finland, June 2019.  

[PD16]  J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable off-chain instant 
payments,” White Paper, January 2016.  
Available online: https://lightning.network/lightning-network-paper.pdf   

[Ree19]  D. Reed et al., “Decentralized Identifiers (DIDs) v0.13: Data Model and Syntaxes for 
Decentralized Identifiers,” Draft Community Group Report, W3C, June 2019. 
Available online: https://w3c-ccg.github.io/did-spec/  



 

 

 
SOFIE  151(151) 

Document:  H2020-IOT-2017-3-779984-SOFIE/D4.4 – Second Architecture and 
System Evaluation Report 

Security:  Public Date:  28.04.2020 Status:  Completed Version:  1.00 

[RT06] J.-C. Rochet and J. Tirole, “Two-Sided Markets: A Progress Report,” The RAND 
Journal of Economics, Vol. 37, No. 3, pp. 645-667, 2006. 

[Sho01]  V. Shoup, “A proposal for an ISO standard for public key encryption,” Cryptology 
ePrint archive, Report 112, 2001. Available online:  
https://eprint.iacr.org/2001/112 

[Smart16] Deliverable D3.2, “Key performance indicators for p2p energy trading 
communications,” H2020 Project Peer to Peer Smart Energy Distribution Networks 
(P2P-SmarTest), 2016. Available online: 
http://www.p2psmartest-h2020.eu/deliverables  

[Sir+19a]  V.A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, G.C. Polyzos, “Interledger Smart 
Contracts for Decentralized Authorization to Constrained Things,” Proc. 2nd 
Workshop on Cryptocurrencies and Blockchains for Distributed Systems (CryBlock 
2019), in conjunction with IEEE INFOCOM 2019, Paris, France, April–May 2019.  

[Sir+19b]  V.A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, G.C. Polyzos, “OAuth 2.0 meets 
Blockchain for Authorization in Constrained IoT Environments,” Proc. 5th IEEE 
World Forum on Internet of Things, Limerick, Ireland, 2019.   

[Sir+19c]  V.A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, G.C. Polyzos, “IoT Resource 
Access utilizing Blockchains and Trusted Execution Environments,” Proc. Global 
IoT Summit, Aarhus, Denmark, 2019.   

[Sir+19d]  V.A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, G.C. Polyzos, 
“Interledger Approaches,” IEEE Access, Vol. 7, pp. 89948-89966, 2019.  

[Sir+20]  V.A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, G.C. Polyzos, “Decentralized 
authorization in constrained IoT environments exploiting interledger mechanisms,” 
Computer Communications, Vol. 152, pp. 243-251, February 2020. 

[Sof20]  Project Use Cases, SOFIE website. Accessed: 15.4.2020. Available online: 
https://www.sofie-iot.eu/about/project-use-cases 

[SMS07]  B. Sunar, W.J. Martin, and D.R. Stinson, “A Provably Secure True Random Number 
Generator with Built-In Tolerance to Active Attacks,” IEEE Transactions on 
Computers, Vol. 56, No. 1, pp. 109-119, January 2007.  

[Spo+19]  M. Sporny et al., “Verifiable Credentials Data Model 1.0: Expressing verifiable 
information on the Web,” Draft Community Group Report, W3C, September 2019. 

[Ste00] J.D. Sterman, Business dynamics: systems thinking and modeling for a complex 
world, McGraw-Hill Education, 2000. 

[Sti+20] K. Still et al., “Platform Economy - Interactions & Boundary Resources: Checklist for 
Companies,” Technical Report, Tampere University of Technology, 2017. Available 
online: 
https://tutcris.tut.fi/portal/files/13267284/INTERACTIONS_BOUNDARY_RESOUR
CES_CHECKLIST_2017_10_27.pdf  

[SysFl19] Deliverable 10.1, “Report on the selection of KPIs for the demonstrations,” H2020 
Project EU-SysFlex, February 2019. 

[VV15]  V. Vogelsteller and B. Vitalik, “ERC-20 token standard,” Tech. Rep., 2015. 
Available online: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md 

[Wik20a]  “Federation,” Wikipedia. Accessed: 15.4.2020. Available online:  
https://en.wikipedia.org/wiki/Federation  

[Wik20b]  “Metcalfe's law,” Wikipedia. Accessed: 15.4.2020. Available online:  
https://en.wikipedia.org/wiki/Metcalfe%27s_law  

[Woo18]  D.G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction Ledger,” 
Ethereum Yellow Paper, December 2018. Available online:  
https://ethereum.github.io/yellowpaper/paper.pdf 


