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1. Introduction 

This is the third deliverable of WP4 (Evaluation), due at the end of June 2019, at the same time 
with D2.4 (Federation Architecture, 2nd version), D5.2 (Initial Platform Validation) and before 
D2.5 (Federation Framework, 2nd version — August 2019) and D3.3 (Business platforms, pilot 
release — September 2019). It is thus apparent that the design of the architecture, the business 
platforms, the pilots and the implementation of the federation framework components and the 
system(s) are in flux. Therefore, this deliverable focuses more on evaluating key aspects of the 
architecture and the system rather than providing an evaluation of a specific data point in the 
development and even more so of key mechanisms for achieving various functionalities 
enabling aspects of the architecture and system. 

This First Architecture and System Evaluation Report, therefore, will mainly provide component 
results and also illustrate the type of evaluation being performed within the project. We expect 
to provide more concrete and integrated results in the next WP4 deliverable, D4.4 (Second 
Architecture and System Evaluation Report — April 2020). The work in WP4, up to June 2019 
documented in this deliverable, follows the plan set in D4.1 and employs tools that have been 
set-up for the project and were presented in D4.2. 

1.1 Goals of this deliverable 

The goals for this first evaluation report are the following: 

 to provide a first evaluation of the SOFIE approach, architecture, systems, and components, 
in order to promote the SOFIE approach and establish foundations for its impact on 
technology and business, 

 to promote the evaluation approach and techniques within the project in order to provide 
guidelines for the pilot evaluation activities, 

 to present the evaluation approach and techniques internally to the project to have them 
scrutinized to determine if they will be adequate, or further tools, methodologies and 
techniques will be necessary, for a convincing evaluation (and then the successful 
promotion) of SOFIE, 

 to help in the selection of the most appropriate techniques for SOFIE and in particular 
the ledger and interledger technologies for the SOFIE use cases and pilots, 

 to identify gaps to be addressed during further conceptual and technological design, 
development and evaluation (both regarding methodologies and their application). 

1.2 Methodologies and approach 

The methodologies employed for evaluation are many and diverse, from simple presentation of 
arguments and qualitative evaluation, through modelling, analytical evaluation and simulation, 
to implementation and measurements in real components and systems. Since pilots have a 
central position in the SOFIE project, an important evaluation direction will be undertaken using 
each pilot, considering the actual system and evaluating it in a specific application context. 
These evaluations will be performed towards the end of the pilots’ lifetime and they will be 
integrated with other WP4 evaluation results in the final WP4 evaluation deliverable (D4.5). 
However, they also provide more concrete systems and applications in which we consider the 
SOFIE approach and evaluate it initially, starting from this deliverable. We also generalize from 
the specific choices made in the pilots to the use cases from which they have been inspired, 
evaluating many potential alternatives around them. 

Thus, we are inspired and guided by the pilots and their use cases, as well as the software and 
solutions developed for them; however, WP4 aims to have a wider scope. Thus, it has chosen 
as one key approach for evaluation the emulation and/or simulation of the use cases considered 
in the pilots, but in a more general context, considering and evaluating various possible solutions 
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and their parameters, going beyond what is possible within the pilots. On the other hand, in 
order to achieve this breadth, it needs to model and abstract out various aspects of the pilots, 
as will be explicitly described below. 

In addition to the methodologies and tools for evaluation, the questions to be answered (i.e., the 
targets of the evaluation) are diverse. They range from traditional performance metrics, which 
typically have limited generality, as they have to refer to fully specified systems, to more general 
questions such as security analysis, robustness, usability and even business analysis. It is 
therefore even more obvious that the tools to be used for evaluation must be diverse and applied 
at very different abstraction levels and under different assumptions. 

Given the diverse goals and evaluation methodologies, the specific concepts and metrics for 
comparison and measurements are also diverse. A starting point is, of course, the Key 
Performance Indicators (KPIs) chosen in the first SOFIE architecture deliverable (D2.2, 
Annex 1). However, additional metrics and qualitative characterizations will be used in this 
deliverable and in the following ones for WP4. 

1.3 Structure of this deliverable 

Due to the diverse goals and evaluation methodologies involved, we decided to have the 
following structure for this deliverable. 

Section 2 is a high-level architecture evaluation. It focuses more on the style and desired 
properties of the architecture, rather than very specific architectural components and structure. 

Section 3 is an initial component evaluation. These are components chosen to be part of the 
SOFIE Federation Framework, which however has not yet been completed (the deliverable, 
D2.5, reporting on the Federation Framework implementation, is due on August 2019). 
Therefore, we decided to start here with the three components that we were more familiar with, 
having contributed to their definition and implementation, which were also in an advanced stage 
of definition and implementation. 

Section 4 presents a detailed evaluation of IoT resource access and even though it relates to 
the components described and evaluated in Section 3, it goes to much more depth and 
considers many more alternatives and their tradeoffs than one would consider at the SOFIE 
component level. Moreover, because authorized access to IoT resources is necessary across 
different pilots, we decided to dedicate a separate section to this topic. Other sections do not 
intimately depend on it, but on the other hand it shows that much more detailed design and 
evaluation is possible and can uncover many useful alternatives in the IoT world. 

Section 5, on Evaluation Scenarios, follows the SOFIE pilots, generalizes them into pilot inspired 
use cases by including alternatives that are not necessarily selected in the SOFIE pilots, 
abstracts them out to an appropriate degree and uses emulation and simulation to consider the 
various tradeoffs of many potential alternative design decisions, e.g., whether to use one 
blockchain overall, one blockchain per hand-off, a hierarchy of blockchains, blockchains of 
different types (public/private, or permissionless/permissioned, etc.) and the impact of these 
choices, evaluated from many viewpoints and using different methodologies, from descriptions 
and illustrative arguments to quantitative evaluation with specific metrics and numerical results. 

Section 6 addresses business platforms evaluation (decentralized, built on SOFIE principles 
and, eventually, with SOFIE components). An illustration of a System Dynamics approach 
applied to the SOFIE architecture and pilot-based use cases is provided here, demonstrating 
the interactions among components (systems, players, parameters, etc.). It is preliminary work, 
qualitative only for the moment, but sets the stage and documents our efforts in this area. 

Finally, the document concludes in Section 7 with a summary and outlook towards future WP4 
work and its relationship with other SOFIE WPs and efforts in general. 
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2. Architecture evaluation 

In this section we discuss and bring out key aspects of the SOFIE architecture that are critical 
for the SOFIE approach to IoT system federation and open business platform success. In 
Section 2.1 we lay out the features of the SOFIE architecture, while in Section 2.2 we present 
the KPIs grouped per pilot. 

2.1 Architecture features 

2.1.1 Decentralization 

Decentralization is the norm for large-scale real-world systems. Decentralization was the key 
concept in the development of packet switching, starting essentially with the ARPAnet (as 
opposed, for example, to the Telephone networks of the time). However, there is continuous 
cycling through centralization and decentralization in communications technology. For example, 
the original cable-based Ethernet was fully decentralized with a passive (and thus robust for the 
era) interconnection medium. However, as electronics became very reliable we moved towards 
(the less decentralized) switched Ethernet. Similarly, there is now a push towards centralizing 
large packet networks through SDN and powerful SDN controllers, allowing for better and tighter 
control of such networks. However, there are currently also efforts to fully decentralize the global 
Internet, even from second-order centralization, such as data and measurements and other 
information repositories that enforce common decisions, to independent agents or 
administrative domains. DLTs are the key tools in many such efforts; see e.g. Blockstack.1 

For early IoT systems, isolation and centralization were the chosen paths for many reasons: 
necessity, due to a lack of appropriate standards or technologies, fast and cheap deployment, 
but most importantly, business reasons. Closed, centralized systems offer an edge against 
competitors and (some) peace of mind against attackers and even less exposure or “attack 
surface” for regulators and ethics enthusiasts. As the systems were increasing in size and 
geographical coverage, the relatively easier transition to Cloud systems was performed, still 
allowing a centralized model, but with the elasticity and scalability of the Cloud resources hiding 
the initial scalability and other concerns. This was also compatible with the closed business 
models and became the norm for IoT applications. That is, rather than a true (global) Internet of 
Things, many separate domains of Things separated by applications, business models, 
administrative domains, etc. 

However, there are clear potential benefits (but also obvious challenges) for humanity and for 
the economy more specifically, in a global IoT, the more obvious one coming from the wide 
optimization potential of access to vast amounts of information (rather than its segregation into 
smaller domains). IoT scenarios involving a multitude of devices and platforms, many users, 
and many distinct administrative domains pose problems for centralized solutions, not only or 
primarily from a technological view point, but mostly from the business and governance 
perspectives. Designing an inherently decentralized architecture for multi-platform IoT 
ecosystems can reflect more closely the natural structure of data origins, avoiding the collection 
of data to a central repository, but allowing the interconnection of information under diverse 
rules and constraints. 

Decentralization has certain intrinsic advantages over centralized approaches, mainly attributed 
to higher redundancy, availability, and tolerance to failures, as well as better load balancing. 

                                                
1 https://blockstack.org  

https://blockstack.org/
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2.1.2 Open business platforms 

Further to decentralization, a key characteristic expected of future IoT and, more generally, 
business platforms, is openness. A business platform is a (software mainly) system where 
business transactions are undertaken with a high degree of automation. Maybe the best-known 
examples are the Apple App store and Google Play. In both these instances (and almost all 
such currently existing business platforms), Apple and Google, respectively, have a defining, 
central, all powerful, and rulemaking position, deciding on who can “play” and also extracting a 
hefty fee out of the platform. Not only is the platform not decentralized, but it is also not open, 
i.e., not open to other players without the explicit and typically not automatic agreement of the 
defining player and, in particular, not open to competitors or game changers. 

The SOFIE philosophy and statement to be proven is that open platforms are the future. They 
can support evolution and fast transformation and provide the correct incentives for players to 
participate and innovate and for society to benefit more and to better control the process through 
general rules applied equally to all. An investigation of decentralized open platforms is described 
in Section 6 of this document using the System Dynamics methodology and with ultimate goal 
to determine the conditions under which such platforms can emerge, grow, and prosper. 

2.1.3 Multiple ledgers and interledger technology 

The "one ledger to rule them all" approach is prone to failure, as it suffers a number of 
shortcomings. Public ledgers typically incur relatively high fees and longer latency to register a 
transaction, making them unsuitable for storing data very frequently. Private ledgers, on the 
other hand, can register transactions at a negligible cost and relatively faster than public ones, 
but their immutability guarantees are very low compared to those of public ledgers. A well-
designed interaction between ledgers of both types can bring significant benefits to a deployed 
framework, combining low-cost and fast data storage with high immutability guarantees. This is 
why a key component of the SOFIE approach is the use of interledger technologies. We provide 
an up-to-date and comprehensive survey, review and characterization/evaluation of interledger 
approaches in [Sir+19d]. 

2.1.4 Trust, security, transparency, availability, and accountability  

These properties form the cornerstone of Distributed Ledgers, promoting transactions to a new 
level of trust and security that stems directly from cryptographic algorithms, rather than being 
imposed by a third party, institution or government. This is achieved by requiring consensus of 
a large number of nodes in validating transactions and, thereafter, storing them in an immutable 
structure, known as the blockchain. All nodes participating in a blockchain, be it permissioned 
or permissionless, essentially have access to the entire state and to all transactions recorded 
in it, which makes transparency an inherent property of blockchains. In the case of SOFIE, 
however, personal data, or data that are sensitive for certain entities, such as business secrets, 
should not be written in a blockchain in clear form. Instead, either an encrypted version of the 
information will be stored, or merely its hash.  

Regarding availability, the fact that any participating node stores the entire history and state of 
a blockchain means that any interested entity can run one or more nodes in that blockchain, 
increasing availability. Finally, by using a blockchain for authorization and for acquiring the keys 
to access a service or a device, all accesses are recorded, providing for accountability. The 
aforementioned properties are particularly significant given the envisioned interactions among 
entities and businesses with diverse, and often conflicting interests. 

Another relevant measure is usability, a qualitative measure that shows how easy it is for a 
system to be used, to be connected, etc. In this context it is important to also consider usability 
because DLTs might introduce significant complications in systems relying on them. (ISO 9241-
11:2018 provides usability definitions and guidelines). 
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2.1.5 How features are fulfilled 

The following table presents how each of the aforementioned features is fulfilled in the SOFIE 
architecture. 

Table 1: Architecture features 

Feature How it is fulfilled 

Decentralization SOFIE is decentralized by design, pertaining to the collaboration of 

distinct business entities with private data silos. It is SOFIE's main 

target to enable interaction in such a decentralized set of private 

silos. At an architectural level, decentralization refers to the 

segregation of SOFIE's architecture into a number of self-contained 

components, which are subsequently combined to serve SOFIE 

applications. Finally, at a low, implementation level, decentralization 

refers to the main technology behind SOFIE, blockchains, which are 

inherently decentralized, let alone the interoperation of multiple 

diverse blockchains through the use of interledger technology. 

Open business 

platforms 

Openness is an intrinsic feature of the SOFIE project. The 

architecture, framework, and components proposed in SOFIE are 

open, with clearly defined operations and interfaces. Notably, SOFIE 

APIs are not hardcoded, but can be customized through the use of 

SOFIE adapters. 

Multiple ledgers and 

interledger 

technology 

The use of multiple ledgers in SOFIE is dictated by two goals. First, 

in a multi-party business scenario, the use of multiple ledgers may 

reflect more accurately the interaction between different parties. I.e., 

one blockchain could serve the interaction between parties A, B, and 

C, while a separate blockchain could serve parties X, Y, and Z. 

Second, different blockchains have different technical properties, 

such as transaction cost, block generation speed, smart contract 

capabilities, etc. Combining different blockchains gives SOFIE 

applications more flexibility in fulfilling specific requirements using 

best-of-both-worlds features. 

Trust and 

Accountability 

Trust and accountability are enforced in SOFIE through the use of 

blockchains. For example, in the Food-Chain Pilot, recording smart 

box handovers in blockchains guarantees trust between trading 

parties, while parties responsible for inappropriate handling of 

produce can be held accountable based on ground-truth records. 

Security Security in SOFIE is managed by the Identity–Authentication–

Authorization (IAA) component, which encompasses Hyperledger 

Indy, a popular Decentralized Identifiers (DIDs) implementation, and 

OAuth2.0. 

Transparency Transparency is enforced through the use of blockchains. For 

example, in the Italian Energy Pilot, the Marketplace component is 
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responsible to guarantee transparency regarding current energy 

prices among electric vehicles (EVs), charging stations (CSs) and 

distribution system operators (DSOs). 

Availability Availability is an inherent feature of blockchains. As a blockchain is 

maintained by a number of nodes distributed across diverse 

geographic locations and administrative jurisdictions, the probability 

of all nodes crashing or becoming unresponsive simultaneously 

becomes extremely small. 

2.2 Architecture KPIs 

In Deliverable D2.2, Annex 1, we defined a number of KPIs that will be used for the evaluation 
of the SOFIE architecture. In this section we further specify and extend these KPIs and report 
our progress on the architecture evaluation with respect to the defined KPIs. 

The KPIs are shown collectively in the table below. For each KPI, the table indicates the metric 
for measuring the KPI, the method for verification or measurement and the target value. The 
KPIs related to the system performance are shown in a separate table below. The system 
performance KPIs for specific pilot-inspired scenarios are also shown in individual tables.  

 

Table 2: KPIs 

KPI Goal Description Metric Method of verification Target 

1 IoT 

operability 

Prove operability of the 

implementation with 

IoT silos 

Number of IoT silos Detection of data flow in silos 

during implementation use 

case 

5 

2 IoT inter-

operability 

Prove interoperability 

across multiple IoT 

silos of the reference 

architecture 

Number of IoT silo 

pairs 

Implementation use case 

accesses data or actuates 

operations in different IoT 

silos 

3 

3 Ledger use Validate SOFIE 

implementation 

capability with multiple 

ledgers 

Number of distributed 

ledgers 

Ledgers have detectable data 

passing through SOFIE 

implementations 

5 

4 Interledger 

use 

Validate SOFIE 

implementation 

operating across 

multiple ledgers 

Number of distributed 

ledger pairs 

Implementation use case 

shown to result in operations 

across multiple ledgers 

3 

5 Ledger 

independen

ce 

Demonstrate capability 

of developing 

applications using 

ledgers, where a 

sufficient abstraction 

can be provided to 

applications to allow 

them to be targeted 

simultaneously to 

multiple ledger 

technologies 

Number of Business 

Platforms (BP) 

samples classified into 

success or partial 

success 

Demonstrate that a BP 

sample can be deployed on 

two ledgers with only 

configuration changes, and 

the BP sample users are able 

to use either one with only 

configuration item changes 

3 



 

 

 

SOFIE  14(101) 

Document: H2020-IOT-2017-3-779984-SOFIE/D4.3 – First Architecture and System 
Evaluation Report 

Security: Public Date: 16.12.2019 Status: Completed Version: 1.10 

6 Privacy 

designed in 

as a 

fundamental 

requirement 

Demonstrate GDPR 

compliance where 

relevant 

Number of operational 

GDPR features 

referenced and 

supported.  

Final specifications have clear 

references to features 

implementing named GDPR 

requirements. Relevant pilot 

specifications also refer to the 

needed features 

4 

7 Device 

owner 

payments 

across 

ledgers 

Ability of silo owners to 

send and receive 

payments or other 

value transfers 

Number of ledger pairs 

supporting value 

transfer 

Observation of value transfer 

as part of a use case in an 

implementation 

2 

8 Data 

sovereignty 

Ability of data owners 

to reject or allow 

access, possibly for a 

specific time interval, 

to their data  

 

Each datum has an 

accompanying 

authorization list, which 

the data owner can 

modify 

Number of pilot use 

cases utilizing data 

owner data sovereignty 

features and data 

owner is from a 

different silo than the 

storage silo 

Count the number of use 

cases 

 

3 

9 User 

responsiven

ess 

Apparent 

responsiveness of the 

system for end users 

Number of seconds 

until user gets 

response for an action 

initiated by the user 

Measuring from the onset of 

user action until the user gets 

a response by the system (to 

the user interface he or she is 

using) 

See 

system 

perform

ance 

KPI 

table. 

10 System 

performance 

Overall system 

performance reflecting 

the diverse needs and 

requirements of 

different use cases 

Acceptable system 

performance for users 

and pilots 

Qualitative evaluation of 

system metrics. 
See 

system 

perform

ance 

KPI 

table. 

 

The system performance KPIs, along with their method of measurement and target are shown 
in the table below. Later tables will present pilot scenario specific KPIs. 

 

Table 3: System performance KPIs 

KPI Name Description Metric Method of measurement Target 

10.1 Ledger 

execution 

cost 

Cost for executing 

operations on a ledger 

Ledger execution cost 

units (e.g. gas in 

Ethereum) 

Measure the total execution 

cost for all operations that a 

transaction involves 

As low as 

possible 

10.2 Configuration 

time 

Time for configuration 

to complete 

Time units (e.g. 

seconds) 

Measure time from start of 

configuration until completion 

of configuration 

<15 sec 
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10.3 Response 

time or 

latency (or 

transaction 

delay) 

Time for the system to 

respond to a request 

or to execute a 

transaction 

Time units (e.g. 

seconds) 

Measure time from instant 

system receives a request or 

transaction until the instant 

that the system responds 

<5 sec (if 

human 

involved) 

<1 sec (if 

no 

human 

involved) 

10.4 Throughput Maximum number of 

transactions per time 

unit that the system 

can support 

Number of transactions 

per time unit 

Measure the number of 

transactions per time unit that 

can be supported while the 

QoS (e.g. in terms of 

maximum response time) is 

satisfied  

Domain 

specific 

10.5 Scalability – 

cost 

Increase of cost as 

load (e.g. number of 

transactions per time 

unit, number of nodes) 

increases 

Ratio of delta cost over 

delta of load (number 

of transactions/nodes)  

Measure cost for different 

loads 

linear or 

sublinear 

10.6 Scalability – 

time 

Increase of response 

time as load (e.g. 

number of transactions 

per time unit, number 

of nodes) increases 

Ratio of delta time over 

delta of load (number 

of transactions/nodes) 

Measure response time for 

different loads 

Linear or 

sublinear 

 

The system performance KPIs for the Food-Chain scenarios are presented in the table below. 

 

Table 4: System performance KPIs for Food Supply Chain scenarios 

KPI Name Description Metric Method of measurement Target 

KPI_FSC_1 Ledger 

execution 

cost in a 

public 

ledger 

Cost for executing 

operations on a 

ledger 

Ledger execution 

cost units (e.g., 

gas in Ethereum) 

Measure the total execution 

cost per box 

As low as 

possible 

KPI_FSC_2 Handover 

time 

Time to register data 

to blockchain during 

a handover between 

two stages 

Time unit (e.g., 

seconds) 

Measure the total time 

required for blockchain-

related operations during a 

handover of a box between 

two stages 

<1 min 

KPI_FSC_3 Internal 

state 

transition 

time 

Time to register data 

to blockchain during 

a box' state transition 

occurring internally 

within a single stage 

Time units (e.g. 

seconds) 

Measure the total time 

required for blockchain-

related operations during a 

state transition of a box within 

a single stage 

<30 sec 

KPI_FSC_4 Throughput Number of boxes 

that can be 

processed per time 

unit in any possible 

Number of boxes 

per time unit 

Measure the handover and 

state transition delays 

> 6000 

boxes 

per day 
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handover or internal 

state transition 

KPI_FSC_5 Time 

scalability 

Blockchain 

registration time for a 

handover or internal 

state transition, as a 

function of the 

number of boxes 

involved 

Ratio of the 

blockchain 

registration time 

over the number 

of boxes involved 

Measure handover and state 

transition blockchain 

registration time as a function 

of the number of boxes 

involved 

Linear or 

sublinear 

KPI_FSC_6 Cost 

scalability 

 

Public blockchain 

costs associated with 

box handovers or 

internal state 

transitions, as a 

function of the 

number of boxes 

involved 

Derivative Ratio 

of public ledger 

cost over the 

number of boxes 

involved 

 

Measure public blockchain 

cost for handovers and state 

transitions as a function of the 

number of boxes involved 

Linear or 

sublinear 

KPI_FSC_7 Response 
time for 
audit 
requests 

The time it takes to 
respond to an audit 
request, by pulling 
out all data related to 
the box in question 

Time units (e.g., 

seconds) 

Measure the time it takes to 
pull out all records related to a 
given box, and to cross check 
them to identify potential 
issues 

<1 min 

 

The system performance KPIs for the Decentralized Energy Flexibility Marketplace scenarios 
are shown in the table below. 

 

Table 5: System performance KPIs for Decentralized Energy Flexibility Marketplace scenarios 

KPI Name Description Metric Method of measurement Target 

KPI_DEFM_1 Ledger 

execution 

cost 

Cost for executing 

operations on a 

ledger 

Ledger execution 

cost units (e.g. 

gas in Ethereum) 

Measure the total execution 

cost for all operations involved 

As low as 

possible 

KPI_DEFM_2 Response 

time for 

requests, 

offers, and 

charging 

event 

notifications 

Latency of placing 

flexibility requests 

and offers on the 

marketplace 

Minutes Measure the time between the 

issuance of transaction by 

respective party until the 

transaction is recorded on the 

marketplace 

<5 min 

KPI_DEFM_3 Response 

time for 

determining 

the winner 

of the 

auction 

Latency of 

determining and 

notifying the winner 

of the marketplace 

auction  

Minutes Measure the time between the 

deadline of bids and offers 

until the winner of the auction 

has been determined and 

notified 

<5 min 

KPI_DEFM_4 Response 

time for 

verifying the 

winning bid 

Latency of verifying 

the winning bid and 

compensating (or 

fining) the winner 

Minutes Measure the time between the 

sufficient charging events has 

been recorded on the 

marketplace, until the events 

<5 min 
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and 

compensati

ng (or fining) 

the winner 

have been verified and the 

winner has been properly 

compensated. If recorded 

charging events did not satisfy 

the requirement of the bid 

during its timeframe, measure 

time between the end of the 

bid's deadline until the 

verification of the failure of the 

bid and fining the winner of 

the bid. 

KPI_DEFM_5 Throughput Number of 

transactions (bids, 

offers, selections of 

winning bid, charging 

event notifications, 

bid verifications, etc.) 

Number of 

transactions per 

time unit (hour) 

Measure the number of 

transactions per time unit 

(hour) that can be supported 

while the QoS (e.g. in terms of 

maximum response time) is 

satisfied 

>100 per 

hour 

KPI_DEFM_6 Scalability – 

time 

Increase of response 

time as load (e.g. 

number of 

transactions per time 

unit, number of 

nodes) increases 

Ratio of delta 

time over delta of 

load (number of 

transactions/node

s) 

Measure response time for 

different loads 

Linear or 

sublinear 

 

The system performance KPIs for the Decentralized Energy Data Exchange scenarios are 
shown in the table below. 

 

Table 6: System performance KPIs for Decentralized Energy Data Exchange scenarios 

KPI Name Description Metric Method of measurement Target 

KPI_DEDE_1 Cost for 

computing 

discounts 

Cost for executing 

discount operations 

on a ledger 

Ledger execution 

cost units (e.g. 

gas in Ethereum) 

Measure the total execution 

cost for all operations involved 

As low as 

possible 

KPI_DEDE_2 Cost for 

recording 

hashes 

Cost for recording 

hashes on a ledger 

Ledger execution 

cost units (e.g. 

gas in Ethereum) 

Measure the total execution 

cost for recording hashes 

As low as 

possible 

KPI_DEDE_3 Response 

time for 

access 

requests  

Time for the system 

to respond to 

metering data access 

requests  

Time units (e.g. 

seconds) 

Measure time between instant 

system receives a request 

until the instant that the 

system responds 

<5 sec 

KPI_DEDE_4 Response 

time for DID 

operations 

Time for performing 

read/write operations 

on the identity ledger 

(Hyperledger Indy) 

Time units (e.g. 

seconds) 

Measure time between instant 

system receives a request 

until the instant that the 

system responds 

<5 sec 

KPI_DEDE_5 Response 

time for KSI 

Blockchain 

signatures 

Time for retrieving 

KSI Blockchain 

signature 

Time units (e.g. 

seconds) 

Measure time between instant 

system receives a request 

until the instant that the 

system responds 

<2 sec 



 

 

 

SOFIE  18(101) 

Document: H2020-IOT-2017-3-779984-SOFIE/D4.3 – First Architecture and System 
Evaluation Report 

Security: Public Date: 16.12.2019 Status: Completed Version: 1.10 

KPI_DEDE_6 Processing 

time of 

requests in 

adapter 

Time for the 

processing incoming 

requests in adapter - 

includes audit log 

entry, verifying 

credentials, setting 

up secure channel 

Time units (e.g. 

seconds) 

Measure time between instant 

system receives a request 

until the instant that the 

system responds 

<5 sec 

KPI_DEDE_7 Response 

time for 

audit logs 

Time for the system 

to respond to audit 

log requests 

Time units (e.g. 

seconds) 

Measure time between instant 

system receives a request 

until the instant that the 

system responds 

<15 sec 

KPI_DEDE_8 Scalability – 

cost 

Increase of cost as 

load (number of 

discount 

computations or hash 

recordings per time 

unit) increases 

Ratio of delta 

cost over delta of 

load (number of 

discount 

computations or 

hash recordings 

per time unit)  

Measure cost for different 

loads 

linear or 

sublinear 

KPI_DEDE_9 Scalability – 

time 

Increase of response 

time as load (e.g. 

number of 

transactions per time 

unit, number of 

nodes) increases 

Ratio of delta 

time over delta of 

load (number of 

transactions/node

s) 

Measure response time for 

different loads 

Linear or 

sublinear 

 

The system performance KPIs for the mobile gaming scenarios are presented in the table below. 

 

Table 7: System performance KPIs for the mobile gaming scenarios 

KPI Name Description Metric Method of 
measurement 

Target 

KPI_MRMG_1 Public ledger 
execution 
cost 

Cost for executing 
operation on a public 
ledger 

Ledger 
execution 
cost units 
(e.g. gas in 
Ethereum) 

Measure the total 
execution cost for all 
operations that a 
transaction involves 

As low as 
possible  

KPI_MRMG_2 Response 
time for write 
requests 

Time for the system to 
respond to game state 
altering transactions, 
such as challenge 
creation & completion, 
skipping tasks and 
buying in-game items 

Time units 
(e.g. 
seconds) 

Measure time between 
instant system receives a 
request or transaction until 
the instant that the system 
responds 

< 3 sec. 

KPI_MRMG_3 Response 
time for read 
requests 

Time for the system to 
respond to non-altering 
requests such as 
getting player’s 
currencies and items 

Time units 
(e.g. 
seconds) 

Measure time between 
instant system receives a 
request or transaction until 
the instant that the system 
responds 

 

< 1 sec. 

KPI_MRMG_4 BLE beacon 
detection 
time 

The time player has to 
wait between walking 
into the correct location 

Time units 
(e.g. 
seconds)  

Measure average time 
between the instant player 
walks into the correct 

< 4 sec. 
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and receiving the 
context-dependent task 

location and the client 
detects the beacon 

KPI_MRMG_5 Throughput Maximum number of 
transactions per time 
unit that the system can 
support 

Number of 
transaction
s per time 
unit 

Measure transactions per 
time unit  

> 222 read 
and > 133 
write 
transactions 
per second 

KPI_MRMG_6 Scalability - 
cost 

Increase of cost as 
number of challenges 
or active users 
increases 

Ratio of 
delta cost 
over delta 
of 
challenges 
or active 
users 

Measure cost for different 
numbers of challenges or 
active users 

Linear or 
sublinear 

KPI_MRMG_7 Scalability  – 
time 

Increase of response 
time as number of 
challenges or active 
users or increases 

Ratio of 
delta time 
over delta 
of 
challenges 
or active 
users 

Measure response time 
for different numbers of 
challenges or active users 

Linear or 
sublinear 

 

Next we discuss in the architecture KPIs in more detail. 

KPI Goal Description Metric Method of verification 

1 IoT operability Prove operability of the 

implementation with IoT 

silos 

Number of IoT silos Detection of data flow in 

silos during 

implementation use 

case 

The objective of this KPI is to prove the applicability of the SOFIE federation architecture and 
its components to existing IoT silos. The corresponding metric is the number of IoT silos where 
the architecture has been applied. The current version of the architecture and a subset of its 
components have been applied and evaluated to the following scenarios/silos: 

 IoT resource access 

 Food supply chain  

 Electric vehicle energy marketplace 

 Smart meters 

 Mobile gaming 

Each scenario utilizes different features of the architecture and its components, such as 
authentication and authorization, recording of data or hashes and execution of smart contracts 
in private/permissioned and public DLTs.  

KPI Goal Description Metric Method of verification 

2 IoT inter-

operability 

Prove interoperability 

across multiple IoT silos of 

the reference architecture 

Number of IoT silo pairs Implementation use 

case accesses data or 

actuates operations in 

different IoT silos 

This KPI focuses on the application of the architecture and components to allow communication 
between different silos. For example, these silos can involve the platforms of different actors of 
a scenario, such as the transportation and the storage and distribution centre platforms in the 
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food chain scenario. The corresponding metric that represents this KPI (and which we would 
like to maximize) is the number of IoT silo pairs that exchange data through the SOFIE 
architecture. The semantic interoperability will utilize W3C’s Web of Things (WoT) things 
description model.  

KPI Goal Description Metric Method of verification 

3 Ledger use Validate SOFIE 

implementation capability 

with multiple ledgers 

Number of distributed 

ledgers2 

Ledgers have 

detectable data passing 

through SOFIE 

implementations 

A key goal of the SOFIE platform is to utilize different DLTs with different performance tradeoffs 
(execution cost and transaction time) and features, such as privacy, transparency, and trust. 
The DLTs that have been used in the evaluation experiments reported in this deliverable and 
the pilots defined in WP5 include the following ledgers: 

 Public Ethereum, including the Rinkeby and Ropsten public Ethereum test networks 

 Private Ethereum network 

 Hyperledger Fabric 

 Hyperledger Indy 

 KSI blockchain 

KPI Goal Description Metric Method of verification 

4 Interledger 

use 

Validate SOFIE 

implementation operating 

across multiple ledgers 

Number of distributed 

ledger pairs 

Implementation use 

case shown to result in 

operations across 

multiple ledgers 

A primary goal of SOFIE is to enable the interoperation and exchange of information across 
different DLTs with different performance tradeoffs and features. The evaluation experiments 
reported in the current deliverable consider the interoperation of a private Ethereum network 
with the Rinkeby and Ropsten public Ethereum testnets.  

Experiments with interledger smart contracts for the Identification, Authentication, Authorization 
(IAA) component have been conducted and are reported in Section 4.1. In addition to the 
interoperation of public/permissioned ledgers, we have experimented with Decentralized 
Identifiers (DIDs) recorded on Hyperledger Indy, which are reported in Section 3.3.  

Ongoing evaluation work is investigating the interaction between the following pairs of DLTs: 

 Hyperledger Fabric - Public Ethereum 

 Private Ethereum - KSI blockchain 

                                                
2  Across significantly different ledger technologies, e.g. Ethereum and Ethereum Classic are not 
considered different ledgers, as their differences are small enough to allow applications developed on 
Ethereum to be deployed on Ethereum Classic with only minor changes. 
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KPI Goal Description Metric Method of verification 

5 Ledger 

independence 

Demonstrate capability of 

developing applications 

using ledgers, where a 

sufficient abstraction can be 

provided to applications to 

allow them to be targeted 

simultaneously to multiple 

ledger technologies 

Number of Business 

Platforms (BP) samples 

classified into success 

or partial success 

Demonstrate that a BP 

sample can be deployed 

on two ledgers with only 

configuration changes, 

and the BP sample 

users are able to use 

either one with only 

configuration item 

changes 

The goal of this KPI is to demonstrate the capability of developing applications using sufficient 
abstractions that allow the applications to run over multiple ledger technologies. 

The experiments reported in this deliverable involve distributed apps implemented mainly using 
the Solidity language, which compiles them into Ethereum Virtual Machine (EVM) bytecode. 
The EVM bytecode can be executed in private Ethereum networks and public Ethereum (and 
the testnets). However, EVM can also be deployed in a “Blockchain as a service” type of 
Ethereum network (e.g., networks provided by Microsoft Azure 3  and Amazon’s Managed 
Blockchain 4 ), as well as in other blockchain systems (such as Hyperledger Fabric 5  and 
Hyperledger Sawtooth6). Secondly, SOFIE’s “Privacy and Data sovereignty” component (see 
section 3.2) and “Identification, authentication, authorization” component (see section 3.3) are 
based on generic enough identification systems and can be configured to be used with various 
types of ledgers, including Hyperledger Indy, as well as traditional ones (LDAP). 

KPI Goal Description Metric Method of verification 

6 Privacy 

designed in as 

a fundamental 

requirement 

Demonstrate GDPR 

compliance where relevant 

Number of operational 

GDPR features 

referenced and 

supported.7  

Final specifications have 

clear references to 

features implementing 

named GDPR 

requirements. Relevant 

pilot specifications also 

refer to the needed 

features 

This KPI concerns the compliance of the SOFIE architecture with the GDPR and its metric is 
the number of operational GDPR features referenced and supported.  

The SOFIE architecture has the following features related to privacy and GDPR. Firstly, as 
discussed and investigated in section 5, the SOFIE architecture does not record personal data 
to immutable ledgers. Instead, the immutability of data recorded in local databases is ensured 
by recording hashes of the data in public ledgers. Secondly, in the various scenarios only the 
minimum set of data is stored in a public ledger, in order to ensure the correct operation and 
functionality that pertains to the specific scenario. Finally, SOFIE’s applications do not process 
data without having permissions granted by users, e.g., in the mobile gaming scenario when 

                                                
3 https://azure.microsoft.com/en-us/blog/ethereum-blockchain-as-a-service-now-on-azure/  
4 https://aws.amazon.com/managed-blockchain/  
5 https://www.hyperledger.org/blog/2018/10/26/hyperledger-fabric-now-supports-ethereum 
6 https://sawtooth.hyperledger.org/docs/seth/releases/latest/introduction.html  
7 The number of GDPR articles which lead to operational goals is generally thought to be about 10. See 
e.g. https://iapp.org/resources/article/top-10-operational-impacts-of-the-gdpr/  

https://azure.microsoft.com/en-us/blog/ethereum-blockchain-as-a-service-now-on-azure/
https://aws.amazon.com/managed-blockchain/
https://www.hyperledger.org/blog/2018/10/26/hyperledger-fabric-now-supports-ethereum
https://sawtooth.hyperledger.org/docs/seth/releases/latest/introduction.html
https://iapp.org/resources/article/top-10-operational-impacts-of-the-gdpr/
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the user installs the app, a pop-up screen is displayed asking for Storage, Access location, etc., 
permission.  

KPI Goal Description Metric Method of verification 

7 Device owner 

payments 

across ledgers 

Ability of silo owners to 

send and receive payments 

or other value transfers 

Number of ledger pairs 

supporting value 

transfer 

Observation of value 

transfer as part of a use 

case in an 

implementation 

Whereas KPI 4 on “Interledger use” focuses on the interoperability, in general between different 
ledgers, this KPI concerns the transfer or, more accurately, the exchange of value, between 
different ledgers. An example of such an exchange of value is discussed in detail in Section 4.1 
and involves the exchange of a payment token, stored in a public Ethereum blockchain, with an 
access token stored in a private Ethereum blockchain. This exchange is performed using 
functionality of the interledger component. 

KPI Goal Description Metric Method of verification 

8 Data 

sovereignty 

Ability of data owners to 

reject or allow access, 

possibly for a specific time 

interval, to their data  

 

Each datum has an 

accompanying 

authorization list, which the 

data owner can modify 

Number of pilot use 

cases utilizing data 

owner data sovereignty 

features and data 

owner is from a 

different silo than the 

storage silo 

Count the number of 

use cases 

 

This KPI is related to the ability of data owners to reject or allow access, possibly for a specific 
time interval, to their data. This KPI can be verified with the number of pilot use cases utilizing 
data owner data sovereignty features, where the owner can be in a different silo than the storage 
silo. 

All scenarios presented in Section 5 can leverage the “Privacy and Data sovereignty” 
component of the SOFIE architecture to achieve data sovereignty. Solutions related to data 
access with specific functionality and features are investigated in more detail in Section 4. 

KPI Goal Description Metric Method of verification 

9 User 

responsiveness 

Apparent responsiveness 

of system for end users 

Number of seconds 

user gets response for 

an action initiated by 

the user 

Measuring from the 

onset of user action until 

the user gets a 

response by the system 

(to the user interface he 

or she is using) 

The user responsiveness KPI measures the number of seconds required for a user to receive 
a response for an action he/she initiated. We have performed a number of experiments related 
to this KPI for various types of user actions, mostly related to user authorization. These 
experiments identify two sources of delay a) delay introduced due to complex cryptographic 
computations and b) delays due to the block mining time. In Sections 3.2 and 3.3 we measure 
the time required for performing various cryptographic operations related to the components of 
the SOFIE architecture, whereas in Section 4.1 we measure the delay introduced by the public 
Ethereum blockchain during the user authorization process. 
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KPI Goal Description Metric Method of verification 

10 System 

performance 

Overall system 

performance reflecting the 

diverse needs and 

requirements of different 

use cases 

Acceptable system 

performance for users 

and pilots 

Qualitative evaluation of 

system metrics. 

This KPI reflects the overall system performance. Different use cases can have diverse needs 
and requirements. The system metrics that we consider in the evaluation studies are discussed 
below.    

Execution cost (GAS consumption): When using an Ethereum blockchain the gas 
consumption measures the execution cost that captures both the amount of processing and the 
storage used by a particular smart contract or smart contract function. The execution cost is 
used in the performance evaluation studies reported in this report to quantify the cost for 
executing smart contracts and storing data on the Ethereum blockchain. 

Delay: When the operations of a scenario include transactions on a blockchain such as 
Ethereum that implements Proof-of-Work consensus, the delay is due mainly to the block 
confirmation time. Similar to the execution cost, the delay involving blockchain transactions 
quantifies the performance cost for obtaining the advantages of public blockchains, in terms of 
decentralized trust, immutability, and availability.  

In addition to the above traditional metrics, in some scenarios we identify quantitative metrics 
related to features provided by DLTs, such as immutability. Specifically, in scenarios where we 
periodically record hashes on a public ledger, the immutability of data that is produced from the 
time the last hash is recorded on a public ledger until the time the next hash is recorded cannot 
be ensured. The impact that the time interval or the amount of data produced between the 
consecutive recording of hashes on a public ledger is application specific. 

The following that summarizes the project’s current minimum achievements regarding the 
aforementioned KPIs. The values in the table include the emulated scenarios (i.e., scenarios 
that include emulated entities such as IoT devices/platforms and users) reported in this report. 
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Table 8: Current status of the SOFIE architecture KPIs 

KPI Metric Target Current achieved 
number 

1 IoT operability Number of IoT silos 5 5 

2 IoT interoperability Number of IoT silo pairs 3 - 

3 Ledger use Number of distributed 
ledgers 

5 4 

4 Interledger use Number of distributed 
ledger pairs 

3 1 

5 Ledger independence Number of BP samples 
classified into success or 
partial success 

3 - 

6 Privacy designed in as a 
fundamental requirement 

Number of operational 
GDPR features referenced 
and supported 

4 3 

7 Device owner payments 
across ledgers 

Number of ledger pairs 
supporting value transfer 

2 1 

8 Data sovereignty Number of pilot use cases 
utilizing data owner data 
sovereignty features and 
data owner is from a 
different silo than the 
storage silo 

3 4 

9 User responsiveness Number of seconds user 
gets response for an action 
initiated by the user 

 Various measurements 
have been performed  

10 System performance Acceptable system 
performance for users and 
pilots 

 Various measurements 
have been performed 
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3. Initial component evaluation 

3.1 Interledger 

The main purpose of the SOFIE interledger component is to enable transactions between actors 
and devices belonging to different (isolated) IoT platforms or silos. Each IoT silo either utilizes 
or is connected to one or more DLTs. The interledger component then enables interaction 
between these DLTs.  

The interledger component can utilize different mechanisms depending on the specific scenario 
and its requirements. For example, interactions between a public and a permissioned ledger 
can use hashed time-lock contracts to cryptographically link transactions and events on the two 
ledgers. In such a scenario, the public ledger can record payments while the permissioned 
ledger can record authorization transactions and events. Alternatively, hashes of records stored 
on the permissioned ledger can be periodically recorded on the public ledger in order to provide 
a timestamped anchoring point, exploiting the wide-scale decentralized trust provided by the 
public ledger. Finally, interactions between a public or permissioned ledger and a ledger storing 
DID documents can focus on the resolution of DIDs to DID documents. The interledger 
functionality can be implemented in different entities, which include the entities that are 
interacting, a third party, or multiple third parties. In the latter case, some coordination between 
the entities may be necessary. A detailed survey of interledger approaches is contained in 
[Sir+19d].  

Below we provide more details on the hash-lock and time-lock mechanisms, which are utilized 
in Section 4.1. 

A hash-lock is a cryptographic lock that can be unlocked by revealing a secret whose hash is 
equal to the lock’s value, h. Unlocking a hash-lock can be one of the conditions for performing 
a transaction or for executing a smart contract function. On a single blockchain, a hash-lock can 
be linked to an off-chain capability, e.g., message decryption, if the hash-lock secret is the secret 
key that can decrypt the message.      

Hash-locks can be used on two or more blockchains, which support the same hash function, to 
link a transaction on one chain to a transaction on the other chain: if the two transactions have 
hash-locks with the same value, then unlocking one hash-lock would reveal the secret that 
unlocks the other; hence, the two transactions are cryptographically linked through a 
dependence relation. More generally, hash-locks combined with AND/OR logic operators can 
implement elaborate dependencies involving transactions on multiple chains. 

Time-locks are blockchain locks that can be unlocked only after an interval has elapsed. This 
interval can be measured in absolute time or in the number of blocks mined after a specific 
block. One usage of time-locks are refunds: a user (payer) can make a deposit to a smart 
contract address. The smart contract can have a function, which typically also includes a hash-
lock, for a second user to transfer the deposit to another account (the payee’s account). 
However, if the second user never calls this function, then the first user’s deposit could be locked 
indefinitely in the smart contract’s account. To avoid this, the smart contract can also include a 
refund function that allows the first user to transfer the amount he/she deposited back to his/her 
account; however, this function can be called only after some time interval, which is the interval 
in which the second user must transfer the deposit from the smart contract account to the 
payee’s account. 

3.1.1 Experiment setup  

For the evaluation of our proof of concept we deployed an instance of the component that 
implements the interledger functionality and is connected to a local Ethereum node, running 
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Ethereum’s default Go-based implementation (i.e., geth),and to the Rinkeby or Ropsten public 
Ethereum testnet. The local node uses the default Ethereum configuration (i.e., proof of work 
consensus protocol and average block mining time 12 sec.) We evaluated the authorization use 
case presented in section 4.1. In this use case, a user has to be authenticated and authorized, 
using a simple dictionary of authorized public keys. Furthermore, authorized users deposit some 
funds in order to receive a decryption key, using the locks mechanisms described in the previous 
section. We measured the gas consumption and the delay in two cases: (a) when a single smart 
contract is used, and (b) when the whole functionality is split in two smart contracts, located in 
different blockchains, interacting through the interledger component. In the latter case, the first 
smart contract was responsible for authorizing users, whereas the second smart contract was 
responsible for handling payments. SOFIE’s interledger component utilizing hash-locks and 
time-locks is responsible for ensuring the atomicity of the joint transaction. 

3.1.2 Results 

Figures 1 and 2 below illustrate the obtained results. In the case where two blockchains are 
used, we measure the gas consumption and the delay of the public blockchain only. The 
execution cost (gas) shown in Figure 1 in the case of two blockchains considers only the cost 
for the public blockchain, since the other blockchain is a permissioned blockchain. The results 
show that utilizing two blockchains can reduce the total execution cost. 

 

Figure 1: Gas cost when a smart contract and one blockchain are used, and when a smart 
contract and two blockchains are used 

The delay shown in Figure 2 depends mainly on the block confirmation time. In the case of two 
blockchains, only the transactions on the public blockchain incur a high delay, due to the block 
confirmation time on such blockchains. For the specific scenario considered, which is discussed 
in more detail in Section 4.1, there are four transaction on the public blockchain in the case a 
single blockchain is used, whereas there are three transactions on the public blockchain when 
two blockchains are used. The results in Figure 2 illustrate the gains in terms of reduced delay 
when two blockchains are used. 
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Additional results when two blockchains are utilized, a public blockchain for recording only 
hashes of data and a private blockchain for storing data and/or executing smart contracts, are 
presented in Section 5.   

 

Figure 2: Delay when a smart contract and one blockchain are used and when a smart 
contract and two blockchains are used 

3.2 Privacy and data sovereignty 

User privacy is protected by using verifiable credentials and zero-knowledge proofs during the 
authorization process. Our privacy and data sovereignty component leverages Hyperledger 
Indy8 and its SDK for this purpose. An Indy-based authorization process involves the following 
phases [Lag+19]: 

Network setup. During this phase, which is executed only once, a “pool” of Indy nodes is 
created. The configuration file of this pool includes the “decentralized identifier” (DID) of a 
“Steward” node that is responsible for writing information to the Indy ledger. This DID is 
considered to be well-known. Stewards are the only entities that are allowed to record 
information in the ledger.  

Trust Anchor setup. During this phase a DID known as the “Trust Anchor” is generated. 
A Trust Anchor is used for signing requests sent to the Steward, i.e., a Trust Anchor is 
responsible for managing DIDs and verifiable credentials (VCs) and it is the only entity that can 
communicate with a Steward. For each VC type, an anchor creates the “credential definition 
scheme” (i.e., a JSON-encoded description of the VC) and publishes it to the Hyperledger Indy 
ledger (through the Steward). These actions are executed once per VC type. 

Client VC generation. Each client that has some trust relationship with an anchor may create 
a DID and send a “credential request” to the Anchor. The Anchor then responds with the 
corresponding credential, publishing at the same time (through the Steward) information to the 
ledger that can be used for verifying the issued credentials. 

                                                
8 https://www.hyperledger.org/projects/hyperledger-indy  
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Client authorization. A client authorization by an authorization server (AS) is implemented 
using the following procedure: 

1)  The client makes an HTTP request to the AS specifying a “grant type=DID” in the URL. 

2)  The AS generates a proof request, asking the client to prove that he holds the 
necessary VCs, issued by the appropriate Trust Anchor. This request includes, among 
other fields, a nonce. 

3)  The client generates a proof based on the credential and repeats the request by 
including now the proof in the payload. 

Utilizing DIDs and VCs for authorization offers several advantages over how traditional X.509 
certificates and Public Key Infrastructures (PKIs) are currently used. (In principle, all the 
improvements could also be implemented with them as well, but due to e.g. the significantly 
higher cost of X.509 certification and the number of certificates required, that would be highly 
impractical, if not impossible.) Traditional certificates are designed to be semi-permanent and 
human-readable: the user receives their certificate once and uses it in several situations. The 
certificate usually also contains much (unnecessary) information about the user, including their 
real identity, and the user reveals all attributes of the certificate when using it. This leads to a 
high cost of issuing the certificates (e.g., the user’s real identity must be verified, usually by 
manual means) and serious privacy issues, since the user’s activities can be easily tracked from 
service to service by multiple parties when using certificates. 

The DIDs and VCs are designed to allow more fine-grained, machine-readable, and short-lived 
credentials, thus improving privacy and reducing the costs of issuing the credentials. While there 
are also proposals to allow X.509 certificates to support zero knowledge proofs [Del+16], 
Hyperledger Indy contains built-in support for zero knowledge proofs, which in turn further 
improve privacy by allowing the users to prove properties about themselves without disclosing 
their credentials. 

Currently there exist multiple federated identity management solutions such as single sign-on 
systems and eduroam. However, they usually rely on their own non-standard identity 
management solutions and allow only certain members to participate in the first place (it is not 
easy to interconnect public organizations located in different countries, or for non-educational 
institutions to join eduroam). DIDs and VCs are open standards, allowing easy deployment and 
adoption, thereby allowing any pair of organizations to co-operate with each other with a low 
barrier of entry. 

Data sovereignty is protected using access control. This SOFIE component supports access 
control delegation to an Authentication Server. This functionality is implemented through a smart 
contract that implements a hash lock and it can either simply relay messages or it can verify the 
relationship between a resource (and its owner) and the Authentication Server. In particular, the 
component implements three protocols [FSP18]: 

Straw man protocol: This protocol is based on a smart contract that provides the following 
methods: 

 request: Invoked by a client wishing to access a resource. It accepts as input a deposit 
and the resource identifier. The contract examines potential access control rules and 
determines if the client deposit suffices for accessing the requested resource. If all 
checks succeed, the contract generates the appropriate event, which is received by the 
corresponding authorization server.  

 authorize: Invoked by an Authentication Server upon successful client authorization. 
It transfers the deposit that the client made (when she invoked the request method) to 
the service provider. Then, it creates an appropriate event used for notifying the client 
that authorization has been granted.  
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With this protocol, initially a client requests a protected resource from a resource server and the 
server responds with a token and the URI of a smart contract that protects the requested 
resource. Then, the user invokes the request method of the smart contract. An event is 
broadcast and received by the appropriate AS which examines if the user can be authorized to 
access the requested resource. If this is true, the AS generates a session key sk (using the 
process described in [Fot+16]), encrypts it using the public key of the client, and invokes the 
authorize method of the smart contract. The smart contract examines if the AS that invoked the 
authorize method is allowed to do so. This check is implemented by simply examining if the 
public key of the entity that invoked that method is equal to the public key of the legitimate AS. 
The drawback of the straw man protocol is that the payment to the provider takes place without 
any checks. Note that with the solution described in [Fot+16], the user is able to perform certain 
verifications after trying to use the received sk. However, with the straw man protocol, these 
verifications can only be used for dispute resolution. 

First protocol. The first protocol is an improvement to the straw man approach which allows 
an AS to verify that a client is communicating with a legitimate server. In order to achieve this 
goal, we extend the request method of the smart contract to include an additional field, i.e., the 
Hash based Message Authentication Code (HMAC) of the token generated using the session 
key sk. The value for this field is provided by the server, in its response to a client request. Now 
an AS, after generating the sk, calculates the same HMAC, and checks if the value of the latter 
calculation is equal to the value provided by the server. If this is true, then the server is 
considered legitimate 

Second protocol. The second protocol extends the previous construction by enabling smart 
contracts to verify the relationship between a server and an AS. This functionality is achieved 
by having the client “challenge” the server during her request. The challenge used is a random 
number, which the server should obfuscate in a way that only an AS that shares a secret key 
with the server could read. The smart contract should therefore learn the challenge from the 
client and should expect the response from the AS. In order to “hide” the challenge we use a 
hash-lock (i.e., the client provides the hash of the challenge and the AS has to provide the 
corresponding pre-image). 

Furthermore, this SOFIE component supports crypto token-based access control [Fot+19]. 
Many legacy access control mechanisms implement access control using “tokens” that indicate 
the capabilities of a client over a resource. However, token management, security, and 
semantics interpretation cannot be trivially implemented, especially in the context of the IoT. For 
this reason, in this component we leverage the capability of the Ethereum blockchain to support 
custom tokens and we implement an access control mechanism. 

Ethereum has specified a “token standard” called ERC20 [VV15]. This standard defines some 
functions that a smart contract should implement in order to be treated as supporting a token 
(i.e., a new type of coin). Many popular Ethereum wallets can handle ERC20-based tokens. The 
core of this access control mechanism is built using two of these functions, namely balanceOf 
and transfer. The first function returns the token balance of a user. The second function can be 
invoked by a user A in order to transfer some tokens (he owns) to another user B. 

The smart contract of this component provides access control as follows. Initially a resource 
owner that owns the smart contract assigns all tokens to himself. We refer to this user as the 
“owner.” The owner then transfers at least one token to each authorized client. The number of 
tokens a client owns can actually be used as an indication of his role: the more tokens he owns, 
the more privileged his role. The contract owner can protect an operation by specifying the roles 
(i.e., the balance in custom tokens) of the authorized clients. Therefore, in the simplest case, 
an operation can be protected simply by having the smart contract function checking if the client 
that invokes it owns the necessary number of tokens (this check is trivially implemented using 
the balanceOf function). 
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SOFIE’s token-based access control has some intriguing security properties. Firstly, tokens can 
only be used by their owners and token owners cannot transfer them to other users. Even if the 
blockchain keys of a user are compromised, our construction prevents token transfer (of course 
the stolen keys can be used for issuing transactions on behalf of the victim users). This is a 
significant advantage compared to traditional token-based access control mechanisms where, 
not only the corresponding tokens have to be secured, but also a token recipient should be able 
to verify the binding between the token and the user who sent it (i.e., additional mechanisms for 
detecting stolen tokens should be in place). In other words, the responsibility (and security) of 
the binding of tokens to token owners is performed by the blockchain, rather than being the 
responsibility of each user (which opens security issues). Furthermore, blockchains are 
indelible, append-only, and tamper-proof logs, hence, in case of a security incident or in case 
of a dispute, they can provide undeniable auditing information. Moreover, our construction offers 
secure and effective revocation. Ethereum’s mechanisms guarantee that only an owner can 
revoke tokens (provided, of course, that the owner’s private key is secured), and that token 
revocation has immediate effect. Finally, since our construction is based on an established 
Ethereum standard, libraries and wallets that support it can be used for implementing client 
applications. 

3.2.1 Experiment setup  

A preliminary version of this component has been implemented using Ethereum smart 
contracts.9  This technology has some limitations that led us to certain design choices. In 
particular, although each user in Ethereum owns a public/private key pair, a smart contract has 
access only to each user’s “address,” i.e., the last 20 bytes of the hash of her public key. This 
means that users have to explicitly include their public keys with every smart contract function 
invocation; in our implementation, we added an additional field in each function which is used 
for storing the callee’s public key. Furthermore, Ethereum keys are constructed using the 
secp256k1 elliptic curve; encrypting content using this curve can be cumbersome since 
specialized constructions, such as the elliptic curve integrated encryption scheme [Sho11], are 
required. For these reasons, we selected to not use Ethereum’s keys in our constructions, using 
instead keys based on the Curve25519 elliptic curve [Ber06]. Curve25519 is a well-supported, 
fast curve which is ideal for key establishment, as it allows a user A to generate a symmetric 
encryption key that can be used for communicating with a user B, using only B’s public key. The 
component’s evaluation was performed in SOFIE’s local testbed, using Ethereum’s default Go-
based implementation (i.e., geth) and the default parameters.  

The client and the AS for these measurements are implemented using JavaScript. Interactions 
with the Ethereum blockchain are implemented using the Ethereum JavaScript API and the 
Metamask browser extension, whereas cryptographic operations based on Curve25519 are 
implemented using the TweetNaCl library.10 

The server used in our experiments is a php script that uses the php-keccak library11 for 
generating Ethereum-compatible hashes.  

3.2.2 Results 

The main constructions of our smart contract, which is deployed in SOFIE’s local testbed, are 
implemented in five functions: requestS(), request1(), request2(), each implementing the 
request() method for our three protocols (straw man, first construction, and second construction), 
and authorize1() and authorize2(), that implement the authorize() method for the first two 

                                                
9 The source code is available at SOFIE’s public github repository. 
10 https://tweetnacl.cr.yp.to. TweetNaCl is promoted as the world's first auditable high-security 
cryptographic library. 
11 https://github.com/kornrunner/php-keccak 

https://tweetnacl.cr.yp.to/
https://github.com/kornrunner/php-keccak
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protocols and for the last protocol, respectively. For our experiments, we set the tokens’ size 
equal to 16 bytes, using sha256 as an HMAC function, and AES in GCM mode with 128 bits 
key as a symmetric encryption algorithm. Public-private keypairs were generated using the key 
generation function of the TweetNaCL library. Table 8 below illustrates the cost, measured in 
Ethereum “gas,” for invoking each function. 

 

Table 9: Cost for invoking smart contract functions in the privacy and data sovereignty 
component 

Function Cost (measured in gas) 

requestS() 123186 

request1() 128218 

request2() 253488 

authorize1() 57950 

authorize2() 63746 

3.3 Identification, authentication, authorization  

This SOFIE component supports the following Identification/Authentication mechanisms: 
URIs (e.g., Web of Things URIs) for identification coupled with digital certificates for 
authentication, usernames for identification bound to secret passwords for authentication, and 
decentralized identifiers associated with a DID document, stored in a blockchain, and used for 
authentication. 

DIDs are a new identification mechanism; their properties have not been thoroughly studied, 
yet. In the following we discuss the feasibility of deploying DIDs in IoT devices [Kor+19]. 

In order to utilize distributed identifiers (and verifiable credentials) the IoT device should have:  

 sufficient performance for cryptographic operations,  

 a sufficient amount of energy to perform the required operations,  

 non-volatile storage space to store the code and cryptographic keys, and 

 a sufficient entropy source to generate random cryptographic keys. 

From a performance point of view, the most limiting factor is the performance of public key 
cryptographic operations, namely key generation, signature generation, and signature 
verification. Presently, most DID solutions utilize elliptic curve cryptography (ECC)—as opposed 
to e.g. RSA—due to its significantly smaller key size and the fact that all three operations are 
relatively fast and take roughly a similar amount of time (with RSA, key generation can take 
orders of magnitude longer than signature generation or verification operations). Lately, there 
has been much research about the performance of ECC on constrained devices. Past research 
[HS13] shows that operations with the common Ed25519 [Ber+12] signature scheme using a 
standard public domain NaCl12 library on a popular 8-bit AVR microcontroller take about 23 
million and 32 million cycles for signature generation and verification, respectively. Newer 
optimizations [Dül+15] reduce the cost of the elliptic curve point multiplication on the comparable 
Curve25519 from 23 million to 14 million cycles on a 8-bit device, while on a 32-bit low cost 
ARM Cortex-M0 core, the point multiplication uses only about 3.6 million cycles. Therefore, 

                                                
12 NaCl: Networking and Cryptography library. Available at:  https://nacl.cr.yp.to/  

https://nacl.cr.yp.to/
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Cortex-M0 devices, which are available for less than half a dollar in large quantities and run at 
up to 48MHz, can perform up to 13 ECC operations per second. Since modern 8-bit 
microcontrollers usually run at 16-32MHz, even such extremely constrained devices are able to 
perform all the necessary cryptographic operations for DID usage within a few seconds, which 
is acceptable performance for most IoT use cases. In cases where the device is even more 
constrained, a hardware accelerator for cryptographic functions may be used. 

Finally, while the DID itself is just a simple string and easy to process as such, the related 
technology of Verifiable Credentials (VC) are usually expressed in JSON format. There might 
be cases where the device includes a cryptographic accelerator, but is otherwise extremely 
constrained and, therefore, unable to parse JSON. In that case, VCs can be encoded in a more 
machine-friendly binary format such as BSON13, as the VC specifications do not mandate usage 
of any specific encoding format. And since DIDs only utilize the ledgers for a few operations, 
network performance is normally not an issue even with constrained devices. 

IoT devices often have only limited energy available, which has to be taken into account when 
designing security and privacy solutions. An optimized ECC implementation running on a 
Cortex-M0 using the slightly weaker 233-bit sect233k1 curve uses only 20-34μJ of energy for 
the elliptic curve point multiplication [Cle+14]. Such energy consumption is very low compared 
to the energy consumption of the wireless transmission or the overall consumption of the IoT 
device, which can easily consume hundreds of μWs or more.14 Even with very simple 8-bit 
devices, the energy consumption of ECC operations is reasonable, around 20mJ per point 
multiplication, while an optimized hardware accelerator for cryptographic operations provides 
even lower energy consumption, in the order of μJs per ECC point multiplication [AJM14]. So, 
while there are some cases where an extremely constrained (say) sensing device that only 
sends data very infrequently is unable to utilize public-key cryptography due to energy 
consumption concerns, in most IoT applications energy consumption does not prevent usage 
of public-key cryptography and therefore DIDs. In many IoT applications, such as vending 
machines, devices may even be constrained in terms of e.g. processing power, while having 
plenty of energy available. 

The storage of cryptographic keys should also, in most cases, not be an issue, as long as non-
volatile storage is available. ECC offers compact keys and signatures, with sizes of 256 bits and 
512 bits respectively for the security level equivalent to 128-bit symmetric encryption. Hence, a 
public/private key pair would use only 64 bytes of space, so even a few kilobytes of storage 
space is sufficient to store multiple keys or credentials. However, in some applications, storing 
the keys on the device can present an unacceptable security risk of key leakage, unless the 
device utilizes e.g. a trusted platform module (TPM). In such situations, using, e.g., a proxy 
solution that can act as a guardian for the keys may be a safer solution. 

Finally, generating secure cryptographic keys requires a sufficient entropy source. This can be 
a challenge in the IoT environment, where the devices often have a limited amount of input 
sources available for entropy. In that case, the entropy can be provided by a hardware-based 
random number generator (RNG) that is embedded in the device's processor [SMS07]. If a 
hardware-based RNG is not feasible, there are several alternatives. The device’s private key 
can be generated by another party, e.g. by the manufacturer already at the factory or by the 
device owner when the device is taken into use. Having the manufacturer generate the keys for 
all devices of that type obviously poses a security risk, thus having the owners generate the 
keys is a better solution. An even better solution is if the owner (or, more specifically, the owner’s 

                                                
13 “BSON (Binary JSON) Serialization” Available at: http://bsonspec.org/  
14 The total average power consumption of a simple wireless sensor utilizing Bluetooth Low Energy 
protocol is around 200-1000μW. 

http://bsonspec.org/
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app used to initialize the device) can act as an additional source of entropy during the 
initialization process, thus letting only the device be aware of the actual key generated. 

The primary authorization mechanism used by this component is OAuth 2.0. This component 
supports two models which involve a different level of OAuth 2.0 integration with blockchains 
and smart contracts, supporting different tradeoffs in terms of privacy, delay, and cost [Sir+19b]: 

 Linking authorization grants to blockchain payments and recording authorization 
information on the blockchain. 

 Using a smart contract to handle authorization requests and encode authorization 
policies. 

With the first model, the initial communication between the client and the Authorization Server 
(AS) occurs as in the normal OAuth 2.0 framework. However, instead of the AS providing the 
client with authorization credentials after consent is given by the resource owner, the 
authorization credentials are disclosed after the payment for resource access is recorded on 
the blockchain. Hence, the resource owner does not need to be online to provide consent, as 
in the case of the normal OAuth 2.0 procedure. 

In the second model, a smart contract is used to transparently record prices and other 
authorization policies defined by the resource owner, who is also the owner of the smart 
contract. Examples of such policies include permitting resource access to specific clients, 
determined by their public keys on the blockchain, and dependence of access authorization on 
IoT events that are recorded on the blockchain. Whereas in the previous model the client and 
the AS communicated directly, in this model the interaction is through the smart contract. The 
smart contract code is executed by all blockchain nodes, providing a secure and reliable 
execution environment; this provides higher protection against DoS attacks, compared to the 
first model where resource access requests are sent directly to the AS. An additional advantage 
of allowing a smart contract to handle resource authorization requests is that the smart contract 
can securely bind the protected resource with the AS responsible for handling authorization 
requests. 

3.3.1 Experiment setup 

As a proof of concept that even quite constrained devices have sufficient performance to deploy 
DIDs, the current uPort implementation was tested on a first-generation Raspberry Pi (700 MHz 
BCM2835 CPU, 512 MB of RAM, released in 2012), running a Raspbian GNU/Linux 9 
distribution and using the latest code of the Node.js 'ethr-did'15 package of 26 September 2018. 
100 operations were running and timed in each test and the tests were repeated three times. It 
is worth mentioning that the original Raspberry Pi is a very slow device by modern standards. It 
contains a single-core ARM CPU utilizing the old ARMv6 instruction set. Newer ARMv7 or 
ARMv8 devices would offer significantly higher per-clock performance (along with more cores 
and higher clock speed), and devices with hardware acceleration for cryptographic operations 
would perform orders of magnitude faster. Also, the JavaScript and Node.js environment used 
by the current uPort implementation are relatively slow solutions. A DID implementation written 
in C or other lower-level language would perform faster and require significantly less memory 
and storage space. Therefore, the setup where the tests were run can be considered a worst-
case scenario. 

With respect to the component’s authorization mechanism, a preliminary version of this 
component has been deployed16 in a local Ethereum node running Go-Ethereum (geth), which 
is connected to the Rinkeby public Ethereum testnet. The local node uses geth’s default 

                                                
15 uPort, Ethr-DID Library, available at: https://github.com/uport-project/ethr-did   
16 Available at SOFIE’s public github respository 

https://github.com/uport-project/ethr-did
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configuration. Smart contracts are written in Solidity with the Remix Web-based editor. The 
authorization server is based on a PHP implementation of the OAuth 2.0 framework.17 The client 
uses Ethereum JavaScript API and the Metamask browser extension to interact with the 
Rinkeby network. 

3.3.2 Results 

The key pair and signature generation, using uPort’s mechanisms, both took 126 ms when run 
separately, while generating the key pair and using it immediately to generate the signature took 
230 ms overall as summarized in Table 9, below. 

 

Table 10: Performance of uPort Node.js implementation on first-generation Raspberry Pi 

Function Time (ms) 

Key pair generation 126 

Signature generation 126 

Key pair + signature generation 230 

The current uPort Node.js implementation runs on the first-generation Raspberry Pi with an 
acceptable performance, as the signature generation takes 126 ms, so the whole process of 
e.g. parsing and verifying18 a credential should take well below a second.  Overall, most devices 
with a 32-bit CPU can utilize DIDs with the currently available software, while more constrained 
devices (e.g., 8-bit microcontrollers) would be able to use DIDs with an optimized software 
implementation. 

Table 10 shows the cost of executing our component using the setup described in the previous 
subsection. It can be observed that the second model requires more than three times the 
amount of gas, hence more than three times the amount of EVM (Ethereum Virtual Machine) 
resources, compared to the first model; this quantifies the tradeoff between the advantages of 
the second model and its higher cost. Regarding the delay, the first model involves three 
blockchain transactions whereas the second model four. Since the total delay is expected to 
depend mainly on the block mining time, the second model is expected to have a 33% higher 
delay for responding to authorization requests. 

Table 11: Gas cost for each OAuth2.0 integration model 

Model Cost (measured in gas) 

Model 1 102476 

Model 2 366277 

 

3.4 Conclusions 

The goal of this section was to provide an initial evaluation of three framework components: 
Interledger, Privacy and Data Sovereignty, and Identification, Authentication, and Authorization. 

                                                
17 https://github.com/bshaffer/oauth2-server-php 
18 Which in ECC is 2-3 times slower compared to signature generation, depending on the 
implementation. 

https://github.com/bshaffer/oauth2-server-php
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The experimental results for the Interledger components quantify the gains in terms of both 
transaction cost and transaction delay that can be achieved when public and permission/private 
blockchains are combined utilizing interledger mechanisms. These gains illustrate the tradeoffs 
between execution cost and features such as the scale of decentralized trust and privacy, where 
public blockchains differ from private blockchains. 

The results for the Privacy and Data Sovereignty component quantify the execution cost for 
different operations involving smart contract functionality. Moving the operations with a high 
execution cost off-chain can provide the highest gains in terms of total cost reduction. The 
experimental results for the Identification, Authentication, and Authorization component 
demonstrate that most devices with a 32-bit CPU can utilize DIDs with the currently available 
software, while more constrained devices (e.g., 8-bit microcontrollers) would be able to use 
DIDs with an optimized software implementation. Additionally, the execution cost results 
quantify the higher execution cost for smart contracts that handles authorization requests and 
encode authorization policies, compared to simply recording hashes on a blockchain. 

The above results can guide the selection of various authentication and authorization 
mechanisms and smart contract functionality, considering the pilot and application requirements. 
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4. IoT resource access detailed evaluation 

In this section we present three solutions for IoT resource access that combine OAuth2.0 with 
blockchains. This section goes to much more depth and considers many more alternatives and 
their tradeoffs than what we have seen in Section 3 that focuses on SOFIE components. Other 
sections of this deliverable do not intimately depend on it, but it shows that much more detailed 
design and evaluation is possible and can uncover many useful alternatives in the IoT world. 

OAuth 2.0 is a framework for delegating authorization to access a protected resource [Har+12]. 
It enables a third-party application (client) to obtain access with specific permissions to a 
resource, with the consent of the resource owner. Access to the resource is achieved through 
access tokens, created by an authorization server. The specific format of the access tokens is 
opaque to the clients and to OAuth 2.0. The authorization consent by the resource owner is 
provided after the owner is authenticated; however, the authentication procedure is not part of 
OAuth 2.0. Authorization is provided for different levels of access, such as read and 
write/modify, which are termed scopes, and for a specific time interval. The OAuth 2.0 
authorization flows can involve intermediate messages exchanged before the access token is 
provided by the authorization server. The details of the authorization flow do not impact the 
general approach of the proposed models, hence in our discussion we only consider the initial 
client request and the authorization server’s response containing the access token. 

One type of access token is the bearer token. Bearer tokens allow the holder (bearer) of the 
token, independently of its identity, to access the protected resource. OAuth 2.0 assumes 
secure communication between the different entities. Moreover, it assumes that the protected 
resource is always connected to the Internet, hence it can communicate with the authorization 
server to check the validity and scope of the access tokens presented by clients requesting 
resource access. Both these requirements are not always achievable in constrained 
environments [Sei+16]. 

JSON Web Token (JWT) is an open standard that defines a compact format to transmit claims 
between parties as a JSON object [JBS15a]. JWTs can use the JSON Web Signature (JWS) 
structure to digitally sign or integrity protect claims with a Message Authentication Code (MAC) 
[JBS15b]. Hence, unlike simple bearer tokens, JWT/JWS tokens are self-contained, i.e., they 
include all the necessary information for the protected resource to verify their integrity without 
communicating with the authorization server. Of course, this requires that during its initialization 
phase the protected resource is cryptographically bound with the authorization server. 

In constrained environments, in addition to intermittent or no connectivity, the communication 
between the client and the protected resource is not always secure, hence transmitting bearer 
tokens or even self-contained JWTs over such (insecure) links can allow other parties to obtain 
them through eavesdropping. For this reason, in constrained environments Proof-of-Possession 
(PoP) tokens are used [Sei+19]. PoP tokens include a normal access token, such as a 
JWT/JWS, and a PoP key [JBT16]. Access to the protected resource is not possible solely with 
the access token; the PoP key is also necessary. Hence, the PoP key must be kept secret and 
not transmitted in cleartext over insecure links. Finally, a more efficient encoding of access 
tokens based on CBOR (Concise Binary Object Representation) is proposed to reduce the 
amount of data transferred [Sei+19]. 

The advantages from combining authorization based on frameworks such as OAuth 2.0 with 
blockchains and smart contracts are the following:      

 Blockchains can immutably record hashes of the information exchanged during 
authorization and cryptographically link authorization grants to payments and other IoT 
events recorded on the blockchain. These records serve as indisputable receipts in the 
case of disagreement. 
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 Smart contracts can encode authorization policies in an immutable and transparent 
manner. Policies can depend on payments as well as on other IoT events that are 
recorded on the same or on different blockchains. 

 Smart contracts run on all nodes of a blockchain. Hence, sending resource access 
requests to smart contracts can protect against DoS attacks that involve a very high 
resource request rate, since requests are not handled by one node, which would be a 
single point of failure. 

The solutions presented below leverage the hash-lock and time-lock mechanisms presented in 
Section 3.1. 

Contracts that include both hash and time-locks are referred to as hashed time-lock contracts 
(HTLCs).19 HTLCs have been used for atomic cross-chain trading (atomic swaps),20 [But16] and 
for off-chain transactions between trustless parties [PD16]. HTLCs can be implemented in 
blockchains with simple scripting capabilities, such as the Bitcoin blockchain, without requiring 
the advanced functionality of smart contracts. Smart contracts do not increase the capabilities 
of interledger mechanisms based on hash and time-locks, but increase the intra-ledger 
functionality. We investigate these features for decentralized authorization to constrained IoT 
devices. 

4.1 Interledger and decentralized authorization 

In this section, we present four models that we have developed [Sir+19a] and that allow different 
tradeoffs in terms of cost, delay, complexity, and privacy:      

(1) Linking authorization grants to blockchain payments 
(2) Smart contract handling of authorization requests 
(3) Smart contract and two blockchains for authorization and payment with interledger 

mechanisms 
(4) Decentralized authorization with multiple Authorization Servers 

The first two models are our baseline scenarios: in the first, only hashes of authorization 
information are immutably recorded on the blockchain and smart contracts are not used, 
whereas the second model utilizes a smart contract, but on a single (public) blockchain. The 
third model exploits two blockchains whose transactions are securely linked using interledger 
mechanisms and quantifies the significant cost reduction that can be achieved by moving smart 
contract authorization functionality to a permissioned or private blockchain. The fourth model 
focuses on decentralized authorization for constrained IoT devices utilizing two blockchains with 
interledger mechanisms. 

In all the models presented below, the client sends a resource access request to the URL of the 
AS (model 1) or to the address of the smart contract responsible for handling access to the IoT 
device (models 2, 3, and 4). The URL or smart contract address can be obtained by the client 
sending a query to the IoT device or, e.g., reading a QR code on it. However, this approach 
cannot ensure that the legitimate URL or smart contract address is provided by the IoT device. 
This can be ensured if the client uses a registry service that resides on the blockchain and 
contains a binding between the IoT device’s URI and the URL of the AS or the smart contract 
address handling authorization, or by including this information in Decentralized Identifier (DID) 
documents [Ree19]. 

Finally, in all models we assume that the client, the resource owner, and the ASes have an 
account (public/private key pair) on the blockchain (on both the authorization and the payment 
blockchains for models 3 and 4). 

                                                
19 Hash Time-Lock Contracts (HTLC). Available at: https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts   
20 Atomic cross-chain trading. Available at: https://en.bitcoin.it/wiki/Atomic_cross-chain_trading  

https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
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A. Model #1: Linking authorization grants to payments and recording authorization 
information on the blockchain     

With this model the initial communication between the client and the Authorization Server (AS) 
follows the normal authorization message exchange, such as OAuth 2.0 (Figure 3). Specifically, 
in step 1 the client requests resource access from the AS. The AS generates a random PoP 
key which it sends to the client21 together with its encryption with the secret key22 KThing shared 
by the Thing (IoT device) and the AS; the client will later use the PoP key to establish a secure 
communication link with the Thing. Also, the AS sends to the client the access token encrypted 
with a secret s, i.e., Es(token), the hash h = Hash(s) of the secret s, and the price for the 
requested level of resource access. The secret s is a secret randomly generated by the AS and 
is required for the client to decrypt Es(token) and obtain the access token; the AS will reveal the 
secret s once it confirms that the payment for resource access has been committed on the 
blockchain. Communicating the price from the AS to the client allows different levels of resource 
access, encoded in the access token’s scopes, to correspond to different prices.  

In step 3, two hashes are submitted to the blockchain: the first is the hash of the token that the 
AS will reveal to the client once payment has been confirmed. The second is the hash of three 
items: EKThing(PoP), the PoP key, and Es(token); the second hash serves as proof of the 
information that is communicated using OAuth between the AS and the client. Note that the 
above authorization exchange does not ensure that the access token the client obtains from the 
AS indeed allows access to the Thing.  

Also in step 3, a hashed time-lock payment is initiated on the blockchain, which allows the client 
to deposit an amount equal to the requested price (step 4). This amount will be transferred to 
the resource owner’s account if the secret s (hash-lock) is submitted to the contract by the AS 
(step 5) within some time interval. If the time interval is exceeded, then the client can request a 
refund of the amount it deposited. Once the secret s is revealed, the client can get s from the 
blockchain (step 6) and decrypt Es(token) and thus obtain the access token. At this point, the 
client has all the necessary information to request access from the Thing, using normal 
OAuth 2.0 with the modifications from the ACE framework.23 

 

 

                                                
21 The communication link between the client and the AS is secured, hence the PoP key cannot be 
obtained through eavesdropping. 
22 The secret key that the Thing and AS share is established during the provisioning (or 
commissioning) phase, when the Thing is bound to the AS. 
23 https://datatracker.ietf.org/wg/ace  

https://datatracker.ietf.org/wg/ace


 

 

 

SOFIE  39(101) 

Document: H2020-IOT-2017-3-779984-SOFIE/D4.3 – First Architecture and System 
Evaluation Report 

Security: Public Date: 16.12.2019 Status: Completed Version: 1.10 

 

Figure 3: Model 1: Authorization grants are linked to blockchain payments and the hashes of 
the authorization information exchanged are recorded on the blockchain for verification in case 

of disputes 

 

B. Model #2: Smart contract handling authorization requests 

In the second model, a smart contract is used to transparently record prices and other 
authorization policies defined by the resource owner, who is also the owner of the smart 
contract. Examples of such policies include permitting resource access to specific clients, 
determined by their public/private key pairs on the blockchain, and adding a dependency of the 
access authorization on IoT events that are recorded on the blockchain. 

Whereas in the previous model the client and the AS interacted directly, in this model the 
interaction is through the smart contract; this is similar to the model shown in Figure 4, but using 
a single blockchain for both authorization and payment. The smart contract code is executed by 
all blockchain nodes, providing a secure and reliable execution environment; this provides 
higher protection against DoS attacks. 

C. Model #3: Smart contract and two blockchains with interledger mechanisms 

In this model the smart contract handling authorization requests and encoding policies is located 
on an authorization blockchain, while payments for access are performed on a payment 
blockchain, as shown in Figure 4. Depending on whether the authorization chain is public or a 
permissioned blockchain, different tradeoffs in transaction cost, delay, and privacy can be 
realized. 
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Figure 4: Model 3: Smart contract and two blockchains with interledger mechanisms 

 

A hashed time-lock payment is initiated on the blockchain, where the client can deposit an 
amount corresponding to the resource access price. The amount will be transferred to the 
resource owner’s account if the secret s is revealed. Once revealed, the secret s can be 
submitted to the smart contract on the authorization blockchain, which serves as a record on 
this blockchain that the payment was successfully performed. The client can obtain the secret 
s from the authorization blockchain together with the other necessary authorization information 
to access the protected resource. 

One issue with the above model is how the payment contract on the payment chain is triggered 
by the resource owner’s smart contract residing on the authorization chain. One option is to 
have an interledger gateway read the price and hash h from the authorization chain and submit 
it to the payment chain to initiate a payment (Step 4 in Figure 4), and later read the secret s 
submitted by the AS on the payment chain and record it on the authorization chain (Step 7); the 
interledger gateway can receive a fee for performing this function. Another alternative is to have 
this function performed by the AS, or the client. 

D. Model #4: Decentralized authorization with multiple ASes 

The authorization functionality cannot all be moved onto the blockchain since it involves 
processing secret information: keys are needed to produce token signatures and keys are 
shared with the Thing. Performing the authorization functions redundantly in the nodes of a 
private blockchain would provide a higher level of resilience to node failures compared to a 
single AS, but that would result in reduced security since compromising a single blockchain 
node would lead to secret keys being disclosed. 

Rather than moving all the authorization functionality to the blockchain, we propose an 
alternative approach for decentralized authorization that ensures security and provides fault 
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tolerance if a number of ASes are faulty or misbehave. Let n be the number of ASes that are 
collectively responsible for providing authorization. Each AS i shares a different secret key, 
KThingi, with the protected resource (Thing). Authorized access to the Thing requires tokens from 
m out of n servers. The policy specifying the required number of ASes is defined in the smart 
contract and is also known to the Thing. Fault tolerance is provided by having n ASes which 
can respond to requests, but requiring only m < n for authorization to proceed. Compared to 
having a single AS, the proposed scheme provides higher security since m ASes need to agree 
in order for the client to access the protected resource. 

There are two alternatives for how m servers are selected to provide authorization. In the first, 
the smart contract selects m specific servers; this requires that the smart contract maintains a 
list of ASes. The list can be updated with information such as the time each AS last responded 
to an authorization request. Such information allows the smart contract to prioritize ASes in 
order to select those that respond quickly, hence avoiding ASes that have a high delay or are 
faulty.24 Our evaluation considers this first alternative. 

In the second alternative, the smart contract simply allows all ASes to respond to the 
authorization request, and selects the first m ASes that respond. With this approach the smart 
contract does not need to maintain the list of ASes. However, there is a possibility that the smart 
contract receives more than m responses. This depends on the duration for mining a block on 
the blockchain (in the case of public blockchains with Proof-of-Work consensus), or for obtaining 
consensus to add it to the blockchain (in the case of permissioned blockchains). In public 
blockchains, these responses can incur a gas cost independent of whether the ASes that gave 
the response were among the m ASes to provide decentralized authorization. 

In response to the client’s authorization request, each AS sends a different PoP key PoPi, 
encrypted with the Thing’s secret key and the client’s public key, and an access token with a 
MAC tag to ensure its integrity (Figure 5). The client thus obtains m different PoP keys, which it 
XORs to obtain the secret PoP key that will be used to establish a secure communication link 
with the Thing. These m PoP keys, encrypted with the Thing’s key KThingi that it shares with each 
of the m ASes, are also sent to the Thing. Hence, if the Thing performs the same XOR function 
on the m PoP keys, it will obtain the same PoP key as the client. 

In order to reduce the amount of data transmitted to constrained devices we propose two 
schemes for reducing the authorization information the client sends to the Thing: (a) aggregate 
MAC tags and (b) transmission of common token fields once. With aggregate MAC tags [KL08], 
the client does not send to the Thing the token payloads received from the m ASes, but only 
one aggregate MAC tag that is computed by taking the XOR of the m MAC tags the client 
receives from the m ASes. With the second optimization, the client sends the token fields that 
are common to all ASes only once (these correspond to token1, . . . tokenm in Figure 5). The 
common token fields include the subject (Thing) the token refers to, the scope of access, the 
token creation time, the token validity time, and the token type. The fields which are different 
include the AS and token ID fields. 

                                                
24 Detection of misbehaving ASes that generate incorrect tokens is also possible.  
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Figure 5: Model 4: Decentralized authorization; each authorization grant requires m out of n 
AS responses 

 

4.1.1 Evaluation 

For evaluation of these four models we deployed a local node running Go-Ethereum connected 
to the Rinkeby public Ethereum testnet25 and a node running Parity connected to the Ropsten 
testnet.26 The AS was based on a PHP implementation of the OAuth 2.0 framework,27 extended 
to support CWT’s CBOR encoding.28 The client used Web3.js to interact with the blockchain. 

 

                                                
25 https://www.rinkeby.io/  
26 https://www.ropsten.etherscan.io/  
27 https://github.com/bshaffer/oauth2-server-php  
28 https://github.com/2tvenom/CBOREncode  

https://www.rinkeby.io/
https://www.ropsten.etherscan.io/
https://github.com/bshaffer/oauth2-server-php
https://github.com/2tvenom/CBOREncode
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Table 12: Execution cost (gas) and delay (Rinkeby) of decentralized authorization models 

Model Gas Delay (s) 
(and 95% conf. int.) 

 

Hashes of auth. Inform.-Fig. 3 102489 43.2 (43.2, 44.1) 

SC & 1 BC 258166 59.3 (57.6, 61.1) 

SC & 2 BCs-Fig. 4 85682 43.0 (39.8, 46.2) 

Dec-Auth 2-of-4 & 1 BC 1440540 60.5 (54.4, 67.3) 

Dec-Auth 2-of-4 & 2 BCs-Fig. 5 332569 42.1 (39.4, 44.8) 

Dec-Auth 3-of-4 & 1 BC 2124249 63.7 (57.2, 70.2) 

Dec-Auth 3-of-4 & 2 BCs-Fig.5 447940 44.7 (39.6, 49.9) 

In Table 5, the smart contract & one blockchain and the decentralized & one blockchain models 
are equivalent to Figure 4 (smart contract & two blockchains) and Figure 5 (decentralized 
authorization & two blockchains) with one blockchain for both authorization and payment. For 
the results with two blockchains, we use the public blockchain (Rinkeby or Ropsten) as the 
payment chain and a private Ethereum network as the authorization chain. The results shown 
include the gas and delay due to transactions on the public blockchain only. 

The graphical representation of the results when only hashes are recorded on the blockchain, 
when a smart contract and one blockchain are used to handle authorization requests, and when 
two blockchains are used, one for authorization and one for payments, are shown in Figure 6, 
below. 
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Figure 6: Execution cost when only hashes are recorded on the blockchain, when a smart 
contract and 1 blockchain are used and when a smart contract and 2 blockchains are used 

The results would be similar if we used another technology, e.g., Hyperledger Fabric, as the 
authorization chain. 

a) Gas: The second column in Table 5 shows that the execution cost of a smart contract on the 
Ethereum Virtual Machine (gas) on the public Rinkeby testnet is significantly higher compared 
to simply recording hashes (first line in Table 5). However, when the smart contract authorization 
functionality is moved to a private blockchain (models with 2 BCs in Table 5), then the execution 
cost is significantly reduced: For 1, 2, and 3 ASes the execution cost when two blockchains are 
used is 33.2%, 23.1%, and 21.1% of the execution cost when a single blockchain is used. 

b) Delay: The delay is due mainly to the block mining time. The smart contract model with one 
blockchain has four transactions, while the model that records only hashes has three; hence, 
the delay for the smart contract model is expected to be 33% higher; this agrees with the results 
in the third column of Table 5, according to which the smart contract model with one blockchain 
has average delay 59.3 s, which is 37.3% higher than the delay when only hashes are recorded, 
43.2 s (also shown is the confidence interval from 20 runs). Table 5 quantifies the reduced delay 
when a public chain is combined with a private chain: e.g., the 2 out of 4 decentralized model 
with two chains has average delay 42.1 s, which is 30.4% smaller than the delay with one chain, 
60.5 s. Table 5 also shows that for both one and two blockchains, the average delay is not 
significantly influenced by the number of ASes. Also, for two blockchains the average delay is 
close to the delay when only hashes are recorded. 

The graphical representation of the results for the delay when only hashes are recorded on the 
blockchain, when a smart contract and one blockchain are used to handle authorization 
requests, and when two blockchains are used, one for authorization and one for payments, are 
shown in Figure 7, below. Note that the execution cost when only hashes are recorded is higher 
than the cost when a smart contract and two blockchains are used because in the second case 
the cost involves only the payment transaction and no data/hashes are recorded on the payment 
(public) blockchain. 
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Figure 7: Delay when only hashes are recorded on the blockchain, when a smart contract and 
one blockchain are used, and when a smart contract and two blockchains are used 

Table 6 shows that the delays and confidence intervals for the Ropsten testnet are higher than 
the Rinkeby testnet. We attribute this difference to the fact that Rinkeby uses the Proof-of-
Authority (PoA) for distributed consensus, while Ropsten uses Proof-of-Work, as the Ethereum 
mainnet. For both the Rinkeby and Ropsten testnets, the delay depends on the gas price that 
is given when a transaction is submitted. 

c) Reduction of the data the client sends to the Thing: Utilizing CWT encoding instead of JWT 
reduces the size of tokens from 310 to 122 bytes. For the smart contract with one blockchain 
model, the transaction cost is higher by approximately 17% compared to the cost shown in 
Table 5. 

Table 13: Delay (Ropsten) of decentralized authorization models 

Model Delay (s) 
(and 95% conf. int.) 

 

Hashes of auth. Inform.-Fig. 3 53.2 (40.3. 66.1) 

SC & 1 BC 64.4 (52.3, 77.1) 

SC & 2 BCs-Fig. 4 57.8 (46.0, 69.7) 

Dec-Auth 2-of-4 & 1 BC 76.7 (61.5, 92.0) 

Dec-Auth 2-of-4 & 2 BCs-Fig.5 49.1 (37.7, 60.5) 

Dec-Auth 3-of-4 & 1 BC 77.5 (60.5, 94.6) 

Dec-Auth 3-of-4 & 2 BCs-Fig.5 52.2 (42.6, 61.7) 
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The proposed optimizations further reduce the amount of data that the client needs to send to 
the Thing. For decentralized authorization with three ASes and without the optimizations, the 
client sends 366 bytes (3 × 122 bytes) for three tokens and 96 bytes (3 × 32 bytes) for three 
PoP keys, or a total of 462 bytes. With aggregate MACs, the client sends one aggregate MAC 
instead of three, i.e. 64 bytes less, hence a total of 398 bytes, which is a 13.9% reduction. The 
optimization where common token fields are sent once results in 84 bytes less, an 18.2% 
reduction, reducing the size to 314 bytes. The two optimizations together give a 32.0% reduction 
of the number of bytes the client needs to send to the Thing. The reduction for more ASes would 
be higher. 

4.2 Authorization and TEE 

We now present an IoT access model that leverages Trusted Execution Environments (TEEs). 
TEEs provide a secure environment for executing code and storing data. A TEE runs in isolation 
and in parallel to the normal (or “rich”) operating system, ensuring the confidentiality and 
integrity of code and data. However, because a TEE runs on a single device, it cannot provide 
high availability or decentralized trust. Combining blockchains and TEEs can combine the gains 
of both: decentralized trust and high availability from blockchains and privacy and trust when 
interacting with the real world through TEEs.  

The high-level architecture of the proposed model is shown in Figure 8. Authorization for IoT 
resources is outsourced to an Authorization Server (AS), which can provide authorization for 
multiple IoT resources. Resource access is provided by a device with a TEE, which supports 
integrity and confidentiality. Depending on the specific type of TEE technology, different 
restrictions can exist. For example, ARM’s TrustZone supports a single secure enclave, 
whereas Intel’s SGX can support multiple enclaves. 

Figure 8 shows that the client device and the AS interact with the blockchain, whereas the IoT 
resource does not have continuous network connectivity. The client accesses the IoT resource 
directly using device-to-device communication. Moreover, because the device-to-device link is 
insecure, the client and IoT resource need to establish a shared secret key to secure their link; 
this is achieved using PoP tokens. Note that remote attestation of the IoT resource can still be 
performed in periods where the IoT resource has network connectivity. Alternatively, remote 
attestation can be performed on-demand, using the client as an intermediate node, similar to 
how the client is the intermediate node between the IoT resource and the AS for the 
authorization procedure described below. 
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Figure 8: High-level architecture for delegated authorization exploiting an IoT resource’s 
Trusted Execution Environment (TEE) 

 

We assume that the client, the AS, and the resource owner, have an account (public/private key 
pair) on the blockchain. The client will use his account to pay for accessing the IoT resource. 
A client’s deposit, assuming the authorization procedure is smoothly completed, will be 
transferred to the resource owner’s account. Finally, the AS has an account to send transactions 
in order to set up a Hashed Time-Lock Contract (HTLC) as we discuss below. 

Figure 9 shows the messages exchanged among the client, the AS, and the IoT resource. We 
assume that service discovery, during which the IoT resource is discovered, and the 
identification of the AS, which handles authorization requests for the IoT resource, has already 
occurred, so it is not shown in this figure. The AS that handles the authorization requests can 
be discovered by sending an initial unauthorized resource request message to the IoT resource 
or through a QR code located on the IoT resource. Steps 1 and 2 include the normal OAuth 2.0 
message exchange between the client and the AS. According to OAuth 2.0, the communication 
between the client and the AS is secured using TLS, hence the information exchanged in Steps 
1 and 2 is secured. After these two steps, the client has obtained the PoP key with which it can 
establish a secure link with the IoT resource. This is possible since the client also receives from 
the AS and forwards to the IoT device over the device-to-device connection the PoP key 
encrypted with the secret key KResource that the IoT resource shares with the AS; sharing a secret 
key between the AS and the IoT resource can be achieved during the resource’s initialization. 
In Step 3, the client forwards the encrypted PoP key to the IoT resource along with the access 
token. The above procedure is followed because, as shown in Figure 8, the IoT resource does 
not have continuous network connectivity, but only Device-to-Device (D2D) connectivity. On the 
other hand, if the IoT resource had continuous network connectivity, then it could instead obtain 
the PoP key directly from the AS. As shown in Figure 9, interaction of the client and the IoT 
resource can still be performed using D2D communication, even if the IoT resource had 
continuous network connectivity. 
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Figure 9: Message exchange for accessing the IoT resource with a TEE. The Trusted 
Application running in the TEE is responsible for generating the secret s, 

computing its hash h = Hash(s), and ensuring that the client provides 
the true secret to obtain resource access (Step 10). 

 

When the IoT device receives the access token, it verifies its validity. If the access token is 
formatted as a signed JWT, then this verification involves checking the signature included in the 
JWT token. Alternatively, if the IoT resource had continuous network connectivity, then it could 
use introspection to communicate with the AS in order to verify the access token and the 
corresponding access rights that it allows [Sir+19c]. 

After verifying the access token, the IoT resource generates a secret s and computes its hash 
h = Hash(s), which will be used in the hash-lock of the payment contract. In Step 4, over the 
secure communication channel it established with the client, the IoT resource sends the hash h 
and the secret s encrypted with the secret key KResource that the IoT resource shares with the AS. 
After receiving the hash h and EKResource(s), the client forwards both to the AS in Step 5. In Step 6, 
the AS creates a hashed time-lock payment on the blockchain. The hash-lock is the same h that 
the AS received from the resource through the client, while the price is what the AS sent to the 
client in Step 2. Additionally, in Step 6 the hash of the authorization information the AS sent to 
the client in Step 2 is also submitted to the blockchain; in case of disputes, this hash is a non-
repudiatable receipt of the information that the AS sent to the client. 

Note that after Step 6, due to the transparency of transactions stored on the blockchain, the 
client can verify that the payment contract hash is the same as the value h that it had received 
from the IoT resource. Additionally, the payment contract also has a time-lock, hence the client’s 
deposit and disclosure of the secret s by the AS, which we discuss below, must occur within a 
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maximum time interval; the time-lock allows either party (client or AS) to abort the procedure, if 
the other party has delayed taking the action required on its side. Hence, there is no need for 
trust between the client and the AS. 

The client deposits the amount for resource access to the blockchain contract in Step 7. The 
deposit is not transferred directly to the resource owner’s account, but to the payment contract’s 
account which acts as an escrow service. The deposit is transferred to the resource owner’s 
account only when the AS reveals to the contract the secret s that unlocks the hash-lock. Note 
that it is necessary that the hash function algorithm used at the IoT resource for computing the 
hash is the same as the hash function in the blockchain contract. If the AS does not reveal the 
secret s within the time defined by the contract’s time-lock, then the client can submit a refund 
request for the deposit to be returned to the client’s account; hence, by jointly using hash-locks 
and time-locks, the payment contract is a Hashed Time-Lock Contract (HTLC) and the two 
actions, client deposit and AS revealing the secret s, either both happen or neither of the two 
happens, i.e., they are atomic. If the above events occur smoothly, then the secret s would be 
revealed on the blockchain. Hence, the client can obtain the secret s in Step 9 and send it to 
the IoT resource in order to obtain access (Step 10). Note also that once the secret s is revealed 
on the blockchain, anyone can obtain it; however, the secret alone is not enough to gain access 
to the IoT resource since both the access token and the PoP key are required. 

Since the secret and hash were produced in the IoT resource’s TEE and access to the resource 
is also provided through the TEE, knowledge of the secret s, together with the access token and 
PoP key, ensure that the client can access the IoT resource according to the scope defined in 
the access token. From a high-level perspective, the TEE can be viewed as a trusted local 
ledger. The proposed model uses hash-locks and time-locks, which are interledger mechanisms 
that enable atomic cross-chain trading or atomic swaps, to cryptographically bind authorization 
grants and access through a TEE with blockchain payments. Using the same interledger 
mechanisms for cryptographically linking transactions on different blockchains, distributed 
ledgers, and TEEs, which are viewed as a local trusted ledger, allow for simplicity that can 
provide higher security and efficiency. 

4.2.1 Evaluation 

Our implementation of the IoT resource is based on the OP-TEE (Open Portable Trusted 
Execution Environment) open source port for the Raspberry Pi,29 which uses ARM’s TrustZone. 
OP-TEE follows the GlobalPlatform TEE system architecture [Glo18]. The secure world TEE 
runs the Linux OP-TEE operating system. The module providing the IoT resource access runs 
as a Trusted Application in the OP-TEE OS and performs the security operations that include 
generating the secret s, computing its hash h = Hash(s), and verifying that the client provides 
the true secret s to obtain resource access. The module for providing the IoT resource’s service 
is also executed in the TEE; this ensures30 the IoT data’s integrity and confidentiality and that 
the IoT resource will provide the intended service to the client if the latter provides the true 
secret s. A Client Application running outside the TEE uses GlobalPlatform’s TEE client API to 
communicate with the Trusted Application. 

For the evaluation we used a local Ethereum node running Go-Ethereum that was connected 
to the public Ethereum testnet Rinkeby. Smart contracts were written in Solidity with the Remix 
Web-based editor. The AS was based on a PHP implementation of the OAuth 2.0 framework. 
The AS used Web3.js to interact with the Rinkeby blockchain. 

 

                                                
29 https://www.op-tee.org/docs/rpi3/  
30 The degree to which this is guaranteed depends on the frequency/time that attestation is performed. 

https://www.op-tee.org/docs/rpi3/
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Table 14: Gas cost and delay for IoT resource access with TEE; gas price = 2.5 GWei, 1GWei 
= $1.1 x 10-7 on Feb 2, 2019 

Transaction Gas (and cost in $) Delay (s) 

 

Contract creation 473508 ($0.130) - 

Set payment information (Step 6) 32231 ($0.009) 13.6 

Client deposit (Step 7) 28287 ($0.008) 14.9 

Send secret s (Step 8) 41949 ($0.012) 15.0 

 
Table 7 shows the gas, which quantifies the amount of EVM (Ethereum Virtual Machine) 
resources used, for the contract creation and the three transactions in Steps 6, 7, and 8 of 
Figure 9. The transactions are submitted with gas price 2.5 Gwei. The creation of the contract 
has the largest gas cost, which is one order of magnitude larger than the cost of the three 
transactions. Step 8 has higher gas than Steps 6 and 7 because it includes checking that the 
secret s submitted by the AS satisfies h = Hash(s). Also, Step 6 has higher gas than Step 7 
because the former submits two hashes to the blockchain, while Step 7 submits only the deposit, 
as shown in Figure 9. 

The transaction delays shown in Table 7 are the average values from 20 executions. The 95% 
confidence interval was smaller than ±0.7 seconds of the averages shown. Both the average 
transaction delay and its standard deviation depend on the gas price: using a gas price smaller 
than 2.5 Gwei would result in both a higher average delay and a higher standard deviation. As 
expected, the blockchain transaction delay is significantly higher than the delay when the client 
interacts with the AS, Steps 1 and 2 in Figure 9, and when the client interacts with the IoT 
resource, Steps 3 and 4, which are both less than 0.08 seconds. 

4.3 Constrained client and resource devices  

In this section we present models for IoT resource access that consider different network 
connection capabilities of the client and the IoT resource: 

 The IoT resource does not have continuous network connectivity, but only Device-to-
Device (D2D) connectivity, whereas the client requesting resource access has 
continuous network connectivity.  

 Both the client and the IoT resource do not have continuous network connectivity, i.e., 
they both having only D2D connectivity.  

 The client has only D2D connectivity, whereas the IoT resource has continuous network 
connectivity.  

In addition to whether a device (client or IoT resource) has continuous network connectivity or 
only D2D connectivity, a second dimension is whether the device is constrained in processing 
and memory. A device without processing and memory constraints can perform asymmetric key 
cryptographic functions, while a device that is constrained can only perform symmetric key 
cryptographic functions. Hence, processing and memory constraints influence the type of 
access tokens that can be used and in particular the type of integrity verification that will be 
incorporated in the JWT/CWT token; if the device is capable, then signatures using 
public/private keys can be used. On the other hand, if the device is constrained, then MAC 
integrity verification must be used. 
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In all three cases there is a Client Authorization Server (CAS) and an Authorization Server (AS) 
that handle requests and responses on behalf of the client and IoT resource, respectively 
[Ger+18]. The CAS and AS also handle interactions with the blockchain, in order to link 
authorization grants to blockchain payments. To take actions on behalf of the client and 
resource, the CAS and AS must have the consent of the client owner and the resource owner; 
one way to provide such consent is through verifiable credentials (VCs) [Spo+18], a more 
general approach than assuming that the client and resource owners control the CAS and AS, 
as assumed in [Ger+18]. 

During their initialization, both the client and the IoT resource establish with the CAS and AS, 
respectively, shared keys to be able to securely communicate over insecure D2D links and/or 
through intermediate nodes. If a device, either the client or the IoT resource, is constrained in 
terms of processing, then during its initialization it must establish a common secret key with the 
CAS or the AS. This shared secret key is used to add MAC integrity verification to the messages 
exchanged between the client and the CAS and between the AS and the IoT device. If the 
device has sufficient processing capability to perform asymmetric key cryptographic functions, 
then the CAS and/or the AS can use public key cryptography to sign messages they send to 
the client and/or the IoT resource, respectively. Note that if the IoT resource has continuous 
network connectivity, then instead of using signed or MAC integrity protected access tokens, 
simple access tokens can be used; in this case, the IoT resource can use introspection to verify 
the validity and scope of the access token. 

A. Connected client and disconnected IoT resource 

In the first model we discuss, the client has continuous network connectivity whereas the IoT 
device does not have continuous network connectivity, but only D2D connectivity. This is the 
case investigated in the previous sections. The difference with the model considered in this 
section is that the client, despite having network connectivity, does not interact directly with the 
blockchain, as shown in Figure 9. 

 

Figure 10: Client has Internet connectivity while the IoT resource has only D2D connectivity. 
The client acts as an intermediate node that forwards messages between the IoT resource 

and the AS, which handles authorization requests on behalf of the IoT resource. The client AS 
(CAS) interacts with the blockchain and the AS on behalf of the client. 
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Because the client does not interact directly with the blockchain, the CAS performs blockchain 
transactions on behalf of the client. The client can send authorization requests to the CAS, 
which handles the exchange of authorization messages with the AS and interacts with the 
blockchain. The goal of this interaction is to link authorization grants with blockchain payments. 
Specifically, the CAS obtains the necessary access token and PoP key from the AS only if it 
performs the blockchain payment, on behalf of the client. When the CAS receives the 
authorization credentials, it forwards them to the client. The client can then use the credentials 
to request service from the IoT resource. As we will see in more detail when we discuss the 
message exchange, when the client requests access to the IoT resource, the client acts as an 
intermediate node that forwards messages between the IoT resource and the AS, which handles 
authorization requests on behalf of the IoT resource. Specifically, the AS accepts authorization 
requests from the CAS and provides authorization credentials once it verifies that the 
appropriate blockchain payment has been performed. As shown in Figure 9, a single CAS and 
a single AS can handle multiple clients and IoT resources, respectively. 

B. Disconnected client and disconnected IoT resource 

Next we discuss the case where both the client and the IoT resource are constrained devices. 
As in the previous scenario, the authorization requests for the IoT resource are handled by the 
AS and the authorization requests on behalf of the client are handled by the CAS, see Figure 10. 
Moreover, both the CAS and the AS directly interact with the blockchain. The client, prior to 
communicating in D2D mode with the IoT resource, must obtain the necessary authorization 
credentials (access tokens and PoP keys) from the CAS. This may be achieved at any point 
prior to the time the client requests resource access, as the client has intermittent connectivity 
to the CAS using D2D communication. Once it has obtained the authorization credentials, the 
client can request access to the IoT resource through its D2D communication link, without 
requiring synchronous network connectivity or simultaneous D2D connectivity with the CAS. 
The communication between the CAS and the AS, to request resource access on behalf of the 
client and to obtain the authorization credential after the corresponding blockchain payment, is 
the same as the message exchange in the previous scenario. 

 

 

Figure 11: Both the client and IoT resource have only D2D connectivity. Prior to requesting 
access, the client must obtain the authorization credentials from the CAS. Once it has the 

credentials, the client can request access to the resource using D2D communication, without 
requiring synchronous network connectivity or simultaneous D2D connectivity with the CAS. 
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C. Disconnected client and connected IoT resource 

In the third model, the client is disconnected while the IoT resource has continuous network 
connectivity. As in the model of the previous subsection, the CAS submits authorization 
requests to the AS and interacts with the blockchain on behalf of the client. The client 
communicates with the CAS using the connected IoT device as the intermediate node. The AS 
is responsible for handling authorization requests on behalf of the IoT resource; see Figure 11. 

The CAS and AS interact in the same way as in the first two models. Once the CAS obtains the 
authorization credentials, which include the access token and the PoP key, it must transfer these 
to the client before the client requests service from the IoT resource; this transfer is performed 
through the connected IoT resource. 

Because the IoT resource has continuous network connectivity, it can use introspection to verify 
the validity and scope of the access token [Har+12]. Hence, unlike the first two models, the 
access token does not need to contain a signature or a MAC for verifying its authenticity. 

 

Figure 12: The client has only D2D connectivity while the IoT resource has continuous 
network connectivity. The IoT resource acts as an intermediate node that forwards messages 

between the client and the CAS, which handles authorization requests on its behalf. 

 

4.3.1 Message exchange 

In this section we present the message exchange between the various entities, namely the 
client, IoT resource, CAS, AS, and blockchain. 

A. CAS-AS message exchange 

We present two approaches for the message exchange between the CAS, which operates on 
behalf of the client, and the AS, which operates on behalf of the IoT resource. In the first 
approach, the authorization requests and responses are communicated directly between the 
CAS and AS. In this approach the blockchain is used only to record hashes of the authorization 
information exchanged between the CAS and the AS and to link blockchain payments to 
authorization grants. The motivation for recording hashes of the authorization information 
exchanged between the CAS and AS is that they serve as indisputable receipts in the case of 
disputes. 



 

 

 

SOFIE  54(101) 

Document: H2020-IOT-2017-3-779984-SOFIE/D4.3 – First Architecture and System 
Evaluation Report 

Security: Public Date: 16.12.2019 Status: Completed Version: 1.10 

In the second approach, authorization requests and responses go through a smart contract, 
which is owned by the resource owner. Because smart contracts are executed by all blockchain 
nodes, a blockchain provides a secure execution environment with high availability. This offers 
higher protection against DoS attacks, compared to the first approach where access requests 
are sent directly to the AS. Moreover, in this approach a smart contract can be used to 
transparently record prices and other authorization policies defined by the resource owner. 
Examples of such policies include permitting resource access to specific CASes/clients, 
determined by their public keys on the blockchain, and dependence of access authorization on 
IoT events that are recorded on the blockchain. An additional advantage of allowing a smart 
contract to handle authorization requests is that the smart contract can securely bind the IoT 
resource with the AS responsible for providing authorization grants for that resource. 

 

Figure 13: CAS-AS message exchange when authorization requests are sent directly to the 
AS. Hashes of the authorization information are recorded on the blockchain, 

which provide indisputable receipts in case of disagreement. Disclosure 
of authorization credentials is linked to blockchain payments. 

Both approaches use a message exchange similar to that of the solutions presented in the 
previous sections, where the authorization message exchange occurred between the client and 
the AS, under the assumption that the client had continuous network connectivity and could 
interact directly with the blockchain.  

1) Linking authorization grants to blockchain payments and recording hashes of authorization 
information: With this approach the initial communication between the CAS and the AS occurs 
as in the normal OAuth 2.0 framework, Figure 12. However, instead of the AS providing the 
CAS with authorization credentials after consent is given by the resource owner, the 
authorization credentials are disclosed only after the payment for resource access is recorded 
on the blockchain. 



 

 

 

SOFIE  55(101) 

Document: H2020-IOT-2017-3-779984-SOFIE/D4.3 – First Architecture and System 
Evaluation Report 

Security: Public Date: 16.12.2019 Status: Completed Version: 1.10 

Specifically, in Step 1 the CAS sends to the AS on behalf of the client a request for accessing 
the IoT resource. The AS generates a random PoP key which it sends to the CAS31 together 
with the PoP key encrypted with the secret key KAS−resource shared by the AS and the IoT 
resource, which is set during the IoT resource’s initialization;32 the client will later use the PoP 
key to establish a secure D2D link with the IoT resource. Also, the AS sends to the CAS the 
access token encrypted with a secret s, i.e., Es(token), the hash h = Hash(s) of the secret s, and 
the price for the requested resource access scope. The secret s is a secret randomly generated 
by the AS and is required for the CAS to decrypt Es(token) and obtain the access token; the AS 
will reveal the secret s once it confirms that the payment for resource access has been 
committed on the blockchain. Communicating the price from the AS to the CAS allows different 
levels of resource access to be offered for different prices. 

In Step 3, two hashes are submitted to the blockchain: the first is the hash of the token that the 
AS will reveal to the CAS once payment has been confirmed. The second is the hash of three 
items: EKAS−resource(PoP), the PoP key, and Es(token); the second hash serves as proof of the 
authorization information that is exchanged using OAuth between the AS and the CAS. Note 
that the above authorization exchange does not ensure that the access token the client obtains 
from the AS indeed allows access to the IoT resource. 

 

Figure 14: CAS-AS message exchange when a smart contract handles authorization requests. 
Authorization information is exchanged through the blockchain. As in the previous approach, 

disclosure of authorization credentials is linked to blockchain payments. 

 

                                                
31 The communication link between the CAS and the AS is secured, hence the PoP key cannot be 
leaked through eavesdropping. 
32 If the resource has sufficient processing power, then the AS can use asymmetric cryptography and 
encrypt the PoP key with the resource’s public key. 
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Also, in Step 3 a hashed time-lock payment is initiated on the blockchain, which allows the CAS 
to deposit the requested amount (Step 4). This amount will be transferred to the resource 
owner’s account if the secret s (hash-lock) is submitted to the contract by the AS (Step 5) within 
some time interval. If the time interval is exceeded, then the CAS can request a refund of the 
amount it deposited. Once the secret s is revealed, the CAS can get s from the blockchain 
(Step 6) and decrypt Es(token), thus obtaining the access token. After Step 6, the CAS has all 
the credentials that are necessary for the client to request access from the IoT resource. 

2) Smart contract for handling authorization requests: Unlike the previous approach where the 
CAS and the AS communicated directly, in the approach discussed next the interaction is 
through the smart contract, corresponding to Steps 1 and 2 in Figure 13. 

In response to the authorization request it received from the CAS, in Step 3 of Figure 13, the 
AS sends to the smart contract the PoP key encrypted both with the secret key shared by the 
AS and the IoT resource, EKAS−resource(PoP ), and with the public key of the CAS, EPKCAS(PoP). 
Note that in the previous approach the PoP key was sent from the AS to the CAS over a secure 
communication link, hence encrypting the PoP key was not necessary. 

As in the first approach, a hash time-locked payment is enabled, allowing the CAS to deposit 
the amount corresponding to the resource access price (Step 4). The amount is transferred to 
the resource owner’s account if the secret s that unlocks the hash-lock is revealed (Step 5). 
Once revealed, the CAS can obtain the secret s (Step 6), together with the other necessary 
authorization credentials that will allow the client to access the protected resource. If the 
blockchain is public, then s can be read by anyone, hence everyone can obtain the access 
token. However, the access token cannot be used alone, since the PoP key is also required for 
accessing the resource. Nevertheless, if privacy of the access token is important, then the secret 
s can be encrypted using CAS’s public key PKCAS and the hash-lock set to h = Hash(EPKCAS(s)). 

B. Client-CAS and client-IoT resource message exchange 

The message exchange between the client, the CAS, and the IoT resource when the IoT 
resource does not have continuous network connectivity is shown in Figure 14. Note that this 
message exchange applies to both the case where the client has continuous network 
connectivity and the case where the client has only D2D connectivity. Initially the client 
communicates with the CAS by sending a message with its intent to access the IoT resource 
(Step 1). After receiving the request from the client, the CAS performs either of the two message 
exchanges presented in the previous section. Next, in Step 2 the client receives the 
authorization credentials from the CAS and in Step 3 it sends its access request to the IoT 
resource. 
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Figure 15: Message exchange between CAS, client, and resource when the IoT resource has 
only D2D connectivity.  

The message exchange when the client has only D2D connectivity and the IoT resource has 
continuous network connectivity is shown in Figure 15. Now, the client communicates with the 
CAS that handles authorization requests on its behalf using the connected IoT resource as an 
intermediate node. Note that the communication of the client and the CAS is secured, since 
they share a secret key KCAS−client that was configured during the client’s initialization. 

 

Figure 16: Message exchange between client, resource, and CAS message when the client 
has only D2D connectivity while the IoT resource has continuous network connectivity. 
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4.3.2 Evaluation  

For the evaluation, we used a local Ethereum node running Go-Ethereum that was connected 
to the public Ethereum testnet Rinkeby. Smart contracts were written in Solidity with the Remix 
Web-based editor. The AS was based on a PHP implementation of the OAuth 2.0 framework. 
The CAS and AS used Web3.js to interact with the Rinkeby blockchain. We compare the two 
approaches presented in the previous section: the first records hashes of the authorization 
information on the blockchain (Figure 12) and the second involves a smart contract handling 
authorization requests (Figure 13). For each of the two approaches we compare four 
implementations: The first is the baseline implementation where the smart contract operates in 
blocking mode where only one authorization request can be handled at a time: “1 req” in Figure 
16(a). The second implementation also operates in blocking mode, but each message includes 
three authorization requests—“3 reqs concatenated” in Figure 16(a)—which are sent by the 
same CAS; similarly to the requests, we assume that the responses are also concatenated, 
which requires that the authorizations are handled by the same AS. The third implementation 
operates in non-blocking mode, allowing more than one authorization request, each in a 
separate message, to be pending at the same time—“1 req” in Figure 16(b). Finally, the fourth 
implementation operates in non-blocking mode, as the previous (third) implementation, but each 
message includes three authorization requests—“3 reqs concatenated” in Figure 16(b). The “3 
reqs separate” columns in Figures 16(a) and 16(b) correspond to the case where three 
authorization requests and their responses are sent and received separately with blocking and 
non-blocking operations, respectively. 
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Figure 17: Smart contract execution cost. The top graph corresponds to the approach where 
only hashes are recorded on the blockchain. The bottom graph corresponds to the approach 

where a smart contract handles authorization requests. 

Figure 16 shows the execution cost (gas), which quantifies the amount of EVM (Ethereum 
Virtual Machine) resources (computation and storage), for each of the above implementations. 
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A comparison of the corresponding columns in Figures 16(a) and 16(b) shows that, for a 
blocking implementation, a smart contract that handles authorization requests requires 
approximately 2.5 times more gas than the approach that records only hashes of the 
authorization information on the blockchain. For the non-blocking implementation, the ratio is 
larger and close to 4 times. Figure 16(a) shows that the gas is 88% higher for the non-blocking 
implementation compared to the blocking when only hashes are recorded on the blockchain, 
while Figure 16(b) shows that it is approximately 190% higher in the case of a smart contract 
handling authorization requests. The above results quantify the higher execution cost for smart 
contracts, with more functionality. 

Comparison of columns “3 reqs separate” and “3 reqs concatenated” in Figure 16(a) shows that, 
for the blocking implementations, the gas, when three requests and their responses are 
concatenated, is smaller than the gas when the requests are sent separately by 56% when only 
hashes are recorded, and smaller by 28% when a smart contract handles requests. The gains 
for non-blocking, Figure 16(a), are 55% and 18%, respectively, when only hashes are recorded 
and when a smart contract handles authorization requests. These results show that 
concatenation of requests can provide gains in terms of reduced execution cost; indeed, the 
gains are significantly higher for simple contracts that record only hashes. Additional 
experiments (not shown) indicate that, as expected, the gains are higher when more requests 
are concatenated. Specifically, for non-blocking, when 9 requests are concatenated the gains 
are 67% (higher than the 55% gain when 3 requests are concatenated) when only hashes are 
recorded and 25% (higher than the 18% gain when 3 requests are concatenated) when a smart 
contract handles requests. 

Concatenation of authorization requests can be performed in the space domain, when CASes 
and ASes handle multiple clients and IoT resources. Alternatively, concatenation can be 
performed in the time domain by aggregating requests received by a CAS in a time interval, 
before sending them to the AS. Such time domain aggregation of requests adds a delay to the 
authorization process, which needs to be considered along with the blockchain transaction time. 
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Figure 18: Smart contract creation cost. The top graph corresponds to the approach where 
only hashes are recorded on the blockchain. The bottom graph corresponds to the approach 

where a smart contract handles requests.  

The contract creation cost is shown in Figure 17. Note that this figure does not contain the 
contract creation cost for “3 reqs separate,” since it uses the same contract as “1 req.” The 
figure shows that the increase of the contract creation cost for the second approach, where 
authorization requests are handled by the smart contract, compared with the simpler scheme, 
where only hashes of authorization information are recorded on the blockchain, is smaller for 
the non-blocking compared to the blocking implementation. A comparison of the corresponding 
columns in Figures 17(a) and 17(b) shows that the contract creation cost for smart contracts 
handling authorization requests is 36 to 80% higher than the creation cost for contracts that 
record only hashes. An additional conclusion from the comparison of Figure 17 and Figure 16 
is that for simple contracts that record only hashes and are blocking, the contract creation cost 
dominates the execution cost, while for more complex smart contracts such as the ones 
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handling authorization requests and are non-blocking, the execution cost becomes comparable 
to the creation cost. 

Finally, 20 executions of each of the non-blocking implementations have shown that the average 
transaction delay when only hashes of authorization information are recorded on the blockchain 
is 44 seconds, with a 95% confidence interval ± 5 seconds; the delay for the blocking 
implementation with three separate requests is higher by approximately 29 seconds, due to the 
serialization that blocking imposes. For a smart contract handling authorization requests the 
delay is 58 seconds, with a 95% confidence interval ± 6 seconds. The above results show that 
the delay is approximately 32% higher for the smart contract approach compared to the 
approach that records only hashes. This result is expected, since recording only hashes 
involves three transactions on the blockchain (Figure 12) whereas a smart contract handling 
authorization requests involves four transactions (Figure 13). 

4.4 Fulfillment of SOFIE framework component requirements 

The following table shows how the solutions presented in this section fulfil the Interledger and 
IAA framework components requirements form Deliverable 2.4 (Table 7). 

 

Table 15: Requirements for SOFIE framework components 

Req. 

ID 

Requirement Description Related Solution Constructions that handled the 

requirement 

Interledger 

RF01 User interaction is not required for 

interledger operations. 

Interledger and 
decentralized 
authorization 

The procedures in this solution are 
event-triggered and user interactions is 
not required.  

RF02 There should be support for atomic 

interledger operations. 

Interledger and 
decentralized 
authorization 
 

By using hashed time-lock contracts 
atomic cross-chain operations are 
achieved. 

IAA 

RF03 Resource owners must be able to 

delegate the authentication and 

authorization tasks for their 

resources. 

All All solutions assume that authentication 

and authorization tasks are delegated 

by resource owners to a, potentially 

external, authorization server (AS).  

RF04 The IAA component must provide 

users the capability to revoke 

authorizations. 

All In the cases where authentication data 

is forwarded to an AS through a smart 

contract, a resource owner can modify 

the list of trusted ASes.  

RF05 The IAA component must allow 

individuals to control their personal 

information and digital identities 

(e.g. support self-sovereign 

identity technology). 

All Our constructions support user 

authentication using Decentralized 

Identifiers and Verifiable Credentials. 
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RF06 The IAA component must support 

secure, tamper-proof, and 

verifiable logging of transactions 

and events. 

All All solutions log transactions and 

events in a blockchain.  

RF07 The IAA component must support 

Role Based Access Control 

(RBAC). 

All Our solutions do not impose any 

particular access control mechanism to 

ASes, hence RBAC can be used.  

RF08 Cryptographic algorithms used by 

SOFIE should be open-source and 

transparent and as independent as 

possible of any particular 

architecture. 

All All cryptographic operations required by 
our constructions can be fulfilled by 
standardised, patent-free algorithms, 
included in major open-source 
distributions.  

RF09 SOFIE should support the 

execution of authorization and 

authentication functionality on 

devices with constrained 

processing, storage, battery, and 

network connectivity. 

Constrained 
client and 
resource devices 

User authentication and authorization 
can be performed even by constrained, 
disconnected devices, using the 
constructions presented in Section 4.3. 
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5. Evaluation scenarios 

This section follows the SOFIE pilots, generalizes them into pilot inspired use cases by including 
alternatives not selected in the SOFIE pilots, abstracts them out to appropriate degree and uses 
emulation and simulation to consider the various tradeoffs of many potential alternative design 
decisions and their impact. 

5.1 Food supply chain 

5.1.1 Overview 

The food supply chain pilot aims at leveraging distributed ledgers to provide traditional supply 
chains with dependable provenance data. More specifically, it targets the supply chain 
transferring agricultural products from producers to supermarkets and it aims at providing the 
following features: 

 Traceability of agricultural products from the producer to the consumer 

 Traceability of transport and storage conditions 

 Resolution of disputes in case of customer complaints 

This pilot assumes smart boxes (or, simply, boxes) as the end-to-end unit of transfer. That is, 
products are packed into boxes by the producer and they remain in these boxes throughout the 
entire transfer until they reach the consumer. Each smart box is equipped with an RFID tag, 
which is scanned and registered when the box is handed over by one stage of the supply chain 
to another. 

The chain consists of five stages, shown in the following table. 

Table 16: The stages of the food supply chain pilot use case 

Stage 
no. 

Stage name Abbre-
viation 

Role 

1 Table Grapes Field TGF Grows table grapes and packs them 
into boxes 

2 Transportation A TRA Transfers boxes from TGF to SDC 

3 Storage & Distribution Center SDC Collects, stores, and dispatches 
boxes 

4 Transportation B TRB Transfers boxes from SDC to SM 

5 Supermarket SM Displays boxes and sells them to 
consumers 

5.1.2 Events 

The SOFIE platform will record all handovers between consecutive stages, as well as 
periodically reported conditions in each stage. This leads to the following list of events 
governing the Food Chain pilot at a high level. These events can be split up into the three 
categories shown in the following three tables. 
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Table 17: Handover events of the food supply chain pilot 

Event Type 1: Handovers 

Event Parameters 

Box handover: 
producer → TRA employee 

time, box, weight, 
producer, employeeTRA 

Box handover: 
TRA employee → SDC employee 

time, box, weight, 
employeeTRA, employeeSDC 

Box handover: 
SDC employee → TRB employee 

time, box, weight, 
employeeSDC, employeeTRB 

Box handover: 
TRB employee → SM employee 

time, box, weight, 

employeeTRB, employeeSM 

 

Table 18: Action events of the food supply chain pilot 

Event Type 2: Actions 

Event Parameters 

Driver picks up specific truck (assuming 
multiple drivers & trucks in company) 

time, employee{TRA|TRB}, truck 

Driver parks and leaves truck time, employee{TRA|TRB}, truck 

Store box in specific shelf of the Storage & 
Distribution Centre 

time, box, employeeDC, room, 

rack, shelf 

Store box in specific shelf of the 
Supermarket 

time, box, employeeSM, store, 

aisle, shelf 
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Table 19: Periodic logging events of the food supply chain pilot 

Event Type 3: Periodic logging 

Event Parameters 

Field: log temperature, humidity, precipitation time, field, temp, 

humid, rain 

Transportation: log temperature, humidity, GPS location time, truck, temp, 

humid, location 

Distribution Centre: log temperature, humidity time, room, temp, 

humid 

Supermarket: log temperature, humidity time, store, aisle, 

temp, humid 

5.1.3 Emulation overview 

In order to evaluate alternative architectures for the Food Chain use case, we implemented two 
different scenarios and we considered two types of deployment, resulting in a total of four 
distinct emulations. 

Scenario 1: We have a single smart contract, providing an API to handle all aforementioned 
events. All five stages of the chain have access to this smart contract and use it to record all 
events taking place. The advantage of this scenario is its simplicity, as all data reported is stored 
in a single smart contract's storage. As a consequence of this simplicity, this scenario uses 
fewer blockchain resources, thus, less gas. 

Scenario 2: We have a total of five distinct smart contracts, one per stage. Each smart contract 
provides the API needed to handle that stage's actions, logs, and handovers, as well as to 
interact with smart contracts of adjacent stages. This scenario's advantage is that it gives higher 
flexibility to organizations to manage their own smart contracts, as long as they respect the 
interface to neighbouring stages' smart contracts. Its downside is the increased use of 
blockchain resources, hence the extra gas it spends. 

Deployment 1: Use of public Ethereum only. All smart contracts are deployed on a public 
Ethereum instance, such as the original Ethereum, or a testnet, such as Rinkeby or Ropsten. 
This deployment offers the highest transparency and immutability guarantees, however, with a 
significant monetary cost for executing the respective smart contracts. 

Deployment 2: Use of both private and public Ethereum. In this deployment, all smart contracts 
(of either Scenario 1 or 2) are deployed and executed on a private Ethereum instance to avoid 
the high execution costs associated with public Ethereum instances. Only a single smart 
contract is deployed on a public Ethereum instance for the sole purpose of anchoring, that is, 
for periodic public recording of the private instance's block hash in order to increase immutability 
guarantees. 

5.1.4 Evaluation results 

We start by presenting a table of the cost of certain types of smart contract calls in gas, which 
are the same independently of the scenario used. 
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Table 20: Execution cost for each periodic logging event of the food supply chain pilot 

Event Gas Cost (ETH*) Cost (EUR*) 

Periodic log (TGF) (mean) 85435  0.0000854 €0.021 

Periodic log (TRA/TRB) (mean) 85435 0.0000854 €0.021 

Periodic log (SDC) (mean) 72535 0.0000725 €0.018 

Periodic log (SM) (mean) 85435 0.0000854 €0.021 

Anchoring 47744 0.0000477 €0.012 

(*) Based on June 2019 prices 

 
Note that, although the gas used for each individual anchor is precisely 47744, for periodic 
logging events we present average values. The exact gas used for 100 consecutive TRA or 
TRB (transportation) logs is shown in the following figure. The periodic pattern repeating every 
eight logs, is due to the fact that EVM reserves storage in 256-bit increments. As our log data 
are encoded in 32-bit values, at every 8th log each array (e.g., the temperatures array, etc.) has 
to be extended by another 256 bits, thus spending more gas. 

 

Figure 19: Periodic logging cost for 100 consecutive transportation logs 

In contrast, anchors (i.e., block hashes) are 256-bit long, so every single anchor registration 
reserves an extra 256-bits of storage, resulting in uniform gas cost. 
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Figure 20: Anchoring cost 

Let us now focus on the functions that are not symmetric across the two proposed scenarios. 
The first one is the function that registers a new box with a producer (stage 1: TGF). 
Counterintuitively, this function is almost twice as costly in Scenario 1 compared to Scenario 2. 
The reason is that Scenario 1, storing all data in a single smart contract, allocates more storage 
when a new box is registered at the beginning of the supply chain, to accommodate data 
relevant to all five stages. In contrast, in Scenario 2, where each chain stage uses their own 
smart contract, registering a new box with a producer allocates just enough storage to record 
data relevant to the producer. 

The following figure shows the exact gas cost for 100 box registrations for both scenarios. The 
periodic artifact discussed above (due to 256-bit storage allocations vs. 32-bit box indices) is 
clearly visible as spikes repeating every 8 new boxes. 
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Figure 21: Execution cost for 100 box registrations  

The second type of function that differs across the two scenarios is the handover function. In our 
emulation, handovers are symmetric across all stages. The following figure shows the gas spent 
for handing over a box from one stage to the next one, as a function of the number of boxes 
that each of these two stages is currently hosting. Besides the aforementioned artifact appearing 
with a period of eight boxes, we notice a clear cost increase as stages become full. This is due 
to the data structures used to maintain the list of boxes currently at a given stage. More 
specifically, a box is removed from an array in stage i and then appended to an array in stage 
i+1. 
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Figure 22: Execution cost for handover function from one stage to the next one 

We also notice that Scenario 2 is far costlier for performing handovers. This is due to two facts. 
First, in Scenario 2 each handover call at stage i results in an external call to the smart contract 
of stage i+1, as the handover needs to also be registered there. Second, data is essentially 
stored twice, as both stage i and i+1 need to keep a record of each handover between them. 

The data presented above is summarized in the following table. 

Table 21: Execution cost for both food supply chain pilot handover scenarios 

 
Event 

Scenario 1 Scenario 2 

Gas ETH EUR Gas ETH EUR 

Register Box 153974 0.000154 €0.037 88133 0.0000881 €0.021 

Handover 
TGF→TRA  

~150000 0.00015 €0.036 ~250000 0.00025 €0.060 

Handover 
TRA→SDC  

~150000 0.00015 €0.036 ~250000 0.00025 €0.060 

Handover 
SDC→TRB  

~150000 0.00015 €0.036 ~250000 0.00025 €0.060 

Handover 
TRB→SM 

~150000 0.00015 €0.036 ~250000 0.00025 €0.060 

Sum ~753974 0.000754 €0.181 ~1088133 ~0.001 €0.261 

We can see that the initial registration and four subsequent handovers for a given box will result 
in an aggregate cost of €0.18 for scenario 1, or €0.26 for scenario 2, when running on the 
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original public Ethereum network. This is a non-trivial cost, as it concerns each individual box. 
As expected, using the public Ethereum blockchain is an expensive and non-scalable option. 

Instead, a far more cost-effective solution is to run the aforementioned smart contracts in a 
private Ethereum, where gas does not reflect real money. In this case, anchoring will be 
important for providing immutability guarantees. The cost of anchoring (€0.012) is negligible 
compared to a 15 to 20 times higher cost per box. In addition to that, anchoring does not need 
to be configured for every single block generated. It can be applied periodically every hour, or 
every day. 

5.1.5 Evaluation conclusions 

In order to develop an intuition about the overall costs of our four emulation scenarios and 
deployment combinations for a full day operation, we make the following assumptions, based 
on discussions with SOFIE's advisory board. We assume a total of 6000 smart boxes entering 
the food-chain per day, and a total of 10 trucks needed to transfer these 6000 smart boxes 
between two stages (i.e., a total of 20 trucks, given that we have two transportation stages). 

Table 22: Overall cost of the food supply chain pilot stages 

Stage Description Count Logging 
period 

Single 
log cost 

24-hour 
cost 

TGF Synelixis sensors collecting 
precipitation, temperature, and 
humidity logs 

1000 1 hour €0.021 €504.00 

TRA Sensors for reporting temperature 
and humidity (1 per truck, for a total 
of 10 trucks) 

10 5 min €0.021 €60.48 

SDC Sensors for reporting temperature 
and humidity 

100 5 min €0.018 €518.40 

TRB Sensors for reporting temperature 
and humidity (1 per truck, for a total 
of 10 trucks) 

10 5 min €0.021 €60.48 

SM Sensors for reporting temperature 
and humidity 

20 5 min €0.021 €120.96 

Sum - - - - €1264.32 

For estimating the cost of handover registration, we have to compute it separately for each 
scenario. 



 

 

 

SOFIE  72(101) 

Document: H2020-IOT-2017-3-779984-SOFIE/D4.3 – First Architecture and System 
Evaluation Report 

Security: Public Date: 16.12.2019 Status: Completed Version: 1.10 

Table 23: Handover registration cost for each of the scenarios 

 
Description 

 
Box count 

per day 

Scenario 1 Scenario 2 

Single 
box 

All 
boxes 

Single 
box 

All 
boxes 

Cost for handovers across all 
stages. 

60000 €0.181 €10860 €0.261 €15660 

Finally, we should consider the cost of anchoring, in case of the second deployment type, i.e., 
in case we use a private Ethereum instance for storing all logs and handovers, and we 
periodically store the block hash on public Ethereum. For simplicity we will consider as a 
baseline approach storing the hashes of every single block. 

Table 24: Anchoring cost for the second deployment type of the food supply chain pilot 

Description Logging period Single 
anchor 

cost 

24-hour 
cost 

Cost for storing a private Ethereum's block 
hash on a public Ethereum smart contract 
("anchoring") 

15 s 
 

(the default block 
generation period 

in Ethereum) 

€0.012 €69.12 

In conclusion, an entire day's cost based on the aforementioned assumptions is estimated to 
be as follows: 

Table 25: Entire day’s cost for each evaluation scenario of the food supply chain pilot 

Scenario Deployment 24-hour cost 

Scenario 1 
 
(single smart contract for all stages) 

Public Ethereum €12124.32 

Private + Public Ethereum €69.12 

Scenario 2 
 
(separate smart contract per stage) 

Public Ethereum €16924.32 

Private + Public Ethereum €69.12 

This aggregate cost comparison further emphasizes the need to deploy and maintain private 
Ethereum instances instead of replying on the public one alone, as the cost implications are 
severe. 

5.1.6 Pilot requirements in emulation scenarios 

The following table, based on Table 5 of D5.2, lists the requirements for the Food-Chain pilot, 
and which of our emulation scenarios address each of them. 

 



 

 

 

SOFIE  73(101) 

Document: H2020-IOT-2017-3-779984-SOFIE/D4.3 – First Architecture and System 
Evaluation Report 

Security: Public Date: 16.12.2019 Status: Completed Version: 1.10 

Table 26: Food supply chain requirements 

 ID Name Description Emulation 

Scenarios 

REQ_FSC0.1 FSC Web 

application 

The services must be provided (to the actors) 

through the same web application. 

N/A 

REQ_FSC0.2 RBAC over 

provided 

services 

The services must be accessible (by the actors) 

under a Role-based Access Control (RBAC) 

policy. 

N/A 

REQ_FSC0.3 Actors unique 

identifiers 

Each actor must be identified in a unique way All scenarios 

REQ_FSC0.4 IoT 

environments 

unique 

identifiers 

Each federated IoT environment must have a 

unique identifier in the system architecture. 

All scenarios 

REQ_FSC0.5 Authentication 

management  

Authentication and access control logic must be 

applied to common storage resources. 

N/A 

REQ_FSC1.1 Timestamped 

crop registration 

Registration of a crop must be timestamped. All scenarios 

REQ_FSC2.1 Farming 

(meta)data of 

boxes 

The QR code that summarizes product history 

must include farm location, harvesting date, 

used fertilizers (dates), and the type of the 

product (from the perspective of the farming 

system),  

N/A 

REQ_FSC3.1 Record of 

handovers  

Handovers must be recorded in an immutable 

way where all federated IoT environments must 

have access.  

All scenarios 

REQ_FSC3.2 Sealing of 

boxes 

The boxes could be sealed upon the delivery to 

the transportation company (from the 

producers). 

N/A 

REQ_FSC4.1 Unsealing 

Box(es) at the 

WH 

Upon delivery to the WH employee, boxes could 

be unsealed by the TR employee. 

N/A 

REQ_FSC5.1 Box unique 

identifier 

Each box must have a unique RFID tag 

identifier. 

All scenarios 

REQ_FSC5.2 Boxes as 

Things 

Boxes must be considered as things of the 

transportation IoT platform.  

All scenarios 

REQ_FSC5.3 Box registration Box registration in the supply chain must define 

also the producer from whom it will be used. 

N/A 

REQ_FSC5.4 Timestamped 

box registration 

Registration of a box must be timestamped. All scenarios 
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REQ_FSC6.1 Transportation 

truck 

connectivity 

Transportation trucks must have internet 

connection to communicate and exchange data 

with the transportation IoT platform. 

All scenarios 

REQ_FSC6.2 Use of transpor-

tation truck 

A TR employee (driver) must be able to use 

different transportation trucks on different 

occasions. 

All scenarios 

REQ_FSC7.1 Local storage of 

IoT data 

Measurements from IoT devices are stored 

locally in the corresponding IoT platform. 

All scenarios 

 

REQ_FSC8.1 Unsealing 

Box(es) at the 

SM 

Upon delivery to the SM employee, boxes could 

be unsealed by the TR employee. 

N/A 

REQ_FSC9.1 Tracking 

warehouse 

conditions  

The temperature within each storage room of 

the WH must be continually monitored. 

All scenarios 

 

REQ_FSC9.2 Warehouse 

alarms 

In the WH, a notification appears in the 

monitoring service of the Aberon IoT platform 

each time a predefined temperature range is 

violated. 

N/A 

REQ_FSC10.1 Packetizing 

products 

The (unreleased) boxes in the WH must contain 

either raw or packetized products. 

N/A 

REQ_FSC11.1 QR code 

creation 

QR codes must include data which is collected 

from the federated IoT environments, as well as 

provided by the actors through the FSC web 

application 

N/A 

REQ_FSC11.2 QR labels of 

packets 

The same QR label must be attached to every 

packet containing grapes which were 

transferred into the same box. 

N/A 

REQ_FSC11.3 Vocabulary of 

QR labels 

Labeling of products must be based on a 

common vocabulary for the food supply domain 

that maximises reuse of data and acceptance 

by the customers. 

N/A 

REQ_FSC11.4 Self-contained 

QR codes 

The QR codes must be self-contained, so 

internet connection is not needed to read their 

content. 

N/A 

REQ_FSC11.5 Information 

recorded in QR 

codes 

The QR codes must contain product information 

related to all the segments of the chain. 

N/A 

REQ_FSC12.1 Boxes reuse Boxes must be able to be re-used in the future 

(to carry other products) after they have been 

released of the current transfer. 

All scenarios 
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REQ_FSC13.1 QR code 

reading 

QR labels must be accessible by everyone by 

using a smartphone device. 

N/A 

REQ_FSC14.1 Traceability of 

historic data 

In the case of an audit, requested organizations 

must be able to provide proof of their claims 

about the historic data of assets which are 

stored locally.  

All scenarios 

REQ_FSC14.2 Timestamps of 

handovers 

Transfer of responsibility over boxes (assets) 

must be timestamped. 

All scenarios 

REQ_FSC14.3 Confirmation of 

transactions 

A transaction must be confirmed by both 

transacting parties.  

All scenarios 

REQ_FSC14.4 Retrieve of past 

transactions 

Both parties of a transaction must be able to 

access the details of the transaction at any time. 

All scenarios 

5.1.7 Recommendations 

Given the scenario evaluations presented above, it becomes clear that the combination of both 
private and public Ethereum should be used, as it imposes two orders of magnitude lower cost 
than using public Ethereum alone. 

5.2 Decentralised energy flexibility marketplace 

The decentralised energy flexibility marketplace pilot aims to balance the load on a real energy 
network, namely the distribution grid of the city of Terni, located in central Italy, by charging 
electrical vehicles. 

In Terni, a significant amount of energy is produced locally by distributed photovoltaic plants, 
which on occasion can cause Reverse Power Flow, when unbalances between produced and 
consumed energy occur. To avoid this abnormal operation, electrical vehicles (EVs) will be 
offered incentives to match their EV charging needs with the distribution network’s 
requirements, through the decentralized marketplace, which allows electricity producers and 
consumers to place offers and bids for selling and buying electricity. 

The actors of the pilot use case are: 

DSO: Distribution System (Grid) Operator, responsible for grid management 

CSO: Charging Station Operator, operates multiple charging stations 

CS: Charging Station, that can charge electric vehicles 

EV: Electric Vehicle 

EVU: EV User 

FM: Fleet Manager, represents a group of EVs in the energy price negotiations 

ER: Electricity Retailer (that may be included in a later stage of the pilot, but is included 
in the use case and) that would act between the DSO, CSOs, and electricity users, 
such as FMs  

The flow of the use case is: 

1. The DSO puts flexibility requests to the decentralized marketplace (that utilizes 
blockchain), asking for a specific amount of energy (kWh) to be drawn at specific time 
intervals, at a specific location (expressed as GPS coordinates), while providing specific 
incentives (expressed as tokens) in order to shave peaks of locally produced energy. 
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2. The FM places offers to the marketplace in order to maximize the incentives. The offers 
include: user type (e.g. electricity load imposed), current location, residual autonomy 
(i.e., how long the vehicle can withstand before it has to be charged), and EV's current 
status (e.g., parked). 

3. The marketplace identifies potential candidates taking both offers (by DSO and FM) into 
account and notifies selected EV users that they will receive a token incentive if they 
fulfil the conditions of the DSO's offer (i.e., charge the vehicle with a specific amount of 
electricity, using the assigned charging station, or group of charging stations, within a 
specific time interval). 

4. Some EV users accept the offer and the acceptance is recorded in the blockchain used 
by the marketplace. 

5. The EV user (who has accepted the offer) charges the EV to fulfil the conditions of the 
offer. The charging event will be recorded in the blockchain. 

6. The smart contract (running on the Ethereum blockchain) notices that the conditions of 
the accepted offer have been satisfied and sends the agreed amount of incentive tokens 
to the EVU on (the Ethereum) blockchain. 

7. For accepted bids that failed to fulfil their requirements, the EVU should be “fined” by 
sending a corresponding transaction on the (Ethereum) blockchain. 

Note that while in D4.2 it was mentioned that DSO bids could be generated automatically based 
on energy use or supply forecast, this is considered out of scope of the pilot, but is included in 
the use case to be considered for evaluation. 

No evaluation results are available yet for this use case, however some preliminary planning 
has been undertaken in order to perform it.  

5.2.1 Pilot requirements in emulation scenarios 

The following table, based on Table 20 of D5.2, lists the requirements for the Decentralised 
energy flexibility marketplace pilot, and which are addressed by our emulation scenario. 

Table 27. Decentralized flexibility marketplace pilot requirements 

ID Name Description Addressed 

by Emulation 

REQ_ DEFM1.1 DR strategies 

assessment 

DSO shall be able to forecast of electricity 

production/consumption 

No 

REQ_ DEFM1.2 Checking load 

and production 

forecast 

DSO shall be able to check the load and 

production forecasting of the whole distribution 

grid 

No 

REQ_ DEFM1.3 Grid System 

flexibility DR 

services 

DSO shall be able to forecast of electricity 

production / consumption at the grid level 

No 

REQ_ DEFM1.4 DSO foresees 

and provides 

flexibility 

DSO shall be able to shave picks of energy 

produced locally the day after so that instability 

of the system, overvoltage on the feeder, 

protection discoordination, increased fault 

currents, and incorrect operation of equipment 

could be avoided 

No 

REQ_ DEFM1.5 Flexibility 

estimation 

DSO shall be able to estimate the energy 

flexibility availability; 

No 
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Assess flexibility availability by using available 

historical data. 

REQ_ DEFM1.6 Flexibility 

Request 

DSO shall be able to forecast system indicates 

a potential reverse powerflow to be mitigated 

and DSO system is connected with the 

flexibility marketplace. 

The DSO system is connected with the 

flexibility marketplace 

Yes 

REQ_ DEFM2.1 DSO/Fleet 

Manager Micro-

Contract 

When the Fleet Manager obtains the 

responsibility to provide the flexibility required 

by the DSO, a micro contract between the the 

Fleet Manager and the DSO is executed 

Yes 

REQ_ DEFM2.2 Fleet Manager/ 

EV User Micro-

Contract 

When the Fleet Manager obtains the 

responsibility to provide the flexibility required 

by the DSO and EV users not belonging to the 

fleet manager EV fleet are involved in the DR 

campaign, a micro contract between the Fleet 

Manager and the EV user is executed 

Yes 

REQ_ DEFM4.1 EV/EVSE 

Systems 

Interoperability 

With the objective of performing Demand 

Response (DR) campaigns, it is necessary that 

the management systems of electric vehicles 

and charging stations communicate with each 

other, so that it is possible to verify in real time 

the interaction between the two systems. 

Yes 

REQ_ DEFM4.2 EV/EVSE Data 

Collection 

To provide DSO flexibility in an efficient way, 

the data of electric vehicles and charging 

stations must be collected in real time (or very 

close to real time). Data coming from EVSEs 

and the EVs should be consistent, reliable, 

transparent and accessible to the partners. 

Furthermore, to perform optimized DR 

campaign it is necessary to constantly calculate 

EV load forecasting to estimate the amount of 

energy that electric vehicles could consume to 

meet the DSO's flexibility demand. 

No 

REQ_ DEFM4.3 EV/EVSE Data 

Storage 

It is necessary that the data of electric vehicles 

and charging stations are stored so that they 

can then be reprocessed, giving fruit to charts 

that show the effectiveness for the purposes of 

the DSO of DR campaigns performed during 

the trial. 

No 

REQ_ DEFM4.4 EVSE Unique 

Identifier 

As there will be more than one charging station 

on the pilot site, each individual charging 

station must have its own unique identifier. 

No 
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REQ_ DEFM4.5 EV Unique 

Identifier 

As there will be more than one electric vehicle 

on the pilot site, each individual electric vehicle 

must have its own unique identifier. 

No 

REQ_ DEFM4.6 EV/EVSE Web 

Platform 

To allow the EV user to realize the available 

charging stations and the fees associated with 

them, a web platform is required. 

No  

REQ_ DEFM4.7 EV/EVSE 

Connectivity 

Both charging stations and electric vehicles 

must be connected to the internet in order to 

send data. 

No 

REQ_ DEFM5.1 EVSE Remote 

Control 

The charging station must be remotely 

controlled to start/stop charging sessions and 

to modulate the power output. 

No 

REQ_ DEFM7.1 District 

forecasting 

DSO shall be able to have to constantly 

calculate building consumption forecasting, PV 

production forecasting and manage batteries to 

estimate the amount of energy demand at ASM 

substation. Forecasting will be calculated 

periodically (every day). Need to reduce 

undesired reverse power flows 

No 

REQ_ DEFM8.1 Fleet Manager/ 

Retailer Micro-

Contract 

When the Fleet Manager obtains the 

responsibility to provide the flexibility required 

by the DSO, a micro contract between the the 

Fleet Manager and the Retailer is executed for 

the energy supply to charge electric vehicles 

Yes 

5.3 Decentralised Energy Data Exchange 

The initial evaluation of the decentralised energy data exchange use case consists of two 
directions: 

 The first investigates the case where a smart contract uses smart meter measurements 
to calculate a discount. 

 The second investigation considers a model that captures the cost tradeoffs related to 
the frequency with which hashes of the smart meter measurements are recorded on a 
public blockchain. 

For the first direction, we investigate the gains of utilizing two blockchains. We have two 
scenarios. The first scenario uses a Public Ethereum (Rinkeby), while the second one extends 
the structure with a permissioned blockchain (Private Ethereum). In the first case, we have one 
smart contract to keep records of measurements and calculate discounts (Public Ethereum). 
The second case uses the same contract in the permissioned blockchain and an extra contract 
in the Public ledger, for keeping hashes of smart-meter measurements. The comparison of the 
two scenarios, is in terms of the gas cost and delay.  

The second direction considers the two blockchain cases discussed above and presents 
numerical investigations that illustrate how the cost tradeoffs depend on various system 
parameters. 
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5.3.1 Smart contract for flexible energy services 

We first investigate, with experiments on a private Ethereum network and the Rinkeby public 
Ethereum testnet, the performance when smart meter measurements are recorded by a smart 
contract, which periodically computes a discount based on the recorded measurements. The 
components involved are the following: 

 Smart Meter Component: This component submits smart meter measurements to the 
Smart Meter Contract. 

 Smart Meter Contract: Records smart meter measurements and periodically computes 
a discount based on the recorded measurements. This component is executed either on 
a private Ethereum network (scenario 2) or on the Rinkeby public Ethereum testnet 
(scenario 1). 

 Hash Recording Component: This component performs an interledger function for the 
second scenario that involves periodically recording hashes of the average consumption 
and the calculated discount on the public ledger. 

 Hash Recording Contract: This is the smart contract responsible for recording hashes in 
the second scenario. 

The records that are submitted by the Smart Meter Component to the corresponding contract 
have the general form [consumption, time unit], indicating the amount of energy consumption 
per time unit. 

Smart contracts execute code that implements business logic and rules in a transparent manner. 
The smart contract in the scenarios we investigate performs a simple operation that periodically 
calculates a discount based on the smart meter measurements. We investigate two scenarios 
that differ in where the smart contract is executed: 

Scenario 1: Smart contract running on a public ledger. In this scenario the smart contract 
is executed on a public Ethereum blockchain, namely the Rinkeby public Ethereum testnet. 

The UML diagram for this scenario is shown in Figure 22, below. 

 

 

Figure 23: UML component diagram for the first scenario where a smart contract handling 
smart meter measurements runs on a public ledger 

The Smart Meter Component sends measurement records to the Smart Meter Contract, running 
on a Public Ethereum network (Rinkeby). This smart contract has two main functions. The first 
(addNewMeasurement) is a public function that is called by the Smart Meter Component 
whenever it wants to record a measurement. The second (calculateDiscount) is an internal 
function that calculates a discount, after a standard number of measurements.  

Scenario 2: Recording only hashes on a public ledger. In this scenario the smart contract 
that records the smart meter measurements and periodically calculates a discount is executed 
on a private Ethereum network. When the discount is calculated, a hash of the discount and the 
corresponding average consumption is recorded on the Rinkeby public Ethereum testnet. 

The UML diagram for this scenario is shown below. 
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Figure 24: UML component diagram for the second scenario, where only hashes are stored on 
a public ledger 

Recording of hashes is performed by an interledger gateway. The frequency at which hashes 
are recorded on the public Ethereum network is assumed to be the same as the frequency that 
the smart contract running on the private Ethereum network calculates discounts. This is 
achieved by having the interledger gateway listen to events that are generated each time that 
the Smart Meter Contract running on the private Ethereum network calculates a new discount.    

Table 18 below summarises the smart contract functions (written in Solidity the main Ethereum 
smart contract programming language). 

 

Table 28: Smart contract functions for decentralised energy data exchange scenarios 

Function Arguments Scenarios used 

addNewMeasurement -uint256 measurement  
-uint256 rateOfDiscount 

Scenario 1 (Smart contract running on a public 
ledger)  
Scenario 2 (Recording only hashes on a public 
ledger) 

calculateDiscount (none) Scenario 1 (Smart contract running on a public 
ledger)  
Scenario 2 (Recording only hashes on a public 
ledger) 

storeValue -string value Scenario 2 (Recording only hashes on a public 
ledger) 

5.3.1.1 Evaluation results 

The figure below shows the EVM execution cost (gas) for the two scenarios described above. 
The results are from experiments executed for 30 time units. Smart meter measurements are 
recorded at a frequency of one record every time unit. For the specific execution one time unit 
was equal to one minute. However, we note that the results are independent of the actual value 
of the time unit. 

We consider three values for the rate of discount, which correspond to the three columns in the 
figure: one discount calculation every 5, 10, and 30 time units. 
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Figure 25: EVM execution cost for decentralized energy data exchange scenarios 

The results show that, as expected, recording data measurements directly on a public 
blockchain has a very high execution cost. Note that such an approach also has low privacy. 
Moreover, when a smart contract on a public ledger handles smart meter measurements, the 
time interval that discounts are calculated has a small influence on the total execution cost. 

The cost when only hashes are recorded on the public ledger is significantly lower. Moreover, 
the results for this case verify that the execution cost when only hashes are recorded on the 
public chain is approximately inversely proportional to the time between consecutive hash 
recordings.  

5.3.2 Hash recording frequency 

In this subsection we present a simple model that captures the cost tradeoffs and the impact of 
the frequency with which hashes of the smart meter measurements are recorded on a public 
blockchain. The model applies to the second scenario presented in the previous subsection that 
corresponds to Figure 23. Specifically, the proposed model captures the following costs:  

 Cost (monetary) for recording data on a public blockchain. Alternatively, this can refer to 
the cost for using a timestamping service. 

 Cost for verifying that the data (smart meter measurements stored on the platform) is 
consistent with the hashes recorded on the public blockchain. This cost corresponds to 
the processing cost for performing the verification computations. 

 Cost that quantifies the opportunity to modify or the impact from actually modifying the 
data from the time the last hash was recorded on the public chain until the time the next 
hash will be recorded. 

The cost per unit of time for recording hashes on the public chain (or for using a timestamping 
service) can be expressed as a function P(f), which we assume is a linear function of the hash 
recording rate f. Alternatively, the function P(f) can be a concave function, if the incremental 
cost for recording hashes decreases as the hash recording rate f increases. 
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The verification cost can be expressed as rverV(D) where rver is the rate of verification requests 
and V(D) is a function of the amount of data D that is required in order to perform verification. 
The verification cost is expressed as a cost per unit of time, similar to the hash recording cost. 
The shape of the function V() depends on how the hashes are computed. If the hash that is 
recorded on the public chain is computed by applying a hash function on all the data that has 
been produced since the last hash was recorded, then the verification cost V(D) is a linear 
function of the amount of data D produced between two consecutive hash recordings. D is equal 
to rdata/f, where rdata is the rate at which data is produced and f is the hash recording rate. On the 
other hand, if a Merkle tree is used to compute the hashes that are recorded on the public chain, 
then the verification cost V(D) is a logarithmic function of D=rver/f. 

The cost that quantifies the opportunity to modify or the impact from modifying the data from the 
time the last hash was recorded on the public chain until the time the next hash will be recorded 
can be expressed as a function Q(D) of the amount of data D produced between consecutive 
hash recordings. The actual shape of Q() is application and scenario specific. Possible shapes 
are the following: 

 Concave: Such a shape corresponds to the case where modifying data initially has large 
impact, which becomes smaller as more data is modified. 

 Convex: This shape corresponds to the case where modifying data has a small impact 
up to some point, after which the impact increases when more data is modified. 

 Sigmoid or stepwise function: In this case, initially modifying data has small impact (or 
zero impact in the case of a stepwise function), which increases sharply at some point. 
Then the impact from modifying additional data is smaller (or zero in the case of a 
stepwise function). 

5.3.2.1 Evaluation results 

In this subsection we present preliminary numerical results that involve the hash publication 
cost and the verification cost. The cost that quantifies the opportunity to modify data will be 
considered in future investigations. 

Based on the model presented in the previous subsection, if cpub is the cost for recording a hash 
on the public ledger, then the cost per unit of time for recording hashes on the public chain is 
P(f)=f cpub. The verification cost is rver V(rdata/f) cver, where rver is the rate of verification requests, 
rdata is the rate at which data is produced, and cver is the cost for each verification. The cost cver 
represents the cost for a unit of computation that is necessary for performing verification. In the 
numerical results presented below, we assume that cpub/cver = 2. 

If the hash recorded on the public blockchain is computed by applying a hash function on all the 
data that has been produced since the last hash was recorded, then V(rdata/f) is a linear function. 
On the other hand, if a Merkle tree is used, then V(rdata/f) is a logarithm of rdata/f. 

The verification cost rver V(rdata/f) and the total cost P(f) + rverV(rdata/f) as a function of the hash 
recording rate f in the case of a linear function V() are depicted by the lines containing the label 
“linear” in the figure below. We have assumed that rdata/rver=1000. Observe that the optimal hash 
recording frequency, which is the frequency with the lowest total cost, is approximately 16. Note 
that the time units for the hash recording frequency are the same time units that the rate rdata 

data is produced and the verification request rate rver. The verification cost and total cost for the 
case of a logarithmic function V() correspond to the lines with the label “log.” Observe that in 
this case, the optimal frequency is smaller than 1, i.e., it is much smaller than the optimal 
frequency in the case of a linear function V(). The reason for the smaller optimal frequency in 
the case of a logarithmic function V() is because of the concave dependence of the 
corresponding verification cost on the hash recording frequency. 
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Figure 26: Cost as a function of frequency for a linear and logarithmic verification function V(f) 

5.3.3 Pilot requirements in emulation scenarios 

The corresponding Decentralized Energy Data Exchange requirements from Deliverable 5.2 
(Table 16) are shown below, together with a description of how each requirement is considered. 
Note that the access control functionality is provided through the Privacy and data sovereignty 
(Section 3.2) and Identification, authentication, and authorization (Section 3.3) components, 
hence the corresponding requirements refer to those components. 

 

Table 29: Decentralized energy data exchange requirements 

ID Name Description Emulation 

Scenarios 

REQ_DEDE1.1 (see also 

RF06, Table 7 in D2.4) 

Data access Data owner can access 

info about his data, full 

visibility of data use 

IAA (Section 3.3, Table 

15) 

REQ_DEDE1.2 (see also 

RF05, Table 7 in D2.4) 

Unique identifiers for 

actors 

Each actor must be 

identified   

IAA (Section 3.3, Table 

15). The entities in the two 

scenarios of this section 

have unique identifiers.  

REQ_DEDE2.1 (see also 

RF13, Table 7 in D2.4) 

Data access Owner must be able to 

decide who gets access to 

his/her data 

Privacy and data 

sovereignty (Section 3.2, 

Table 15) 
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REQ_DEDE2.2 (see also 

RF10-14, Table 7 in D2.4) 

Auditability / Security All user info must be 

GDPR compliant 

Privacy and data 

sovereignty (Section 3.2, 

Table 15) 

REQ_DEDE2.3 (see also 

RF06, Table 7 in D2.4) 

Auditability / Security Data handover must be 

registered and proved at 

every transaction 

IAA (Section 3.3, Table 

15) 

REQ_DEDE2.4 (see also 

RF06/07, Table 7 in D2.4) 

Data access Service provider must be 

able to define the energy 

consumption data 

parameters 

IAA (Section 3.3, Table 

15) 

REQ_DEDE2.5 (see also 

RF06/07, Table 7 in D2.4) 

Data transfer Service provider must be 

able to download the 

energy consumption data 

IAA (Section 3.3, Table 

15) 

REQ_DEDE2.6 (see also 

RF07/08, Table 7 in D2.4)   

Authentication Authentication toolkit for 

all actors (eIDAS 

compliant) 

IAA (Section 3.3, Table 

15) 

REQ_DEDE2.7 (see also 

RF06, Table 7 in D2.4) 

 

Auditability / Security  

 

Processes monitoring the 

system must be logged, 

stored (in local 

environment) 

IAA (Section 3.3, Table 

15). In the two scenarios 

of this section hashes are 

stored on ledgers 

(immutability). 

REQ_DEDE5.1 (see also 

RF06, Table 7 in D2.4) 

 

Auditability / Security  

 

Service provider must be 

able to get proof of 

receiving the energy 

consumption data 

IAA (Section 3.3, Table 

15). In the two scenarios 

of this section hashes are 

stored on ledgers 

(immutability). 

REQ_DEDE5.2 (see also 

RF06, Table 7 in D2.4) 

 

Auditability / Security  

 

System logs integrity must 

be 3rd party verifiable 

(auditor) 

IAA (Section 3.3, Table 

15). In the two scenarios 

of this section hashes are 

stored on ledgers 

(immutability). 

5.3.4 Recommendations 

The results for the scenarios presented in the current section quantify the advantages, in terms 
of reduced cost, of combining public with private ledgers. Of course, this involves tradeoffs in 
terms of the level of decentralized trust, in addition to the transparency and privacy. Moreover, 
in addition to the cost for execution and storage on public ledgers, other external costs should 
be considered, such as in the case where hashes are recorded on a public ledger, the cost for 
verifying the hashes.  
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5.4 Mixed Reality Mobile Gaming 

5.4.1 Overview 

The mixed reality mobile gaming pilot will prototype a scavenger hunt location-based game. The 
goal of the game is to find the IoT device locations. The players will solve a riddle provided by 
the company or other players through a QR code. Solving the riddle will reveal the location of 
the next IoT device, in order for the user to go there, collect his points and download another 
riddle. This procedure continues until the last IoT device is reached. Players can bypass any 
challenge using the In-App tokens, which can be bought, awarded by viewing advertisements, 
awarded by completing a challenge or traded on the marketplace.  

The entities identified within the pilot use case, including organizations and people are shown 
below: 

 Game administrator/developer – Game company 

 Game player 

 Challenge designer 

 Ads administrator – Advertisement company 

 Point of Interest (POI) employee – POI company 

IoT beacons will be used to provide the location of the IoT devices. The beacons will 
communicate with user smartphones using Bluetooth Low Energy (BLE). Furthermore, 
blockchain technology will be used to manage and record various actions and properties, e.g. 
player arriving at a beacon, points collection, trading tokens, etc. One of the main challenges, 
of this use case is to exploit scalable DLTs to support millions of active users per day with 
thousands of transactions per second in a cost-effective manner. 

5.4.2 Events 

The main events of this use case involving the game player are: 

1.    Game player downloads and installs the scavenger hunt application, granting all the 
appropriate permissions. Then, a private key is generated for the blockchain wallet and 
stored on the mobile. 

2.    Game player joins any challenge by scanning a QR code. 

3.    When the player visits the POI (IoT beacon), a task is shown to the player. 

4.    Player completes the challenge: 
a.    By solving the task. 
b.    By viewing ads. 
c.    By paying with in-App tokens. 
d.    By paying. 

5.    Player, having an approved user account, creates a new challenge. 

The main event involving the game administrator/developer is: 

 Game developer creates a new challenge. 

The main event involving the POI employee is: 

 The POI employee adds a new IoT beacon. 

The main event involving the ads administrator: 

 The ads administrator publishes an advertisement. 
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Adding a reward for completing a challenge or watching an advertisement video can be 
performed by the respective employees.  

5.4.3 Emulation 

To initially evaluate the performance of the mixed reality gaming pilot we will use an environment 
which emulates various aspects of this use case. Based on this emulation, we will be able to 
have both quantitative and qualitative evaluation. On the other hand, with the emulation 
environment we cannot investigate various other issues, such as game discovery, IoT devices 
scale, etc. 

To start with, we emulate the scavenger hunt mobile application, as a Web application with a 
simple UI, implemented in React, which is a JavaScript library for building user interfaces. For 
emulation purposes, we assume that the user/player has already created a metamask account, 
thus he owns a private key for his blockchain wallet. Challenges are emulated as unique integer 
IDs. Challenge designers can create a new challenge by adding the id of the challenge in the 
Web App and clicking the appropriate button. When a designer adds a new challenge, the 
appropriate function of the smart contract is called and a transaction is sent to the blockchain 
network to be mined. Then, the player can select any challenge he wants by entering the id of 
the challenge. This process emulates the interaction with the IoT beacon. Afterwards, the player 
is able to click the “complete” button, which emulates that the player has solved the riddle. When 
the player completes the challenge, the smart contract automatically adds the calculated points 
to the player’s account. The player is able to skip any challenge by paying in ether, by paying 
in In-App tokens or by viewing advertisements. To emulate the In-App tokens, we create a smart 
contract that implements the ERC20 standard. Moreover, the player can obtain In-App tokens 
by paying in ether, by viewing advertisements, or by redeeming his points. Advertisements are 
emulated as smart contracts. When a user “watches” an advertisement the viewAds function of 
the ads contract is called. Only if this function returns true, i.e. the player watched the 
advertisement, then he gets the appropriate reward. 

The initial evaluation of this use case is performed through various emulated scenarios with 
different configurations. Two scenarios are presented below. 
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5.4.3.1 Scenario 1 

The first scenario investigates the case where only public Ethereum is used as the blockchain 
technology. The experiments in this scenario, took place on the Rinkeby (public Ethereum) 
testnet. The components of this scenario are: 

 Web application: This component performs the interaction between the players and the 
blockchain technology. 

 Ads smart contract: This component checks whether the user watched the 
advertisement or not. 

 Tokens smart contract: This component creates and manages the In-App tokens. 
 Game smart contract: This component implements all the required functionality of the 

game. First of all, it records all the challenges by their unique IDs to the blockchain. 
It also records a mapping between the players and the challenges and whether the 
player has completed the challenge or not. It automatically calculates the points that the 
player should be rewarded when he completes a challenge. This contract implements 
three functions that give the opportunity to players to skip any challenge by the 
aforementioned ways. Finally, it calls the other two contracts to offer rewards to players.  

The UML diagram for this scenario is shown below. 

 

 

Figure 27: UML component diagram for the first mixed reality mobile gaming scenario 
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5.4.3.2 Scenario 2 

The second scenario investigates the gains from utilizing two (different) blockchains instead of 
one. In this scenario, the first blockchain is a public blockchain and the second one is a 
permissioned blockchain. We assume that the public blockchain is a public Ethereum and the 
permissioned blockchain is a private Ethereum chain. The components of this scenario are the 
same ones shown above for Scenario 1 plus the one shown below. 

 Interledger gateway: This component is listening to events on both Ethereum 
blockchains (public and private), which are generated each time the player invokes a 
function of the game smart contract that needs to perform an action involving the In-App 
tokens or the advertisements. 

The game smart contract is executed on the private Ethereum network. On the other hand, the 
tokens smart contract and the ads smart contract are executed on the Rinkeby testnet. 

The UML diagram for this scenario is shown below. 

 

Figure 28: UML component diagram for the second mixed reality mobile gaming scenario 
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5.4.4 Evaluation results 

The initial evaluation of the mobile gaming pilot use cases begins with the comparison of the 
two aforementioned scenarios, in terms of the gas cost. The following table, as well as Figure 
29, shows the EVM execution cost in terms of gas for the scenarios described above.  

Table 30: EVM execution cost for mixed reality mobile gaming scenarios 

Function Scenario 1 cost (gas) Scenario 2 cost (gas) 

Add challenge 47050 N/A 

Begin challenge 52432 N/A 

Complete challenge 53529 N/A 

Skip challenge by paying 61867 N/A 

Skip challenge by paying in In-App tokens 63877 33438 

Skip challenge by viewing advertisements 53926 21462 

Get tokens by paying 44199 35274 

Get tokens by viewing advertisements 37981 56736 

Redeem rewards 36618 35274 

 

 

Figure 29: EVM execution cost for mixed reality mobile gaming scenarios 
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As we can see from the results, using only a public blockchain is very costly. On the other hand, 
the execution cost of using the public instance of Ethereum only for managing the In-App tokens, 
is far lower.   

5.4.5 Pilot requirements in emulation scenarios 

The following table lists the requirements for the mixed reality mobile gaming pilot from 
Deliverable 5.2 and presents how the aforementioned emulation scenarios address these 
requirements. 

 

Table 31: Mobile gaming requirements 

ID Name Description Emulation Scenarios 

REQ_ MRMG0.1 Unique identifiers for 

every actor 

Each person interacting 

with the game or web 

application should have a 

unique identifier. 

Each actor has a unique 

identifier (wallet)  

REQ_ MRMG1.1 Game Mobile application Game challenges are 

accessible using the 

Android application   

The mobile application is 

emulated as a web 

application and every 

challenge is accessible 

through it  

REQ_ MRMG1.2 Joining any game 

challenge 

Players can join any 

challenge by scanning 

the QR code or manually 

entering challenge ID. 

Any player can join any 

challenge by entering the 

challenge unique ID 

REQ_ MRMG1.3 Unique identifier for 

challenges 

Each challenge should 

have a unique identifier 

Each challenge has a 

unique integer identifier 

REQ_ MRMG1.4 Record the time taken to 

complete a challenge.  

Time should be recorded 

for each player, starting 

after joining the challenge 

till the player completes it. 

- 

REQ_ MRMG1.5 Receive Clues / tasks Players should receive 

unique clues / task when 

near the IoT beacons 

based on their challenge. 

- 

REQ_ MRMG1.6 Skip any task Players should be able to 

skip any task and receive 

location of next IoT 

beacon using the In-App 

tokens. 

Players are able to skip 

any task by paying with 

In-App tokens, 

implemented using the 

ERC20 interface 

REQ_ MRMG1.7 Purchase In-App tokens Players can buy an 

unlimited amount of In-

App token using the fiat 

currency  

Players can buy In-App 

tokens using fiat currency 

REQ_ MRMG1.8 Points calculation  System should 

automatically calculate 

the points based on the 

time taken to complete 

any challenge 

When a player completes 

a challenge, a fixed 

amount of points is 

automatically added to 

his account 
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REQ_ MRMG2.2 Rewards distribution System should 

automatically add the 

rewards to the players 

account after the 

challenge ends. 

Players get rewards 

based on their collected 

points  

REQ_ MRMG3.1 In-App Advertisement 

video 

Player should be given 

the option to view 

advertisements while 

playing a challenge. 

A player can view an 

advertisement at any 

time. 

REQ_ MRMG3.2 Advertisement reward Player should receive 

tokens for viewing the 

advertisement. 

A player receives In-App 

tokens when he watches 

an advertisement 

REQ_ MRMG3.3 Advertising viewability 

data 

Every ad viewability data 

should be recorded as a 

transaction on the 

blockchain. 

Advertisements are 

emulated as smart 

contracts, thus viewability 

data is recorded on the 

blockchain in both 

scenarios 

REQ_ MRMG4.1 Assert marketplace Players can buy and sell 

In-App asserts on the 

blockchain 

- 

REQ_ MRMG4.2 Assert trading data Every asser traded on the 

platform should be 

recorded as a transaction 

on the blockchain. 

- 

REQ_ MRMG5.1 Web Application  Web application for 

designing new challenges 

and uploading 

advertisements. 

In the emulation, there is 

a web application where 

an actor can upload a 

new challenge and new 

advertisements 

REQ_ MRMG5.2 Access control to the web 

services 

Access control to the web 

services, based on the 

role of the user.  

- 

REQ_ MRMG7.1 Offer rewards Rewards can be offered 

to the players through 

challenges and 

advertisement videos. 

Players get rewards, 

when they complete a 

challenge or watch an 

advertisement 

REQ_ MRMG7.2 Rewards data Rewards should be 

added and recorded on 

the blockchain. 

Every reward for every 

player is recorded on the 

blockchain  

REQ_ MRMG8.1 Publish new 

advertisements 

Ads manager should 

publish any ad video 

using the web application 

An ads manager can 

publish an advertisement 

at any time, using the 

web application 

5.4.6 Recommendations 

As in the other pilot-inspired scenarios, the experimental results of this section show the gains 
in terms of reduced cost that can be achieved for mobile gaming scenarios when public and 
private ledgers are combined. The gains in terms of reduced cost should be considered in 
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relation to the properties of public and private ledgers, in terms of the level of trusts, privacy, 
and transparency. Different aspects of mobile gaming, such as management of challenges, 
obtaining rewards and redeeming tokens, and processing advertisements can have different 
requirements in terms of trust, privacy, and transparency. Further work will also consider the 
gain in terms of response time and delay. 
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6. Business oriented evaluation 

 SOFIE is about Secure Open Federation of IoT Systems (silos) so that they can exchange data 
under their own rules and “voluntarily” cooperate to achieve their goals. Most of the rules and 
impediments, but also incentives and opportunities are about business aspects, rather than 
technical issues. Therefore, an evaluation of the SOFIE architecture and the mechanisms being 
developed from a business perspective is necessary. In addition to the aspects discussed earlier, 
such as of a distributed system and an open (business) platform, other business aspects are 
discussed and evaluated here for a start and will be further refined and completed in the next 
WP4 deliverable, D4.4.  

Of special interest is an investigation of whether and under what conditions a Federated Open 
Platform (System), without a pre-set leader governing the system, can successfully arise, 
develop, and prosper and whether the constituting (sub-)systems also grow and prosper, and 
how potential gains are distributed across the constituents. We use a System dynamics 
approach to investigate these questions. An initial investigation is provided below, but the work 
continues, and further results are expected to be provided in D4.4 and D4.5. 

6.1 On federation 

 One can consider a group of component systems that are governed either by a single central 
authority or by distributed governance, in which each component system serves its own 
interests (but they can also demonstrate altruism, or desire for cooperation, sometimes against 
their narrowly defined interests). The analogy in real life is with a group of states/countries, like 
the European Union or the United States of America. An example of a federated system in 
information technology is the interconnection of Social Networks. 

The design of a federated system has to cover the following aspects: 

 Business foundations: Covers the context of defining fully customizable applications. 
If an application has access to the system through one specific component, it must be 
able to use (or not) services from the other components.    

 Service foundations: Includes creation and resource management of a service. The 
creation of a service in a component might be simple; the difficulty lies in defining the 
right authorization and privacy schemes. Storing and replicating the service' s data is 
also a hard task. 

 Heterogeneous infrastructure: Employ Servers (hardware infrastructure) in order to 
support a variety of devices and reach the appropriate resource allocation level.  

 Communications foundation: Last, but not least, is the ability for the components to 
communicate. Components must be able to identify the services offered among each 
other. As we mentioned in the introduction, Social Networks have already solved this 
issue. An example is post publishing. An Instagram photo is already published in 
Facebook and Twitter, if the user allows it. 

Our Proposed Interledger Protocol is based upon distributed and decentralized nodes. Each 
node is a permissioned/permissionless ledger (Hyperledger, Ethereum, Bitcoin). The solution 
covers Communications/Service foundation and the Heterogeneous infrastructure. The pilots 
show examples of Business Foundations. 

6.2 Modelling SOFIE business platform growth and sustainability 

 This section describes the SOFIE framework in terms of System Dynamics. The aim is to 
provide a high-level business oriented evaluation, which is based on a scientifically rigorous 
modelling methodology. Therefore, we can take into account other involved ecosystems (such 
as the decentralised Ethereum blockchain) which can impact the success of SOFIE framework, 
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and SOFIE business platforms. The business platforms studied in the future as part of this work 
are SOFIE business platforms which are the pilots of the SOFIE project. Practical low-level 
exploitation activities are WP6 activities; their results are described in deliverable D6.10 - 
Business planning and other WP6 deliverables. 

In order to understand the growth and sustainability of federated digital business platforms, we 
first need to understand the key causal feedback loops. We start by developing models for 
(decentralized) Ethereum platforms and then model DApps (Decentralized Apps) such as 
CryptoKitties that have their core business logic parts run on top of such platforms in the form 
of smart contracts. Finally, we investigate how the approach can be used for modelling SOFIE 
business platforms (this part is mostly for future work). 

Modelling the Ethereum Platform with System Dynamics 

 

Figure 30:  Causal feedback loops of Ethereum platform sustainability 

There is a general interest in cryptocurrency, which in the current state of this model is assumed 
to be exogenous. This interest among other cryptocurrencies, causes an increase in the 
demand for Ether (ETH), which is the token of the Ethereum platform that we use as our case 
study. An increase in the demand of the token causes an increase in its price, which in turn 
increases its attractiveness as this is perceived to be indicative of the token’s steady successful 
growth. The more attractive the token, the more is its demand, and this closes the reinforcing 
loop that depicts the network effects of our model. 

As long as the demand of the token remains low, the more “sharks” are looking for an 
opportunity to buy as much of it as possible. This will give them the opportunity to inject money 
back to the platform and enhance the attractiveness of the token. 

The total blockchain attractiveness is accumulated from all currently available cryptocurrencies 
in the market. It then has a negative causality to their demand, and this illustrates the balancing 
loop of the market’s saturation. In other words, it models the natural limit for the demand of 
cryptocurrencies. 
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What makes the Ethereum platform different from other cryptocurrency platforms is its unique 
feature of supporting other tokens. The higher the demand for Ether, the more people will seek 
opportunities to take advantage of its features. Hence, efforts to piggy back (or complement?) 
Ether’s token creation protocol and to launch Initial Coin Offerings (ICOs) rise. The more such 
companies enter the market, the higher the price of the Ether token becomes. 

However, the more ICO companies there are in Ether platform, the more transactions take place. 
Consequently, this strain in crypto exchange makes it less feasible to validate these transactions 
in a timely manner. Thus, we have lags in the platform’s performance, which in turn has a 
negative effect on the platform’s attractiveness. 

Modelling a distributed application with System Dynamics 

Here we present a model of an example application. We present a model of CryptoKitties, which 
is a decentralized game running on top of the Ethereum blockchain. 

CryptoKitties33 are collectable and breedable property that reside and function as part of the 
Ethereum [Nak08], [Woo18]. They are the first widely deployed commercial Ethereum 
application, which broke into the public consciousness towards the end of 2017 and the 
beginning of 2018. We model the CryptoKitties on the Ethereum blockchain business platform. 
CryptoKitties tests the idea of digital scarcity. Before the invention of blockchains, digital scarcity 
could only be created via means of centralised control. However, centralised control is unable 
to create real scarcity in the sense that everyone needs to trust the central operator to actually 
produce said scarcity. If the central operator stops producing this scarcity for any reason, the 
users might not even know about it, much less prevent it. 

 

Figure 31: CryptoKitties application sustainability causal feedback loops 

From the model we can see that there is a mutually reinforcing network effect between the two 
networks of CryptoKitties and the Ethereum platform. The more CryptoKitties users, the more 
the platform benefits. And the more there are platform users, the more there are potential 
CryptoKitties players. 

                                                
33 CryptoKitties: Collect and breed digital cats! Available online: https://www.cryptokitties.co 

https://www.cryptokitties.co/
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The role of the CryptoKitties application founders is also depicted in the model. Founders 
allowed themselves a time limited role in creating more genetic variability so that not all the 
variability inherent in generation 0 Kitties was present at the launch of the application. When 
additional genetic diversity can be injected later, it can be used as a marketing tool by timing 
the injection so that it produces the best economic results. 

Next Steps in SOFIE System Dynamics Modelling 

The next step is to apply our System Dynamics understanding to the SOFIE approach and, 
more specifically, its pilot cases. These results will be reported in upcoming deliverable D4.4 
(due in April 2020). 

In order for the model to be meaningful, we first need to understand the relevant DLT platforms 
and have a good understanding of the business level functionality of the pilot case. By modelling 
the interactions between DLTs and application business functionality, we arrive at the business 
model of the pilot. 

Next, we develop a preliminary model of the food-chain pilot case to evaluate the sustainability 
of the created business platform through its causal feedback loops. 

The figure below is an example of applying the model to SOFIE business platform. The creation 
of complete models (reported in D4.4) will include addition of multiple new factors, such as 
licensing scheme of the SOFIE platform, which can affect the attractiveness of the SOFIE 
platform. 

 

Figure 32: Federation growth and sustainability with platform owner and platform user 
reinforcing causal feedback loops 

One interesting point, which we aim to understand using the models, is the federation approach 
underpinning SOFIE, e.g. how does federation affect the growth and sustainability of the SOFIE 
business platforms. 
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Towards quantitative models 

Up to this point the System Dynamics models produced and presented have been qualitative. 
The next step would be to produce quantitative models (reported D4.5, which is due in 
December 2020) by determining some parameters, measuring some and making assumptions 
for others, and then fitting these to stochastic models and also using simulation, as in [AEN19] 
(e.g., see Fig. 2 of [AEN19]). The outcome of this next step can show under what conditions 
(parameter values) the business platform can thrive, to what extent, and even the impact and 
gains of the various constituent players.  
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7. Conclusion 

This First Architecture and System Evaluation Report mainly provided initial component and 
technique evaluation results and also illustrations of the type of evaluation that has been and 
will be performed within the project. We expect to provide more concrete and integrated results 
in the next WP4 deliverable, D4.4: Second Architecture and System Evaluation Report (M28), 
after the Federation Architecture (D2.4), Initial Platform (D5.2), Federation Framework (D2.5) 
and the Business Platforms (D3.3, pilot release) have matured. 

The evaluation methodologies were many and diverse, from simple presentation of arguments 
and qualitative evaluation, through modelling, analytical evaluation and simulation, to 
implementation and measurements in real components and systems. Since pilots have a central 
position in the SOFIE project, an important evaluation direction is inspired from each pilot, 
considering the more general use case represented by the pilot, generalizing from the specific 
choices made in the pilots, and evaluating the many potential alternatives around them. 

In addition to the methodologies and tools for evaluation, the questions to be answered (i.e., the 
targets of the evaluation) are diverse. They range from traditional performance metrics, which 
typically have limited generality as they have to refer to fully specified systems, to more general 
questions such as security analysis, robustness, usability and even business analysis. It is 
therefore even more obvious that the tools used and to be used for evaluation must be diverse 
and applied at very different abstraction levels and under different assumptions. 

Because of the diverse goals and evaluation methodologies, in this deliverable we have five 
main sections with different style and tools and the following structure. In Section 2, we 
performed a high-level qualitative evaluation of the architecture, focusing on the desired 
properties and general approaches and techniques to achieve them. 

Section 3 presented an initial SOFIE Federation Framework component evaluation, starting 
here with three main components: (a) interledger, (b) privacy and data sovereignty, and 
(c) identification, authentication and authorization. 

Section 4 covered IoT resource access detailed evaluation and it goes to much more depth and 
considers many more alternatives and their tradeoffs. The other sections do not intimately 
depend on it, but demonstrates a more detailed design and evaluation and many useful 
alternatives for the IoT world. 

Section 5, on Evaluation Scenarios, followed the SOFIE pilots, generalized them into pilot 
inspired use cases by including alternatives not selected in the SOFIE pilots, abstracted them 
out to appropriate degree and used emulation and simulation to consider the various tradeoffs 
of many potential alternative design decisions and their impact. It thus provided guidance for 
specific designs related to these use cases under various assumptions and constraints. 

Section 6 addressed decentralized Business Platforms evaluation through an illustrative 
application of a System Dynamics approach. It reflects preliminary work, qualitative only for now, 
but sets the stage for our future efforts in this area. 

Note that this third WP4 (Evaluation) deliverable is being produced in parallel with D2.4 
(Federation Architecture, 2nd version) and D5.2 (Initial Platform Validation) and before D2.5 
(Federation Framework, 2nd version — August 2019) and D3.3 (Business platforms, pilot 
release — September 2019). The design of the architecture, the business platforms, the pilots, 
and the implementation of the federation framework components and the systems are in flux. 
Therefore, this deliverable focuses more on evaluating key aspects of the architecture, 
framework components, and pilot inspired use cases, rather than providing an evaluation of a 
specific data point in the development of one or many systems. 
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