

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D4.1

Validation and Evaluation Plan

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 31.10.2018

Author(s) Vasilios A. Siris (AUEB-RC), Mikael Jaatinen (LMF), Yiannis
Oikonomidis (SYN), Santeri Paavolainen (AALTO), Tommi
Elo (AALTO), Nikos Fotiou (AUEB-RC), Spyros Voulgaris
(AUEB-RC), Dmitrij Lagutin (AALTO), Ektor Arzoglou
(AALTO), Giuseppe Raveduto (ENG), Priit Anton (GT),
George C. Polyzos (AUEB-RC), George Xylomenos (AUEB-
RC)

Responsible person Vasilios A. Siris (AUEB-RC), vsiris@aueb.gr

Target Dissemination Level Public

Status of the Document Completed

Version 1.0

Project web-site https://www.sofie-iot.eu/

mailto:vsiris@aueb.gr
https://www.sofie-iot.eu/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 2(20)

Table of Contents

1. Introduction.. 4

2. Validation and Evaluation Plan ... 5

2.1 Validation methodology and plan ... 5

2.2 Evaluation methodology and plan .. 6

2.3 Joint analysis of testbed and pilot results ... 7

2.4 Evaluation from a business perspective ... 7

2.5 Evaluation using a system dynamics approach ... 7

3. Validation and Evaluation Platforms .. 9

3.1 Local testbeds .. 9

3.1.1 LMF Ericsson validation environment ... 9
3.1.2 AUEB testbed ... 9
3.1.3 Aalto testbed ... 9

3.2 Testbed interconnection ... 10
3.2.1 Description of KSI Blockchain access ... 10

3.2.2 Integration Resources ... 11
3.2.3 Try-out Servers ... 11

3.3 Pilots ... 11

3.3.1 Food Chain ... 12

3.3.2 Energy (Estonia) ... 12
3.3.3 Energy (Italy) .. 13

3.3.4 Mobile Gaming .. 13

4. Tools ... 14

4.1 Validation tools ... 14

4.1.1 Source control management ... 14
4.1.2 Continuous code quality inspection .. 14

4.2 Verification tools ... 15

4.3 Testbed tools .. 15

4.3.1 Remix IDE ... 15

4.3.2 MetaMask ... 15
4.3.3 Ethereum Network Stats ... 15
4.3.4 BlockScout .. 16

4.3.5 Solium ... 16

4.3.6 OpenZepellin .. 16

4.3.7 Fuzzing tools ... 16
4.3.8 Hyperledger Explorer .. 16

4.3.9 Hyperledger network visualization .. 16
4.3.10 Hyperledger Caliper .. 17
4.3.11 Hyperledger Cello ... 17

4.3.12 Hyperledger Composer ... 17
4.3.13 Tineola .. 17
4.3.14 Project Things ... 17

4.4 Analytical evaluation tools .. 17

5. Conclusions ... 19

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 3(20)

6. References ... 20

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 4(20)

1. Introduction

The main objective of the evaluation work package (WP4) is the qualitative and quantitative
evaluation of the SOFIE architecture and framework. Key Performance Indicators (KPIs) and
assessment criteria defined in WP2 (Federation Architecture & Framework) will be leveraged.
Moreover, the results of the validation and evaluation work conducted in WP4 and
recommendations based on these results will be fed into the architecture and framework design
in WP2 and the business integration in WP3 (Business Platforms Integration). This feedback
will be obtained in the two planned cycles of validation and evaluation activities, which
correspond to an initial (first) and second report of findings and recommendations for the SOFIE
architecture and framework, guiding the following SOFIE design and development activities.
The cycles of validation and evaluation will map against the main releases of the SOFIE platform.

The work in WP4 involves two distinct directions: validation and evaluation.

● Validation will focus on checking whether the SOFIE platform meets the requirements
of the stakeholders that use the platform. Validation is distinct from integration and
verification, which includes testing the behavior and interoperability of components,
undertaken in WP3.

● Evaluation will focus on assessing and measuring the performance of the SOFIE
architecture and platform, based on the KPIs and assessment criteria defined in WP2
and other more general systems metrics and goals. The evaluation will include both a
quantitative and a qualitative component.

○ The quantitative evaluation will focus on aspects such as response time,
throughput, resource utilization, scalability, and availability. Some of these
metrics can be assessed through measurements from testbed experiments with
implementations of the SOFIE framework, while others, such as scalability and
availability, will be assessed using analytical models and tools.

○ The qualitative evaluation will focus on architectural aspects, such as the security
and privacy features of the overall architecture and of a subset of the platform
components, the ability to integrate different IoT platforms and provide services
across domains, and the ability to support innovative applications.

Although validation and evaluation have different objectives, the same platforms will be used
for both validation and evaluation.

This deliverable is structured as follows. In Section 2 we discuss the methodology for the
validation and evaluation work, along with the corresponding time-plan. In Section 3 we describe
the evaluation platforms, some of which have already been implemented at the time this
deliverable was prepared. In Section 4 we discuss the tools that will be used in the validation
and evaluation activities, which include both software and analytical tools. In Section 5 we
conclude by summarizing the methodology and plan, emphasizing the goals and key directions
for the validation and evaluation work.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 5(20)

2. Validation and Evaluation Plan

This section gives a high-level description of our plan and methodology for validating and
evaluating the SOFIE project outcomes.

2.1 Validation methodology and plan

The purpose of software (SW) validation is to assure that software does what the customer or
end user wants. It is perfectly possible for a piece of software to pass a series of verification test
cases, and still not fulfill customer expectations. This usually happens because requirements
were not properly communicated or defined to the software developers. On the other hand, it is
quite unlikely that software that fails verification testing will meet the customer's requirements.
Validation is a wider concept than verification against defined test cases and requirements. In
addition to pure verification, validation will involve trial usage of the system with the customers
and representative users, to ensure that any missing or misunderstood requirements are
revealed and can be incorporated (typically) through a change management process.

Testing (i.e., verification) can be divided as follows:

● Unit testing: Verification of the correct behavior of single SW components or units. This
phase is either within the WP2 scope or beyond SOFIE’s scope (e.g., for third-party or
free and open-source SW).

● Integration testing: Verification of the start-up procedures and SW component
interfaces. Typically, a major part, or even the full range of these tests are automated in
a continuous integration process. Integration testing is within the scope of WP3.

● Functional testing: Verification of the correctness of the implementation of functional
requirements. This activity is within the scope of WP4 validation work.

● Interface testing: Verification of the correctness of interfaces and interoperability
between subsystems and systems against designated API specifications. This activity
is within the scope of WP4 validation work.

● System testing: Verification of system-level functional and non-functional requirements
(e.g., realized as KPIs in SOFIE). This activity will take place in WP4 during validation
and evaluation, with the majority of the activities will be part of evaluation.

● Acceptance testing: Formal process where the complete system is verified against
customer/end user defined acceptance requirements. In SOFIE, this phase may not be
required, but if it is, it will be shared between WP4 validation and evaluation.

Verification in a SW development project is primarily a risk mitigation function. The purpose of
verification is to advise the project on the quality risks in the delivery, seeking to mitigate the
greatest risks as early as possible and to provide information on the residual risks such that a
rational judgment between cost, time, and quality of the delivery can be taken.

The trial usage part of validation will take place in SOFIE as part of the four pilots.

The SOFIE integration plan, D3.1 [SOFIE D3.1], describes the integration-related parts of the
validation plan and the overall integration process. As a continuous integration methodology will
be applied in WP3, not all versions of the SOFIE business platforms will be delivered to WP4
and WP5 (Pilots). The following main principles will apply:

● The SOFIE testbed release (version 0) will undergo a partial scope of validation activities,
focusing on functional testing, interface testing and SW quality controls.

● The SOFIE main SW releases version 1 and version 2 will undergo the full validation
scope.

● For intermediate SOFIE SW releases, WP4 will only validate SOFIE business platform
versions with meaningful new content, such as new features, or important fault
corrections.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 6(20)

● Within WP4, validation and evaluation will be parallel activities, i.e., there will be no
acceptance testing required by evaluation.

● WP5 will only deploy SW that has undergone at least functional testing, interface testing,
and partial system testing.

● Acceptance testing and definition of acceptance test cases will be done jointly across
WP4 and WP5 pilots.

The time plan for the validation work will proceed with the following milestones:

● CI/CD (Continuous Integration/Continuous Delivery) environment design and setup as
per deliverable D3.1 [SOFIE D3.1] (October 2018 – June 2019), aligned to meet the
needs of deliverable “D4.3 - First Architecture and System Evaluation Report” due in
June 2019.

● First architecture and system validation (June 2019): this will define the test case
baseline (passed / not passed) and the feedback from pilots.
Second architecture and system validation (April 2020): this will define the test case
baseline (passed / not passed) and the feedback from pilots.
Final architecture, system, and pilot validation (December 2020): this will define the final
test case baseline, feedback from pilots and the final test report.

2.2 Evaluation methodology and plan

The goal of evaluation is to assess the value of a software concept, system, and subsystems.
Evaluation is a crucial stage in the software development process, both for commercial software
and for software developed as part of an academic exercise. For commercial software, the
customer will want to evaluate the software to determine how well it performs its advertised
functions. Evaluation is split into qualitative and quantitative evaluation.

The qualitative evaluation will focus on the following aspects: security and privacy of the overall
architecture and of individual platform components; ability to integrate different IoT platforms
and federate services across domains; support for innovative applications built on top of
SOFIE’s open federation platform and interworking with applications implemented directly on
IoT platforms outside the federation; and deployment complexity.

The quantitative evaluation will include performance evaluation, e.g., system throughput and
delay for various workloads and conditions, but also scalability and robustness. Also, individual
components of the SOFIE framework can be evaluated from such a perspective and their
synthesis can be investigated (and whether properties and performance of the system can be
deduced from those of the components). This is considered particularly important in the SOFIE
case since the emphasis is on open federation of potentially not fully understood (with respect
to their internal structure, behavior and performance) systems.

Two cycles of evaluation activities are planned, corresponding to the ‘cycle 1’ and ‘cycle 2’
implementations of the platform. The majority of the work in this task will focus on the ‘cycle 1’
prototype in order to provide feedback to WP2 and WP3 as early as possible. Following this,
the ‘cycle 2’ prototype evaluation will ensure that the design and implementation refinements
based on the first cycle feedback have improved the overall performance of the platform and its
individual components, without introducing negative impacts or regressions.

The time plan for the evaluation work will proceed with the following milestones:

● Testbed environment design and setup, deliverable D4.2 (February 2019): this will
include a detailed description of the testbed topology and the initial experience with its
setup depending on the evaluation scenarios and targets, including a justification of the
evaluation targets and Key Performance Indicators (KPIs) that are to be investigated.

● First architecture and system evaluation, deliverable D4.3 (June 2019): this will include
the initial evaluation scenarios and results of the SOFIE architecture and platform, from
both a qualitative and a quantitative perspective.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 7(20)

● Second architecture and system evaluation, deliverable D4.4 (April 2020): this will
include the complete evaluation of the SOFIE architecture and platform.

● Final architecture, system, and pilot evaluation, deliverable D4.5 (December 2020): this
will include the evaluation of the SOFIE platform, combining results from the architecture
evaluation, testbed evaluation, and results from the pilot experiments.

2.3 Joint analysis of testbed and pilot results

The results from the pilots will be analyzed jointly with WP5 and reported in conjunction with the
final set of system-level testbed evaluation results from WP5. This joint analysis and comparison
will verify the gains of the SOFIE platform in real conditions and validate its advantages.
Moreover, it will ensure consistency in reporting and make the final evaluation results available
in a single comprehensive document. This will also be useful for the overall evaluation of the
SOFIE architecture and its federation framework and business platform.

2.4 Evaluation from a business perspective

Blockchain and interledger technologies can have a significant impact on business models due
to the following key features: (i) they can provide integrity and trust while reducing the need for
trusted third parties, (ii) they can provide product provenance and immutable tracking, and (iii)
they can eliminate the need for intermediaries and can enable flexible peer-to-peer trading in a
decentralized environment. These features can collectively enable the development of
innovative applications, while reducing transaction costs and increasing efficiency.

These technologies can also lead towards open and decentralized platforms, where anyone can
provide services with minimum barriers and even synthesize services from other existing
services, perhaps without permission from the providers of the original services. Illustrating
these properties and evaluating them from multiple, different perspectives would help their
eventual realization and monetization. A Game Theoretic modelling of open platforms will be
attempted, e.g., in the spirit of A. Salazar [Sal15], in order to better elucidate the interactions
and dynamics among players and the role of open (digital) platforms, in particular compared to
the more traditional (closed, owned, or monopolistic) digital platforms.

Related KPIs that have been identified in the Annex of D2.2 [SOFIE D2.2] include the ability to
conduct transactions across multiple ledgers, the ability to develop applications on top of
multiple ledgers, and the ability of data publishers to dynamically control who has access to their
data.

2.5 Evaluation using a system dynamics approach

System dynamics is a field of study that perceives the world as a complex system where
“everything is connected to everything else.” This connection is depicted with feedback loops
that can be either positive (i.e., reinforcing) or negative (i.e., balancing). The feedback structure
of a system is first illustrated with causal loop diagrams (CLDs). Causal loop diagrams capture
the basic hypothesis about the causes and effects of dynamics and elicits mental models of
researchers. This is the initial step to communicate and assemble important input and feedback
from experts or the community. Finalized causal loop diagrams are then modelled into stock
and flow diagrams [Ste00].

More generally, systems thinking refers to the ability to see the world as a complex system, in
which we understand that “you can’t just do one thing” without affecting other things. If people
had such a holistic worldview, it is argued, they would then act in consonance with the long-
term best interests of the system as a whole, identify the high leverage points in the system,
and avoid policy resistance. System dynamics is a method to enhance learning in complex
systems. It is, partly, a method for developing simulation models to help us learn about dynamic

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 8(20)

complexity, understand the sources of policy resistance, and design more effective policies
[Ste00].

We are currently using the system dynamics methodology to create causal loop diagrams for
the digital business platforms of iPhone and Android devices [AEM+18], with the intention of
first understanding the smartphone industry in terms of value creation, market growth, and
user’s and app developer’s incentives for participation. These causal loop diagrams will, in turn,
be converted to stock and flow diagrams.

Once we have gained initial understanding of how digital business platforms work in general,
through this initial study and perhaps other studies into existing systems, our plan is to adapt
and use the results of our research on the SOFIE pilots. So far, there is scarce literature that
applies system dynamics to digital business platforms [RCK17], and specifically to case studies
concerned with the smartphone [DPR+17] or transportation [VB17] industry.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 9(20)

3. Validation and Evaluation Platforms

This section describes the platforms that will be used for validation and evaluation. These
platforms include local testbeds, the interconnection of local testbeds, software platforms
designed and implemented, and the pilots.

3.1 Local testbeds

3.1.1 LMF Ericsson validation environment

LMF Ericsson’s testbed for validation of the reference platform functionality, before delivery to
evaluation and pilot deployment, logically consists of three different systems:

● Supporting components that are used to manage and monitor the validation environment
(logging, monitoring, access control, backups, etc.).

● Development process support, e.g., (DevOps) Continuous Integration (CI) and
Continuous Delivery (CD) systems.

● Staging and “production” environments, which consist of necessary pilot component
deployments in both staging and “production” 1 and any other static components
supporting them, including Distributed Ledger Technology (DLT) setups (i.e., Ethereum,
private Ethereum, Hyperledger Fabric etc.).

3.1.2 AUEB testbed

The AUEB local testbed is currently focused on experimentation with IoT device integration, and
user authentication and authorization. It consists of the following elements:

● A private Ethereum chain implemented using:
○ Two Virtual Machines (VMs) acting as miners and RPC servers.
○ One VM that implements auxiliary functions (bootstrap node, monitoring tool).
○ One Android smartphone running the Geth2 Ethereum client.

● An instance of the WS02 identity server3, which is based on open standards and open
source principles and provides identity and access management functions.

● An instance of the OAuth2.0 server 4 , which implements an open authorization
framework that provides delegated authorization to protected resources.

● A VM running Mozilla’s Thing Gateway5, which allows monitoring and controlling devices
through a single secure web interface.

● A Hyperledger Fabric network.
● Hash-lock based interledger functionality between Ethereum and Hyperledger Fabric.
● Access to Guardtime's KSI Blockchain.

AUEB is additionally planning to provide:

● A Hyperledger Indy deployment.
● A Hyperledger Quilt deployment.

3.1.3 Aalto testbed

Aalto’s testbed is mainly used for research and it may also be used for teaching in the future. It
currently consists of:

1 “Production” in the sense of being in production for pilot testing and evaluation purposes, not in the

general sense of being in “production” as generally available to entities outside the project members.
2 https://geth.ethereum.org/downloads/
3 https://wso2.com/identity-and-access-management/
4 https://github.com/bshaffer/oauth2-server-php
5 https://iot.mozilla.org/gateway/

https://geth.ethereum.org/downloads/
https://wso2.com/identity-and-access-management/
https://github.com/bshaffer/oauth2-server-php
https://iot.mozilla.org/gateway/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 10(20)

● An Ethereum miner, which operates in the context of the Nanopool mining pool. Ether
gained from mining can be used for smart contract experimentation on the real Ethereum
network.

● An archival node on the main Ethereum network for research purposes. An archival
node, in addition to storing the blockchain history, also stores additional information such
as the blockchain state history information normally retained by full nodes only for a
limited number of blocks. Such information is useful for analyzing the Ethereum network.

● Access to Guardtime’s KSI Blockchain.

In the future the testbed will be extended with:

● An Ethereum node on a SOFIE private Ethereum network (connected to AUEB and other
partners).

● A Hyperledger Fabric network for interledger research and testing. If needed, multiple
small-scale networks will be run, and/or connected to other partners’ networks.

3.2 Testbed interconnection

Below we describe the planned interconnections among the local SOFIE testbeds.

● Interconnection of the AUEB, Aalto and LMF local testbeds

This will involve the interconnection of the local Ethereum nodes that are part of SOFIE’s private
Ethereum network. This interconnection will include two options. The first will have miners
running in nodes located in different local networks to be part of the same private Ethereum
network. The second option will involve interledger operations between nodes located in
different local networks, which belong to different private blockchains; these blockchains can be
of the same type (e.g., Ethereum) or different types. The second option requires a module
(gateway) outside the main nodes that handles the communication among the blockchains that
are necessary for running the hash time-locked contracts on the two blockchains.

● Interconnection of the AUEB testbed with the food chain pilot

Synelixis has provided access to its SynField platform, where a device dedicated for
experimentation provides various measurements including air temperature, solar radiation level,
air humidity, device temperature, and device current. These measurements can also be
accessed using a REST Web service. An application running at AUEB’s premises periodically
uses the REST API provided by SynField and pulls measurements. Then, it records the hash of
the measurements in an Ethereum smart contract located on AUEB’s private Ethereum network.

● Interconnection of local testbeds with Guardtime’s KSI Blockchain

Aalto and AUEB testbed connections to Guardtime’s KSI Blockchain will be realized through
try-out servers for both Catena and the KSI Gateway. Guardtime will take care of user
management and of providing Aalto and AUEB with access credentials. In fact, AUEB has
already been given access and has connected its local testbed to the KSI blockchain, using
KSI’s try-out Catena API. The blockchain is hosted by KSI and it is accessible through a REST-
based API.

3.2.1 Description of KSI Blockchain access

KSI signatures are server based, meaning that signing data requires online access to the KSI
service. The verification of the signatures can be done both offline and online. There are two
options for access to KSI:

● KSI Software Development Kit (SDK).
● Catena middleware.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 11(20)

The KSI SDK provides the lowest level of integration. It enables "full access" to the KSI functions
(signing, extending, verifying) and lets the integrator fine-tune all possible options. As a
consequence, it leaves many common challenges, such as signature storage and extension, to
the integrator to solve.

Catena is middleware that is meant to address common integration challenges, such as
asynchronous signing, signature persistence, and automatic extension. It provides the
integrators with higher-level functionality, such as annotating signatures and linking signing
events (data provenance), in order to reduce the effort for building a complete solution. Catena
internally uses the aforementioned SDK to perform low-level KSI operations. The functionality
of Catena is grouped and packaged into logical applications (Catena-KSI, Catena-DB, Catena-
Prov) so that the integrator can choose which ones to deploy and use.

KSI SDK and Catena are not mutually exclusive: they can be used in combination if needed.
This depends on the application type and the requirements for signing and verifying data.

3.2.2 Integration Resources

Depending on which integration option one wants to use, the following is needed to sign data,
extend and verify signatures with KSI:

● access to KSI Gateway and KSI SDK to communicate with it; or
● access to Catena middleware and HTTP client library to communicate with it.

3.2.3 Try-out Servers

Catena

For the list of available API endpoints and reference documentation see https://tryout-
catena.guardtime.net. It is a Swagger UI that also allows direct execution of requests. This is
the quickest option to get started with signing.

KSI Gateway

The KSI Gateway has two endpoints, one for aggregation/signing and one for signature
extension. For tryout these are:

● http://tryout.guardtime.net:8080/gt-signingservice

● http://tryout-extender.guardtime.net:8081/gt-extendingservice

The KSI Gateway uses HMAC-based authentication built in the KSI protocol. The KSI Gateway
endpoints are expected to return "Bad URI" when just used in web browser.

In addition, the KSI publications file URL is needed for signature extension and verification with
the KSI SDK. For Guardtime provided KSI services, this is https://verify.guardtime.com/ksi-
publications.bin.

KSI SDK

The SDK is available for Java, .NET and C. The description and documents on how to access
are provided to the try-out user account.

3.3 Pilots

All SOFIE pilots will leverage the Business Platforms (BPs) that will be developed based on
SOFIE’s framework and reference platform. Data collected by the various IoT platforms that lie
beneath the BP level will be available via the BP, hence, the availability of this data could serve
as a means of validation for the system.

https://tryout-catena.guardtime.net/
https://tryout-catena.guardtime.net/
http://tryout.guardtime.net:8080/gt-signingservice
http://tryout.guardtime.net:8080/gt-signingservice
http://tryout-extender.guardtime.net:8081/gt-extendingservice
http://tryout-extender.guardtime.net:8081/gt-extendingservice
https://verify.guardtime.com/ksi-publications.bin
https://verify.guardtime.com/ksi-publications.bin

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 12(20)

The following sections present the specific platforms developed in the context of each individual
pilot.

3.3.1 Food Chain

In this pilot, we currently have three IoT platforms involved in the different segments of the
supply chain path. Those platforms are either already commercially exploited by the partners
they belong to, or they are extended versions of the outcomes of other H2020 EU projects. More
specifically, we have the following IoT platforms (their details can be found in SOFIE Deliverable
D5.1 [SOFIE D5.1]):

● SynField IoT platform, consisting of hardware components (deployed in the pilot’s field)
and software components (in the form of a Cloud platform).

● Aberon platform, consisting of hardware components (deployed in the pilot’s
warehouse) and software components (in the form of a Cloud platform).

● Transportation IoT platform, consisting of hardware components (deployed on the
pilot’s transportation elements, e.g., vehicles and smart boxes) and software
components (in the form of a Cloud server).

For the purposes of the pilot, the IoT platforms listed above will be enhanced with DLTs, such
as Ethereum, Hyperledger Fabric, and KSI, based on their specific requirements. In addition, a
Trace-History Marketplaces component will be developed, which will serve as the Business
Platform for this specific pilot (as described in the SOFIE Deliverable D2.3 – Federation
Framework, 1st version.

User feedback: In this pilot, the main user feedback consists of the user’s (i.e., end customer’s)
reaction when she acquires information about a product. This information comes from the
different DLTs via the pilot’s Business Platform. Hence, the success or failure of this process
could be regarded an end-to-end evaluation of the whole system.

3.3.2 Energy (Estonia)

In this pilot, we have three environments that will be utilized: the smart-meters layer, the Elering
Estfeed platform layer, and the smart-meter owners and data exchange (distribution) layer,
using the KSI Blockchain API for integrity and security purposes.

The smart-meters layer provides input to the distribution layer and is the core for any data
exchange demonstrated by the energy pilot. The smart-meters data input that will be used can
be split into two categories: the data controlled by the grid operators (hence the pilot will only
receive their input as provided) and the data managed by Guardtime in order to demonstrate
the complete data provenance chain.

The Elering Estfeed platform connects all smart-meter data in Estonia and offers platform users
the interfaces through which various data sources can be used in the desired applications.

The use of the KSI Blockchain via the respective API will guarantee the integrity of smart-meter
data and authentication and support the agreements between parties.

User feedback: The evaluation in the Estonian energy pilot from a user perspective will target
the following two aspects (and owner groups). First, given that it is an existing, deployed smart
meter platform (Elering in Estonia and Energinet in Denmark) the expectation of the owners for
the platform is that access among their systems will have enhanced security because of the
SOFIE federated platform. Second, a small smart meter owner group has an interest in the
SOFIE platform supporting the smart meter data exchange, including the requirements for
integrity, authentication, and security aspects.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 13(20)

3.3.3 Energy (Italy)

The Energy pilot in Italy will leverage smart meters, electric-vehicle (EV) support equipment
(e.g., charging stations), and electric vehicles (six of them). It is worth mentioning that this
infrastructure is already deployed on the pilot site.

For the purposes of this pilot a software component will be developed for load and prediction
forecasting that will utilize historical data collected from the aforementioned infrastructure.
Additionally, a Flexibility Marketplace will be developed, which will serve as the Business
Platform of this pilot. This marketplace will also leverage a blockchain infrastructure.

User feedback: During this pilot, a marketplace, implementing the SOFIE framework, will offer
automated services to the involved actors (distribution system operator (DSO), Fleet manager,
EV user). Those services will also leverage the interoperability offered by SOFIE, leading to a
more efficient and secure flexibility management process. The “smooth” operation of the
marketplace could serve as an indicator of SOFIE’s added value to a system that would
otherwise be manually managed. Thus, feedback will be sought from the operator of the
marketplace (and the marketplace itself) and the involved actors.

3.3.4 Mobile Gaming

The mobile gaming pilot will make use of an existing smartphone game platform and
infrastructure that consists of a game development engine, servers, and services (owned by
Rovio).

For the purposes of this pilot, the use of Ethereum will be investigated and particularly its ability
to support a very large number of users.

User feedback: In the context of this pilot, a game will be developed. Due to the nature of this
pilot, the evaluation of SOFIE could be linked to the feedback of users playing the game. If the
game receives positive feedback (from many users, good reviews, etc.), we can use that fact
as an indicator of SOFIE’s framework, which would have been leveraged during the
development of the game and, hence, would have also played a role in the game’s positive
feedback. More direct feedback for aspects related to the use of Ethereum will also be sought
for evaluation, mostly through user feedback, such as the level of increased trust, usability etc.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 14(20)

4. Tools
This section describes the tools used for validation and evaluation. The first two sections focus
on generic tools for validation and evaluation. Subsequently, the next section focus on tools
specific to our testbeds and to our analytic evaluation.

4.1 Validation tools

Note that a detailed description of the integration and validation environment can be found in
the WP3 documentation. The subsections below are an overview of how the environment will
support and will be used for validation.

4.1.1 Source control management

SOFIE will be using Git as the source control management technology. Git has become the de
facto control management tool and is supported in all relevant development environments. It is
supported also by so-called hosted repository services such as GitHub6 and GitLab7, which in
turn have integrated auxiliary services such as code quality inspection services, continuous
integration services etc.

The source code itself is managed by following a development model with a set of core
developers who have write access to related SOFIE source code repositories. The detailed
workflow of this is detailed in WP3 documentation, but the overview is that this set will follow a
specific development methodology, including branches, code reviews, issue tracking, etc. The
general community of open source developers can then participate in the development of SOFIE
code by issuing pull requests, which are then reviewed and controlled by the core developers
before being (or not) accepted into the main repository.

4.1.2 Continuous code quality inspection

The SOFIE project, especially the pilots, contain both proprietary and open source development.
Similarly, some of the integration environment information needs to remain out of the public eye
(deployment keys, etc.). This implies a two-fold approach to source code management and its
associated tools:

● Open source portions of SOFIE development can use free-for-open-source-project
services such as Travis CI, etc. See the next section on these.

● Proprietary or confidential source code relies on tools and services that can be operated
for non-open-source projects, such as SonarQube Community Edition.

The detailed description of the integration environment and code quality automation is described
in WP3 documentation, but the overview of the process is as follows:

1. All code changes are run through a continuous integration process. This process

includes operations such as:

a. Compiling the source code.

b. Running unit tests.

c. Performing code quality analysis.

d. Archiving and marking artifacts of a successful CI run.

2. After a successful CI run, a continuous delivery process is performed. This includes:

a. Deploying the system into a Cloud or container environment.

b. Running integration tests against the deployment.

6 https://github.com/
7 https://gitlab.com/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 15(20)

c. Marking artifacts successfully completed integration tests.

d. Deploying the system into a staging environment.

4.2 Verification tools

While the code-level unit testing uses tools suitable for the particular language and framework,
on the integration level, which is more focused on network APIs and user interfaces, the goals
of integration, aka verification testing, is to ensure a deployed system, comprising of multiple
components, operates as planned.

For integration testing, the suite of relevant tools contains:

● User interface (UI) testing: In the case of SOFIE, primarily Web UIs. This uses tools
such as Selenium, Robot Framework, and SoapUI.

● Network API testing: There are a variety of tools, including SoapUI and various testing
frameworks for different languages extending the unit-testing framework towards REST
API testing.

Additionally, performance and stress testing can use tools such as JMeter, Siege etc.

Most of these tools would be integrated into the automated CI and CD workflow. Some tools
may be run only manually, for example, to evaluate the performance of a deployment with a
specific (exceptional) configuration.

4.3 Testbed tools

We now present some tools that can be used for testbed-based validation and evaluation.

4.3.1 Remix IDE

Remix8 is Ethereum’s official IDE. It is Web-based and it can be used for developing and
debugging smart contracts. Furthermore, it can execute a smart contract using a JavaScript VM
inside the browser, or it can deploy it to a testing network using tools such as MetaMask. It
provides performance indicators, including cost and time required for a smart contract call.

4.3.2 MetaMask

MetaMask9 is an extension for the Chrome browser that acts as an Ethereum wallet. It allows
the development of browser-based DApps for the Ethereum blockchain. In particular, it extends
Chrome’s JVM to support Ethereum-specific operations, enabling Web pages to interact with
an Ethereum network. Furthermore, MetaMask can act as a “proxy” and enable Remix to deploy
and execute smart contracts to a testing network.

4.3.3 Ethereum Network Stats

Ethereum Network Stats10 is a network monitoring tool that can be used for monitoring the status
of an Ethereum network, even for private deployments. It can be used to measure various
network metrics, including block generation time, proof of work difficulty, block propagation time,
gas price, and others.

8 https://remix.ethereum.org
9 https://metamask.io/
10 https://github.com/cubedro/eth-netstats

https://remix.ethereum.org/
https://metamask.io/
https://github.com/cubedro/eth-netstats

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 16(20)

4.3.4 BlockScout

BlockScout11 is a blockchain inspection tool that can be used with any Ethereum Virtual Machine
compatible chain. It can be used for searching transactions, viewing accounts and balances,
and verifying smart contracts.

4.3.5 Solium

Solium12 is an Ethereum smart contract analyzer. It can analyze smart contracts and propose
fixes for style and security issues.

4.3.6 OpenZepellin

OpenZepellin13 is a library that can be used for developing secure smart contracts. It provides
implementations of standards like ERC20 and ERC721, as well as Solidity components to build
custom contracts and more complex decentralized systems.

4.3.7 Fuzzing tools

Fuzz testing or Fuzzing is a black box software testing technique used for finding
implementation bugs, using malformed and semi-malformed data injection in an automated
fashion.14 The project will use tools and libraries, such as Peach,15 to develop fuzzing tools in
order to validate and evaluate the robustness of the developed communication protocols.

4.3.8 Hyperledger Explorer

Hyperledger Explorer 16 acts as a feature-rich blockchain explorer for Hyperledger Fabric.
Specifically, it enables inspection of the blockchain at both the block and transaction level, while
also allowing users to interact with the blockchain via query and invocations directly through the
dashboard. It is a powerful tool that also aggregates and produces useful statistics of the
network such as the transaction throughput, transaction throttle and median processing time of
a block.

4.3.9 Hyperledger network visualization

While no visual tools have been officially created by Hyperledger, there are ways one can
visually represent a Hyperledger Fabric network. The easiest way would be to attach a network
visualization program, such as Weave Scope on the Docker layer.17 Since the topology of a
Hyperledger Fabric network can be visualized by observing the interactions that occur between
the various Docker containers that run on each node, it is possible to visually represent the
network by logging these interactions in a visual format. Another approach that can be used is
to build the actual visualization engine by subscribing directly to an operating node in a similar
fashion to Hyperledger Explorer. The EventHub channel provided by Hyperledger Fabric allows
programs to listen to events from multiple channels and thus could be utilized to achieve the
logging level required by a network visualizer.

11 https://github.com/poanetwork/blockscout
12 https://github.com/duaraghav8/Solium
13 https://github.com/OpenZeppelin/openzeppelin-solidity
14 https://www.owasp.org/index.php/Fuzzing
15 https://sourceforge.net/projects/peachfuzz/
16 https://www.hyperledger.org/projects/explorer
17 https://hub.docker.com/r/weaveworks/scope/

https://github.com/poanetwork/blockscout
https://github.com/duaraghav8/Solium
https://github.com/OpenZeppelin/openzeppelin-solidity
https://www.owasp.org/index.php/Fuzzing
https://sourceforge.net/projects/peachfuzz/
https://www.hyperledger.org/projects/explorer
https://hub.docker.com/r/weaveworks/scope/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 17(20)

4.3.10 Hyperledger Caliper

Hyperledger Caliper 18 acts as a Command-Line Interface (CLI) tool for programmatically
benchmarking the transactional throughput capabilities of a blockchain implementation in
Hyperledger Fabric. The performance metrics that are calculated by Hyperledger Caliper
include network transactions per second, resource utilization, and transaction latency.

4.3.11 Hyperledger Cello

Hyperledger Cello19 is a relatively new tool that is geared towards DevOps, enabling developers
to frictionlessly manage the full lifecycle of a blockchain at scale. Hyperledger Cello, which is
written in Python, is one of the crucial technologies that empower the Blockchain-as-a-Service
model of IBM.

4.3.12 Hyperledger Composer

Hyperledger Composer20 is one of the most resilient and close to production Hyperledger tools.
It is a high-level modelling language that enables the visual creation of entities within the
Hyperledger Fabric network, enabling users to create complex networks easily without actually
writing code. While still at an incubation state, it has seen rigorous development and has been
extensively utilized because of its ease of use and developer friendliness.

4.3.13 Tineola

Tineola21 is an aggressive penetration testing tool for Hyperledger Fabric networks, including
custom chaincode (Hyperledger’s term for smart contract like functionality) that can be deployed
and further test the security of the network.

4.3.14 Project Things

Project Things22 is a framework of software and services for connecting Things to the Web in a
safe, secure and interoperable way. Project Things is composed of three major components.
The first component is the Things Gateway, an open source implementation of a Web of Things
(WoT) gateway which helps bridge existing IoT devices to the Web. The second one is the
Things Framework, reusable software components to help create IoT devices which directly
connect to the WoT. The third is Things Cloud, a collection of Mozilla-hosted Cloud services to
help manage a large number of IoT devices over a wide geographic area.

4.4 Analytical evaluation tools

In addition to software evaluation tools, examining and modelling the technical specifications of
the involved blockchains and overall systems can prove a valuable analytic tool for the
evaluation and assessment of the proposed architecture and framework.

Blockchain properties that should be considered can be grouped into performance metrics and
usability metrics.

The most obvious performance metrics are the blockchain's throughput and latency. Throughput
refers to the number of transactions the blockchain can process per second, while latency refers
to the expected time between the submission of a transaction and its inclusion in the blockchain.

18 https://github.com/hyperledger/caliper
19 https://www.hyperledger.org/projects/cello
20 https://hyperledger.github.io/composer/latest/
21 https://github.com/tineola/tineola
22 https://iot.mozilla.org

https://github.com/hyperledger/caliper
https://www.hyperledger.org/projects/cello
https://hyperledger.github.io/composer/latest/
https://github.com/tineola/tineola
https://iot.mozilla.org/

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 18(20)

These metrics determine the blockchain's scalability with respect to the anticipated transaction
load.

A third performance metric related to a blockchain's latency is the time it takes for a transaction
to be considered “safe enough,” i.e., the number of blocks that should succeed a given
transaction's block to provide sufficient guarantees against the probability of a fork. This criterion
is subjective and depends on the level of assurance a user desires for a given transaction.

Another performance metric is the amount of resources a blockchain uses to run. This is directly
dependent on the consensus algorithm used. It is well known that Proof-of-Work uses
significantly more resources than other consensus algorithms, like Proof-of-Stake, Proof-of-
Authority, and Proof-of-Elapsed-Time. When IoT devices are at stake, the selection of an
energy-friendly algorithm can prove vital to the feasibility of the system. By considering the
number of transactions processed per second, we can estimate the cost per transaction, in
terms of energy and resources.

In addition to the transaction cost in terms of energy, in most blockchains there is also a
monetary cost associated with each transaction, typically paid in the blockchain's own currency.
This cost is typically paid to miners and it serves as an incentive for miners to keep running the
system. When the transaction rate exceeds the system's throughput, the monetary cost of each
transaction increases as a result of competition among parties to give their transactions higher
priority over others.

The second group of properties used to evaluate a blockchain concerns usability metrics. These
are qualitative metrics that depict a blockchain's versatility in terms of functionality.

The most significant usability metric for blockchains is the language in which smart contracts
are written. The language's expressiveness can range dramatically. For instance, Bitcoin only
supports a simple language, called Script, which is not Turing-complete, and whose scope is
limited to validating whether someone has the right to spend a given amount or not. Ethereum's
smart-contract language, Solidity, is a Turing-complete language, allowing arbitrary
computations as well as interaction among smart contracts. Finally, Hyperledger Fabric pushes
smart contract flexibility even further, allowing smart contracts to run as fully-fledged VMs written
in any language, as long as Hyperledger Fabric provides bindings for that language.

The blockchain's permission model constitutes a qualitative evaluation criterion that depends
on which nodes are allowed to participate in a blockchain. Permissionless blockchains (e.g.,
Ethereum) allow arbitrary nodes to join and contribute to their network, just by downloading and
executing their software. Permissioned blockchains (e.g., Hyperledger Fabric) are closed to the
public. A node needs to have authorization to join such a blockchain's network.

Last but not least, a qualitative property that can play a significant role in complex systems
hosting multiple different blockchains, is the blockchains' ability to interact with each other, such
as through the Interledger Protocol (ILP). A blockchains' compliance to ILP is important for
ensuring that systems relying on them can interact seamlessly within the reference architecture.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 19(20)

5. Conclusions

The main objective of WP4 is the validation and qualitative and quantitative evaluation of the
SOFIE architecture and framework. The results of the validation and evaluation work and the
recommendations generated will be fed to the architecture and framework design in WP2 and
the business integration in WP3. This feedback will be performed in two planned cycles, which
will result in an initial (first) and second report with validation and evaluation results and
recommendations for the corresponding SOFIE architecture and framework cycles.

The work in WP4 involves two distinct directions: validation and evaluation.

Validation will focus on checking whether the SOFIE platform meets the requirements of the
stakeholders that use the platform. Validation is distinct from verification (verifying that the
platform meets design specifications) and from the integration and interoperability testing, which
is the focus of WP3.

Evaluation will focus on assessing and measuring the performance of the SOFIE platform,
based on the KPIs and assessment criteria defined in WP2, but also more general metrics and
goals. The evaluation will include both a quantitative and a qualitative component.

Quantitative evaluation will focus on aspects such as response time, throughput, resource
utilization, scalability, and availability. Some of these metrics can be assessed through
measurements from testbed experiments with implementations of the SOFIE framework while
others, such as scalability and availability, will be assessed using analytical models and tools.

Qualitative evaluation will focus on architectural aspects, such as the security and privacy
features of the overall architecture and of a subset of the platform components, the ability to
integrate different IoT platforms and provide services across domains, and the ability to support
innovative applications.

Although validation and evaluation have different objectives, the same platforms will be used
for both validation and evaluation. Many different relevant tools for the validation and evaluation
processes have been selected and briefly described in this deliverable. The extent to which they
will actually be useful and impactful for specific results and recommendations remains to be
seen based on the actual attempts to apply them.

Document: H2020-IOT-2017-3-779984-SOFIE/D4.1 – Validation and Evaluation Plan

Security: Public Date: 31.10.2018 Status: Completed Version: 1.00

SOFIE 20(20)

6. References

[AEM+18] E. Arzoglou, T. Elo, J. Mattila and P. Nikander, “Applying System Dynamics to Digital
Business Platforms: The Case of iOS vs. Android,” Manuscript, Aalto University, October 2018.

[DPR+17] A. Dutta, A. Puvvala, R. Roy and P. Seetharaman, “Technology Diffusion: Shift
Happens—The Case of iOS and Android Handsets”, Technological Forecasting and Social
Change, 118, pp. 28-43, 2017.[RCK17] S. Ruutu, T. Casey V. and Kotovirta, “Development and
Competition of Digital Service Platforms: A System Dynamics Approach,” Technological
Forecasting and Social Change, 117, pp. 119-130, 2017.[Sal15] A. Salazar, “Platform
Competition: A Research Framework and Synthesis of Game-Theoretic Studies”, 2015.
Available at SSRN: http://dx.doi.org/10.2139/ssrn.2565337

[SOFIE D2.2] S. Paavolainen et al., “Federation Architecture, 1st version”, SOFIE Deliverable
D2.2, August 2018. Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D2.2-
Federation_Architecture_1st_version_v1.00.pdf.

[SOFIE D3.1] M. Jaatinen, “Integration Plan”, SOFIE Deliverable D3.1, June 2018. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.1-Integration_Plan.pdf.

[SOFIE D5.1] I. Oikonomidis et al., “Baseline System and Measurements”, SOFIE Deliverable
D5.1, June 2018. Available at: http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-
Baseline_System_and_Measurements.pdf.

[Ste00] J.D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex
World, McGraw Hill, 2000.

[VB17] M. Von Kutzschenbach and C. Brønn, “Education for Managing Digital Transformation:
A Feedback Systems Approach,” Journal of Systemics Cybernetics Informatics, 15(2),
pp. 14-19, 2017.

http://dx.doi.org/10.2139/ssrn.2565337
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.2-Federation_Architecture_1st_version_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.2-Federation_Architecture_1st_version_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.1-Integration_Plan.pdf
http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf
http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf

