

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D4.2

Testbed and Emulation Environment Design
and Setup

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 28.2.2019

Author(s) Dmitrij Lagutin (AALTO), Pekka Nikander (AALTO), Santeri
Paavolainen (AALTO), Vasilios Siris (AUEB-RC), Nikos
Fotiou (AUEB-RC), Spyros Voulgaris (AUEB-RC), George
Polyzos (AUEB-RC), Mikael Jaatinen (LMF), Petri Laari
(LMF)

Responsible person Dmitrij Lagutin (AALTO), dmitrij.lagutin@aalto.fi

Target Dissemination Level Public

Status of the Document Completed

Version 1.00

Project web-site https://www.sofie-iot.eu/

mailto:dmitrij.lagutin@aalto.fi
https://www.sofie-iot.eu/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 2(19)

Table of Contents

1. Introduction.. 3

2. SOFIE Testbeds ... 4

2.1 Local Testbeds ... 4

2.1.1 AALTO .. 4
2.1.2 AUEB-RC .. 5
2.1.3 LMF Ericsson .. 6

2.2 Testbed Interconnection ... 6

2.2.1 Interconnection Using Public IPs over the Internet 7
2.2.2 Interconnection Using Public IPs over the Internet with Firewall 7
2.2.3 Interconnection over Virtual Private Network (VPN) 7

2.3 KSI Blockchain Access ... 8

2.3.1 Integration Resources ... 8
2.3.2 Try-out Servers ... 8
2.3.3 Interconnection with Public Testbeds ... 9

3. Emulation Environment .. 10

3.1 Food Chain Pilot – From Field to Fork ... 10

3.2 Energy Pilot – Optimized Demand Response and Electricity Marketplace ..
 .. 13

3.3 Energy Pilot – Smart Meters .. 14

3.4 Mixed Reality Gaming Pilot .. 15

4. Conclusions ... 18

References .. 19

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 3(19)

1. Introduction

The main aim of the SOFIE project is to enable interoperability between IoT silos using
distributed ledger technologies. The SOFIE solution will be tested in four real-world pilots
within three diverse topic areas: energy, food chain, and mixed reality gaming.

The main objective of SOFIE's evaluation work package (WP4) is the qualitative and
quantitative evaluation of SOFIE's architecture and framework. The results of the validation
and evaluation work conducted in WP4 and the recommendations based on these results will
be fed into the architecture and framework design in WP2, and the business integration in
WP3 (Business Platforms Integration). The plan for SOFIE's evaluation work has been
described in deliverable "D4.1 - Validation and Evaluation Plan" [Vas2018].

This deliverable describes the design and setup of SOFIE’s testbed and emulation
environment. The purpose of this work is twofold:

 SOFIE's testbed spans multiple project partners and allows testing various distributed
ledger technologies and their interaction with IoT devices on a wider scale.

 SOFIE's emulation environment emulates certain aspects of SOFIE pilots and related
more general use-cases, which allows realistic testing of various solutions without
deploying them yet in pilot environments.

The SOFIE testbed and emulation environment will be used in the evaluation work during the
rest of the project, with the first evaluation results to be reported in deliverable "D4.3 - First
Architecture and System Evaluation Report", due in June 2019.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 4(19)

2. SOFIE Testbeds

This section provides an overview of SOFIE’s testbeds. The purpose of the testbeds is dual:
(a) to enable testing various distributed ledger technologies (DLTs) without worrying about the
transaction costs and latency, (b) to protect the confidentiality of our work in progress, (c) to
allow testing interconnection between DTLs and IoT devices. The interconnected SOFIE
testbed is shown in Figure 1 below. Subsequent subsections describe local testbeds of
partners, various options for interconnecting local testbeds, and how access to the KSI
blockchain is provided.

IoT Sensors,
Actuators,

etc.

Gateways

DLT Node

IoT
Gateway

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

User

DLT Node
Partner 1

LMF Ericsson

Partner 2

Users,
Gateways,
IoT Devices

Users,
Gateways,
IoT Devices

Users,
Gateways,
IoT Devices

Partner 3

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

Figure 1. Detailed overview of the current SOFIE testbed

The current SOFIE testbed is composed of local partners’ testbeds (currently AALTO, AUEB,
and LMF Ericsson), which are connected with each other through the LMF Ericsson testbed
node. The local testbed deployments include nodes of the selected DLTs (Ethereum,
Hyperledger Fabric, etc.), IoT devices, IoT gateways, authentication and authorization
services, as well as tools that facilitate development and deployment.

User wanting to use the testbed would run an own DLT node and should possess necessary
tokens for the used DLT. Afterwards, the user can interact with IoT devices through DLTs and
smart contracts.

2.1 Local Testbeds

This section provides a detailed overview of each partner’s local testbed.

2.1.1 AALTO

Aalto’s local testbed is mainly used for research and it may also be used for teaching in the
future. The testbed will contain the following DLT components:

 An Ethereum miner, which operates in the context of the Nanopool mining pool. Ether
gained from mining can be used for smart contract experimentation on the real
Ethereum network.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 5(19)

 An archival node on the main Ethereum network for research purposes. An archival
node, in addition to storing the blockchain history, also stores additional information
such as the blockchain state history information normally retained by full nodes only for
a limited number of blocks. Such information is useful for analysing the Ethereum
network.

 Access to Guardtime’s KSI Blockchain.

 An Ethereum node on a SOFIE private Ethereum network.

 A Hyperledger Fabric node on a SOFIE private network.

 A Hyperledger Indy node on a SOFIE private network.

In addition, the testbed will contain multiple IoT-related components located in working area
(shown in Figure 1) of the Aalto’s SOFIE group.

Figure 2. Location of Aalto’s IoT testbed

The IoT setup at Aalto includes IoT gateways (such as Raspberry Pis), which are connected
to sensors (temperature, humidity, etc.), actuators, and other devices such as LED lights. The
gateways also run instances of relevant DLT nodes, which allows interaction between the
DLTs and actual IoT devices.

2.1.2 AUEB-RC

The AUEB local testbed is currently focused on experimentation with IoT device integration,
and user authentication and authorization. It consists of the following elements:

 A private Ethereum chain implemented using:
o Two Virtual Machines (VMs) acting as miners and RPC servers.
o One VM that implements auxiliary functions (bootstrap node, monitoring tool).

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 6(19)

o One Android smartphone running the Geth1 Ethereum client.

 Local Ethereum nodes connected to the Rinkeby and Ropsten Ethereum test networks

 An instance of the WS02 identity server2, which is based on open standards and open
source principles and provides identity and access management functions.

 An instance of the OAuth2.0 server 3 , which implements an open authorization
framework that provides delegated authorization to protected resources.

 A VM running Mozilla’s Thing Gateway 4 , which allows monitoring and controlling
devices through a single secure web interface, using the Web of Things standard5.

 A Hyperledger Fabric network.

 Α Hyperledger Indy node.

 Hash-lock based interledger functionality between the public Etherium test networks
and the private Ethereum deployments and between Ethereum and Hyperledger
Fabric.

 Access to Guardtime's KSI Blockchain.

AUEB is additionally planning to provide:

 A Hyperledger Quilt deployment.

Furthermore, AUEB will deploy Raspberry Pis connected to sensors (temperature, humidity,
etc.), actuators, and other devices such as LED lights. Some of these devices will run
Mozilla’s Thing Gateway.

2.1.3 LMF Ericsson

LMF Ericsson’s local testbed is used for SW integration and validation before delivery to
evaluation and pilot deployment. It consists of the following elements:

 Access to Guardtime’s KSI Blockchain.

 One Ethereum node participating in the SOFIE private Ethereum network.

 One Ethereum node participating in the Rinkeby Ethereum test network.

 One Hyperledger Fabric node participating in the SOFIE private Hyperledger Fabric
network.

 One Hyperledger Indy node participating in the SOFIE private Hyperledger Indy
network.

 Supporting components that are used to manage and monitor the validation
environment (logging, monitoring, access control, backups, etc.).

 The Staging and “production” environments that will be used to host the local testbed
components, as well as all tools required by WP3 Continuous Integration and
Continuous Delivery.

LMF Ericsson will replicate the node configurations from Aalto or AUEB for the nodes that
participate in SOFIE private DLTs.

2.2 Testbed Interconnection

Some of the local deployments mentioned in the previous section will be interconnected,
forming a federated testbed among partners. This interconnection can be achieved using
various means, each of which induces performance-security tradeoffs. In the following we
discuss the various interconnection options as well as their tradeoffs. We have chosen the
second option “Interconnection using public IPs over the Internet firewall” for the current

1 https://geth.ethereum.org/downloads/
2 https://wso2.com/identity-and-access-management/
3 https://github.com/bshaffer/oauth2-server-php
4 https://iot.mozilla.org/gateway/
5 https://www.w3.org/WoT/

https://geth.ethereum.org/downloads/
https://wso2.com/identity-and-access-management/
https://github.com/bshaffer/oauth2-server-php
https://iot.mozilla.org/gateway/
https://www.w3.org/WoT/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 7(19)

SOFIE testbed. If necessary, we may modify the testbed to use another solution for
interconnection during the course of the project.

The following table summarizes the possible interconnection methods and their properties.

Table 1. Testbed interconnection design choices

Interconnection
Method

Advantages Disadvantages

Public IPs  Very easy to setup/extend  Requires reachable
IPs/ports

 Low security

Public IPs with
firewall

 Easy to setup/extend
 Prevents 3rd parties from

joining the blockchain network

 No confidentiality
 Some management

overhead

VPN  Secure
 Public IPs are not required,

except for VPN server

 Management overhead

2.2.1 Interconnection Using Public IPs over the Internet

This is the simplest form of interconnection. The nodes in the local deployments are
configured with a publicly accessible IP address and they are interconnected using the peer-
to-peer (P2P) mechanisms provided by each ledger technology. Using this approach, the
testing network can be easily set up and extended. However, this approach requires
reachable IP/port pairs, which is not always easy to achieve (especially in corporate networks).
Furthermore, this approach introduces security risks: in addition to the traditional security risks
that the communication over the public Internet entails, there are some new, DLT-specific
risks. For example, the official implementation of the Ethereum blockchain cannot be easily
configured in a way that prevents 3rd parties to monitor the local chain, or even participate in
its mining process. It should be noted here that the blockchain specific P2P protocols provide
integrity protection.

2.2.2 Interconnection Using Public IPs over the Internet with Firewall

This method is similar to previous one with the difference that it uses a firewall (e.g., iptables
tool in Linux kernel) in order to prevent outside parties from joining the blockchain network. In
a nutshell this method can be used for turning a permissionless blockchain technology into
persmissioned. However, this method does not provide confidentiality, hence all DLT-specific
messages can be monitored by an outside party. Still, using this method the testbed can be
easily set up, although it entails some management overhead when extending the testbed
(e.g., updating firewall rules). Furthermore, and similarly to the previous method, it requires
reachable IP/port pairs.

2.2.3 Interconnection over Virtual Private Network (VPN)

The final method under consideration is the use of a VPN service (some of the consortium
members are experienced in setting up testbeds over OpenVPN). This method is the most
secure of all, as it provides confidentiality and access control. Furthermore, assuming a star
topology, only the IP address/port of the VPN server must be reachable. On the other hand
this is the hardest method to configure and manage, since it requires certificate generation,
node configuration, etc. Furthermore, the VPN server must have high availability to assure
adequate overall testbed availability.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 8(19)

2.3 KSI Blockchain Access

KSI signatures are server based, meaning that signing data requires online access to the KSI
service. The verification of the signatures can be done both offline and online. There are two
options for access to KSI:

 KSI Software Development Kit (SDK)

 Catena middleware

The KSI SDK provides the lowest level of integration. It enables "full access" to the KSI
functions (signing, extending, verifying) and lets the integrator fine-tune all possible options.
As a consequence, it leaves many common challenges, such as signature storage and
extension, to the integrator to solve.

Catena is middleware that is meant to address common integration challenges, such as
asynchronous signing, signature persistence, and automatic extension. It provides the
integrators with higher-level functionality, such as annotating signatures and linking signing
events (data provenance), in order to reduce the effort for building a complete solution.
Catena internally uses the aforementioned SDK to perform low-level KSI operations. The
functionality of Catena is grouped and packaged into logical applications (Catena-KSI,
Catena-DB, Catena-Prov) so that the integrator can choose which ones to deploy and use.

KSI SDK and Catena are not mutually exclusive: they can be used in combination if needed.
This depends on the application type and the requirements for signing and verifying data.

2.3.1 Integration Resources

Depending on which integration option one wants to use, the following is needed to sign data,
extend and verify signatures with KSI:

 access to KSI Gateway and KSI SDK to communicate with it; or

 access to Catena middleware and HTTP client library to communicate with it.

2.3.2 Try-out Servers

Catena

For the list of available API endpoints and reference documentation see
https://tryoutcatena.guardtime.net. It is a Swagger UI that also allows direct execution of
requests. This is the quickest option to get started with signing.

KSI Gateway

The KSI Gateway has two endpoints, one for aggregation/signing and one for signature
extension. For tryout these are:

 http://tryout.guardtime.net:8080/gt-signingservice

 http://tryout-extender.guardtime.net:8081/gt-extendingservice

The KSI Gateway uses HMAC-based authentication built in the KSI protocol. The KSI
Gateway endpoints are expected to return "Bad URI" when just used in web browser.

In addition, the KSI publications file URL is needed for signature extension and verification
with the KSI SDK. For Guardtime provided KSI services, this is
https://verify.guardtime.com/ksipublications.bin.

KSI SDK

The SDK is available for Java, .NET and C. The description and documents on how to access
are provided to the try-out user account.

https://tryoutcatena.guardtime.net/
http://tryout.guardtime.net:8080/gt-signingservice
http://tryout-extender.guardtime.net:8081/gt-extendingservice
https://verify.guardtime.com/ksipublications.bin

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 9(19)

2.3.3 Interconnection with Public Testbeds

The SOFIE project will use and combine public/private ledgers, in order to evaluate basic
blockchain features with our implementations. We will examine consensus protocols, such as
Proof-of-Work (PoW), Proof-of-Stake (PoS), and Proof-of-Authority (PoA), and the use of
Smart Contracts instead of legacy databases.

Ethereum is an open-source decentralized platform with the ability to deploy and execute
smart-contracts. It also implements state and value-awareness. The online platform uses PoW,
like Bitcoin. Though, we will utilise public testbeds, through the following clients:

 Parity-Ethereum software is developed in Rust programming language. It gives
access in two public test networks. Ropsten for nodes with PoW and Kovan for nodes
with PoA consensus. Parity allows us to analyse GAS consumption in executed
transactions with a tracing tool.

 Go-Ethereum is developed in Go programming language. We are able to connect to
Rinkeby testnet for PoA consensus. Go-Ethereum also allows us to investigate GAS
consumption.

Both clients support the deployment and usage of smart-contracts. These contracts are
created through Solidity. Solidity is a turing-complete language, designed to target the
Ethereum virtual machine. So far, it is considered as the best choice for this task.

Apart from the public testbeds, we will setup private Ethereum networks to test various
consensus mechanisms. Parity allows us to change the consensus mechanism, according to
our needs. Go-ethereum does not provide this feature, but we are able to extend the client,
implementing our own ideas for consensus.

We already use Javascript language (web3.js6), in order to retrieve statistics from the public
Ethereum networks. The first version of our clients is also implemented Javascript. These
clients are able to interact with Parity and Go-Ethereum respectively. Our plan is to switch to
Python (web3.py7), for the same purposes.

6 https://github.com/ethereum/web3.js
7 https://github.com/ethereum/web3.py

https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.py

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 10(19)

3. Emulation Environment

In SOFIE evaluation work package (WP4) we plan to design, implement, and experiment with
emulated (or simulated in some cases) versions of all four SOFIE pilots and the related more
general use cases. The emulations will help us develop a better understanding of the
interaction and interfacing of involved entities, as well as potential functionality and
performance shortcomings that need to be addressed. Most importantly, they will allow us to
experiment with a number of diverse configurations and more general settings, to assess their
advantages and disadvantages, and to perform more educated decisions on the selection and
future recommendations of appropriate components and parameters.

More specifically, our pilot emulations will allow us to address the issue of data management,
that is, what data is stored where. This is far from trivial, as data will cross multiple databases,
ledgers, and IoT devices, which may be private, public, or shared between specific entities.
Deciding on which data is stored where is of key importance to the SOFIE project, as it will
determine the level and tradeoffs between privacy, accountability, and performance of the
proposed framework.

Focusing on the blockchain-related aspects of our pilots, we will have the opportunity to
experiment with different ledgers, such as (public and/or private) Ethereum, Hyperledger
Fabric, KSI, etc. This gives us a multitude of diverse configurations, as different blockchains
have different transaction latency, transaction size, transaction cost, block generation time,
and more. Notably, our emulations will allow us to experiment with and assess the pros and
cons of different interledger setups, which is a crucial element in any framework employing
multiple interacting ledgers.

In the following sections we lay out a generic roadmap for the implementation and use of an
emulation environment for each of the four SOFIE pilots.

3.1 Food Chain Pilot – From Field to Fork

The food chain pilot emulation will provide an environment for experimenting with the use
case’s alternative solutions and parameters. This pilot involves five main stages: (i) a farmer
producing table grapes, (ii) a transportation company, (iii) a storage and distribution center, (iv)
a second transportation company, and (v) a supermarket. Grapes are packaged in smart
boxes at the very first stage, i.e., directly by the farmer, and they remain in these smart boxes
all the way till they are displayed on supermarket shelves and purchased by customers. That
is, smart boxes are the end-to-end transportation unit across the entire food chain pilot.

Each smart box has an RFID tag with a unique box ID. Every person (or entity, location…)
involved in the food chain is equipped with an RFID reader and his/her unique person ID (or
entity ID if the system is fully automated). When a person starts handling a box, he/she scans
its tag, and a record is created associating a person ID with a box ID and a timestamp.

In addition to data collected through RFID readers, each stage associates additional metadata
with each smart box, collected through sensors on their premises. For example, on the
farmer’s side, SynField sensors (flagship product of SOFIE partner Synelixis) contribute
relevant historical precipitation, humidity, and temperature data. Refrigerator trucks are
equipped with digital thermometers recording the history of temperatures during transportation.
Temperature, humidity, and location information are gathered at the storage and distribution
centre, while similar measurements are collected at the supermarket site as well.

The ultimate goal in the food chain pilot is to provide provenance information and
accountability, while respecting different sites’ privacy policies. Indeed, some of the data
collected at a site may be made public, while some may be classified as proprietary to the site.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 11(19)

To fulfil this goal, there is a need to generate some sort of digital “receipt” at each handover of
smart boxes. More specifically, when a site A hands a smart box over to a site B, the following
could happen:

 A’s public data related to the box should be signed by A and handed to B, and B
should sign that data and return the signature to A.

 A’s private data related to the box should be stored by A, but a hash of that data
should be signed by A and provided to B, and B should sign that hash and return the
signature to A. Although this data remains private at A’s site, in case of dispute signed
hashes can be used to prove the authenticity of complete handover information.

Sites A and B may opt to exchange that data and signatures in a peer-to-peer fashion, and to
store them in private databases, each being responsible for their copy of the data.
Alternatively, they may opt to utilize a common ledger. In the general case, the ledger storing
handover data between two stages need not be the same as the ledger employed by two
other stages, neither do the two ledgers be based on the same ledger technology. For
instance, the farmer and the first transportation company could be recording handovers on a
private Ethereum deployment, while the first transportation company and the storage and
distribution centre may be using a Hyperledger Fabric installation. In the extreme case, four
separate ledgers can be used to store handover data across all five stages.

We expect stages to opt for deploying private ledgers, to avoid the transaction costs
associated with public ledgers, such as Ethereum. However, private ledgers do not provide as
strong immutability guarantees as established public ledgers, given that the latter typically
involve a substantially larger user base. To address this issue, it may be selected to frequently
store anchors of private-ledger block hashes on some highly trusted public ledger, such as
KSI or public Ethereum, to provide this extra immutability guarantee. To further lower costs, an
extra intermediate ledger L may be introduced between small private ledgers and the highly-
trusted, expensive public ledger. In that scenario, all private ledgers would frequently store
their current block’s hash into the intermediate ledger L, while only L’s block hashes being
submitted to the expensive highly-trusted ledger.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 12(19)

Figure 3. Emulation environment of SOFIE Food Chain Pilot

Figure 3 illustrates a sample configuration, where smart box handover data are recorded in
private instances of Ethereum or Hyperledger Fabric, which periodically store their block
hashes into an intermediate level private Ethereum instance. The latter, in turn, periodically
stores its block hashes into a top-level ledger, which can be either KSI or the public Ethereum
blockchain, in order to provide higher immutability guarantees.

The food-chain pilot emulation will implement and test the efficiency and cost of the various
types of configurations described above. In terms of implementation, we will deploy our own
instances of Ethereum and Hyperledger Fabric on VMs (e.g., use the SOFIE testbeds or
interconnected testbed). We will use Python with the web3.py library for accessing Ethereum,
and the Hyperledger bindings for accessing Hyperledger Fabric 8 . Each actor (i.e., each
distinct farmer, transportation truck, storage employee, and supermarket staff member will be
modelled as a separate process written in Python, interacting with each other and participating
in the corresponding ledgers. The use of interledger transactions will be tested for interactions
across different ledgers.

A number of parameters will be explored. Most notably, the choice of specific blockchain
technologies will be assessed, as well as the potential issues regarding their interoperation.
Performance parameters to test will include the frequency and type of data being fed into the
system, the frequency of transaction submissions, the frequency of block hash submissions to
a higher-trust ledger in the hierarchy, and the volume of data stored on private databases. The

8 https://github.com/hyperledger/fabric-sdk-py

https://github.com/hyperledger/fabric-sdk-py

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 13(19)

latency and the cost of transactions will be measured. In addition, the steps that need to be
taken to resolve a dispute will be assessed.

3.2 Energy Pilot – Optimized Demand Response and Electricity
Marketplace

The ultimate goal of the electricity marketplace pilot is to use micro-contracts and micro-
payments to reduce or even eliminate reverse flows in the electricity grid. Due to increased
generation of electricity by distributed renewable sources, such as photovoltaic (PV) cells or
wind, electricity is being generated at the “consumption” end in increasing amounts. The goal
of the local electricity marketplace is to use pricing and other incentives to increase demand at
those places where more production is anticipated, thereby eliminating reverse flows created
by the “excess” electricity generated at PV cells.

In the SOFIE pilot, this “excess” electricity is marketed to the owners or managers of electrical
vehicles, incentivising them to charge their cars at places and sites where such cheap or
maybe even negatively priced electricity will be available.

The goal of the emulated version described here is twofold:

1. Test the technical feasibility of the planned approach.
2. Explore user reaction to different user experiences w.r.t. the transactions.

From the technical feasibility point of view, the emulation environment will set up an early
version of the “Flexibility marketplace”, as described in SOFIE deliverable D5.1 [Oik2018], in
an emulated environment. The necessary datasets for the emulation environment include:
typically available excessive energy in kWh and time period, the GPS locations of the charging
stations associated with each period, and preferably also the general availability of the
vehicles. Having additional representative datasets that would describe the pilot in a much
larger setting, e.g. in a setting emulating a large city, a county, or even country, would make
the results more interesting, but at this writing it is unclear if such data can be generated.

The datasets defined in SOFIE Data Management Plan [Laa2018] will be used or not used, in
the following manner:

1. Topology and asset description (JSON) is currently not planned to be used.
2. Measurement data from EVs (format open) is currently not planned to be used.
3. Log and access data (JSON) is currently not planned to be used.
4. Prediction, forecasting and planning data (JSON) will be used to simulate the planning

of demand response campaigns, using the kWh and time period information.
5. Demand response data (JSON) will be used to simulate the actual charging of EVs.
6. Whether Energy or Power forecast data for PV generation will be used is currently

open.
7. Positioning and location data of EVs (JSON) will be used to generate anonymised,

simulated availability of the vehicles, possibly together with the Energy or Power
forecast data.

In addition to these, it is expected that the simulations will need the GPS locations of the
charging stations.

The emulated environment will consists of the following components:

1. Underlying DLTs to:
a. Store the forecasts and actual charging data.
b. Store offers, bids, and deals (SOFIE marketplace)

2. An early version of an interledger component, as developed by Aalto University.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 14(19)

3. An updated, energy-specific version of the decentralized marketplace, most probably
based on the source code released by SOFIE project in 20189.

From the user experience point of view, the goal is to emulate and study the following
functionality. This corresponds to the Italian Energy Pilot scenario outline in SOFIE deliverable
D5.1. The exact relationship to the scenarios needs to be worked out during the actual task.

1. Provide offers of cheap or negatively priced energy to be available. This may happen
automatically, based on rules and incoming forecasts. This corresponds to Flexibility
request use case of SOFIE deliverable D5.1.

2. Take bids from drivers to promise to charge at the designated time and place. Pull and
Push offer use cases from D5.1.

a. Test with alternative fleet manager experiences, e.g. auction, immediate pricing.
b. Test with alternative incentive structures, e.g. different offer structures.

3. Collect the actual charging data in a secure manner (Fleet monitoring use case).
4. In real life, this data is expected to be extracted from the charge MQTT data stream,

illustrated in Figure 13 of D5.1. For the emulation, this data will be artificially generated,
either in a semi-random manner or based on the data about the general availability of
the vehicles, if feasible.

5. Match accepted bids with actual charging behaviour. This is not defined as a use case
in D5.1, but is still needed for the full functionality.

a. Pay benefits to bids that charged as agreed.
b. Charge “fines” for bids that failed to fulfil promises.

Later on, the emulation environment is planned to be reused to generalise the approach to
also other major electricity consumer classes in addition EV users and fleet managers. It may
also be reused for the upcoming EU H2020 PHOENIX project.

3.3 Energy Pilot – Smart Meters

The goal of the smart meters data access pilot is to enable controlled, secured, and privacy
preserving smart meter data sharing among smart meter operators, users and third party
service providers. Sharing smart meter data entails privacy risks. Furthermore, with the
activation of the EU General Data Protection Regulation (GDPR), this task is impacted by
strict legal restrictions (currently resulting in halting this activity in Estonia, i.e., the location of
this pilot). This emulation based study related to this pilot will pursue the demonstration of
smart contract-based access control mechanisms that will provide transparency, will support
user approval, as well as consensus withdrawal, and will enable user rights to data access. At
the same time, these mechanisms will also be used for dispute resolution among the involved
parties, as well as for privacy preserving statistics using techniques such as differential privacy.

The pilot will leverage the IoT resource access business platform described in D2.3 [Paa2018]
and it will use existing authorization standards, such as OAuth2, combined with blockchain-
based smart contracts. Furthermore, it will consider the limitations, in terms of computational
power, trust, access to code, of the smart meter devices and will use auxiliary services and
mechanisms, sidechain constructions, and micropayment techniques (such as those
described in [Fot2018][Fot2019]).

The goals of the emulated version of the pilot are:

1. Test the technical feasibility of the planned approach.
2. Measure the impact of various privacy-performance trade-offs.
3. Estimate the performance and cost of large-scale deployments as a function of the

costs introduced by the underlay blockchain technology.

9 https://github.com/SOFIE-project/offer-marketplace

https://github.com/SOFIE-project/offer-marketplace

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 15(19)

4. Evaluate possible trade-off (in terms of performance, cost, and security) of different
distributed ledgers interconnected with interledger mechanisms and micropayment
techniques.

5. Evaluate the security properties of the pilot by performing security attacks.
6. Propose extensions/modifications to the existing devices and platforms.

The emulated environment will consist of the following components:

1. “Underlying,” company-specific DLTs as follows:
a. KSI blockchain used for timestamping as well as for recording data hashes.
b. Ethereum blockchain used for implementing the corresponding smart contracts.
c. Permissioned or private distributed ledgers used for storing data hashes.

2. Emulated smart meters. The emulated devices will be capable of:
a. Generating the same type of data as the real devices.
b. Encoding data using protocols supported by the real devices.
c. Providing the same access mechanisms (e.g., direct access, access over the

Internet using HTTPS), as well as cryptographic primitives (i.e., public key
encryption and emulated physical unclonable functions) as the real devices.

3. Emulated “Data hubs”. These are the entities responsible for collecting data from the
smart meters.

4. Applications that will emulate the involved actors, i.e., (and as they are specified in
SOFIE deliverable D5.1):

a. Smart meter system operators.
b. Smart meter owners.
c. Energy service providers.

5. “Authorization servers” supporting OAuth2 (and related protocols). The emulated
environment will support multiple granularities of access control (e.g., access to the
data of a specific user, access to the data of the users of a specific operator), hence it
will support various deployment strategies for the authorization servers (e.g., servers
owned by the users, by an operator, etc).

6. Differential privacy mechanisms.

3.4 Mixed Reality Gaming Pilot

The focus of the emulation of this pilot will be to investigate what is a suitable DLT setup for
this pilot, experimenting with all the possible configurations at the same time. Eventually, we
will provide an environment for experimenting with the scenarios presented on this pilot. One
of the main challenges, in this pilot, is to provide scalable DLTs to cost effectively support
millions of active users per day with thousands of transactions per second. This pilot consists
of the following:

 Core game

 Mini game(s)

 Mini IoT game(s)

The core game that will be implemented in this pilot will allow users to collect, buy, and trade
assets from other users leveraging DLTs to provide player ownership of an asset, a
marketplace, transparency, and consistency of asset attributes and transactions. In the
emulation of the core game, in order to meet the aforementioned requirements we can use
several solutions and configurations. First of all, to emulate this pilot we will use an
implementation of Ethereum. We will experiment with both public and private instances of the
Ethereum blockchain, to see the differences between these two implementations, assessing
their pros and cons. Furthermore, we will test how the system will respond to different
consensus algorithms (PoS, PoA, etc.). In order to support payments both in cryptocurrencies

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 16(19)

and in fiat currencies, we plan to investigate a version of the Interledger Protocol10. Figure 4
illustrates a sample configuration of core game.

Figure 4. Basic overview of SOFIE Mixed Reality Gaming Pilot emulation environment

Players could be emulated as JavaScript applications with the use of the web3.js library. The
creation of new assets can be done via smart contracts. Players or even applications will be
able to purchase and trade objects with the use of smart contracts. Therefore, users will have
to interact with the DLT to perform such actions. The assets and their ownership will be
recorded on the DLT.

Mini games are built on top of the assets created on the core game and they constitute an
extension of the core game. Developers will be able to use the assets from the core game to
build new games, based on the core game. For example, if the assets that were created on
the core game are weapons, then a mini game could be a duel game between the players and
theirs weapons respectively. The winner will earn a reward (e.g., a shield), which will be used
only for the mini game. The emulation of a mini game will be on top of core game content that
exists on the blockchain. In this scenario, there are several possible configurations. Firstly, we
will use a single blockchain, used both for the core game and for the mini game. Another
setup will be to use different blockchains for the core game and each of the mini games. This
configuration is useful for scenarios, where mini games provide additional assets. In this setup,
we will also utilise the Interledger protocol. Figure 5 provides an overview of one of the many
possible configurations for the emulation of the mini game.

10 https://interledger.org/

https://interledger.org/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 17(19)

Figure 5. SOFIE Mixed Reality Gaming Pilot emulation environment with Mini game

The last part of this pilot are mini IoT games. These games would leverage IoT devices to
enhance the gameplay. For example, players will interact with an IoT device (e.g., a beacon)
to gain an asset. These games are also built on top of the assets created on the core game.
For the emulation of these games, we will use virtual Things and we will record the actions to
the blockchain (e.g., that a user has reached a target geolocation). The configurations on
these IoT games are the same as the configurations on the mini game.

We can also investigate through emulation or simulation more general scenarios and use
cases involving real mixed-reality gaming, i.e., both cyber and real-world assets and both
sensors and actuators, for example in a smart mall environment.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 18(19)

4. Conclusions

This deliverable describes the SOFIE testbed and emulation environment. The SOFIE testbed
spans multiple project partners and allows testing various distributed ledger technologies and
their interaction with IoT devices on a wider scale. SOFIE's emulation environment emulates
certain aspects of SOFIE pilots and related more general use-cases, which allows realistic
testing of various solutions without deploying them yet in pilot environments. The SOFIE
testbed and emulation environment will be used in the evaluation work during the rest of the
project, and the further progress of SOFIE's evaluation work package will be reported in
deliverable "D4.3 - First Architecture and System Evaluation Report", due in June 2019.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.2 – Testbed and Emulation
Environment Design and Setup

Security: Public Date: 28.2.2019 Status: Completed Version: 1.00

SOFIE 19(19)

References

[Fot2018] N. Fotiou, V. A. Siris, and G.C. Polyzos, "Interacting with the Internet of Things
Using Smart Contracts and Blockchain Technologies", Proc. of Security, Privacy, and
Anonymity in Computation, Communication, and Storage 2018 (SpaCCS 2018), Melbourne,
Australia, 2018.

[Fot2019] N. Fotiou, V. A. Siris, S. Voulgaris, G.C. Polyzos, and D. Lagutin, “Bridging the
cyber and physical worlds using blockchains and smart contracts”, Proc. of the NDSS
Workshop on Decentralized IoT Systems and Security (DISS), 2019.

[Laa2018] P. Laari et al., “SOFIE Deliverable D6.5 - Data Management Plan”, June 2018.
Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D6.5-
Data_Management_Plan_v1.00.pdf.

[Oik2018] I. Oikonomidis et al., “SOFIE Deliverable D5.1 - Baseline System and
Measurements”, June 2018. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-
Baseline_System_and_Measurements.pdf.

[Paa2018] S. Paavolainen et al., “SOFIE Deliverable D2.3 - Federation Framework, 1st
version”, October 2018. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.3-
Federation_Framework_1st_version_v1.00.pdf.

[Sir2018] V. A. Siris et al., “SOFIE Deliverable D4.1 - Validation and Evaluation Plan”, October
2018. Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D4.1-
Validation_and_Evaluation_Plan-v1.00.pdf.

https://media.voog.com/0000/0042/0957/files/SOFIE_D6.5-Data_Management_Plan_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D6.5-Data_Management_Plan_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.3-Federation_Framework_1st_version_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.3-Federation_Framework_1st_version_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.1-Validation_and_Evaluation_Plan-v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.1-Validation_and_Evaluation_Plan-v1.00.pdf

