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1. Introduction

This is the third deliverable of WP4 (Evaluation), due at the end of June 2019, at the same time
with D2.4 (Federation Architecture, 2nd version), D5.2 (Initial Platform Validation) and before
D2.5 (Federation Framework, 2nd version — August 2019) and D3.3 (Business platforms, pilot
release — September 2019). It is thus apparent that the design of the architecture, the business
platforms, the pilots and the implementation of the federation framework components and the
system(s) are in flux. Therefore, this deliverable focuses more on evaluating key aspects of the
architecture and the system rather than providing an evaluation of a specific data point in the
development and even more so of key mechanisms for achieving various functionalities
enabling aspects of the architecture and system.

This First Architecture and System Evaluation Report, therefore, will mainly provide component
results and also illustrate the type of evaluation being performed within the project. We expect
to provide more concrete and integrated results in the next WP4 deliverable, D4.4 (Second
Architecture and System Evaluation Report — April 2020). The work in WP4, up to June 2019
documented in this deliverable, follows the plan set in D4.1 and employs tools that have been
set-up for the project and were presented in D4.2.

1.1 Goals of this deliverable
The goals for this first evaluation report are the following:

e to provide afirst evaluation of the SOFIE approach, architecture, systems, and components,
in order to promote the SOFIE approach and establish foundations for its impact on
technology and business,

e to promote the evaluation approach and techniques within the project in order to provide
guidelines for the pilot evaluation activities,

e to present the evaluation approach and techniques internally to the project to have them
scrutinized to determine if they will be adequate, or further tools, methodologies and
techniques will be necessary, for a convincing evaluation (and then the successful
promotion) of SOFIE,

¢ to help in the selection of the most appropriate techniques for SOFIE and in particular
the ledger and interledger technologies for the SOFIE use cases and pilots,

e to identify gaps to be addressed during further conceptual and technological design,
development and evaluation (both regarding methodologies and their application).

1.2 Methodologies and approach

The methodologies employed for evaluation are many and diverse, from simple presentation of
arguments and qualitative evaluation, through modelling, analytical evaluation and simulation,
to implementation and measurements in real components and systems. Since pilots have a
central position in the SOFIE project, an important evaluation direction will be undertaken using
each pilot, considering the actual system and evaluating it in a specific application context.
These evaluations will be performed towards the end of the pilots’ lifetime and they will be
integrated with other WP4 evaluation results in the final WP4 evaluation deliverable (D4.5).
However, they also provide more concrete systems and applications in which we consider the
SOFIE approach and evaluate it initially, starting from this deliverable. We also generalize from
the specific choices made in the pilots to the use cases from which they have been inspired,
evaluating many potential alternatives around them.

Thus, we are inspired and guided by the pilots and their use cases, as well as the software and
solutions developed for them; however, WP4 aims to have a wider scope. Thus, it has chosen
as one key approach for evaluation the emulation and/or simulation of the use cases considered
in the pilots, but in a more general context, considering and evaluating various possible solutions
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and their parameters, going beyond what is possible within the pilots. On the other hand, in
order to achieve this breadth, it needs to model and abstract out various aspects of the pilots,
as will be explicitly described below.

In addition to the methodologies and tools for evaluation, the questions to be answered (i.e., the
targets of the evaluation) are diverse. They range from traditional performance metrics, which
typically have limited generality, as they have to refer to fully specified systems, to more general
guestions such as security analysis, robustness, usability and even business analysis. It is
therefore even more obvious that the tools to be used for evaluation must be diverse and applied
at very different abstraction levels and under different assumptions.

Given the diverse goals and evaluation methodologies, the specific concepts and metrics for
comparison and measurements are also diverse. A starting point is, of course, the Key
Performance Indicators (KPIs) chosen in the first SOFIE architecture deliverable (D2.2,
Annex 1). However, additional metrics and qualitative characterizations will be used in this
deliverable and in the following ones for WP4.

1.3 Structure of this deliverable

Due to the diverse goals and evaluation methodologies involved, we decided to have the
following structure for this deliverable. Section 2 is a high-level architecture evaluation.
It focuses more on the style and desired properties of the architecture, rather than very specific
architectural components and structure.

Section 3 is about an initial component evaluation. These are components chosen to be part of
the SOFIE Federation Framework, which however has not yet been completed (the deliverable,
D2.5, reporting on the Federation Framework implementation, is due on August 2019).
Therefore, we decided to start here with the three components that we were more familiar with,
having contributed to their definition and implementation, which were also in an advanced stage
of definition and implementation.

Section 4 presents a detailed evaluation of 10T resource access and even though it relates to
the components described and evaluated in Section 3, it goes to much more depth and
considers many more alternatives and their tradeoffs than one would consider at the SOFIE
component level. Moreover, because authorized access to 10T resources is necessary across
different pilots, we decided to dedicate a separate section to this topic. Other sections do not
intimately depend on it, but on the other hand it shows that much more detailed design and
evaluation is possible and can uncover many useful alternatives in the l1oT world.

Section 5, on Evaluation Scenarios, follows the SOFIE pilots, generalizes them into pilot inspired
use cases by including alternatives that are not necessarily selected in the SOFIE pilots,
abstracts them out to an appropriate degree and uses emulation and simulation to consider the
various tradeoffs of many potential alternative design decisions, e.g., whether to use one
blockchain overall, one blockchain per hand-off, a hierarchy of blockchains, blockchains of
different types (public/private, or permissionless/permissioned, etc.) and the impact of these
choices, evaluated from many viewpoints and using different methodologies, from descriptions
and illustrative arguments to quantitative evaluation with specific metrics and numerical results.

Section 6 addresses business platforms evaluation (decentralized, build on SOFIE principles
and, eventually, with SOFIE components). An illustration of a System Dynamics approach
applied to the SOFIE architecture and pilot-based use cases is provided here, demonstrating
the interactions among components (systems, players, parameters, etc.). It is preliminary work,
gualitative only for the moment, but sets the stage and documents our efforts in this area.

Finally, the document concludes in Section 7 with a summary and outlook towards future WP4
work and its relationship with other SOFIE WPs and efforts in general.
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2. Architecture evaluation

In this section we discuss and bring out key aspects of the SOFIE architecture that are critical
for the SOFIE approach to IoT system federation and open business platform success.

2.1 Decentralization

Decentralization is the norm for large-scale real-world systems. Decentralization was the key
concept in the development of packet switching, starting essentially with the ARPAnet (as
opposed, for example, to the Telephone networks of the time). However, there is continuous
cycling through centralization and decentralization in communications technology. For example,
the original cable-based Ethernet was fully decentralized with a passive (and thus robust for the
era) interconnection medium. However, as electronics became very reliable we moved towards
(the less decentralized) switched Ethernet. Similarly, there is now a push towards centralizing
large packet networks through SDN and powerful SDN controllers, allowing for better and tighter
control of such networks. However, there are currently also efforts to fully decentralize the global
Internet, even from second-order centralization, such as data and measurements and other
information repositories that enforce common decisions, to independent agents or
administrative domains. DLTs are the key tools in many such efforts; see e.g. Blockstack.*

For early loT systems, isolation and centralization were the chosen paths for many reasons:
necessity, due to a lack of appropriate standards or technologies, fast and cheap deployment,
but most importantly, business reasons. Closed, centralized systems offer an edge against
competitors and (some) peace of mind against attackers and even less exposure or “attack
surface” for regulators and ethics enthusiasts. As the systems were increasing in size and
geographical coverage, the relatively easier transition to Cloud systems was performed, still
allowing a centralized model, but with the elasticity and scalability of the Cloud resources hiding
the initial scalability and other concerns. This was also compatible with the closed business
models and became the norm for loT applications. That is, rather than a true (global) Internet of
Things, many separate domains of Things separated by applications, business models,
administrative domains, etc.

However, there are clear potential benefits (but also obvious challenges) for humanity and for
the economy more specifically, in a global 10T, the more obvious one coming from the wide
optimization potential of access to vast amounts of information (rather than its segregation into
smaller domains). loT scenarios involving a multitude of devices and platforms, many users,
and many distinct administrative domains pose problems for centralized solutions, not only or
primarily from a technological view point, but mostly from the business and governance
perspectives. Designing an inherently decentralized architecture for multi-platform IoT
ecosystems can reflect more closely the natural structure of data origins, avoiding the collection
of data to a central repository, but allowing the interconnection of information under diverse
rules and constraints.

Decentralization has certain intrinsic advantages over centralized approaches, mainly attributed
to higher redundancy, availability, and tolerance to failures, as well as better load balancing.

2.2 Open business platforms

Further to decentralization, a key characteristic expected of future 10T and, more generally,
business platforms, is openness. A business platform is a (software mainly) system where
business transactions are undertaken with a high degree of automation. Maybe the best-known
examples are the Apple App store and Google Play. In both these instances (and almost all
such currently existing business platforms), Apple and Google, respectively, have a defining,

1 https://blockstack.org
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central, all powerful, and rulemaking position, deciding on who can “play” and also extracting a
hefty fee out of the platform. Not only is the platform not decentralized, but it is also not open,
i.e., not open to other players without the explicit and typically not automatic agreement of the
defining player and, in particular, not open to competitors or game changers.

The SOFIE philosophy and statement to be proven is that open platforms are the future. They
can support evolution and fast transformation and provide the correct incentives for players to
participate and innovate and for society to benefit more and to better control the process through
general rules applied equally to all. An investigation of decentralized open platforms is described
in Section 6 of this document using the System Dynamics methodology and with ultimate goal
to determine the conditions under which such platforms can emerge, grow, and prosper.

2.3 Multiple ledgers and interledger technology

The "one ledger to rule them all" approach is prone to failure, as it suffers a number of
shortcomings. Public ledgers typically incur relatively high fees and longer latency to register a
transaction, making them unsuitable for storing data very frequently. Private ledgers, on the
other hand, can register transactions at a negligible cost and relatively faster than public ones,
but their immutability guarantees are very low compared to those of public ledgers. A well
designed interaction between ledgers of both types can bring significant benefits to a deployed
framework, combining low-cost and fast data storage with high immutability guarantees. This is
why a key component of the SOFIE approach is the use of interledger technologies. We provide
an up-to-date and comprehensive survey, review and characterization/evaluation of interledger
approaches in [Sir+19d].

2.4 Trust, security, transparency, availability, and accountability

These properties form the cornerstone of Distributed Ledgers, promoting transactions to a new
level of trust and security that stems directly from cryptographic algorithms, rather than being
imposed by a third party, institution or government. This is achieved by requiring consensus of
a large number of nodes in validating transactions and, thereafter, storing them in an immutable
structure, known as the blockchain. All nodes participating in a blockchain, be it permissioned
or permissionless, essentially have access to the entire state and to all transactions recorded
in it, which makes transparency an inherent property of blockchains. In the case of SOFIE,
however, personal data, or data that are sensitive for certain entities, such as business secrets,
should not be written in a blockchain in clear form. Instead, either an encrypted version of the
information will be stored, or merely its hash.

Regarding availability, the fact that any participating node stores the entire history and state of
a blockchain means that any interested entity can run one or more nodes in that blockchain,
increasing availability. Finally, by using a blockchain for authorization and for acquiring the keys
to access a service or a device, all accesses are recorded, providing for accountability. The
aforementioned properties are particularly significant given the envisioned interactions among
entities and businesses with diverse, and often conflicting interests.

Another relevant measure is usability, a qualitative measure that shows how easy it is for a
system to be used, to be connected, etc. In this context it is important to also consider usability
because DLTs might introduce significant complications in systems relying on them. (ISO 9241-
11:2018 provides usability definitions and guidelines).
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2.5 Architecture KPlIs

In Deliverable D2.2, Annex 1, we defined a number of KPIs that will be used for the evaluation
of the SOFIE architecture. In this section we further specify and extend these KPIs and report
our progress on the architecture evaluation with respect to the defined KPIs.

KPI [Goal Description Metric Method of verification
1 |loT operability |[Prove operability of the Number of 10T silos Detection of data flow in
implementation with 10T silos during
silos implementation use
case

The objective of this KPI is to prove the applicability of the SOFIE federation architecture and
its components to existing 10T silos. The corresponding metric is the number of 10T silos where
the architecture has been applied. The current version of the architecture and a subset of its
components have been applied and evaluated to the following scenarios/silos:

loT resource access

Food supply chain

Electric vehicle energy marketplace
Smart meters

Mobile gaming

Each scenario utilizes different features of the architecture and its components, such as
authentication and authorization, recording of data or hashes and execution of smart contracts
in private/permissioned and public DLTs.

KPI [Goal Description Metric Method of verification
2 |loT inter- Prove interoperability Number of 10T silo pairs [ Implementation use
operability across multiple IoT silos of case accesses data or
the reference architecture actuates operations in
different IoT silos

This KPI focuses on the application of the architecture and components to allow communication
between different silos. For example, these silos can involve the platforms of different actors of
a scenario, such as the transportation and the storage and distribution centre platforms in the
food chain scenario. The corresponding metric that represents this KPI (and which we would
like to maximize) is the number of loT silo pairs that exchange data through the SOFIE
architecture. The semantic interoperability will utilize W3C’s Web of Things (WoT) things
description model.

KPI |Goal Description Metric Method of verification
3 |Ledger use Validate SOFIE Number of distributed |Ledgers have
implementation capability ledgers? detectable data passing
with multiple ledgers through SOFIE
implementations

A key goal of the SOFIE platform is to utilize different DLTs with different performance tradeoffs
(execution cost and transaction time) and features, such as privacy, transparency, and trust.

2 Across significantly different ledger technologies, e.g. Ethereum and Ethereum Classic are not
considered different ledgers, as their differences are small enough to allow applications developed on
Ethereum to be deployed on Ethereum Classic with only minor changes.
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The DLTs that have been used in the evaluation experiments reported in this deliverable and
the pilots defined in WP5 include the following ledgers:

e Public Ethereum, including the Rinkeby and Ropsten public Ethereum test networks
e Private Ethereum network
e Hyperledger Fabric
e Hyperledger Indy
e KSI blockchain
KPI [Goal Description Metric Method of verification
4 |Interledger Validate SOFIE Number of distributed [ Implementation use
use implementation operating ledger pairs case shown to result in
across multiple ledgers operations across

multiple ledgers

A primary goal of SOFIE is to enable the interoperation and exchange of information across
different DLTs with different performance tradeoffs and features. The evaluation experiments
reported in the current deliverable consider the interoperation of a private Ethereum network
with the Rinkeby and Ropsten public Ethereum testnets.

Experiments with interledger smart contracts for the Identification, Authentication, Authorization
(IAA) component have been conducted and are reported in Section 4.1. In addition to the
interoperation of public/permissioned ledgers, we have experimented with Decentralized
Identifiers (DIDs) recorded on Hyperledger Indy, which are reported in Section 3.3.

Ongoing evaluation work is investigating the interaction between the following pairs of DLTs:

e Hyperledger Fabric - Public Ethereum
e Private Ethereum - KSI blockchain

KPI [Goal Description Metric Method of verification
5 |Ledger Demonstrate capability of Number of Business Demonstrate that a BP
independence |developing applications Platforms (BP) samples | sample can be deployed
using ledgers, where a classified into success |on two ledgers with only
sufficient abstraction can be | or partial success configuration changes,
provided to applications to and the BP sample
allow them to be targeted users are able to use
simultaneously to multiple either one with only
ledger technologies configuration item
changes

The goal of this KPI is to demonstrate the capability of developing applications using sufficient
abstractions that allow the applications to run over multiple ledger technologies.

The experiments reported in this deliverable involve distributed apps implemented mainly using
the Solidity language, which compiles them into Ethereum Virtual Machine (EVM) bytecode.
The EVM bytecode can be executed in private Ethereum networks and public Ethereum (and
the testnets). However, EVM can also be deployed in a “Blockchain as a service” type of
Ethereum network (e.g., networks provided by Microsoft Azure® and Amazon’s Managed
Blockchain#), as well as in other blockchain systems (such as Hyperledger Fabric® and

3 https://azure.microsoft.com/en-us/blog/ethereum-blockchain-as-a-service-now-on-azure/
4 https://aws.amazon.com/managed-blockchain/
5 https://www.hyperledger.org/blog/2018/10/26/hyperledger-fabric-now-supports-ethereum
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Hyperledger Sawtooth®). Secondly, SOFIE’s “Privacy and Data sovereignty” component (see
section 3.2) and “Identification, authentication, authorization” component (see section 3.3) are
based on generic enough identification systems and can be configured to be used with various
types of ledgers, including Hyperledger Indy, as well as traditional ones (LDAP).

KPI |Goal Description Metric Method of verification
6 |Privacy Demonstrate GDPR Number of operational [ Final specifications have
designed in as | compliance where relevant | GDPR features clear references to
a fundamental referenced and features implementing
requirement supported.” named GDPR

requirements. Relevant
pilot specifications also
refer to the needed
features

This KPI concerns the compliance of the SOFIE architecture with the GDPR and its metric is
the number of operational GDPR features referenced and supported.

The SOFIE architecture has the following features related to privacy and GDPR. Firstly, as
discussed and investigated in section 5, the SOFIE architecture does not record personal data
to immutable ledgers. Instead, the immutability of data recorded in local databases is ensured
by recording hashes of the data in public ledgers. Secondly, in the various scenarios only the
minimum set of data is stored in a public ledger, in order to ensure the correct operation and
functionality that pertains to the specific scenario. Finally, SOFIE’s applications do not process
data without having permissions granted by users, e.g., in the mobile gaming scenario when
the user installs the app, a pop-up screen is displayed asking for Storage, Access location, etc.,
permission.

KPI [Goal Description Metric Method of verification
7 | Device owner | Ability of silo owners to Number of ledger pairs |Observation of value
payments send and receive payments |supporting value transfer as part of a use
across ledgers |or other value transfers transfer casein an
implementation

Whereas KPI 4 on “Interledger use” focuses on the interoperability, in general between different
ledgers, this KPI concerns the transfer or, more accurately, the exchange of value, between
different ledgers. An example of such an exchange of value is discussed in detail in Section 4.1
and involves the exchange of a payment token, stored in a public Ethereum blockchain, with an
access token stored in a private Ethereum blockchain. This exchange is performed using
functionality of the interledger component.

6 https://sawtooth.hyperledger.org/docs/seth/releases/latest/introduction.html
7 The number of GDPR articles which lead to operational goals is generally thought to be about 10. See
e.g. https://iapp.org/resources/article/top-10-operational-impacts-of-the-gdpr/
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KPI |Goal Description Metric Method of verification
8 |[Data Ability of data owners to Number of pilot use Count the number of
sovereignty reject or allow access, cases utilizing data use cases
possibly for a specific time | owner data sovereignty
interval, to their data features and data
owner is from a

Each datum has an different silo than the

accompanying storage silo

authorization list, which the

data owner can modify

This KPI is related to the ability of data owners to reject or allow access, possibly for a specific
time interval, to their data. This KPI can be verified with the number of pilot use cases utilizing
data owner data sovereignty features, where the owner can be in a different silo than the storage
silo.

All scenarios presented in Section 5 can leverage the “Privacy and Data sovereignty”
component of the SOFIE architecture to achieve data sovereignty. Solutions related to data
access with specific functionality and features are investigated in more detail in Section 4.

KPI [Goal Description Metric Method of verification

9 [User Apparent responsiveness | Number of seconds Measuring from the
responsiveness |of system for end users user gets response for |onset of user action until
an action initiated by the user gets a

the user response by the system
(to the user interface he
or she is using)

The user responsiveness KPI measures the number of seconds required for a user to receive
a response for an action he/she initiated. We have performed a number of experiments related
to this KPI for various types of user actions, mostly related to user authorization. These
experiments identify two sources of delay a) delay introduced due to complex cryptographic
computations and b) delays due to the block mining time. In Sections 3.2 and 3.3 we measure
the time required for performing various cryptographic operations related to the components of
the SOFIE architecture, whereas in Section 4.1 we measure the delay introduced by the public
Ethereum blockchain during the user authorization process.

KPI [Goal Description Metric Method of verification
10 |System Overall system Acceptable system Qualitative evaluation of
performance |performance reflecting the [performance for users |system metrics.
diverse needs and and pilots
requirements of different
use cases

This KPI reflects the overall system performance. Different use cases can have diverse needs
and requirements. The system metrics that we consider in the evaluation studies are discussed
below.

Execution cost (GAS consumption): When using an Ethereum blockchain the gas
consumption measures the execution cost that captures both the amount of processing and the
storage used by a particular smart contract or smart contract function. The execution cost is
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used in the performance evaluation studies reported in this report to quantify the cost for
executing smart contracts and storing data on the Ethereum blockchain.

Delay: When the operations of a scenario include transactions on a blockchain such as
Ethereum that implements Proof-of-Work consensus, the delay is due mainly to the block
confirmation time. Similar to the execution cost, the delay involving blockchain transactions
quantifies the performance cost for obtaining the advantages of public blockchains, in terms of
decentralized trust, immutability, and availability.

In addition to the above traditional metrics, in some scenarios we identify quantitative metrics
related to features provided by DLTs, such as immutability. Specifically, in scenarios where we
periodically record hashes on a public ledger, the immutability of data that is produced from the
time the last hash is recorded on a public ledger until the time the next hash is recorded cannot
be ensured. The impact that the time interval or the amount of data produced between the
consecutive recording of hashes on a public ledger is application specific.

The following Table 1 summarizes the project’s current minimum achievements regarding the
aforementioned KPIs.
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Table 1. Current status of the SOFIE architecture KPIs

utilizing data owner data
sovereignty features and data
owner is from a different silo
than the storage silo

KPI Metric Current min. number
1 loT operability Number of 10T silos 5
2 10T interoperability Number of 10T silo pairs -
3 Ledger use Number of distributed ledgers 4
4 Interledger use Number of distributed ledger 1
pairs
5 Ledger independence Number of BP samples -
classified into success or
partial success
6 Privacy designed in as a Number of operational GDPR -
fundamental requirement | features referenced and
supported
7 Device owner payments Number of ledger pairs 1
across ledgers supporting value transfer
8 Data sovereignty Number of pilot use cases 4

9 User responsiveness

Number of seconds user gets
response for an action
initiated by the user

Various measurements have
been performed

10 System performance

Acceptable system
performance for users and
pilots

Various measurements have
been performed
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3. Initial component evaluation

3.1 Interledger

The main purpose of the SOFIE interledger component is to enable transactions between actors
and devices belonging to different (isolated) IoT platforms or silos. Each |oT silo either utilizes
or is connected to one or more DLTs. The interledger component then enables interaction
between these DLTSs.

The interledger component can utilize different mechanisms depending on the specific scenario
and its requirements. For example, interactions between a public and a permissioned ledger
can use hashed time-lock contracts to cryptographically link transactions and events on the two
ledgers. In such a scenario, the public ledger can record payments while the permissioned
ledger can record authorization transactions and events. Alternatively, hashes of records stored
on the permissioned ledger can be periodically recorded on the public ledger in order to provide
a timestamped anchoring point, exploiting the wide-scale decentralized trust provided by the
public ledger. Finally, interactions between a public or permissioned ledger and a ledger storing
DID documents can focus on the resolution of DIDs to DID documents. The interledger
functionality can be implemented in different entities, which include the entities that are
interacting, a third party, or multiple third parties. In the latter case, some coordination between
the entities may be necessary. A detailed survey of interledger approaches is contained in
[Sir+19d].

Below we provide more details on the hash-lock and time-lock mechanisms, which are utilized
in Section 4.1.

A hash-lock is a cryptographic lock that can be unlocked by revealing a secret whose hash is
equal to the lock’s value, h. Unlocking a hash-lock can be one of the conditions for performing
a transaction or for executing a smart contract function. On a single blockchain, a hash-lock can
be linked to an off-chain capability, e.g., message decryption, if the hash-lock secret is the secret
key that can decrypt the message.

Hash-locks can be used on two or more blockchains, which support the same hash function, to
link a transaction on one chain to a transaction on the other chain: if the two transactions have
hash-locks with the same value, then unlocking one hash-lock would reveal the secret that
unlocks the other; hence, the two transactions are cryptographically linked through a
dependence relation. More generally, hash-locks combined with AND/OR logic operators can
implement elaborate dependencies involving transactions on multiple chains.

Time-locks are blockchain locks that can be unlocked only after an interval has elapsed. This
interval can be measured in absolute time or in the number of blocks mined after a specific
block. One usage of time-locks are refunds: a user (payer) can make a deposit to a smart
contract address. The smart contract can have a function, which typically also includes a hash-
lock, for a second user to transfer the deposit to another account (the payee’s account).
However, if the second user never calls this function, then the first user’s deposit could be locked
indefinitely in the smart contract’s account. To avoid this, the smart contract can also include a
refund function that allows the first user to transfer the amount he/she deposited back to his/her
account; however, this function can be called only after some time interval, which is the interval
in which the second user must transfer the deposit from the smart contract account to the
payee’s account.

For the evaluation of our proof of concept we deployed an instance of the component that
implements the interledger functionality and is connected to a local node (running Go-Ethereum)
and to the Rinkeby or Ropsten public Ethereum testnet. We evaluated an authorization use
case where some information has to be processed by a smart contract (more details are
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provided in section 4.1). We measured the gas consumption and the delay in two cases: (a)
when a single smart contract is used, and (b) when the whole functionality is split in two smart
contracts, located in different blockchains, interacting through the interledger component. In the
latter case, the first smart contract was responsible for authorizing users, whereas the second
smart contract was responsible for handling payments. SOFIE’s interledger component utilizing
hash-locks and time-locks is responsible for ensuring the atomicity of the joint transaction.

Figures 1 and 2 below illustrate the obtained results. In the case where two blockchains are
used, we measure the gas consumption and the delay of the public blockchain only. The
execution cost (gas) shown in Figure 1 in the case of two blockchains considers only the cost
for the public blockchain, since the other blockchain is a permissioned blockchain. The results
show that utilizing two blockchains can reduce the total execution cost.
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Execution cost (x1000 gas)

u
o

Smart Contract & 1 BC Smart Contract & 2 BCs

Figure 1. Gas cost when a smart contract and one blockchain are used, and when a smart
contract and two blockchains are used

The delay shown in Figure 2 depends mainly on the block confirmation time. In the case of two
blockchains, only the transactions on the public blockchain incur a high delay, due to the block
confirmation time on such blockchains. For the specific scenario considered, which is discussed
in more detail in Section 4.1, there are four transaction on the public blockchain in the case a
single blockchain is used, whereas there are three transactions on the public blockchain when
two blockchains are used. The results in Figure 2 illustrate the gains in terms of reduced delay
when two blockchains are used.

Additional results when two blockchains are utilized, a public blockchain for recording only
hashes of data and a private blockchain for storing data and/or executing smart contracts, are
presented in Section 5.
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Figure 2. Delay when a smart contract and one blockchain are used and when a smart
contract and two blockchains are used

3.2 Privacy and data sovereignty

User privacy is protected by using verifiable credentials and zero-knowledge proofs during the
authorization process. Our privacy and data sovereignty component leverages Hyperledger
Indy® and its SDK for this purpose. An Indy-based authorization process involves the following
phases [Lag+19]:

Network setup. During this phase, which is executed only once, a “pool” of Indy nodes is
created. The configuration file of this pool includes the “decentralized identifier” (DID) of a
“Steward” node that is responsible for writing information to the Indy ledger. This DID is
considered to be well-known. Stewards are the only entities that are allowed to record
information in the ledger.

Trust Anchor setup. During this phase a DID known as the “Trust Anchor” is generated.
A Trust Anchor is used for signing requests sent to the Steward, i.e., a Trust Anchor is
responsible for managing DIDs and verifiable credentials (VCs) and it is the only entity that can
communicate with a Steward. For each VC type, an anchor creates the “credential definition
scheme” (i.e., a JSON-encoded description of the VC) and publishes it to the Hyperledger Indy
ledger (through the Steward). These actions are executed once per VC type.

Client VC generation. Each client that has some trust relationship with an anchor may create
a DID and send a “credential request” to the Anchor. The Anchor then responds with the
corresponding credential, publishing at the same time (through the Steward) information to the
ledger that can be used for verifying the issued credentials.

Client authorization. A client authorization by an authorization server (AS) is implemented
using the following procedure:

8 https://www.hyperledger.org/projects/hyperledger-indy

SOFIE 16(79)


https://www.hyperledger.org/projects/hyperledger-indy

Document: | H2020-I0T-2017-3-779984-SOFIE/D4.3 — First Architecture and System
Evaluation Report

Security: | Public ‘ Date: ‘2.7.2019 ‘ Status: ‘Completed ‘ Version: ‘ 1.00

1) The client makes an HTTP request to the AS specifying a “grant type=DID” in the URL.

2) The AS generates a proof request, asking the client to prove that he holds the
necessary VCs, issued by the appropriate Trust Anchor. This request includes, among
other fields, a nonce.

3) The client generates a proof based on the credential and repeats the request by
including now the proof in the payload.

Utilizing DIDs and VCs for authorization offers several advantages over how traditional X.509
certificates and Public Key Infrastructures (PKIs) are currently used. (In principle, all the
improvements could also be implemented with them as well, but due to e.g. the significantly
higher cost of X.509 certification and the number of certificates required, that would be highly
impractical, if not impossible.) Traditional certificates are designed to be semi-permanent and
human-readable: the user receives their certificate once and uses it in several situations. The
certificate usually also contains much (unnecessary) information about the user, including their
real identity, and the user reveals all attributes of the certificate when using it. This leads to a
high cost of issuing the certificates (e.g., the user’s real identity must be verified, usually by
manual means) and serious privacy issues, since the user’s activities can be easily tracked from
service to service by multiple parties when using certificates.

The DIDs and VCs are designed to allow more fine-grained, machine-readable, and short-lived
credentials, thus improving privacy and reducing the costs of issuing the credentials. While there
are also proposals to allow X.509 certificates to support zero knowledge proofs [Del+16],
Hyperledger Indy contains built-in support for zero knowledge proofs, which in turn further
improve privacy by allowing the users to prove properties about themselves without disclosing
their credentials.

Currently there exist multiple federated identity management solutions such as single sign-on
systems and eduroam. However, they usually rely on their own non-standard identity
management solutions and allow only certain members to participate in the first place (it is not
easy to interconnect public organizations located in different countries, or for non-educational
institutions to join eduroam). DIDs and VCs are open standards, allowing easy deployment and
adoption, thereby allowing any pair of organizations to co-operate with each other with a low
barrier of entry.

Data sovereignty is protected using access control. This SOFIE component supports access
control delegation to an Authentication Server. This functionality is implemented through a smart
contract that implements a hash lock and it can either simply relay messages or it can verify the
relationship between a resource (and its owner) and the Authentication Server. In particular, the
component implements three protocols [FSP18]:

Straw man protocol: This protocol is based on a smart contract that provides the following
methods:

e request: Invoked by a client wishing to access a resource. It accepts as input a deposit
and the resource identifier. The contract examines potential access control rules and
determines if the client deposit suffices for accessing the requested resource. If all
checks succeed, the contract generates the appropriate event, which is received by the
corresponding authorization server.

e authorize: Invoked by an Authentication Server upon successful client authorization.
It transfers the deposit that the client made (when she invoked the request method) to
the service provider. Then, it creates an appropriate event used for notifying the client
that authorization has been granted.

With this protocol, initially a client requests a protected resource from a resource server and the
server responds with a token and the URI of a smart contract that protects the requested
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resource. Then, the user invokes the request method of the smart contract. An event is
broadcast and received by the appropriate AS which examines if the user can be authorized to
access the requested resource. If this is true, the AS generates a session key sk (using the
process described in [Fot+16]), encrypts it using the public key of the client, and invokes the
authorize method of the smart contract. The smart contract examines if the AS that invoked the
authorize method is allowed to do so. This check is implemented by simply examining if the
public key of the entity that invoked that method is equal to the public key of the legitimate AS.
The drawback of the straw man protocol is that the payment to the provider takes place without
any checks. Note that with the solution described in [Fot+16], the user is able to perform certain
verifications after trying to use the received sk. However, with the straw man protocol, these
verifications can only be used for dispute resolution.

First protocol. The first protocol is an improvement to the straw man approach which allows
an AS to verify that a client is communicating with a legitimate server. In order to achieve this
goal, we extend the request method of the smart contract to include an additional field, i.e., the
Hash based Message Authentication Code (HMAC) of the token generated using the session
key sk. The value for this field is provided by the server, in its response to a client request. Now
an AS, after generating the sk, calculates the same HMAC, and checks if the value of the latter
calculation is equal to the value provided by the server. If this is true, then the server is
considered legitimate

Second protocol. The second protocol extends the previous construction by enabling smart
contracts to verify the relationship between a server and an AS. This functionality is achieved
by having the client “challenge” the server during her request. The challenge used is a random
number, which the server should obfuscate in a way that only an AS that shares a secret key
with the server could read. The smart contract should therefore learn the challenge from the
client and should expect the response from the AS. In order to “hide” the challenge we use a
hash-lock (i.e., the client provides the hash of the challenge and the AS has to provide the
corresponding pre-image).

A preliminary version of this component has been implemented using Ethereum smart contracts.
This technology has some limitations that led us to certain design choices. In particular, although
each user in Ethereum owns a public/private key pair, a smart contract has access only to each
user’'s “address,” i.e., the last 20 bytes of the hash of her public key. This means that users have
to explicitly include their public keys with every smart contract function invocation; in our
implementation, we added an additional field in each function which is used for storing the
callee’s public key. Furthermore, Ethereum keys are constructed using the secp256k1 elliptic
curve; encrypting content using this curve can be cumbersome since specialized constructions,
such as the elliptic curve integrated encryption scheme [Shol1], are required. For these reasons,
we selected to not use Ethereum’s keys in our constructions, using instead keys based on the
Curve25519 elliptic curve [Ber06]. Curve25519 is a well-supported, fast curve which is ideal for
key establishment, as it allows a user A to generate a symmetric encryption key that can be
used for communicating with a user B, using only B’s public key.

The main constructions of our smart contract, which is deployed in SOFIE’s local testbed, are
implemented in five functions: requestS(), requestl(), request2(), each implementing the
request() method for our three protocols (straw man, first construction, and second construction),
and authorizel() and authorize2(), that implement the authorize() method for the first two
protocols and for the last protocol, respectively. Table 2 below illustrates the cost, measured in
Ethereum “gas,” for invoking each function.
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Table 2. Cost for invoking smart contract functions in the privacy and data sovereignty
component

Function | Cost (measured in gas)
requestS() 123186
requestl() 128218
request2() 253488
authorizel() 57950
authorize2() 63746

The endpoints for these measurements are implemented using JavaScript. Interactions with the
Ethereum blockchain are implemented using the Ethereum JavaScript API, whereas
cryptographic operations are implemented using the TweetNaCl library.°

Furthermore, this SOFIE component supports crypto token-based access control [Fot+19].
Many legacy access control mechanisms implement access control using “tokens” that indicate
the capabilities of a client over a resource. However, token management, security, and
semantics interpretation cannot be trivially implemented, especially in the context of the loT. For
this reason, in this component we leverage the capability of the Ethereum blockchain to support
custom tokens and we implement an access control mechanism.

Ethereum has specified a “token standard” called ERC20 [VV15]. This standard defines some
functions that a smart contract should implement in order to be treated as supporting a token
(i.e., a new type of coin). Many popular Ethereum wallets can handle ERC20-based tokens. The
core of this access control mechanism is built using two of these functions, namely balanceOf
and transfer. The first function returns the token balance of a user. The second function can be
invoked by a user A in order to transfer some tokens (he owns) to another user B.

The smart contract of this component provides access control as follows. Initially a resource
owner that owns the smart contract assigns all tokens to himself. We refer to this user as the
“‘owner.” The owner then transfers at least one token to each authorized client. As a matter of
fact, the number of tokens a client owns can be used as an indication of his role: the more
tokens he owns, the more privileged his role. The contract owner can protect an operation by
specifying the roles (i.e., the balance in custom tokens) of the authorized clients. Therefore, in
the simplest case, an operation can be protected simply by having the smart contract function
checking if the client that invokes it owns the necessary number of tokens (this check is trivially
implemented using the balanceOf function).

SOFIE’s token-based access control has some intriguing security properties. Firstly, tokens can
only be used by their owners and token owners cannot transfer them to other users. Even if the
blockchain keys of a user are compromised, our construction prevents token transfer (of course
the stolen keys can be used for issuing transactions on behalf of the victim users). This is a
significant advantage compared to traditional token-based access control mechanisms where,
not only the corresponding tokens have to be secured, but also a token recipient should be able
to verify the binding between the token and the user who sent it (i.e., additional mechanisms for
detecting stolen tokens should be in place). In other words, the responsibility (and security) of
the binding of tokens to token owners is performed by the blockchain, rather than being the
responsibility of each user (which opens security issues). Furthermore, blockchains are

9 https://tweetnacl.cr.yp.to. TweetNaCl is promoted as the world's first auditable high-security
cryptographic library.
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indelible, append-only, and tamper-proof logs, hence, in case of a security incident or in case
of a dispute, they can provide undeniable auditing information. Moreover, our construction offers
secure and effective revocation. Ethereum’s mechanisms guarantee that only an owner can
revoke tokens (provided, of course, that the owner’s private key is secured), and that token
revocation has immediate effect. Finally, since our construction is based on an established
Ethereum standard, libraries and wallets that support it can be used for implementing client
applications.

3.3 Identification, authentication, authorization

This SOFIE component supports the following Identification/Authentication mechanisms:
URIs (e.g., Web of Things URIs) for identification coupled with digital certificates for
authentication, usernames for identification bound to secret passwords for authentication, and
decentralized identifiers associated with a DID document, stored in a blockchain, and used for
authentication.

DIDs are a new identification mechanism; their properties have not been thoroughly studied,
yet. In the following we discuss the feasibility of deploying DIDs in 10T devices [Kor+19].

In order to utilize distributed identifiers (and verifiable credentials) the 0T device should have:

sufficient performance for cryptographic operations,

a sufficient amount of energy to perform the required operations,
non-volatile storage space to store the code and cryptographic keys, and
a sufficient entropy source to generate random cryptographic keys.

From a performance point of view, the most limiting factor is the performance of public key
cryptographic operations, namely key generation, signature generation, and signature
verification. Presently, most DID solutions utilize elliptic curve cryptography (ECC)—as opposed
to e.g. RSA—due to its significantly smaller key size and the fact that all three operations are
relatively fast and take roughly a similar amount of time (with RSA, key generation can take
orders of magnitude longer than signature generation or verification operations). Lately, there
has been much research about the performance of ECC on constrained devices. Past research
[HS13] shows that operations with the common Ed25519 [Ber+12] signature scheme using a
standard public domain NaCl« library on a popular 8-bit AVR microcontroller take about 23
million and 32 million cycles for signature generation and verification, respectively. Newer
optimizations [Dul+15] reduce the cost of the elliptic curve point multiplication on the comparable
Curve25519 from 23 million to 14 million cycles on a 8-bit device, while on a 32-bit low cost
ARM Cortex-MO core, the point multiplication uses only about 3.6 million cycles. Therefore,
Cortex-MO0 devices, which are available for less than half a dollar in large quantities and run at
up to 48MHz, can perform up to 13 ECC operations per second. Since modern 8-bit
microcontrollers usually run at 16-32MHz, even such extremely constrained devices are able to
perform all the necessary cryptographic operations for DID usage within a few seconds, which
is acceptable performance for most I0T use cases. In cases where the device is even more
constrained, a hardware accelerator for cryptographic functions may be used.

Finally, while the DID itself is just a simple string and easy to process as such, the related
technology of Verifiable Credentials (VC) are usually expressed in JSON format. There might
be cases where the device includes a cryptographic accelerator, but is otherwise extremely
constrained and, therefore, unable to parse JSON. In that case, VCs can be encoded in a more
machine-friendly binary format such as BSON?!, as the VC specifications do hot mandate usage

10 NaCl: Networking and Cryptography library. Available at: https://nacl.cr.yp.to/
11 “BSON (Binary JSON) Serialization” Available at: http://bsonspec.org/
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of any specific encoding format. And since DIDs only utilize the ledgers for a few operations,
network performance is normally not an issue even with constrained devices.

loT devices often have only limited energy available, which has to be taken into account when
designing security and privacy solutions. An optimized ECC implementation running on a
Cortex-MO0 using the slightly weaker 233-bit sect233k1 curve uses only 20-34uJ of energy for
the elliptic curve point multiplication [Cle+14]. Such energy consumption is very low compared
to the energy consumption of the wireless transmission or the overall consumption of the loT
device, which can easily consume hundreds of yWs or more.*? Even with very simple 8-bit
devices, the energy consumption of ECC operations is reasonable, around 20mJ per point
multiplication, while an optimized hardware accelerator for cryptographic operations provides
even lower energy consumption, in the order of pyJs per ECC point multiplication [AJM14]. So,
while there are some cases where an extremely constrained (say) sensing device that only
sends data very infrequently is unable to utilize public-key cryptography due to energy
consumption concerns, in most loT applications energy consumption does not prevent usage
of public-key cryptography and therefore DIDs. In many loT applications, such as vending
machines, devices may even be constrained in terms of e.g. processing power, while having
plenty of energy available.

The storage of cryptographic keys should also, in most cases, not be an issue, as long as non-
volatile storage is available. ECC offers compact keys and signatures, with sizes of 256 bits and
512 bits respectively for the security level equivalent to 128-bit symmetric encryption. Hence, a
public/private key pair would use only 64 bytes of space, so even a few kilobytes of storage
space is sufficient to store multiple keys or credentials. However, in some applications, storing
the keys on the device can present an unacceptable security risk of key leakage, unless the
device utilizes e.g. a trusted platform module (TPM). In such situations, using, e.g., a proxy
solution that can act as a guardian for the keys may be a safer solution.

Finally, generating secure cryptographic keys requires a sufficient entropy source. This can be
a challenge in the IoT environment, where the devices often have a limited amount of input
sources available for entropy. In that case, the entropy can be provided by a hardware-based
random number generator (RNG) that is embedded in the device's processor [SMS07]. If a
hardware-based RNG is not feasible, there are several alternatives. The device’s private key
can be generated by another party, e.g. by the manufacturer already at the factory or by the
device owner when the device is taken into use. Having the manufacturer generate the keys for
all devices of that type obviously poses a security risk, thus having the owners generate the
keys is a better solution. An even better solution is if the owner (or, more specifically, the owner’s
app used to initialize the device) can act as an additional source of entropy during the
initialization process, thus letting only the device be aware of the actual key generated.

As a proof of concept that even quite constrained devices have sufficient performance to deploy
DIDs, the current uPort implementation was tested on a first-generation Raspberry Pi (700 MHz
BCM2835 CPU, 512 MB of RAM, released in 2012), running a Raspbian GNU/Linux 9
distribution and using the latest code of the Node.js 'ethr-did'*? package of 26 September 2018.
100 operations were running and timed in each test and the tests were repeated three times.
The key pair and signature generation both took 126 ms when run separately, while generating
the key pair and using it immediately to generate the signature took 230 ms overall as
summarized in Table 3, below.

12 The total average power consumption of a simple wireless sensor utilizing Bluetooth Low Energy
protocol is around 200-1000uW.
13 uPort, Ethr-DID Library, available at: https://github.com/uport-project/ethr-did
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Table 3. Performance of uPort Node.js implementation on first-generation Raspberry Pi

Function Time (ms)
Key pair generation 126
Sighature generation 126
Key pair + signature generation 230

It is worth mentioning that the original Raspberry Pi is a very slow device by modern standards.
It contains a single-core ARM CPU utilizing the old ARMv6 instruction set. Newer ARMv7 or
ARMvV8 devices would offer significantly higher per-clock performance (along with more cores
and higher clock speed), and devices with hardware acceleration for cryptographic operations
would perform orders of magnitude faster. Also, the JavaScript and Node.js environment used
by the current uPort implementation are relatively slow solutions. A DID implementation written
in C or other lower-level language would perform faster and require significantly less memory
and storage space. Therefore, the setup where the tests were run can be considered a worst-
case scenario. Despite all of these limitations, already the current uPort Node.js implementation
runs on the first-generation Raspberry Pi with an acceptable performance, as the signature
generation takes 126 ms, so the whole process of e.g. parsing and verifying'* a credential
should take well below a second.

Overall, most devices with a 32-bit CPU can utilize DIDs with the currently available software,
while more constrained devices (e.g., 8-bit microcontrollers) would be able to use DIDs with an
optimized software implementation.

The primary authorization mechanism used by this component is OAuth 2.0. This component
supports two models which involve a different level of OAuth 2.0 integration with blockchains
and smart contracts, supporting different tradeoffs in terms of privacy, delay, and cost [Sir+19b]:

e Linking authorization grants to blockchain payments and recording authorization
information on the blockchain.

e Using a smart contract to handle authorization requests and encode authorization
policies.

With the first model, the initial communication between the client and the Authorization Server
(AS) occurs as in the normal OAuth 2.0 framework. However, instead of the AS providing the
client with authorization credentials after consent is given by the resource owner, the
authorization credentials are disclosed after the payment for resource access is recorded on
the blockchain. Hence, the resource owner does not need to be online to provide consent, as
in the case of the normal OAuth 2.0 procedure.

In the second model, a smart contract is used to transparently record prices and other
authorization policies defined by the resource owner, who is also the owner of the smart
contract. Examples of such policies include permitting resource access to specific clients,
determined by their public keys on the blockchain, and dependence of access authaorization on
IoT events that are recorded on the blockchain. Whereas in the previous model the client and
the AS communicated directly, in this model the interaction is through the smart contract. The
smart contract code is executed by all blockchain nodes, providing a secure and reliable
execution environment; this provides higher protection against DoS attacks, compared to the
first model where resource access requests are sent directly to the AS. An additional advantage

14 Which in ECC is 2-3 times slower compared to signature generation, depending on the
implementation.
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of allowing a smart contract to handle resource authorization requests is that the smart contract
can securely bind the protected resource with the AS responsible for handling authorization
requests.

A preliminary version of this component has been deployed in a local Ethereum node running
Go-Ethereum, which is connected to the Rinkeby public Ethereum testnet. The local node runs
on a computer with a 4 core CPU at 3.40 GHz, 16 GB RAM, and 64 bit Ubuntu. Smart contracts
are written in Solidity with the Remix Web-based editor. The authorization server is based on a
PHP implementation of the OAuth 2.0 framework. The client uses Web3.js to interact with the
Rinkeby blockchain. The following table shows that the second model requires more than three
times the amount of gas, hence more than three times the amount of EVM (Ethereum Virtual
Machine) resources, compared to the first model; this quantifies the tradeoff between the
advantages of the second model and its higher cost. Regarding the delay, the first model
involves three blockchain transactions whereas the second model four. Since the total delay is
expected to depend mainly on the block mining time, the second model is expected to have a
33% higher delay for responding to authorization requests.

Table 4. Gas cost for each OAuth2.0 integration model

Model | Cost (measured in gas)

Model 1 102476

Model 2 366277
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4.10T resource access detailed evaluation

In this section we present three solutions for 0T resource access that combine OAuth2.0 with
blockchains. This section goes to much more depth and considers many more alternatives and
their tradeoffs than what we have seen in Section 3 that focuses on SOFIE components. Other
sections of this deliverable do not intimately depend on it, but it shows that much more detailed
design and evaluation is possible and can uncover many useful alternatives in the l1oT world.

OAuth 2.0 is a framework for delegating authorization to access a protected resource [Har+12].
It enables a third-party application (client) to obtain access with specific permissions to a
resource, with the consent of the resource owner. Access to the resource is achieved through
access tokens, created by an authorization server. The specific format of the access tokens is
opaque to the clients and to OAuth 2.0. The authorization consent by the resource owner is
provided after the owner is authenticated; however, the authentication procedure is not part of
OAuth 2.0. Authorization is provided for different levels of access, such as read and
write/modify, which are termed scopes, and for a specific time interval. The OAuth 2.0
authorization flows can involve intermediate messages exchanged before the access token is
provided by the authorization server. The details of the authorization flow do not impact the
general approach of the proposed models, hence in our discussion we only consider the initial
client request and the authorization server’s response containing the access token.

One type of access token is the bearer token. Bearer tokens allow the holder (bearer) of the
token, independently of its identity, to access the protected resource. OAuth 2.0 assumes
secure communication between the different entities. Moreover, it assumes that the protected
resource is always connected to the Internet, hence it can communicate with the authorization
server to check the validity and scope of the access tokens presented by clients requesting
resource access. Both these requirements are not always achievable in constrained
environments [Sei+16].

JSON Web Token (JWT) is an open standard that defines a compact format to transmit claims
between parties as a JSON object [JBS15a]. JWTs can use the JSON Web Signature (JWS)
structure to digitally sign or integrity protect claims with a Message Authentication Code (MAC)
[JBS15b]. Hence, unlike simple bearer tokens, JWT/JWS tokens are self-contained, i.e., they
include all the necessary information for the protected resource to verify their integrity without
communicating with the authorization server. Of course, this requires that during its initialization
phase the protected resource is cryptographically bound with the authorization server.

In constrained environments, in addition to intermittent or no connectivity, the communication
between the client and the protected resource is not always secure, hence transmitting bearer
tokens or even self-contained JWTs over such (insecure) links can allow other parties to obtain
them through eavesdropping. For this reason, in constrained environments Proof-of-Possession
(PoP) tokens are used [Sei+19]. PoP tokens include a normal access token, such as a
JWT/IJWS, and a PoP key [JBT16]. Access to the protected resource is not possible solely with
the access token; the PoP key is also necessary. Hence, the PoP key must be kept secret and
not transmitted in cleartext over insecure links. Finally, a more efficient encoding of access
tokens based on CBOR (Concise Binary Object Representation) is proposed to reduce the
amount of data transferred [Sei+19].

The advantages from combining authorization based on frameworks such as OAuth 2.0 with
blockchains and smart contracts are the following:

e Blockchains can immutably record hashes of the information exchanged during
authorization and cryptographically link authorization grants to payments and other loT
events recorded on the blockchain. These records serve as indisputable receipts in the
case of disagreement.
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e Smart contracts can encode authorization policies in an immutable and transparent
manner. Policies can depend on payments as well as on other 0T events that are
recorded on the same or on different blockchains.

e Smart contracts run on all nodes of a blockchain. Hence, sending resource access
requests to smart contracts can protect against DoS attacks that involve a very high
resource request rate, since requests are not handled by one node, which would be a
single point of failure.

The solutions presented below leverage the hash-lock and time-lock mechanisms presented in
Section 3.1.

Contracts that include both hash and time-locks are referred to as hashed time-lock contracts
(HTLCs).*® HTLCs have been used for atomic cross-chain trading (atomic swaps),*¢ [But16] and
for off-chain transactions between trustless parties [PD16]. HTLCs can be implemented in
blockchains with simple scripting capabilities, such as the Bitcoin blockchain, without requiring
the advanced functionality of smart contracts. Smart contracts do not increase the capabilities
of interledger mechanisms based on hash and time-locks, but increase the intra-ledger
functionality. We investigate these features for decentralized authorization to constrained loT
devices.

4.1 Interledger and decentralized authorization

In this section, we present four models that we have developed [Sir+19a] and that allow different
tradeoffs in terms of cost, delay, complexity, and privacy:

(1) Linking authorization grants to blockchain payments

(2) Smart contract handling of authorization requests

(3) Smart contract and two blockchains for authorization and payment with interledger
mechanisms

(4) Decentralized authorization with multiple Authorization Servers

The first two models are our baseline scenarios: in the first, only hashes of authorization
information are immutably recorded on the blockchain and smart contracts are not used,
whereas the second model utilizes a smart contract, but on a single (public) blockchain. The
third model exploits two blockchains whose transactions are securely linked using interledger
mechanisms and quantifies the significant cost reduction that can be achieved by moving smart
contract authorization functionality to a permissioned or private blockchain. The fourth model
focuses on decentralized authorization for constrained loT devices utilizing two blockchains with
interledger mechanisms.

In all the models presented below, the client sends a resource access request to the URL of the
AS (model 1) or to the address of the smart contract responsible for handling access to the 10T
device (models 2, 3, and 4). The URL or smart contract address can be obtained by the client
sending a query to the loT device or, e.g., reading a QR code on it. However, this approach
cannot ensure that the legitimate URL or smart contract address is provided by the IoT device.
This can be ensured if the client uses a registry service that resides on the blockchain and
contains a binding between the 10T device’s URI and the URL of the AS or the smart contract
address handling authorization, or by including this information in Decentralized Identifier (DID)
documents [Reel9].

Finally, in all models we assume that the client, the resource owner, and the ASes have an
account (public/private key pair) on the blockchain (on both the authorization and the payment
blockchains for models 3 and 4).

15 Hash Time-Lock Contracts (HTLC). Available at: https://en.bitcoin.it/wiki/Hashed Timelock Contracts
16 Atomic cross-chain trading. Available at: https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
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A. Model #1: Linking authorization grants to payments and recording authorization
information on the blockchain

With this model the initial communication between the client and the Authorization Server (AS)
follows the normal authorization message exchange, such as OAuth 2.0 (Figure 3). Specifically,
in step 1 the client requests resource access from the AS. The AS generates a random PoP
key which it sends to the client!’ together with its encryption with the secret key*® Kring Shared
by the Thing (IoT device) and the AS; the client will later use the PoP key to establish a secure
communication link with the Thing. Also, the AS sends to the client the access token encrypted
with a secret s, i.e., Es(token), the hash h = Hash(s) of the secret s, and the price for the
requested level of resource access. The secret s is a secret randomly generated by the AS and
is required for the client to decrypt Es(token) and obtain the access token; the AS will reveal the
secret s once it confirms that the payment for resource access has been committed on the
blockchain. Communicating the price from the AS to the client allows different levels of resource
access, encoded in the access token’s scopes, to correspond to different prices.

In step 3, two hashes are submitted to the blockchain: the first is the hash of the token that the
AS will reveal to the client once payment has been confirmed. The second is the hash of three
items: Exming(POP), the PoP key, and Es(token); the second hash serves as proof of the
information that is communicated using OAuth between the AS and the client. Note that the
above authorization exchange does not ensure that the access token the client obtains from the
AS indeed allows access to the Thing.

Also in step 3, a hashed time-lock payment is initiated on the blockchain, which allows the client
to deposit an amount equal to the requested price (step 4). This amount will be transferred to
the resource owner’s account if the secret s (hash-lock) is submitted to the contract by the AS
(step 5) within some time interval. If the time interval is exceeded, then the client can request a
refund of the amount it deposited. Once the secret s is revealed, the client can get s from the
blockchain (step 6) and decrypt Es(token) and thus obtain the access token. At this point, the
client has all the necessary information to request access from the Thing, using normal
OAuth 2.0 with the modifications from the ACE framework.*®

17 The communication link between the client and the AS is secured, hence the PoP key cannot be
obtained through eavesdropping.

18 The secret key that the Thing and AS share is established during the provisioning (or
commissioning) phase, when the Thing is bound to the AS.

19 https://datatracker.ietf.org/wg/ace
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Figure 3. Model 1: Authorization grants are linked to blockchain payments and the hashes of
the authorization information exchanged are recorded on the blockchain for verification
in case of disputes

B. Model #2: Smart contract handling authorization requests

In the second model, a smart contract is used to transparently record prices and other
authorization policies defined by the resource owner, who is also the owner of the smart
contract. Examples of such policies include permitting resource access to specific clients,
determined by their public/private key pairs on the blockchain, and adding a dependency of the
access authorization on 10T events that are recorded on the blockchain.

Whereas in the previous model the client and the AS interacted directly, in this model the
interaction is through the smart contract; this is similar to the model shown in Figure 4, but using
a single blockchain for both authorization and payment. The smart contract code is executed by
all blockchain nodes, providing a secure and reliable execution environment; this provides
higher protection against DoS attacks.

C. Model #3: Smart contract and two blockchains with interledger mechanisms

In this model the smart contract handling authorization requests and encoding policies is located
on an authorization blockchain, while payments for access are performed on a payment
blockchain, as shown in Figure 4. Depending on whether the authorization chain is public or a
permissioned blockchain, different tradeoffs in transaction cost, delay, and privacy can be
realized.
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Figure 4. Model 3: Smart contract and two blockchains with interledger mechanisms

A hashed time-lock payment is initiated on the blockchain, where the client can deposit an
amount corresponding to the resource access price. The amount will be transferred to the
resource owner’s account if the secret s is revealed. Once revealed, the secret s can be
submitted to the smart contract on the authorization blockchain, which serves as a record on
this blockchain that the payment was successfully performed. The client can obtain the secret
s from the authorization blockchain together with the other necessary authorization information
to access the protected resource.

One issue with the above model is how the payment contract on the payment chain is triggered
by the resource owner’s smart contract residing on the authorization chain. One option is to
have an interledger gateway read the price and hash h from the authorization chain and submit
it to the payment chain to initiate a payment (Step 4 in Figure 4), and later read the secret s
submitted by the AS on the payment chain and record it on the authorization chain (Step 7); the
interledger gateway can receive a fee for performing this function. Another alternative is to have
this function performed by the AS, or the client.

D. Model #4: Decentralized authorization with multiple ASes

The authorization functionality cannot all be moved onto the blockchain since it involves
processing secret information: keys are needed to produce token signatures and keys are
shared with the Thing. Performing the authorization functions redundantly in the nodes of a
private blockchain would provide a higher level of resilience to node failures compared to a
single AS, but that would result in reduced security since compromising a single blockchain
node would lead to secret keys being disclosed.

Rather than moving all the authorization functionality to the blockchain, we propose an
alternative approach for decentralized authorization that ensures security and provides fault
tolerance if a number of ASes are faulty or misbehave. Let n be the number of ASes that are
collectively responsible for providing authorization. Each AS i shares a different secret key,
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Krhingi, With the protected resource (Thing). Authorized access to the Thing requires tokens from
m out of n servers. The policy specifying the required number of ASes is defined in the smart
contract and is also known to the Thing. Fault tolerance is provided by having n ASes which
can respond to requests, but requiring only m < n for authorization to proceed. Compared to
having a single AS, the proposed scheme provides higher security since m ASes need to agree
in order for the client to access the protected resource.

There are two alternatives for how m servers are selected to provide authorization. In the first,
the smart contract selects m specific servers; this requires that the smart contract maintains a
list of ASes. The list can be updated with information such as the time each AS last responded
to an authorization request. Such information allows the smart contract to prioritize ASes in
order to select those that respond quickly, hence avoiding ASes that have a high delay or are
faulty.?° Our evaluation considers this first alternative.

In the second alternative, the smart contract simply allows all ASes to respond to the
authorization request, and selects the first m ASes that respond. With this approach the smart
contract does not need to maintain the list of ASes. However, there is a possibility that the smart
contract receives more than m responses. This depends on the duration for mining a block on
the blockchain (in the case of public blockchains with Proof-of-Work consensus), or for obtaining
consensus to add it to the blockchain (in the case of permissioned blockchains). In public
blockchains, these responses can incur a gas cost independent of whether the ASes that gave
the response were among the m ASes to provide decentralized authorization.

In response to the client’s authorization request, each AS sends a different PoP key PoP;,
encrypted with the Thing’s secret key and the client’s public key, and an access token with a
MAC tag to ensure its integrity (Figure 5). The client thus obtains m different PoP keys, which it
XORs to obtain the secret PoP key that will be used to establish a secure communication link
with the Thing. These m PoP keys, encrypted with the Thing’s key Kringi that it shares with each
of the m ASes, are also sent to the Thing. Hence, if the Thing performs the same XOR function
on the m PoP keys, it will obtain the same PoP key as the client.

In order to reduce the amount of data transmitted to constrained devices we propose two
schemes for reducing the authorization information the client sends to the Thing: (a) aggregate
MAC tags and (b) transmission of common token fields once. With aggregate MAC tags [KL08],
the client does not send to the Thing the token payloads received from the m ASes, but only
one aggregate MAC tag that is computed by taking the XOR of the m MAC tags the client
receives from the m ASes. With the second optimization, the client sends the token fields that
are common to all ASes only once (these correspond to token, . . . tokeny in Figure 5). The
common token fields include the subject (Thing) the token refers to, the scope of access, the
token creation time, the token validity time, and the token type. The fields which are different
include the AS and token ID fields.

20 Detection of misbehaving ASes that generate incorrect tokens is also possible.
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Figure 5. Model 4: Decentralized authorization; each authorization grant requires m out of n
AS responses

4.1.1 Evaluation

For evaluation of these four models we deployed a local node running Go-Ethereum connected
to the Rinkeby public Ethereum testnet? and a node running Parity connected to the Ropsten
testnet.?2 The AS was based on a PHP implementation of the OAuth 2.0 framework,?® extended
to support CWT’s CBOR encoding.?* The client used Web3.js to interact with the blockchain.

21 https://www.rinkeby.io/

22 https://www.ropsten.etherscan.io/

23 https://github.com/bshaffer/oauth2-server-php
24 https://github.com/2tvenom/CBOREnNcode
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Table 5. Execution cost (gas) and delay (Rinkeby) of decentralized authorization models

Model Gas Delay (s)
(and 95% conf. int.)
Hashes of auth. Inform.-Fig. 3 102489 43.2 (43.2, 44.1)
SC&1BC 258166 59.3 (57.6, 61.1)
SC & 2 BCs-Fig. 4 85682 43.0 (39.8, 46.2)
Dec-Auth 2-0f-4 & 1 BC 1440540 60.5 (54.4, 67.3)
Dec-Auth 2-of-4 & 2 BCs-Fig. 5 332569 42.1 (39.4, 44.8)
Dec-Auth 3-0f-4 & 1 BC 2124249 63.7 (57.2, 70.2)
Dec-Auth 3-of-4 & 2 BCs-Fig.5 447940 44.7 (39.6, 49.9)

In Table 5, the smart contract & one blockchain and the decentralized & one blockchain models
are equivalent to Figure 4 (smart contract & two blockchains) and Figure 5 (decentralized
authorization & two blockchains) with one blockchain for both authorization and payment. For
the results with two blockchains, we use the public blockchain (Rinkeby or Ropsten) as the
payment chain and a private Ethereum network as the authorization chain. The results shown
include the gas and delay due to transactions on the public blockchain only.

The graphical representation of the results when only hashes are recorded on the blockchain,
when a smart contract and one blockchain are used to handle authorization requests, and when
two blockchains are used, one for authorization and one for payments, are shown in Figure 6,

below.
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Figure 6. Execution cost when only hashes are recorded on the blockchain, when a smart
contract and 1 blockchain are used and when a smart contract and 2 blockchains are used

The results would be similar if we used another technology, e.g., Hyperledger Fabric, as the
authorization chain.

a) Gas: The second column in Table 5 shows that the execution cost of a smart contract on the
Ethereum Virtual Machine (gas) on the public Rinkeby testnet is significantly higher compared
to simply recording hashes (first line in Table 5). However, when the smart contract authorization
functionality is moved to a private blockchain (models with 2 BCs in Table 5), then the execution
cost is significantly reduced: For 1, 2, and 3 ASes the execution cost when two blockchains are
used is 33.2%, 23.1%, and 21.1% of the execution cost when a single blockchain is used.

b) Delay: The delay is due mainly to the block mining time. The smart contract model with one
blockchain has four transactions, while the model that records only hashes has three; hence,
the delay for the smart contract model is expected to be 33% higher; this agrees with the results
in the third column of Table 5, according to which the smart contract model with one blockchain
has average delay 59.3 s, which is 37.3% higher than the delay when only hashes are recorded,
43.2 s (also shown is the confidence interval from 20 runs). Table 5 quantifies the reduced delay
when a public chain is combined with a private chain: e.g., the 2 out of 4 decentralized model
with two chains has average delay 42.1 s, which is 30.4% smaller than the delay with one chain,
60.5 s. Table 5 also shows that for both one and two blockchains, the average delay is not
significantly influenced by the number of ASes. Also, for two blockchains the average delay is
close to the delay when only hashes are recorded.

The graphical representation of the results for the delay when only hashes are recorded on the
blockchain, when a smart contract and one blockchain are used to handle authorization
requests, and when two blockchains are used, one for authorization and one for payments, are
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shown in Figure 7, below. Note that the execution cost when only hashes are recorded is higher
than the cost when a smart contract and two blockchains are used because in the second case
the cost involves only the payment transaction and no data/hashes are recorded on the payment
(public) blockchain.
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Figure 7. Delay when only hashes are recorded on the blockchain, when a smart contract and
one blockchain are used, and when a smart contract and two blockchains are used

Table 6 shows that the delays and confidence intervals for the Ropsten testnet are higher than
the Rinkeby testnet. We attribute this difference to the fact that Rinkeby uses the Proof-of-
Authority (PoA) for distributed consensus, while Ropsten uses Proof-of-Work, as the Ethereum
mainnet. For both the Rinkeby and Ropsten testnets, the delay depends on the gas price that
is given when a transaction is submitted.

¢) Reduction of the data the client sends to the Thing: Utilizing CWT encoding instead of JWT
reduces the size of tokens from 310 to 122 bytes. For the smart contract with one blockchain
model, the transaction cost is higher by approximately 17% compared to the cost shown in
Table 5.
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Table 6. Delay (Ropsten) of decentralized authorization models

Model Delay (s)
(and 95% conf. int.)

Hashes of auth. Inform.-Fig. 3 53.2 (40.3. 66.1)
SC & 1BC 64.4 (52.3, 77.1)
SC & 2 BCs-Fig. 4 57.8 (46.0, 69.7)
Dec-Auth 2-0of-4 & 1 BC 76.7 (61.5, 92.0)

Dec-Auth 2-of-4 & 2 BCs-Fig.5 49.1 (37.7, 60.5)

Dec-Auth 3-0f-4 & 1 BC 77.5 (60.5, 94.6)

Dec-Auth 3-of-4 & 2 BCs-Fig.5 52.2 (42.6, 61.7)

The proposed optimizations further reduce the amount of data that the client needs to send to
the Thing. For decentralized authorization with three ASes and without the optimizations, the
client sends 366 bytes (3 x 122 bytes) for three tokens and 96 bytes (3 x 32 bytes) for three
PoP keys, or a total of 462 bytes. With aggregate MACs, the client sends one aggregate MAC
instead of three, i.e. 64 bytes less, hence a total of 398 bytes, which is a 13.9% reduction. The
optimization where common token fields are sent once results in 84 bytes less, an 18.2%
reduction, reducing the size to 314 bytes. The two optimizations together give a 32.0% reduction
of the number of bytes the client needs to send to the Thing. The reduction for more ASes would
be higher.

4.2 Authorization and TEE

We now present an IoT access model that leverages Trusted Execution Environments (TEES).
TEEs provide a secure environment for executing code and storing data. A TEE runs in isolation
and in parallel to the normal (or “rich”) operating system, ensuring the confidentiality and
integrity of code and data. However, because a TEE runs on a single device, it cannot provide
high availability or decentralized trust. Combining blockchains and TEEs can combine the gains
of both: decentralized trust and high availability from blockchains and privacy and trust when
interacting with the real world through TEEs.

The high-level architecture of the proposed model is shown in Figure 8. Authorization for 10T
resources is outsourced to an Authorization Server (AS), which can provide authorization for
multiple 10T resources. Resource access is provided by a device with a TEE, which supports
integrity and confidentiality. Depending on the specific type of TEE technology, different
restrictions can exist. For example, ARM’s TrustZone supports a single secure enclave,
whereas Intel’'s SGX can support multiple enclaves.

Figure 8 shows that the client device and the AS interact with the blockchain, whereas the IoT
resource does not have continuous network connectivity. The client accesses the IoT resource
directly using device-to-device communication. Moreover, because the device-to-device link is
insecure, the client and 10T resource need to establish a shared secret key to secure their link;
this is achieved using PoP tokens. Note that remote attestation of the l0T resource can still be
performed in periods where the 10T resource has network connectivity. Alternatively, remote
attestation can be performed on-demand, using the client as an intermediate node, similar to
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how the client is the intermediate node between the loT resource and the AS for the
authorization procedure described below.

Authorization
Server

£ 3

Blockchain

Internet

loT resource

client with TEE

Figure 8. High-level architecture for delegated authorization exploiting an loT resource’s
Trusted Execution Environment (TEE)

We assume that the client, the AS, and the resource owner, have an account (public/private key
pair) on the blockchain. The client will use his account to pay for accessing the IoT resource.
A client’'s deposit, assuming the authorization procedure is smoothly completed, will be
transferred to the resource owner’s account. Finally, the AS has an account to send transactions
in order to set up a Hashed Time-Lock Contract (HTLC) as we discuss below.

Figure 9 shows the messages exchanged among the client, the AS, and the 10T resource. We
assume that service discovery, during which the loT resource is discovered, and the
identification of the AS, which handles authorization requests for the I0T resource, has already
occurred, so it is not shown in this figure. The AS that handles the authorization requests can
be discovered by sending an initial unauthorized resource request message to the I0T resource
or through a QR code located on the 0T resource. Steps 1 and 2 include the normal OAuth 2.0
message exchange between the client and the AS. According to OAuth 2.0, the communication
between the client and the AS is secured using TLS, hence the information exchanged in Steps
1 and 2 is secured. After these two steps, the client has obtained the PoP key with which it can
establish a secure link with the 10T resource. This is possible since the client also receives from
the AS and forwards to the 10T device over the device-to-device connection the PoP key
encrypted with the secret key Kresource that the 10T resource shares with the AS; sharing a secret
key between the AS and the loT resource can be achieved during the resource’s initialization.
In Step 3, the client forwards the encrypted PoP key to the 10T resource along with the access
token. The above procedure is followed because, as shown in Figure 8, the 10T resource does
not have continuous network connectivity, but only Device-to-Device (D2D) connectivity. On the
other hand, if the 10T resource had continuous network connectivity, then it could instead obtain
the PoP key directly from the AS. As shown in Figure 9, interaction of the client and the loT
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resource can still be performed using D2D communication, even if the 10T resource had
continuous network connectivity.

@ Request
Normal OAuth2/ACE
Exgesource(POP), POP, token, price @ message exchange

Ep,p(Request, token), Egg,oure( POP)

: @

h=Hash(s)

Epop(), Exgesource(s)

ource
@ h, EI\'R('.\(:NI’L’('(S)

HTLC with hash £: client deposits amount that is
transferred to resource owner when secret s is submitted

j Hash(Egg,pu\POP), PoP, token, price), h
: ®

Client deposit
bt ot )
@
After step 8, payment is

e Gets transferred to resource
—
owner account

) Ep,p(s)

Figure 9. Message exchange for accessing the 10T resource with a TEE. The Trusted
Application running in the TEE is responsible for generating the secret s,
computing its hash h = Hash(s), and ensuring that the client provides
the true secret to obtain resource access (Step 10).

When the 10T device receives the access token, it verifies its validity. If the access token is
formatted as a signed JWT, then this verification involves checking the signature included in the
JWT token. Alternatively, if the 0T resource had continuous network connectivity, then it could
use introspection to communicate with the AS in order to verify the access token and the
corresponding access rights that it allows [Sir+19c].

After verifying the access token, the 10T resource generates a secret s and computes its hash
h = Hash(s), which will be used in the hash-lock of the payment contract. In Step 4, over the
secure communication channel it established with the client, the 10T resource sends the hash h
and the secret s encrypted with the secret key Kresource that the 10T resource shares with the AS.
After receiving the hash h and Ekresource(S), the client forwards both to the AS in Step 5. In Step 6,
the AS creates a hashed time-lock payment on the blockchain. The hash-lock is the same h that
the AS received from the resource through the client, while the price is what the AS sent to the
client in Step 2. Additionally, in Step 6 the hash of the authorization information the AS sent to
the client in Step 2 is also submitted to the blockchain; in case of disputes, this hash is a non-
repudiatable receipt of the information that the AS sent to the client.

Note that after Step 6, due to the transparency of transactions stored on the blockchain, the
client can verify that the payment contract hash is the same as the value h that it had received
from the 10T resource. Additionally, the payment contract also has a time-lock, hence the client’s
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deposit and disclosure of the secret s by the AS, which we discuss below, must occur within a
maximum time interval; the time-lock allows either party (client or AS) to abort the procedure, if
the other party has delayed taking the action required on its side. Hence, there is no need for
trust between the client and the AS.

The client deposits the amount for resource access to the blockchain contract in Step 7. The
deposit is not transferred directly to the resource owner’s account, but to the payment contract’s
account which acts as an escrow service. The deposit is transferred to the resource owner’s
account only when the AS reveals to the contract the secret s that unlocks the hash-lock. Note
that it is necessary that the hash function algorithm used at the I0T resource for computing the
hash is the same as the hash function in the blockchain contract. If the AS does not reveal the
secret s within the time defined by the contract’s time-lock, then the client can submit a refund
request for the deposit to be returned to the client’s account; hence, by jointly using hash-locks
and time-locks, the payment contract is a Hashed Time-Lock Contract (HTLC) and the two
actions, client deposit and AS revealing the secret s, either both happen or neither of the two
happens, i.e., they are atomic. If the above events occur smoothly, then the secret s would be
revealed on the blockchain. Hence, the client can obtain the secret s in Step 9 and send it to
the 10T resource in order to obtain access (Step 10). Note also that once the secret s is revealed
on the blockchain, anyone can obtain it; however, the secret alone is not enough to gain access
to the 0T resource since both the access token and the PoP key are required.

Since the secret and hash were produced in the loT resource’s TEE and access to the resource
is also provided through the TEE, knowledge of the secret s, together with the access token and
PoP key, ensure that the client can access the 0T resource according to the scope defined in
the access token. From a high-level perspective, the TEE can be viewed as a trusted local
ledger. The proposed model uses hash-locks and time-locks, which are interledger mechanisms
that enable atomic cross-chain trading or atomic swaps, to cryptographically bind authorization
grants and access through a TEE with blockchain payments. Using the same interledger
mechanisms for cryptographically linking transactions on different blockchains, distributed
ledgers, and TEEs, which are viewed as a local trusted ledger, allow for simplicity that can
provide higher security and efficiency.

4.2.1 Evaluation

Our implementation of the IoT resource is based on the OP-TEE (Open Portable Trusted
Execution Environment) open source port for the Raspberry Pi,?® which uses ARM’s TrustZone.
OP-TEE follows the GlobalPlatform TEE system architecture [Glo18]. The secure world TEE
runs the Linux OP-TEE operating system. The module providing the 10T resource access runs
as a Trusted Application in the OP-TEE OS and performs the security operations that include
generating the secret s, computing its hash h = Hash(s), and verifying that the client provides
the true secret s to obtain resource access. The module for providing the loT resource’s service
is also executed in the TEE; this ensures? the loT data’s integrity and confidentiality and that
the 10T resource will provide the intended service to the client if the latter provides the true
secret s. A Client Application running outside the TEE uses GlobalPlatform’s TEE client API to
communicate with the Trusted Application.

For the evaluation we used a local Ethereum node running Go-Ethereum that was connected
to the public Ethereum testnet Rinkeby. Smart contracts were written in Solidity with the Remix
Web-based editor. The AS was based on a PHP implementation of the OAuth 2.0 framework.
The AS used Web3.js to interact with the Rinkeby blockchain.

25 https://www.op-tee.org/docs/rpi3/
26 The degree to which this is guaranteed depends on the frequency/time that attestation is performed.
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Table 7. Gas cost and delay for 10T resource access with TEE; gas price = 2.5 GWei, 1GWei
=$1.1 x 107 on Feb 2, 2019

Transaction Gas (and cost in $) Delay (s)
Contract creation 473508 ($0.130) -
Set payment information (Step 6) 32231 ($0.009) 13.6
Client deposit (Step 7) 28287 ($0.008) 14.9
Send secret s (Step 8) 41949 ($0.012) 15.0

Table 7 shows the gas, which quantifies the amount of EVM (Ethereum Virtual Machine)
resources used, for the contract creation and the three transactions in Steps 6, 7, and 8 of
Figure 9. The transactions are submitted with gas price 2.5 Gwei. The creation of the contract
has the largest gas cost, which is one order of magnitude larger than the cost of the three
transactions. Step 8 has higher gas than Steps 6 and 7 because it includes checking that the
secret s submitted by the AS satisfies h = Hash(s). Also, Step 6 has higher gas than Step 7
because the former submits two hashes to the blockchain, while Step 7 submits only the deposit,
as shown in Figure 9.

The transaction delays shown in Table 7 are the average values from 20 executions. The 95%
confidence interval was smaller than +0.7 seconds of the averages shown. Both the average
transaction delay and its standard deviation depend on the gas price: using a gas price smaller
than 2.5 Gwei would result in both a higher average delay and a higher standard deviation. As
expected, the blockchain transaction delay is significantly higher than the delay when the client
interacts with the AS, Steps 1 and 2 in Figure 9, and when the client interacts with the loT
resource, Steps 3 and 4, which are both less than 0.08 seconds.

4.3 Constrained client and resource devices

In this section we present models for I0T resource access that consider different network
connection capabilities of the client and the 10T resource:

e The loT resource does not have continuous network connectivity, but only Device-to-
Device (D2D) connectivity, whereas the client requesting resource access has
continuous network connectivity.

e Both the client and the 10T resource do not have continuous network connectivity, i.e.,
they both having only D2D connectivity.

e The client has only D2D connectivity, whereas the 10T resource has continuous network
connectivity.

In addition to whether a device (client or I0oT resource) has continuous network connectivity or
only D2D connectivity, a second dimension is whether the device is constrained in processing
and memory. A device without processing and memory constraints can perform asymmetric key
cryptographic functions, while a device that is constrained can only perform symmetric key
cryptographic functions. Hence, processing and memory constraints influence the type of
access tokens that can be used and in particular the type of integrity verification that will be
incorporated in the JWT/CWT token; if the device is capable, then signatures using
public/private keys can be used. On the other hand, if the device is constrained, then MAC
integrity verification must be used.
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In all three cases there is a Client Authorization Server (CAS) and an Authorization Server (AS)
that handle requests and responses on behalf of the client and loT resource, respectively
[Ger+18]. The CAS and AS also handle interactions with the blockchain, in order to link
authorization grants to blockchain payments. To take actions on behalf of the client and
resource, the CAS and AS must have the consent of the client owner and the resource owner;
one way to provide such consent is through verifiable credentials (VCs) [Spo+18], a more
general approach than assuming that the client and resource owners control the CAS and AS,
as assumed in [Ger+18].

During their initialization, both the client and the 0T resource establish with the CAS and AS,
respectively, shared keys to be able to securely communicate over insecure D2D links and/or
through intermediate nodes. If a device, either the client or the I0T resource, is constrained in
terms of processing, then during its initialization it must establish a common secret key with the
CAS or the AS. This shared secret key is used to add MAC integrity verification to the messages
exchanged between the client and the CAS and between the AS and the IoT device. If the
device has sufficient processing capability to perform asymmetric key cryptographic functions,
then the CAS and/or the AS can use public key cryptography to sign messages they send to
the client and/or the loT resource, respectively. Note that if the 10T resource has continuous
network connectivity, then instead of using signed or MAC integrity protected access tokens,
simple access tokens can be used; in this case, the 10T resource can use introspection to verify
the validity and scope of the access token.

A. Connected client and disconnected IoT resource

In the first model we discuss, the client has continuous network connectivity whereas the loT
device does not have continuous network connectivity, but only D2D connectivity. This is the
case investigated in the previous sections. The difference with the model considered in this
section is that the client, despite having network connectivity, does not interact directly with the
blockchain, as shown in Figure 9.

Jﬁ-k-ﬂ\
. »
’ e
Blockchain

Internet

. wed (L
client |[=====
resource

Figure 9. Client has Internet connectivity while the 10T resource has only D2D connectivity.
The client acts as an intermediate node that forwards messages between the 10T resource
and the AS, which handles authorization requests on behalf of the 10T resource.

The client AS (CAS) interacts with the blockchain and the AS on behalf of the client.

SOFIE 39(79)



Document: | H2020-I0T-2017-3-779984-SOFIE/D4.3 — First Architecture and System
Evaluation Report

Security: | Public ‘ Date: ‘2.7.2019 ‘ Status: ‘Completed ‘ Version: ‘ 1.00

Because the client does not interact directly with the blockchain, the CAS performs blockchain
transactions on behalf of the client. The client can send authorization requests to the CAS,
which handles the exchange of authorization messages with the AS and interacts with the
blockchain. The goal of this interaction is to link authorization grants with blockchain payments.
Specifically, the CAS obtains the necessary access token and PoP key from the AS only if it
performs the blockchain payment, on behalf of the client. When the CAS receives the
authorization credentials, it forwards them to the client. The client can then use the credentials
to request service from the 10T resource. As we will see in more detail when we discuss the
message exchange, when the client requests access to the 10T resource, the client acts as an
intermediate node that forwards messages between the 10T resource and the AS, which handles
authorization requests on behalf of the I0T resource. Specifically, the AS accepts authorization
requests from the CAS and provides authorization credentials once it verifies that the
appropriate blockchain payment has been performed. As shown in Figure 9, a single CAS and
a single AS can handle multiple clients and 10T resources, respectively.

B. Disconnected client and disconnected loT resource

Next we discuss the case where both the client and the 10T resource are constrained devices.
As in the previous scenario, the authorization requests for the I0T resource are handled by the
AS and the authorization requests on behalf of the client are handled by the CAS, see Figure 10.
Moreover, both the CAS and the AS directly interact with the blockchain. The client, prior to
communicating in D2D mode with the 0T resource, must obtain the necessary authorization
credentials (access tokens and PoP keys) from the CAS. This may be achieved at any point
prior to the time the client requests resource access, as the client has intermittent connectivity
to the CAS using D2D communication. Once it has obtained the authorization credentials, the
client can request access to the loT resource through its D2D communication link, without
requiring synchronous network connectivity or simultaneous D2D connectivity with the CAS.
The communication between the CAS and the AS, to request resource access on behalf of the
client and to obtain the authorization credential after the corresponding blockchain payment, is
the same as the message exchange in the previous scenario.

Internet

Blockchain

mEuEw cllent munnsn
resource

Figure 10. Both the client and IoT resource have only D2D connectivity. Prior to requesting
access, the client must obtain the authorization credentials from the CAS. Once it has the
credentials, the client can request access to the resource using D2D communication, without
requiring synchronous network connectivity or simultaneous D2D connectivity with the CAS.
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C. Disconnected client and connected loT resource

In the third model, the client is disconnected while the IoT resource has continuous network
connectivity. As in the model of the previous subsection, the CAS submits authorization
requests to the AS and interacts with the blockchain on behalf of the client. The client
communicates with the CAS using the connected IoT device as the intermediate node. The AS
is responsible for handling authorization requests on behalf of the 10T resource; see Figure 11.

The CAS and AS interact in the same way as in the first two models. Once the CAS obtains the
authorization credentials, which include the access token and the PoP key, it must transfer these
to the client before the client requests service from the 10T resource; this transfer is performed
through the connected loT resource.

Because the IoT resource has continuous network connectivity, it can use introspection to verify
the validity and scope of the access token [Har+12]. Hence, unlike the first two models, the
access token does not need to contain a signature or a MAC for verifying its authenticity.

.o
s »
.S
Blockchain

Internet

client [mames=
resource

Figure 11. The client has only D2D connectivity while the 10T resource has continuous
network connectivity. The IoT resource acts as an intermediate node that forwards messages
between the client and the CAS, which handles authorization requests on its behalf.

4.3.1 Message exchange

In this section we present the message exchange between the various entities, namely the
client, 0T resource, CAS, AS, and blockchain.

A. CAS-AS message exchange

We present two approaches for the message exchange between the CAS, which operates on
behalf of the client, and the AS, which operates on behalf of the IoT resource. In the first
approach, the authorization requests and responses are communicated directly between the
CAS and AS. In this approach the blockchain is used only to record hashes of the authorization
information exchanged between the CAS and the AS and to link blockchain payments to
authorization grants. The motivation for recording hashes of the authorization information
exchanged between the CAS and AS is that they serve as indisputable receipts in the case of
disputes.
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In the second approach, authorization requests and responses go through a smart contract,
which is owned by the resource owner. Because smart contracts are executed by all blockchain
nodes, a blockchain provides a secure execution environment with high availability. This offers
higher protection against DoS attacks, compared to the first approach where access requests
are sent directly to the AS. Moreover, in this approach a smart contract can be used to
transparently record prices and other authorization policies defined by the resource owner.
Examples of such policies include permitting resource access to specific CASes/clients,
determined by their public keys on the blockchain, and dependence of access authorization on
loT events that are recorded on the blockchain. An additional advantage of allowing a smart
contract to handle authorization requests is that the smart contract can securely bind the loT
resource with the AS responsible for providing authorization grants for that resource.

|Blockchain
h=Hash(s)

@ I'(’quesf
By (PoP), PoP. E(token), DAUCh2JACE exchange

b s with E (token) instead
, price @ ~

of token
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Hash(Eg a5 esource (POP), PoP, E(token)), h, price
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Figure 12. CAS-AS message exchange when authorization requests are sent directly to the
AS. Hashes of the authorization information are recorded on the blockchain,
which provide indisputable receipts in case of disagreement. Disclosure
of authorization credentials is linked to blockchain payments.

Both approaches use a message exchange similar to that of the solutions presented in the
previous sections, where the authorization message exchange occurred between the client and
the AS, under the assumption that the client had continuous network connectivity and could
interact directly with the blockchain.

1) Linking authorization grants to blockchain payments and recording hashes of authorization
information: With this approach the initial communication between the CAS and the AS occurs
as in the normal OAuth 2.0 framework, Figure 12. However, instead of the AS providing the
CAS with authorization credentials after consent is given by the resource owner, the
authorization credentials are disclosed only after the payment for resource access is recorded
on the blockchain.
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Specifically, in Step 1 the CAS sends to the AS on behalf of the client a request for accessing
the 10T resource. The AS generates a random PoP key which it sends to the CAS?’ together
with the PoP key encrypted with the secret key Kas-resource Shared by the AS and the loT
resource, which is set during the 10T resource’s initialization;? the client will later use the PoP
key to establish a secure D2D link with the 10T resource. Also, the AS sends to the CAS the
access token encrypted with a secret s, i.e., Es(token), the hash h = Hash(s) of the secret s, and
the price for the requested resource access scope. The secret s is a secret randomly generated
by the AS and is required for the CAS to decrypt Es(token) and obtain the access token; the AS
will reveal the secret s once it confirms that the payment for resource access has been
committed on the blockchain. Communicating the price from the AS to the CAS allows different
levels of resource access to be offered for different prices.

In Step 3, two hashes are submitted to the blockchain: the first is the hash of the token that the
AS will reveal to the CAS once payment has been confirmed. The second is the hash of three
items: Exas-resource(POP), the PoOP key, and Es(token); the second hash serves as proof of the
authorization information that is exchanged using OAuth between the AS and the CAS. Note
that the above authorization exchange does not ensure that the access token the client obtains
from the AS indeed allows access to the 0T resource.

CAS || Blockchain AS I
@ request E

v

h=Hash(s)
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Epk cas (PoP), E(token), h, price

—®
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resource owner with pre-image s
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" RY @
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Figure 13. CAS-AS message exchange when a smart contract handles authorization requests.
Authorization information is exchanged through the blockchain. As in the approach of
Figure 12, disclosure of authorization credentials is linked to blockchain payments.

Also, in Step 3 a hashed time-lock payment is initiated on the blockchain, which allows the CAS
to deposit the requested amount (Step 4). This amount will be transferred to the resource

27 The communication link between the CAS and the AS is secured, hence the PoP key cannot be
leaked through eavesdropping.

28 |f the resource has sufficient processing power, then the AS can use asymmetric cryptography and
encrypt the PoP key with the resource’s public key.
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owner’s account if the secret s (hash-lock) is submitted to the contract by the AS (Step 5) within
some time interval. If the time interval is exceeded, then the CAS can request a refund of the
amount it deposited. Once the secret s is revealed, the CAS can get s from the blockchain
(Step 6) and decrypt Es(token), thus obtaining the access token. After Step 6, the CAS has all
the credentials that are necessary for the client to request access from the 10T resource.

2) Smart contract for handling authorization requests: Unlike the previous approach where the
CAS and the AS communicated directly, in the approach discussed next the interaction is
through the smart contract, corresponding to Steps 1 and 2 in Figure 13.

In response to the authorization request it received from the CAS, in Step 3 of Figure 13, the
AS sends to the smart contract the PoP key encrypted both with the secret key shared by the
AS and the 10T resource, Ekas-resource(POP ), and with the public key of the CAS, Epkcas(PoP).
Note that in the previous approach the PoP key was sent from the AS to the CAS over a secure
communication link, hence encrypting the PoP key was not necessary.

As in the first approach, a hash time-locked payment is enabled, allowing the CAS to deposit
the amount corresponding to the resource access price (Step 4). The amount is transferred to
the resource owner’s account if the secret s that unlocks the hash-lock is revealed (Step 5).
Once revealed, the CAS can obtain the secret s (Step 6), together with the other necessary
authorization credentials that will allow the client to access the protected resource. If the
blockchain is public, then s can be read by anyone, hence everyone can obtain the access
token. However, the access token cannot be used alone, since the PoP key is also required for
accessing the resource. Nevertheless, if privacy of the access token is important, then the secret
s can be encrypted using CAS’s public key PKcas and the hash-lock set to h = Hash(Epkcas(S)).

B. Client-CAS and client-loT resource message exchange

The message exchange between the client, the CAS, and the IoT resource when the loT
resource does not have continuous network connectivity is shown in Figure 14. Note that this
message exchange applies to both the case where the client has continuous network
connectivity and the case where the client has only D2D connectivity. Initially the client
communicates with the CAS by sending a message with its intent to access the 10T resource
(Step 1). After receiving the request from the client, the CAS performs either of the two message
exchanges presented in the previous section. Next, in Step 2 the client receives the
authorization credentials from the CAS and in Step 3 it sends its access request to the loT
resource.
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Figure 14. Message exchange between CAS, client, and resource when the IoT resource has
only D2D connectivity (Figures 9 and 10). The CAS-AS message exchange
can follow the sequence in Figure 12 or 13.

The message exchange when the client has only D2D connectivity and the 10T resource has
continuous network connectivity is shown in Figure 15. Now, the client communicates with the
CAS that handles authorization requests on its behalf using the connected loT resource as an
intermediate node. Note that the communication of the client and the CAS is secured, since
they share a secret key Kcas-dient that was configured during the client’s initialization.
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Figure 15. Message exchange between client, resource, and CAS message when the client
has only D2D connectivity while the |0T resource has continuous network connectivity
(Figure 11). The CAS-AS message exchange can follow the sequence in Figure 12 or 13.

4.3.2 Evaluation

For the evaluation, we used a local Ethereum node running Go-Ethereum that was connected
to the public Ethereum testnet Rinkeby. Smart contracts were written in Solidity with the Remix
Web-based editor. The AS was based on a PHP implementation of the OAuth 2.0 framework.
The CAS and AS used Web3.js to interact with the Rinkeby blockchain. We compare the two
approaches presented in the previous section: the first records hashes of the authorization
information on the blockchain (Figure 12) and the second involves a smart contract handling
authorization requests (Figure 13). For each of the two approaches we compare four
implementations: The first is the baseline implementation where the smart contract operates in
blocking mode where only one authorization request can be handled at a time: “1 req” in Figure
16(a). The second implementation also operates in blocking mode, but each message includes
three authorization requests—*3 reqs concatenated” in Figure 16(a)—which are sent by the
same CAS; similarly to the requests, we assume that the responses are also concatenated,
which requires that the authorizations are handled by the same AS. The third implementation
operates in non-blocking mode, allowing more than one authorization request, each in a
separate message, to be pending at the same time—*1 req” in Figure 16(b). Finally, the fourth
implementation operates in non-blocking mode, as the previous (third) implementation, but each
message includes three authorization requests—*3 reqs concatenated” in Figure 16(b). The “3
reqs separate” columns in Figures 16(a) and 16(b) correspond to the case where three
authorization requests and their responses are sent and received separately with blocking and
non-blocking operations, respectively.
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Figure 16. Smart contract execution cost. The top graph corresponds to the approach in
Figure 12 where only hashes are recorded on the blockchain. The bottom graph corresponds
to the approach in Figure 13 where a smart contract handles authorization requests.

Figure 16 shows the execution cost (gas), which quantifies the amount of EVM (Ethereum
Virtual Machine) resources (computation and storage), for each of the above implementations.
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A comparison of the corresponding columns in Figures 16(a) and 16(b) shows that, for a
blocking implementation, a smart contract that handles authorization requests requires
approximately 2.5 times more gas than the approach that records only hashes of the
authorization information on the blockchain. For the non-blocking implementation, the ratio is
larger and close to 4 times. Figure 16(a) shows that the gas is 88% higher for the non-blocking
implementation compared to the blocking when only hashes are recorded on the blockchain,
while Figure 16(b) shows that it is approximately 190% higher in the case of a smart contract
handling authorization requests. The above results quantify the higher execution cost for smart
contracts, with more functionality.

Comparison of columns “3 regs separate” and “3 regs concatenated” in Figure 16(a) shows that,
for the blocking implementations, the gas, when three requests and their responses are
concatenated, is smaller than the gas when the requests are sent separately by 56% when only
hashes are recorded, and smaller by 28% when a smart contract handles requests. The gains
for non-blocking, Figure 16(a), are 55% and 18%, respectively, when only hashes are recorded
and when a smart contract handles authorization requests. These results show that
concatenation of requests can provide gains in terms of reduced execution cost; indeed, the
gains are significantly higher for simple contracts that record only hashes. Additional
experiments (not shown) indicate that, as expected, the gains are higher when more requests
are concatenated. Specifically, for non-blocking, when 9 requests are concatenated the gains
are 67% (higher than the 55% gain when 3 requests are concatenated) when only hashes are
recorded and 25% (higher than the 18% gain when 3 requests are concatenated) when a smart
contract handles requests.

Concatenation of authorization requests can be performed in the space domain, when CASes
and ASes handle multiple clients and 10T resources. Alternatively, concatenation can be
performed in the time domain by aggregating requests received by a CAS in a time interval,
before sending them to the AS. Such time domain aggregation of requests adds a delay to the
authorization process, which needs to be considered along with the blockchain transaction time.
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(b) Smart contract handling authorization requests

Figure 17. Smart contract creation cost. The top graph corresponds to Figure 12, where only
hashes are recorded on the blockchain. The bottom graph corresponds to Figure 13,
where a smart contract handles requests. The contract creation cost for
“3 regs separate”in Figure 16 is the same as the cost for “1 req.”

The contract creation cost is shown in Figure 17. Note that this figure does not contain the
contract creation cost for “3 reqs separate,” since it uses the same contract as “1 req.” The
figure shows that the increase of the contract creation cost for the second approach, where
authorization requests are handled by the smart contract, compared with the simpler scheme,
where only hashes of authorization information are recorded on the blockchain, is smaller for
the non-blocking compared to the blocking implementation. A comparison of the corresponding
columns in Figures 17(a) and 17(b) shows that the contract creation cost for smart contracts
handling authorization requests is 36 to 80% higher than the creation cost for contracts that
record only hashes. An additional conclusion from the comparison of Figure 17 and Figure 16
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is that for simple contracts that record only hashes and are blocking, the contract creation cost
dominates the execution cost, while for more complex smart contracts such as the ones
handling authorization requests and are non-blocking, the execution cost becomes comparable
to the creation cost.

Finally, 20 executions of each of the non-blocking implementations have shown that the average
transaction delay when only hashes of authorization information are recorded on the blockchain
is 44 seconds, with a 95% confidence interval £ 5 seconds; the delay for the blocking
implementation with three separate requests is higher by approximately 29 seconds, due to the
serialization that blocking imposes. For a smart contract handling authorization requests the
delay is 58 seconds, with a 95% confidence interval + 6 seconds. The above results show that
the delay is approximately 32% higher for the smart contract approach compared to the
approach that records only hashes. This result is expected, since recording only hashes
involves three transactions on the blockchain (Figure 12) whereas a smart contract handling
authorization requests involves four transactions (Figure 13).
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5. Evaluation scenarios

This section follows the SOFIE pilots, generalizes them into pilot inspired use cases by including
alternatives not selected in the SOFIE pilots, abstracts them out to appropriate degree and uses
emulation and simulation to consider the various tradeoffs of many potential alternative design
decisions and their impact.

5.1 Food supply chain

5.1.1 Overview

The food supply chain pilot aims at leveraging distributed ledgers to provide traditional supply
chains with dependable provenance data. More specifically, it targets the supply chain
transferring agricultural products from producers to supermarkets and it aims at providing the
following features:

e Traceability of agricultural products from the producer to the consumer
e Traceability of transport and storage conditions
¢ Resolution of disputes in case of customer complaints

This pilot assumes smart boxes (or, simply, boxes) as the end-to-end unit of transfer. That is,
products are packed into boxes by the producer and they remain in these boxes throughout the
entire transfer until they reach the consumer. Each smart box is equipped with an RFID tag,
which is scanned and registered when the box is handed over by one stage of the supply chain
to another.

The chain consists of five stages, shown in the following table.

Table 8. The stages of the food supply chain pilot use case

Stage Stage name Abbre- Role
no. viation

1 Table Grapes Field TGF Grows table grapes and packs them
into boxes

2 Transportation A TRA Transfers boxes from TGF to SDC

3 Storage & Distribution Center SDC Collects, stores, and dispatches
boxes

4 Transportation B TRB Transfers boxes from SDC to SM

5 Supermarket SM Displays boxes and sells them to
consumers

5.1.2 Events

The SOFIE platform will record all handovers between consecutive stages, as well as
periodically reported conditions in each stage. This leads to the following list of events
governing the Food Chain pilot at a high level. These events can be split up into the three
categories shown in the following three tables.
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Table 9. Handover events of the food supply chain pilot

Event Type 1: Handovers

Event Parameters

Box handover: time, box, weight,

producer — TRA employee producer, employeeTRA

Box handover: time, box, weight,

TRA employee — SDC employee | employeeTRA, employeeSDC

Box handover: time, box, weight,

SDC employee — TRB employee | employeeSDC, employeeTRB

Box handover: time, box, weight,

TRB employee — SM employee | employeeTRB, employeeSM

Table 10. Action events of the food supply chain pilot
Event Type 2: Actions
Event Parameters
Driver picks up specific truck (assuming time, employee{TRA|TRB}, truck
multiple drivers & trucks in company)
Driver parks and leaves truck time, employee{TRA|TRB}, truck
Store box in specific shelf of the Storage & time, box, employeeDC, room,
Distribution Centre rack, shelf
Store box in specific shelf of the time, box, employeeSM, store,
Supermarket aisle, shelf
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Table 11. Periodic logging events of the food supply chain pilot

Event Type 3: Periodic logging

Event Parameters

Field: log temperature, humidity, precipitation time, field, temp,
humid, rain

Transportation: log temperature, humidity, GPS location | time, truck, temp,
humid, location

Distribution Centre: log temperature, humidity time, room, temp,
humid
Supermarket: log temperature, humidity time, store, aisle,

temp, humid

5.1.3 Emulation overview

In order to evaluate alternative architectures for the Food Chain use case, we implemented two
different scenarios and we considered two types of deployment, resulting in a total of four
distinct emulations.

Scenario 1: We have a single smart contract, providing an API to handle all aforementioned
events. All five stages of the chain have access to this smart contract and use it to record all
events taking place. The advantage of this scenario is its simplicity, as all data reported is stored
in a single smart contract's storage. As a consequence of this simplicity, this scenario uses
fewer blockchain resources, thus, less gas.

Scenario 2: We have a total of five distinct smart contracts, one per stage. Each smart contract
provides the API needed to handle that stage's actions, logs, and handovers, as well as to
interact with smart contracts of adjacent stages. This scenario's advantage is that it gives higher
flexibility to organizations to manage their own smart contracts, as long as they respect the
interface to neighbouring stages' smart contracts. Its downside is the increased use of
blockchain resources, hence the extra gas it spends.

Deployment 1: Use of public Ethereum only. All smart contracts are deployed on a public
Ethereum instance, such as the original Ethereum, or a testnet, such as Rinkeby or Ropsten.
This deployment offers the highest transparency and immutability guarantees, however, with a
significant monetary cost for executing the respective smart contracts.

Deployment 2: Use of both private and public Ethereum. In this deployment, all smart contracts
(of either Scenario 1 or 2) are deployed and executed on a private Ethereum instance to avoid
the high execution costs associated with public Ethereum instances. Only a single smart
contract is deployed on a public Ethereum instance for the sole purpose of anchoring, that is,
for periodic public recording of the private instance's block hash in order to increase immutability
guarantees.

5.1.4 Evaluation results

We start by presenting a table of the cost of certain types of smart contract calls in gas, which
are the same independently of the scenario used.
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Table 12. Execution cost for each periodic logging event of the food supply chain pilot

Event Gas Cost (ETH*) [ Cost (EUR%)
Periodic log (TGF) (mean) 85435 | 0.0000854 €0.021
Periodic log (TRA/TRB) | (mean) 85435 [ 0.0000854 €0.021
Periodic log (SDC) (mean) 72535 | 0.0000725 €0.018
Periodic log (SM) (mean) 85435 | 0.0000854 €0.021
Anchoring 47744 | 0.0000477 €0.012

(*) Based on June 2019 prices

Note that, although the gas used for each individual anchor is precisely 47744, for periodic
logging events we present average values. The exact gas used for 100 consecutive TRA or
TRB (transportation) logs is shown in the following figure. The periodic pattern repeating every
eight logs, is due to the fact that EVM reserves storage in 256-bit increments. As our log data
are encoded in 32-bit values, at every 8th log each array (e.g., the temperatures array, etc.) has
to be extended by another 256 bits, thus spending more gas.
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Figure 18. Periodic logging cost for 100 consecutive transportation logs
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In contrast, anchors (i.e., block hashes) are 256-bit long, so every single anchor registration
reserves an extra 256-bits of storage, resulting in uniform gas cost.
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Figure 19. Anchoring cost

Let us now focus on the functions that are not symmetric across the two proposed scenarios.
The first one is the function that registers a new box with a producer (stage 1. TGF).
Counterintuitively, this function is almost twice as costly in Scenario 1 compared to Scenario 2.
The reason is that Scenario 1, storing all data in a single smart contract, allocates more storage
when a new box is registered at the beginning of the supply chain, to accommodate data
relevant to all five stages. In contrast, in Scenario 2, where each chain stage uses their own
smart contract, registering a new box with a producer allocates just enough storage to record
data relevant to the producer.

The following figure shows the exact gas cost for 100 box registrations for both scenarios. The
periodic artifact discussed above (due to 256-bit storage allocations vs. 32-bit box indices) is
clearly visible as spikes repeating every 8 new boxes.
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Figure 20. Execution cost for 100 box registrations

The second type of function that differs across the two scenarios is the handover function. In our
emulation, handovers are symmetric across all stages. The following figure shows the gas spent
for handing over a box from one stage to the next one, as a function of the number of boxes
that each of these two stages is currently hosting. Besides the aforementioned artifact appearing
with a period of eight boxes, we notice a clear cost increase as stages become full. This is due
to the data structures used to maintain the list of boxes currently at a given stage. More
specifically, a box is removed from an array in stage i and then appended to an array in stage
i+1.
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Figure 21. Execution cost for handover function from one stage to the next one

We also notice that Scenario 2 is far costlier for performing handovers. This is due to two facts.
First, in Scenario 2 each handover call at stage i results in an external call to the smart contract
of stage i+1, as the handover needs to also be registered there. Second, data is essentially
stored twice, as both stage i and i+1 need to keep a record of each handover between them.

The data presented above is summarized in the following table.

Table 13. Execution cost for both food supply chain pilot handover scenarios

Scenario 1 Scenario 2
Event
Gas ETH EUR Gas ETH EUR
Register Box 153974 0.000154 | €0.037 88133 0.0000881 €0.021
Handover ~150000 0.00015 €0.036 ~250000 0.00025 €0.060
TGF—-TRA
Handover ~150000 0.00015 €0.036 ~250000 0.00025 €0.060
TRA—SDC
Handover ~150000 0.00015 €0.036 ~250000 0.00025 €0.060
SDC—TRB
Handover ~150000 0.00015 €0.036 ~250000 0.00025 €0.060
TRB—SM
Sum ~753974 0.000754 | €0.181 ~1088133 ~0.001 €0.261

We can see that the initial registration and four subsequent handovers for a given box will result
in an aggregate cost of €0.18 for scenario 1, or €0.26 for scenario 2, when running on the
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original public Ethereum network. This is a non-trivial cost, as it concerns each individual box.
As expected, using the public Ethereum blockchain is an expensive and non-scalable option.

Instead, a far more cost-effective solution is to run the aforementioned smart contracts in a
private Ethereum, where gas does not reflect real money. In this case, anchoring will be
important for providing immutability guarantees. The cost of anchoring (€0.012) is negligible
compared to a 15 to 20 times higher cost per box. In addition to that, anchoring does not need
to be configured for every single block generated. It can be applied periodically every hour, or
every day.

5.1.5 Evaluation conclusions

In order to develop an intuition about the overall costs of our four emulation scenarios and
deployment combinations for a full day operation, we make the following assumptions, based
on discussions with SOFIE's advisory board. We assume a total of 6000 smart boxes entering
the food-chain per day, and a total of 10 trucks needed to transfer these 6000 smart boxes
between two stages (i.e., a total of 20 trucks, given that we have two transportation stages).

Table 14. Overall cost of the food supply chain pilot stages

Stage Description Count | Logging Single 24-hour
period log cost cost
TGF | Synelixis sensors collecting 1000 1 hour €0.021 €504.00
precipitation, temperature, and
humidity logs
TRA | Sensors for reporting temperature 10 5 min €0.021 €60.48

and humidity (1 per truck, for a total
of 10 trucks)

SDC | Sensors for reporting temperature 100 5 min €0.018 €518.40
and humidity
TRB | Sensors for reporting temperature 10 5 min €0.021 €60.48

and humidity (1 per truck, for a total
of 10 trucks)

SM | Sensors for reporting temperature 20 5 min €0.021 €120.96
and humidity

Sum - - - - €1264.32

For estimating the cost of handover registration, we have to compute it separately for each
scenario.
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Table 15. Handover registration cost for each of the scenarios

Scenario 1 Scenario 2
Description Box count _ _
perday | Single All Single All
box boxes box boxes
Cost for handovers across all 60000 €0.181 | €10860 €0.261 €15660
stages.

Finally, we should consider the cost of anchoring, in case of the second deployment type, i.e.,
in case we use a private Ethereum instance for storing all logs and handovers, and we
periodically store the block hash on public Ethereum. For simplicity we will consider as a
baseline approach storing the hashes of every single block.

Table 16. Anchoring cost for the second deployment type of the food supply chain pilot

Description Logging period Single 24-hour
anchor cost
cost
Cost for storing a private Ethereum's block 15s €0.012 €69.12
hash on a public Ethereum smart contract
("anchoring™) (the default block
generation period
in Ethereum)

In conclusion, an entire day's cost based on the aforementioned assumptions is estimated to
be as follows:

Table 17. Entire day’s cost for each evaluation scenario of the food supply chain pilot

Scenario Deployment 24-hour cost
Scenario 1 Public Ethereum €12124.32
(single smart contract for all stages) | Private + Public Ethereum €69.12
Scenario 2 Public Ethereum €16924.32
(separate smart contract per stage) | Private + Public Ethereum €69.12

This aggregate cost comparison further emphasizes the need to deploy and maintain private
Ethereum instances instead of replying on the public one alone, as the cost implications are
severe.

5.2 Decentralised energy flexibility marketplace

The decentralised energy flexibility marketplace pilot aims to balance the load on a real energy
network, namely the distribution grid of the city of Terni, located in central Italy, by charging
electrical vehicles.

In Terni, a significant amount of energy is produced locally by distributed photovoltaic plants,
which on occasion can cause Reverse Power Flow, when unbalances between produced and
consumed energy occur. To avoid this abnormal operation, electrical vehicles (EVs) will be
offered incentives to match their EV charging needs with the distribution network’s
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requirements, through the decentralized marketplace, which allows electricity producers and
consumers to place offers and bids for selling and buying electricity.

The actors of the pilot use case are:

DS
CS

CS:
EV:

EV

O: Distribution System (Grid) Operator, responsible for grid management
O: Charging Station Operator, operates multiple charging stations
Charging Station, that can charge electric vehicles

Electric Vehicle

U: EV User

FM: Fleet Manager, represents a group of EVs in the energy price negotiations

EP:

Electricity Provider (that may be included in a later stage of the pilot, but is included
in the use case and) that would act between the DSO and electricity users, such as
FMs

The flow of the use case is:

1.

The DSO puts flexibility requests to the decentralized marketplace (that utilizes
blockchain), asking for a specific amount of energy (kwWh) to be drawn at specific time
intervals, at a specific location (expressed as GPS coordinates), while providing specific
incentives (expressed as tokens) in order to shave peaks of locally produced energy.
The FM places offers to the marketplace in order to maximize the incentives. The offers
include: user type (e.g. electricity load imposed), current location, residual autonomy
(i.e., how long the vehicle can withstand before it has to be charged), and EV's current
status (e.g., parked).

The marketplace identifies potential candidates taking both offers (by DSO and FM) into
account and notifies selected EV users that they will receive a token incentive if they
fulfil the conditions of the DSQO's offer (i.e., charge the vehicle with a specific amount of
electricity, using the assigned charging station, or group of charging stations, within a
specific time interval).

Some EV users accept the offer and the acceptance is recorded in the blockchain used
by the marketplace.

The EV user (who has accepted the offer) charges the EV to fulfil the conditions of the
offer. The charging event will be recorded in the blockchain.

The smart contract (running on the Ethereum blockchain) notices that the conditions of
the accepted offer have been satisfied and sends the agreed amount of incentive tokens
to the EVU on (the Ethereum) blockchain.

For accepted bids that failed to fulfil their requirements, the EVU should be “fined” by
sending a corresponding transaction on the (Ethereum) blockchain.

Note that while in D4.2 it was mentioned that DSO bids could be generated automatically based
on energy use or supply forecast, this is considered out of scope of the pilot, but is included in

the use

case to be considered for evaluation.

No evaluation results are available yet for this use case, however some preliminary planning
has been undertaken in order to perform it. Some Interesting metrics to be considered for the
evaluation include:

e Latency of various transactions

o Cost of smart contracts (e.g. gas, in case a public ledger is used)

o Whether the events can be reported to the system in a secure and authenticated manner

e User experience of the FM and the EVU, based on various offer options and

mechanisms (e.g., auction, immediate pricing, etc.)
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5.3 Decentralised Energy Data Exchange

The initial evaluation of the decentralised energy data exchange use case consists of two
directions:

e The first investigates the case where a smart contract uses smart meter measurements
to calculate a discount.

e The second investigation considers a model that captures the cost tradeoffs related to
the frequency with which hashes of the smart meter measurements are recorded on a
public blockchain.

For the first direction, we investigate the gains of utilizing two blockchains. We have two
scenarios. The first scenario uses a Public Ethereum (Rinkeby), while the second one extends
the structure with a permissioned blockchain (Private Ethereum). In the first case, we have one
smart contract to keep records of measurements and calculate discounts (Public Ethereum).
The second case uses the same contract in the permissioned blockchain and an extra contract
in the Public ledger, for keeping hashes of smart-meter measurements. The comparison of the
two scenarios, is in terms of the gas cost and delay.

The second direction considers the two blockchain cases discussed above and presents
numerical investigations that illustrate how the cost tradeoffs depend on various system
parameters.

5.3.1 Smart contract for flexible energy services

We first investigate, with experiments on a private Ethereum network and the Rinkeby public
Ethereum testnet, the performance when smart meter measurements are recorded by a smart
contract, which periodically computes a discount based on the recorded measurements. The
components involved are the following:

e Smart Meter Component: This component submits smart meter measurements to the
Smart Meter Contract.

e Smart Meter Contract: Records smart meter measurements and periodically computes
a discount based on the recorded measurements. This component is executed either on
a private Ethereum network (scenario 2) or on the Rinkeby public Ethereum testnet
(scenario 1).

e Hash Recording Component: This component performs an interledger function for the
second scenario that involves periodically recording hashes of the average consumption
and the calculated discount on the public ledger.

e Hash Recording Contract: This is the smart contract responsible for recording hashes in
the second scenario.

The records that are submitted by the Smart Meter Component to the corresponding contract
have the general form [consumption, time unit], indicating the amount of energy consumption
per time unit.

Smart contracts execute code that implements business logic and rules in a transparent manner.
The smart contract in the scenarios we investigate performs a simple operation that periodically
calculates a discount based on the smart meter measurements. We investigate two scenarios
that differ in where the smart contract is executed:

Scenario 1: Smart contract running on a public ledger. In this scenario the smart contract
is executed on a public Ethereum blockchain, namely the Rinkeby public Ethereum testnet.

The UML diagram for this scenario is shown in Figure 22, below.
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SMART METER CONTRACT (PUBLIC LEDGER)
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Figure 22. UML component diagram for the first scenario where a smart contract handling
smart meter measurements runs on a public ledger

The Smart Meter Component sends measurement records to the Smart Meter Contract, running
on a Public Ethereum network (Rinkeby). This smart contract has two main functions. The first
(addNewMeasurement) is a public function that is called by the Smart Meter Component
whenever it wants to record a measurement. The second (calculateDiscount) is an internal
function that calculates a discount, after a standard number of measurements.

Scenario 2: Recording only hashes on a public ledger. In this scenario the smart contract
that records the smart meter measurements and periodically calculates a discount is executed
on a private Ethereum network. When the discount is calculated, a hash of the discount and the
corresponding average consumption is recorded on the Rinkeby public Ethereum testnet.

The UML diagram for this scenario is shown below.

SMART METER CONTRACT (PRIVATE LEDGER)

Retrieve
Smart Meter Send + Average of measurements discount and
Component Measurement + Number of measurements average

+ addNewMeasurement( uint256 measurement, uint256 rateOfDiscount )
- calculateDiscount()

On discount
calculation (event), | Interledger: Hash
hash stored on public Recording Component
ledger

HASH RECORDING CONTRACT (PUBLIC LEDGER)
+ List of Hashes

Store hash
value

+ storeValue( string input )

Figure 23. UML component diagram for the second scenario,
where only hashes are stored on a public ledger

Recording of hashes is performed by an interledger gateway. The frequency at which hashes
are recorded on the public Ethereum network is assumed to be the same as the frequency that
the smart contract running on the private Ethereum network calculates discounts. This is
achieved by having the interledger gateway listen to events that are generated each time that
the Smart Meter Contract running on the private Ethereum network calculates a new discount.

Table 18 below summarises the smart contract functions (written in Solidity the main Ethereum
smart contract programming language).
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Table 18. Smart contract functions for decentralised energy data exchange scenarios

Function Arguments Scenarios used

addNewMeasurement |-uint256 measurement | Scenario 1 (Smart contract running on a public
-uint256 rateOfDiscount | ledger)
Scenario 2 (Recording only hashes on a public
ledger)

calculateDiscount (none) Scenario 1 (Smart contract running on a public
ledger)
Scenario 2 (Recording only hashes on a public
ledger)

storeValue -string value Scenario 2 (Recording only hashes on a public
ledger)

5.3.1.1 Evaluation results

The figure below shows the EVM execution cost (gas) for the two scenarios described above.
The results are from experiments executed for 30 time units. Smart meter measurements are
recorded at a frequency of one record every time unit. For the specific execution one time unit
was equal to one minute. However, we note that the results are independent of the actual value
of the time unit.

We consider three values for the rate of discount, which correspond to the three columns in the
figure: one discount calculation every 5, 10, and 30 time units.

1,200

1,000 -
S 800 -
o
S
S
X 500 W per 5 time units
3 ) M per 10 time units
c per 30 time units
£ 400-
o
2
L

200 -

Smart Contract on public ledger

Figure 24. EVM execution cost for decentralised energy data exchange scenarios

The results show that, as expected, recording data measurements directly on a public
blockchain has a very high execution cost. Note that such an approach also has low privacy.
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Moreover, when a smart contract on a public ledger handles smart meter measurements, the
time interval that discounts are calculated has a small influence on the total execution cost.

The cost when only hashes are recorded on the public ledger is significantly lower. Moreover,
the results for this case verify that the execution cost when only hashes are recorded on the
public chain is approximately inversely proportional to the time between consecutive hash
recordings.

5.3.2 Hash recording frequency

In this subsection we present a simple model that captures the cost tradeoffs and the impact of
the frequency with which hashes of the smart meter measurements are recorded on a public
blockchain. The model applies to the second scenario presented in the previous subsection that
corresponds to Figure 23. Specifically, the proposed model captures the following costs:

o Cost (monetary) for recording data on a public blockchain. Alternatively, this can refer to
the cost for using a timestamping service.

o Cost for verifying that the data (smart meter measurements stored on the platform) is
consistent with the hashes recorded on the public blockchain. This cost corresponds to
the processing cost for performing the verification computations.

o Cost that quantifies the opportunity to modify or the impact from actually modifying the
data from the time the last hash was recorded on the public chain until the time the next
hash will be recorded.

The cost per unit of time for recording hashes on the public chain (or for using a timestamping
service) can be expressed as a function P(f), which we assume is a linear function of the hash
recording rate f. Alternatively, the function P(f) can be a concave function, if the incremental
cost for recording hashes decreases as the hash recording rate f increases.

The verification cost can be expressed as rwV(D) where rve is the rate of verification requests
and V(D) is a function of the amount of data D that is required in order to perform verification.
The verification cost is expressed as a cost per unit of time, similar to the hash recording cost.
The shape of the function V() depends on how the hashes are computed. If the hash that is
recorded on the public chain is computed by applying a hash function on all the data that has
been produced since the last hash was recorded, then the verification cost V(D) is a linear
function of the amount of data D produced between two consecutive hash recordings. D is equal
to raawa/f, Where rqata is the rate at which data is produced and f is the hash recording rate. On the
other hand, if a Merkle tree is used to compute the hashes that are recorded on the public chain,
then the verification cost V(D) is a logarithmic function of D=rye/f.

The cost that quantifies the opportunity to modify or the impact from modifying the data from the
time the last hash was recorded on the public chain until the time the next hash will be recorded
can be expressed as a function Q(D) of the amount of data D produced between consecutive
hash recordings. The actual shape of Q() is application and scenario specific. Possible shapes
are the following:

e Concave: Such a shape corresponds to the case where modifying data initially has large
impact, which becomes smaller as more data is modified.

e Convex: This shape corresponds to the case where modifying data has a small impact
up to some point, after which the impact increases when more data is modified.

e Sigmoid or stepwise function: In this case, initially modifying data has small impact (or
zero impact in the case of a stepwise function), which increases sharply at some point.
Then the impact from modifying additional data is smaller (or zero in the case of a
stepwise function).
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5.3.2.1 Evaluation results

In this subsection we present preliminary numerical results that involve the hash publication
cost and the verification cost. The cost that quantifies the opportunity to modify data will be
considered in future investigations.

Based on the model presented in the previous subsection, if cpu is the cost for recording a hash
on the public ledger, then the cost per unit of time for recording hashes on the public chain is
P(f)=f coun. The verification cost is rver V(rata/f) Cver, Where rver is the rate of verification requests,
riata IS the rate at which data is produced, and cver is the cost for each verification. The cost Cver
represents the cost for a unit of computation that is necessary for performing verification. In the
numerical results presented below, we assume that Cpub/Cver = 2.

If the hash recorded on the public blockchain is computed by applying a hash function on all the
data that has been produced since the last hash was recorded, then V(rqaie/f) is a linear function.
On the other hand, if a Merkle tree is used, then V(rqaw/f) is a logarithm of rgaw./f.

The verification cost rver V(reaw/f) @and the total cost P(f) + rveV(reaw/f) @s a function of the hash
recording rate f in the case of a linear function V() are depicted by the lines containing the label
“linear” in the figure below. We have assumed that rqaw/fver=1000. Observe that the optimal hash
recording frequency, which is the frequency with the lowest total cost, is approximately 16. Note
that the time units for the hash recording frequency are the same time units that the rate rqa
data is produced and the verification request rate ryer. The verification cost and total cost for the
case of a logarithmic function V() correspond to the lines with the label “log.” Observe that in
this case, the optimal frequency is smaller than 1, i.e., it is much smaller than the optimal
frequency in the case of a linear function V(). The reason for the smaller optimal frequency in
the case of a logarithmic function V() is because of the concave dependence of the
corresponding verification cost on the hash recording frequency.

100
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e\
o0 \ ——Vlinear
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Figure 25. Cost as a function of frequency for a linear and logarithmic verification function V(f)
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5.4 Mixed Reality Mobile Gaming

5.4.1 Overview

The mixed reality mobile gaming pilot will prototype a scavenger hunt location-based game. The
goal of the game is to find the 10T device locations. The players will solve a riddle provided by
the company or other players through a QR code. Solving the riddle will reveal the location of
the next loT device, in order for the user to go there, collect his points and download another
riddle. This procedure continues until the last I0T device is reached. Players can bypass any
challenge using the In-App tokens, which can be bought, awarded by viewing advertisements,
awarded by completing a challenge or traded on the marketplace.

The entities identified within the pilot use case, including organizations and people are shown
below:

Game administrator/developer — Game company
Game player

Challenge designer

Ads administrator — Advertisement company
Point of Interest (POI) employee — POl company

IoT beacons will be used to provide the location of the loT devices. The beacons will
communicate with user smartphones using Bluetooth Low Energy (BLE). Furthermore,
blockchain technology will be used to manage and record various actions and properties, e.g.
player arriving at a beacon, points collection, trading tokens, etc. One of the main challenges,
of this use case is to exploit scalable DLTs to support millions of active users per day with
thousands of transactions per second in a cost-effective manner.

5.4.2 Events

The main events of this use case involving the game player are:

1. Game player downloads and installs the scavenger hunt application, granting all the
appropriate permissions. Then, a private key is generated for the blockchain wallet and
stored on the mobile.

Game player joins any challenge by scanning a QR code.
When the player visits the POI (loT beacon), a task is shown to the player.

Player completes the challenge:

a. By solving the task.

b. By viewing ads.

c. By paying with in-App tokens.
d. By paying.

5. Player, having an approved user account, creates a new challenge.
The main event involving the game administrator/developer is:

e Game developer creates a new challenge.

The main event involving the POl employee is:

e The POI employee adds a new IoT beacon.

The main event involving the ads administrator:

e The ads administrator publishes an advertisement.
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Adding a reward for completing a challenge or watching an advertisement video can be
performed by the respective employees.

5.4.3 Emulation

To initially evaluate the performance of the mixed reality gaming pilot we will use an environment
which emulates various aspects of this use case. Based on this emulation, we will be able to
have both quantitative and qualitative evaluation. On the other hand, with the emulation
environment we cannot investigate various other issues, such as game discovery, I0T devices
scale, etc.

To start with, we emulate the scavenger hunt mobile application, as a Web application with a
simple Ul, implemented in React, which is a JavaScript library for building user interfaces. For
emulation purposes, we assume that the user/player has already created a metamask account,
thus he owns a private key for his blockchain wallet. Challenges are emulated as unique integer
IDs. Challenge designers can create a new challenge by adding the id of the challenge in the
Web App and clicking the appropriate button. When a designer adds a new challenge, the
appropriate function of the smart contract is called and a transaction is sent to the blockchain
network to be mined. Then, the player can select any challenge he wants by entering the id of
the challenge. This process emulates the interaction with the 10T beacon. Afterwards, the player
is able to click the “complete” button, which emulates that the player has solved the riddle. When
the player completes the challenge, the smart contract automatically adds the calculated points
to the player’s account. The player is able to skip any challenge by paying in ether, by paying
in In-App tokens or by viewing advertisements. To emulate the In-App tokens, we create a smart
contract that implements the ERC20 standard. Moreover, the player can obtain In-App tokens
by paying in ether, by viewing advertisements, or by redeeming his points. Advertisements are
emulated as smart contracts. When a user “watches” an advertisement the viewAds function of
the ads contract is called. Only if this function returns true, i.e. the player watched the
advertisement, then he gets the appropriate reward.

The initial evaluation of this use case is performed through various emulated scenarios with
different configurations. Two scenarios are presented below.
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5.4.3.1 Scenario 1

The first scenario investigates the case where only public Ethereum is used as the blockchain
technology. The experiments in this scenario, took place on the Rinkeby (public Ethereum)
testnet. The components of this scenario are:

o Web application: This component performs the interaction between the players and the

blockchain technology.

e Ads smart contract: This component checks whether the user watched the

advertisement or not.

e Tokens smart contract: This component creates and manages the In-App tokens.

e Game smart contract: This component implements all the required functionality of the
game. First of all, it records all the challenges by their unique IDs to the blockchain.
It also records a mapping between the players and the challenges and whether the
player has completed the challenge or not. It automatically calculates the points that the
player should be rewarded when he completes a challenge. This contract implements
three functions that give the opportunity to players to skip any challenge by the
aforementioned ways. Finally, it calls the other two contracts to offer rewards to players.

The UML diagram for this scenario is shown below.
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Figure 26. UML component diagram for the first mixed reality mobile gaming scenario
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5.4.3.2 Scenario 2

The second scenario investigates the gains from utilizing two (different) blockchains instead of
one. In this scenario, the first blockchain is a public blockchain and the second one is a
permissioned blockchain. We assume that the public blockchain is a public Ethereum and the
permissioned blockchain is a private Ethereum chain. The components of this scenario are the
same ones shown above for Scenario 1 plus the one shown below.

e Interledger gateway: This component is listening to events on both Ethereum
blockchains (public and private), which are generated each time the player invokes a
function of the game smart contract that needs to perform an action involving the In-App
tokens or the advertisements.

The game smart contract is executed on the private Ethereum network. On the other hand, the
tokens smart contract and the ads smart contract are executed on the Rinkeby testnet.

The UML diagram for this scenario is shown below.
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Figure 27. UML component diagram for the second mixed reality mobile gaming scenario
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5.4.4 Evaluation Results

The initial evaluation of the mobile gaming pilot use cases begins with the comparison of the
two aforementioned scenarios, in terms of the gas cost. The following table shows the EVM

execution cost in terms of gas for the scenarios described above.

Table 19. EVM execution cost for mixed reality mobile gaming scenarios

Function Scenario 1 cost (gas) | Scenario 2 cost (gas)
Add challenge 47050 N/A
Begin challenge 52432 N/A
Complete challenge 53529 N/A
Skip challenge by paying 61867 N/A
Skip challenge by paying in In-App tokens 63877 33438
Skip challenge by viewing advertisements 53926 21462
Get tokens by paying 44199 35274
Get tokens by viewing advertisements 37981 56736
Redeem rewards 36618 35274

EVM execution cost for gaming emulation scenarios
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60000

50000

Execution cost (gas)

Scenario 1 Scenario 2
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Figure 28. EVM execution cost for mixed reality mobile gaming scenarios

40000

30000

20000

10000 I
0

SOFIE

70(79)



Document: | H2020-I0T-2017-3-779984-SOFIE/D4.3 — First Architecture and System
S O F | E Evaluation Report

Security: | Public ‘ Date: ‘2.7.2019 ‘ Status: ‘Completed | Version: |1.00

As we can see from the results, using only a public blockchain is very costly. On the other hand,
the execution cost of using the public instance of Ethereum only for managing the In-App tokens,
is far lower.
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6. Business oriented evaluation

SOFIE is about Secure Open Federation of 10T Systems (silos) so that they can exchange data
under their own rules and “voluntarily” cooperate to achieve various goals. Most of the rules,
impediments, but also incentives and opportunities are about business aspects, rather than
technical issues. Therefore, an evaluation of the SOFIE architecture and the mechanisms being
developed from a business perspective is necessary and critical. In addition to the aspects
discussed earlier, such as of a distributed system and an open (business) platform, other
business aspects are discussed and evaluated here for a start and will be further refined and
completed in the next WP4 deliverable, D4.4.

Of special interest is an investigation of whether and under what conditions a Federated Open
Platform (System), without a pre-set leader governing the system can successfully arise,
develop and prosper and whether the constituting (sub-)systems also grow and prosper and
how potential gain are distributed across the constituents. We use a System dynamics approach
to investigate these questions. An initial investigation is provided below, but the work continues,
and further results are expected to be provided in D4.4.

6.1 On federation

One can consider a group of component systems that are governed by either a single central
authority or distributed governance, in which each component system serves its own interests
(but they can also demonstrate altruism, or desire for cooperation, sometimes against their
narrow defined interests). The analogy in real life is with a group of states/countries, like the
European Union or the United States of America. An example of a federated system in
information technology is the interconnection of Social Networks.

The design of a federated system has to cover the following aspects:

e Business foundations: Covers the context of defining fully customizable applications.
If an application has access to the system through one specific component, it must be
able to use (or not) services from the other components.

e Service foundations: Includes creation and resource management of a service. The
creation of a service in a component might be simple; the difficulty lies in defining the
right authorization and privacy schemes. Storing and replicating the service' s data is
also a hard task.

e Heterogeneous infrastructure: Employ Servers (hardware infrastructure) in order to
support a variety of devices and reach the appropriate resource allocation level.

e Communications foundation: Last, but not least, is the ability for the components to
communicate. Components must be able to identify the services offered among each
other. As we mentioned in the introduction, Social Networks have already solved this
issue. An example is post publishing. An Instagram photo is already published in
Facebook and Twitter, if the user allows it.

Our Proposed Interledger Protocol is based upon distributed and decentralized nodes. Each
node is a permissioned/permissionless ledger (Hyperledger, Ethereum, Bitcoin). The solution
covers Communications/Service foundation and the Heterogeneous infrastructure. The pilots
show examples of Business Foundations.

6.2 Modelling SOFIE business platform growth and sustainability

In order to understand the growth and sustainability of federated digital business platforms, we
first need to understand the key component causal feedback loops. We develop models for
(decentralized) Ethereum platforms and DApps (Decentralized Apps) that have their core
business logic parts run on top of such platforms, in the form of smart contracts.
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Modelling the Ethereum Platform with System Dynamics
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Figure 29. Ethereum platform sustainability causal feedback loops

There is a general interest in cryptocurrency, which in the current state of this model is assumed
to be exogenous. This interest causes, among other cryptocurrencies, an increase in the
demand for Ether (ETH), which is the token of the Ethereum platform that we use as our case
study. An increase in the demand of the token causes an increase in its price, which in turn
increases its attractiveness as this is perceived to be indicative of the token’s steady successful
growth. The more attractive the token, the more its demand, and this closes the reinforcing loop
that depicts the network effects of our model.

As long as the demand of the token remains low, the more “sharks” are looking for an
opportunity to buy as much of it as possible. This will give them the opportunity to inject money
back to the platform and enhance the attractiveness of the token.

The total blockchain attractiveness is accumulated from all currently available cryptocurrencies
in the market. It then has a negative causality to their demand, and this illustrates the balancing
loop of the market’s saturation. In other words, it models the natural limit for the demand of
cryptocurrencies.

What makes the Ethereum platform differ from other cryptocurrency platforms is its unique
feature of supporting other tokens. The higher the demand for Ether, the more people will seek
opportunities to take advantage of its features. Hence, efforts to piggy back (or complement?)
Ether’s token creation protocol and launch Initial Coin Offering (ICO) companies rise. The more
such companies enter the market, the higher the price of the Ether token.

However, the more ICO companies in Ether platform, the more transactions take place.
Consequently, this strain in crypto exchange makes it less feasible to validate these transactions
in a timely manner. Thus, we have lags in the platform’s performance, which in turn has a
negative effect on the platform’s attractiveness.
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Modelling a distributed application with System Dynamics

Here we present a model of an example application. We present a model of CryptoKitties, which
is a decentralized game running on top of the Ethereum blockchain.

CryptoKitties?® are collectable and breed-able property that reside and function as part of the
Ethereum [NakO8], [Wo018]. They are the first widely deployed commercial Ethereum
application, which broke into the public consciousness towards the end of 2017 and the
beginning of 2018. We model the CryptoKitties on the Ethereum blockchain business platform.
CryptoKitties tests the idea of digital scarcity. Before the invention of blockchains, digital scarcity
could only be created via means of centralised control. However, centralised control is unable
to create real scarcity in the sense that everyone needs to trust the central operator to actually
produce said scarcity. If the central operator stops producing this scarcity for any reason, the
users might not even know about it, much less prevent it.
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Figure 30. CryptoKitties application sustainability causal feedback loops

From the model we can see that there is a mutually reinforcing network effect between the two
networks of CryptoKitties and the Ethereum platform. The more CryptoKitties users, the more
the platform benefits. And the more there are platform users, the more there are potential
CryptoKitties players.

The role of the CryptoKitties application founders is also depicted in the model. Founders
allowed themselves a time limited role in creating more genetic variability so that not all the
variability inherent in generation O Kitties was present at the launch of the application. When
additional genetic diversity can be injected later, it can be used as a marketing tool by timing
the injection so that it produces the best economic results.

29 CryptoKitties: Collect and breed digital cats! Available online: https://www.cryptokitties.co
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Combining Platform and Application models in the SOFIE architecture

Here we apply our System Dynamics understanding to the SOFIE approach and, more
specifically, its pilot cases.

In order for the model to be meaningful, we first need to understand the relevant DLT platforms
and have a good understanding of the business level functionality of the pilot case. By modelling
the interactions between DLTs and application business functionality, we arrive at the business
model of the pilot.

Next, we develop a preliminary model of the food-chain pilot case to evaluate the sustainability
of the created business platform through its causal feedback loops.

Food Chain Pilot Business Platform Model
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Figure 31. Federation growth and sustainability with platform owner and platform user
reinforcing causal feedback loops

System Dynamics in Business Platforms Work Outlook

Up to this point the System Dynamics models produced and presented have been qualitative.
The next step would be to produce quantitative models by determining some parameters,
measuring some and making assumptions for others, and then fitting these to stochastic models
and also using simulation, as in [AEN19] (e.g., see Fig. 2 of [AEN19]). The outcome of this next
step can show under what conditions (parameter values) the business platform can thrive, to
what extent, and even the impact and gains of the various constituent players.
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7. Conclusion

This First Architecture and System Evaluation Report mainly provided initial component and
technique evaluation results and also illustrations of the type of evaluation that has been and
will be performed within the project. We expect to provide more concrete and integrated results
in the next WP4 deliverable, D4.4: Second Architecture and System Evaluation Report (M28),
after the Federation Architecture (D2.4), Initial Platform (D5.2), Federation Framework (D2.5)
and the Business Platforms (D3.3, pilot release) have matured.

The evaluation methodologies were many and diverse, from simple presentation of arguments
and qualitative evaluation, through modelling, analytical evaluation and simulation, to
implementation and measurements in real components and systems. Since pilots have a central
position in the SOFIE project, an important evaluation direction is inspired from each pilot,
considering the more general use case represented by the pilot, generalizing from the specific
choices made in the pilots, and evaluating the many potential alternatives around them.

In addition to the methodologies and tools for evaluation, the questions to be answered (i.e., the
targets of the evaluation) are diverse. They range from traditional performance metrics, which
typically have limited generality as they have to refer to fully specified systems, to more general
guestions such as security analysis, robustness, usability and even business analysis. It is
therefore even more obvious that the tools used and to be used for evaluation must be diverse
and applied at very different abstraction levels and under different assumptions.

Because of the diverse goals and evaluation methodologies, in this deliverable we have five
main sections with different style and tools and the following structure. In Section 2, we
performed a high-level qualitative evaluation of the architecture, focusing on the desired
properties and general approaches and technigues to achieve them.

Section 3 presented an initial SOFIE Federation Framework component evaluation, starting
here with three main components: (a) interledger, (b) privacy and data sovereignty, and
(c) identification, authentication and authorization.

Section 4 covered |oT resource access detailed evaluation and it goes to much more depth and
considers many more alternatives and their tradeoffs. The other sections do not intimately
depend on it, but demonstrates a more detailed design and evaluation and many useful
alternatives for the l1oT world.

Section 5, on Evaluation Scenarios, followed the SOFIE pilots, generalized them into pilot
inspired use cases by including alternatives not selected in the SOFIE pilots, abstracted them
out to appropriate degree and used emulation and simulation to consider the various tradeoffs
of many potential alternative design decisions and their impact. It thus provided guidance for
specific designs related to these use cases under various assumptions and constraints.

Section 6 addressed decentralized Business Platforms evaluation through an illustrative
application of a System Dynamics approach. It reflects preliminary work, qualitative only for now,
but sets the stage for our future efforts in this area.

Note that this third WP4 (Evaluation) deliverable is being produced in parallel with D2.4
(Federation Architecture, 2nd version) and D5.2 (Initial Platform Validation) and before D2.5
(Federation Framework, 2nd version — August 2019) and D3.3 (Business platforms, pilot
release — September 2019). The design of the architecture, the business platforms, the pilots,
and the implementation of the federation framework components and the systems are in flux.
Therefore, this deliverable focuses more on evaluating key aspects of the architecture,
framework components, and pilot inspired use cases, rather than providing an evaluation of a
specific data point in the development of one or many systems.
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