

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D3.5

Final Business Platform Integration Report

Project title SOFIE – Secure Open Federation for Internet Everywhere
Contract Number H2020-IOT-2017-3 – 779984
Duration 1.1.2018 – 31.12.2020
Date of preparation 23.12.2020
Author(s) Filippo Vimini (LMF), Giuseppe Raveduto (ENG),

Mait Märdin (GT), Antonio Antonino (LMF),
Ahsan Manzoor (ROVIO), Yannis Oikonomidis (SYN)

Responsible person Filippo Vimini (LMF), filippo.vimini@ericsson.com
Target Dissemination Level Public
Status of the Document Completed
Version 1.00
Project web-site https://www.sofie-iot.eu/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

mailto:filippo.vimini@ericsson.com
https://www.sofie-iot.eu/

Table of Contents
List of abbreviations……...……...……...……...……...……...……………. 4

1 Introduction……...……...……...……...……...……...……...……...……...5

2 SOFIE business platform overview……...……...……...……...………..6

3 SOFIE platform integration……...……...……...……...……...…………. 7
3.1 SMAUG……...……...……...……...……...……...……...……...…………….7

3.1.1 Pilot architecture…………………………………….…………………………. 7
3.1.2 Usage of SOFIE components………………………………………………... 9

3.1.2.1 Marketplace…….…….…….…….…….…….…….…….…….…….…….……. 9

3.1.2.2 Interledger…….…….…….…….…….…….…….…….…….…….…….……..10

3.1.2.3 Identity, Authentication and Authorisation…….…….…….…….…….……...11

3.1.2.4 Privacy and Data Sovereignty…….…….…….…….…….…….…….……….11
3.1.2.5 Provisioning and Discovery…….…….…….…….…….…….…….…….……12

3.1.2.6 Semantic Representation…….…….…….…….…….…….…….…….……...12

3.2 Food Supply Chain Pilot..…….....…….....…….....…….....…….....……...12
3.2.1 Pilot architecture……………………………………………………………… 12
3.2.2 Usage of SOFIE components………………………………………………..13

3.2.2.1 Interledger…….…….…….…….…….…….…….…….…….…….…….……. 13

3.2.2.1.1 Ethereum to Ethereum integration…….…….…….…….…….………. 13

3.2.2.1.2 Ethereum to KSI integration…….…….…….…….…….…….………... 14
3.2.2.2 Privacy and Data Sovereignty…….…….…….…….…….…….…….……….16

3.2.2.3 Identity, Authentication and Authorisation component…….…….…….…… 17

3.2.2.4 Semantic Representation…….…….…….…….…….…….…….…….……...18

3.2.2.5 Federation Adapters…….…….…….…….…….…….…….…….…….…….. 20

3.3 Decentralized Energy Data Exchange Pilot..…….....…….....…………...21
3.3.1 Pilot architecture……………………………………………………………… 21
3.3.2 Usage of SOFIE components………………………………………………..21

3.3.2.3 Interledger…….…….…….…….…….…….…….…….…….…….…….……. 22
3.3.2.1 Privacy and Data Sovereignty…….…….…….…….…….…….…….……….23

3.3.2.2 Identity, Authentication, Authorisation…….…….…….…….…….…….…… 24

3.4 Decentralized Energy Flexibility Marketplace Pilot..…….....…….....…...24
3.4.1 Pilot architecture……………………………………………………………… 24
3.4.2 Usage of SOFIE components………………………………………………..26

3.5 Context-Aware Mobile Gaming Pilot..…….....…….....…….....…….....……..28

SOFIE 2(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

3.5.1 Pilot architecture……………………………………………………………… 28
3.5.2 Usage of SOFIE components………………………………………………. 29

3.5.2.1 Interledger…….…….…….…….…….…….…….…….…….…….…….……. 29
3.5.2.2 Provisioning and Discovery…….…….…….…….…….…….…….…….……29

3.5.2.3 Semantic Representation…….…….…….…….…….…….…….…….……...29

3.5.2.4 Marketplace…….…….…….…….…….…….…….…….…….…….…….….. 31

4 Summary……...……...……...……...……...……...……...……...………..32

5 References……...……...……...……...……...……...……...……...…….. 33

SOFIE 3(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

List of abbreviations
API Application Programming Interface
DID Decentralized Identifier
DLT Distributed Ledger Technology
DSO Distribution System Operator
EV Electrical vehicle
FSC Food Supply Chain
HTLC Hash Time-Lock Contract
IAA Identity, Authentication, authorisation [component]
IL Interledger [component]
IoT Internet of Things
KSI Keyless Signing Infrastructure (GuardTime)
MP Marketplace [component]
P&D Provisioning and Discovery [component]
PDS Privacy and Data Sovereignty [component]
RFID Radio Frequency IDentification
SR Semantic Representation [component]
TD Things Descriptor
WoT Web of Things

SOFIE 4(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

1 Introduction
SOFIE (Secure Open Federation for Internet Everywhere) is a three-year EU Horizon 2020
research and innovation project that provides interoperability between existing IoT systems in
an open and secure manner. The main goal of this project is to enable communication among
diversified applications from various areas. With SOFIE these applications are able to utilise
heterogeneous IoT platforms and autonomous things across technological, organisational and
administrative borders in an open and secure manner, making reuse of existing infrastructure
and data easy.
The SOFIE architecture is described in SOFIE Deliverable ‘2.6 - Federation Architecture, final
version’ [D2.6]. SOFIE enables communication and interoperability by federating the actions
between different IoT systems using interledger technologies. The Architecture consists of
components that enable the main functionalities of the system and of federation adapters used
as connection points for external IoT systems with a SOFIE enabled system without requiring
changes to the IoT devices. SOFIE Deliverable ‘2.7 - Federation Framework, final version’
[D2.7] describes the implementation of the aforementioned components.
In the SOFIE project, IoT business platforms have been developed (WP5), based on the
framework components of the SOFIE architecture (WP2). These business platforms showcase
the potential of the SOFIE architecture and the framework components to address relevant
requirements for different business domains.

This document presents the final integration of the SOFIE components in the business
platforms. It describes how all the business platforms implement the components, describing
their overall architecture and the steps required to configure the baseline components to work
in the specific business platform.

The rest of the document is organised as follows: Section 2 presents an overview of the
SOFIE business platform. Then, Sections 3 detail the business platform architecture and
components implementation. Section 4 summarises the document.

SOFIE 5(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

2 SOFIE business platform overview
This chapter provides an overview of the business platforms and the framework components
that have been used on each platform. These framework components are the Marketplace
(MP), the Interledger (IL), Identity Authentication Authorization (IAA), Privacy and Data
Sovereignty (PDS), Provisioning and Discovery (P&D) and Semantic Representation (SR).
The framework components are detailed in the deliverable ‘2.7 - Federation Framework’
[D2.7]. Table 2.1 shows the component that each platform implements. The business
platforms use only the components needed to enable the main functionalities for each
business case, as described in Deliverable ‘4.5 - Final Architecture, System, and Pilots
Evaluation Report’ [D4.5]. SMAUG acts as a reference platform and integrates all the
components of the SOFIE framework.

Table 1: Components integrated into pilots.

SOFIE 6(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

Platform Components

SMAUG MP / IL / IAA / PDS / P&D / SR

Food Supply Chain IL / IAA / PDS / SR

Decentralized Energy Data Exchange IL / IAA / PDS

Decentralized Energy Flexibility Marketplace MP / IL / SR

Context-Aware Mobile Gaming Pilot IL / P&D / SR / MP

3 SOFIE platform integration
This chapter describes the business platform and the integration of the framework
components. First, for each platform we define the overall architecture, which shows the
position of each component. Second, for each component used in the platform, we discuss
how it has been integrated.

3.1 SMAUG
The Secure Marketplace for Access to Ubiquitous Goods, or SMAUG, is a decentralised
and open marketplace where smart locker owners can put their smart lockers for rent, and
potential smart locker renters can place bids to get the authorisation to use them. Smart
locker owners publish the availability of smart lockers on the marketplace by creating a
request, i.e., a request for offers. The bids that smart locker renters place for the published
requests are called offers.
SMAUG is intended as a reference implementation, to show how all the different SOFIE
components can be used together to develop a system that benefits from all the features that
the SOFIE framework provides. Furthermore, SMAUG is has been developed by LMF as a
WP3 leader, and this means that an important target for SMAUG is to provide high-quality
feedback to SOFIE component developers about the set of features the components offer,
their level of reusability and extensibility, and their quality relating to how easily they can be
integrated into systems other than the four pilots. This is achieved by following a “learn by
doing” approach and testing the components via direct integration into a system developed
from scratch during the last year of the project.

3.1.1 Pilot architecture
As previously presented, in a typical marketplace deployment three main entities are
interacting with each other: the marketplace owner (MPO) manages the marketplace
platform and enables smart locker owners (SLO) and smart locker renters (SLR) to interact
via request and offer creations. The three main roles are also reflected in the architecture of
the resulting system, as shown in Figure 3.1.a.

SOFIE 7(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

Figure 3.1.a: SMAUG architecture. The system is composed of three trust domains, i.e., the
system components that each party trusts and/or manages directly. At the left is the smart
locker owner (SLO) trust domain. At the centre-top is the marketplace (MP) trust domain. At
the right is the smart locker renter (SLR) domain. At the centre, the three clouds represent the
three blockchains that the system relies upon to provide its services: an Ethereum blockchain
to run the marketplace, an Ethereum blockchain to manage authorisation-related information,
and an Hyperledger Indy blockchain to manage the identities of SLRs, SLOs, and MPO.

MP domain
The marketplace (MP) domain includes components that are directly run and managed by the
marketplace owner (MPO), or that are trusted by the MPO that relies on them to achieve some
tasks. Specifically, the MP domain is composed of:

- Backend (MP BE): the backend is used by smart locker owners (SLO) to manage
their smart lockers (SL). Specifically, through the backend, the SLOs can register new
SLs and can manage their status (e.g. publishing requests on the marketplace, or
deciding the winning offers for a given request).

- Authorisation Server (MP AS): the authorisation server manages access to the
marketplace platform. The MP BE relies on the MP AS to authenticate users and grant
them access to the platform. Authenticating users allows the MPO to track usage of
the marketplace by SLO and SLR(e.g. how many requests SLOs have created, or how
much money they have obtained from marketplace transactions).

- Interledger (MP IL): the interledger bridges the communication between the
marketplace blockchain and the authorisation blockchain. Specifically, the interledger
will notify the authorisation blockchain whenever a request is closed and the winning
offers decided. Similarly, parties operating on the authorisation blockchain, after

SOFIE 8(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

performing some actions in response to the event received from the marketplace
blockchain, can interact with the interledger to send response data back to the
marketplace blockchain.

SLO domain
The smart locker owner (SLO) domain includes components that are either owned and directly
controlled by the SLO, or that are trusted by the SLO to provide the agreed services.
Specifically, the SLO domain is composed of:

- Smart Locker (SL): the physical resource being rented and purchased on the
marketplace. They offer a storage space service to authorised users for the duration
they have purchased. The presence of an SL is advertised via Bluetooth Low Energy
(BLE), such that interested potential renters (SLRs) can discover them using a
BLE-capable mobile phone running a compatible application. All the communication
between the SL and the SLR’s mobile device takes place via NFC technology. At the
time when SLRs wish to use an SL, they need to prove their authorisation by
presenting a valid attestation that the SL can verify and validate.

- Web client (SLO client): runs on the browser of the SLO’s device, and allows the SLO
to perform SL management operations. To access the management interface, SLOs
must authenticate themselves and must be authorised to perform the required
operation. Furthermore, the SLO client allows the SLO to directly interact with the
marketplace blockchain to perform SL management operations.

- Authorisation Server (SL AS): this authorisation server manages access to one or
more smart lockers (SLs). It includes an agent listening on the authorisation blockchain
for interledger events, and in response to those events logs an access token that the
winning users of that specific request can use to access the smart locker they have
purchased access for. The SL AS does not have to be directly managed by the SLOs
(although nothing prevents them from doing so), but can also be used following an
as-a-service model, where the SLO delegates the management of one or more SLs to
the SL AS.

SLR domain
The smart locker renter (SLR) domain includes only the mobile device (defined as SLR client
in Figure 3.1.a) that a potential SLR uses to discover nearby smart lockers (SL). The mobile
device purchases access for a specific time frame and interacts with the SL to access its
enclosing storage space. The SLR client, therefore, allows SLRs to discover nearby
SMAUG-compliant SLs using BLE, interact with the Ethereum marketplace where access to
the SL can be purchased, and interact with them using NFC.

3.1.2 Usage of SOFIE components

Following is a description of how the different SOFIE components are used within SMAUG,
and what benefits they bring.

3.1.2.1 Marketplace
The SMAUG marketplace extends the functionalities of the SOFIE Marketplace component by
adding support for instant-rent offers and Interledger sender/receiver support. The instant-rent
support makes it possible for the smart contract to automatically close and decide requests
whenever a valid instant-rent offer is presented, thus discarding all the auction offers and
triggering the interledger process for the winning offer. The entire process is performed
automatically and does not require nor involve the smart locker owner.

From a technical point of view, extending the features of the SOFIE Marketplace component
implies subclassing some of the SOFIE Marketplace contracts to contain the additional
SMAUG-specific logic. The SMAUG marketplace backend has been developed on top of the

SOFIE 9(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

SMAUG smart contract to implement a layer of access control, as the creation of new
requests on the marketplace requires the request creator, the smart locker owner, to also
specify a token that must be signed by one of the manager accounts of the marketplace. This
represents the second key difference of the SMAUG marketplace smart contract compared to
the SOFIE Marketplace component, which has no knowledge of access control beyond what
is enforced by the Ethereum network. A high-level representation of the flow is given in Figure
3.1.b.

Figure 3.1.b: the flow to create a new request on the marketplace. Notice that smart locker owners are
required to retrieve a new access token from the marketplace backend before being able to create a
new request on the smart contract.

3.1.2.2 Interledger
The SOFIE Interledger component has been integrated without extension of its functionalities.
It has only been parameterized for the SMAUG use case, including the addresses of the smart
contracts on the marketplace and authorization blockchains, and the accounts used to issue
the needed transactions to perform the Interledger procedure. Figure 3.1.c shows the flow of
the Interledger protocol that is triggered when a request on the marketplace is closed and
decided (i.e., when a winning offert is selected).

Figure 3.1.c: Interledger flow for a typical marketplace transaction. First, when an offer is decided, an
event is emitted to start the Interledger procedure (step 1) which is captured by the Interledger agent.
Then, the agent calls a smart contract on the authorisation blockchain (step 2) which, in turns, emits an

SOFIE 10(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

event to notify potential listeners about the Interledger operation and its associated data (step 3).
Interested listeners can then perform custom actions, such as registering access token (step 4) and, if
they need to propagate the result of the action back to the marketplace, interact with the Interledger
smart contract (step 5), which then propagates the information (step 6), which is captured by the
Interledger agent and forwarded to the marketplace smart contract (step 7).

3.1.2.3 Identity, Authentication and Authorisation
The SOFIE IAA component is used for access control by the marketplace backend and the
smart locker. In the first case, a Docker container running IAA is accessible only by the
marketplace backend container, which delegates verification of JWTs that smart locker
owners present when accessing the marketplace APIs. In the second case, the IAA Python
executable is run directly on the smart locker platform and allows the smart locker controller
software to delegate validation of the access token presented by customers willing to
physically access the smart locker space.

3.1.2.4 Privacy and Data Sovereignty
The SOFIE PDS component has a dual function. On the one hand, it enables marketplace
backend support for DID-based authentication of smart locker owners. Specifically, when
smart locker owners need to renew their JWTs, which are verified by IAA, they need to
authenticate using a DID previously registered on the marketplace. Hence, the marketplace
backend delegates to PDS, in the form of a Docker container accessible only by the backend,
the generation and verification of challenges as well as the generation of the JWTs the users
need to use the marketplace platform. The second function of PDS is to generate access
tokens for winning offers on the marketplace. To do this, a PDS smart contract has been
deployed on the authorization blockchain, and a PDS Docker instance has been deployed as
part of the smart locker access manager component. Specifically, the access manager listens
for interledger events broadcasted by the Interledger component on the authorization
blockchain, and then delegates to PDS the generation of the access token. The PDS, in turn,
logs the generated access tokens on the PDS smart contract. When all access tokens have
been generated and logged, the smart locker access manager triggers the interledger process
back to the marketplace blockchain with the information about the newly generated access
tokens. The process is triggered by the PDS smart contract, which in turn interacts with the IL
smart contract deployed on the authorization blockchain. A graphical representation of the
process is given in Figure 3.1.d.

Figure 3.1.d: The complete flow triggered upon request decision. For simplicity purposes, the PDS
smart contract has not been included in the diagram, only the IL smart contract that is deployed on the
authorization blockchain (and that IL interacts with at step 10).

SOFIE 11(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

3.1.2.5 Provisioning and Discovery
SMAUG utilizes only the discovery functionality provided by the Provisioning and Discovery
(P&D) component. SMAUG-compliant smart lockers will use this component to advertise their
presence to nearby users using Bluetooth Low Energy (BLE) as the communication medium.
The P&D component has been integrated into the smart locker, configured to fit SMAUG’s
needs, and run as a Python executable.

3.1.2.6 Semantic Representation
The Semantic Representation (SR) is the key component that makes SMAUG open and
interoperable with external systems. The data that each smart locker advertises include its
physical properties (e.g., capacity, identification number) and information about the
marketplace that potential renters will interact with. The SR is deployed as a Docker instance
accessible only by the marketplace backend, which delegates to the SR validation of smart
locker related information, based on the SMAUG semantic representation description file
which follows W3C WoT TD standard.

3.2 Food Supply Chain Pilot
In the Food Supply Chain (FSC) pilot, three different IoT platforms are federated to establish a
distributed and immutable data management layer that provides traceability and quality control
services for transported products. This makes traversing the path from field to fork more
robust, reliable, and time-efficient for all parties involved in the food supply chain.

3.2.1 Pilot architecture
In the Food Supply Chain (FSC) pilot SOFIE’s Framework Interledger (IL), Semantic
Representation (SR), Privacy and Data Sovereignty (PDS), Identity, Authentication,
Authorisation (IAA) components have been used, as well as Federation Adapters (one has
been developed for each IoT platform). Figure 3.2.a below depicts how these components are
connected with the pilot platform.

SOFIE 12(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

Figure 3.2.a: Food Supply Chain pilot platform architecture and SOFIE components’ relation.

3.2.2 Usage of SOFIE components
The following sections provide a description of how the different SOFIE components are used
within the FSC pilot, and what benefits they bring.

3.2.2.1 Interledger

The Interledger component of the SOFIE Framework is of significant importance to the FSC
pilot. Its interaction with the rest of the pilot platform is described in the following subsections.

3.2.2.1.1 Ethereum to Ethereum integration

The IL component is used for Ethereum to Ethereum (eth-eth) integration, where the source
chain is the Consortium (private) blockchain, and the destination one is the public testnet
Ethereum network (Ropsten).

The IL component uses two adapter smart contracts (one for the source and one for the
destination in order to facilitate functionality). The adapter smart contract for the Consortium
blockchain can be found in SOFIE’s repository [FSC private]. The adapter smart contract for
the public blockchain can be found in SOFIE’s repository [FSC public]. The interledger
payload (Figure 3.2.b), transported from the private blockchain to the public one, is the set of
the hashes of every step in the FSC along with the box & session id.

SOFIE 13(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

{
 'box_id': 'E280113020002894DC0A00AB',
 'session_id': '0x711789efa2b7d2c83f59dd15d073afb8e30b7cda9b1043f825a939e62ee0b256',

Figure 3.2.b: Interledger Payload.

Figure 3.2.c shows the interledger eth-eth configuration:

Figure 3.2.c: Eth-eth configuration.

In the scope of the consortium ledger, every step of the FSC is recorded along
with valuable information about each step of the chain.

3.2.2.1.2 Ethereum to KSI integration
The IL component is also used for Ethereum to KSI integration, where the source chain is the
Consortium (private) blockchain, and the destination one is the KSI public ledger. The KSI
FSC Pilot integration happens at the final stage of the supply chain. When a box reaches its
destination (the supermarket), the details of the box supply chain history are hashed and
passed to the public Ethereum ledger (Ropsten). The FSC smart contract in the public ledger
collects the hashes that are sent via the Interledger Component to create a master hash value
that combines (merges) the hashes of all stages of the food supply chain. When the master
hash is generated (e.g. the transaction is placed in a block inside the public blockchain) the
supervisor component collects the generated event and makes a KSI transaction containing
the generated hash. The KSI transaction is performed with another instance of the Inteledger
Component, configured between the Consortium blockchain and the KSI public ledger. When
the KSI transaction is complete, the Inteledger component performs a transaction inside the
consortium ledger via the FoodChainKSIAdapter smart contract. A

SOFIE 14(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

 'signatures': [
 '0xc90996e6355f2579b7db3efb8c2556896f4215e1f6b28d76ffe6e5d2a44db5ce',
 '0xadab9156376065aabc73b88b71de77c0e2a47349164a4c1d1180eb1645072aae',
 '0x5c834af27871086bf6d30c6bf580434e1de1bcfba5387fcc32b56a589c40b661',
 '0x4f0b59e66e3647c0119a72823e7e9c0d2d526715672e69703f822ec5859c54b6',
 '0xc5c9ee36c93fbb42a60e4cf2176f00bed4e1fb30a6bf03fb576b5e8c59ab9e6f',
 '0x95c1d346a6dd06c493f78ec871888c347d0634076cf433e8f4f4a13b29f955f4',
 '0x4a0b14e1e1124a8a25a6adbd0d1678067f1a73d0e174496563086f9a7d75cefc',
 '0x530165dbc3f9f2e4eb9ef726a63247ce7f28db415957707160fdeb5214466ddf']
}

[service]
direction=left-to-right
left=private
right=infura

[private]
type=ethereum
url=http://192.168.1.117
password=pwdnode
port=7545
poa=True
minter=0xa4DFb027FA681d0c6ef3ab46DaBc73bB7C2DF48E
contract=0xae18bc02e1F9821620BECeb8715962aDf2A105C7
contract_abi=fsc/FoodChainAdapter.abi.json

[infura]
type=ethereum
url=wss://ropsten.infura.io/ws/v3/c96300b21ee04e0795403a181a08a73f
private_key=0x0e98b5148c9a1028e530d87ce942300c3820f8a7761f520d295058d21ba8c7cb
minter=0xE2C676d11dD3af0404991b71781c599D89356B30
contract=0xac8af7df94EeDc1b050663844c1e2be37B060036
contract_abi=fsc/SofieFSCAdapter.abi.json

LogInterledgerEventCommitted (as per the interledger component spec) event is created
containing the generated KSI uuid. The supervisor then stores the KSI uuid for further
reference during product quality evaluation. An example KSI entry is shown in Figure 3.2.d:

SOFIE 15(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

curl -X GET --header 'Accept: application/json' --header 'Authorization: Basic {code}' 'https://tryout-
catena-db.guardtime.net/api/v1/signatures/3841e0ad-86af-4ecc-afec-30434e59ddc8'

Response:
{
 "id": "3841e0ad-86af-4ecc-afec-30434e59ddc8",
 "signature":
"iAAH2ogBAFMCBF9GYg0DAQsDAgGdAwELAwERAwEDAwEDBSEB07pvSJKPYIL+lx91m674+iY
9gQ/
i5d9alcXBoVJv7D0GAQEHEgQQfgIBAQEKb3QudmRjdXRyAIgBAGYCBF9GYg0DAQsDAgGdAwEL
AwERAwEDBSEBBkckDA6fzq+AwYBrhe5K9YWdhlLsWUQIualiE8kfL3sGAQEHKAQmfgI
BAWEGa2F0amEAYg10cnktY2F0ZW5hOjEAYwBkBwWtx7WaQQeIAQDOAgRfRmINAwELAwIBnQ
MBCwMBEQUhAbsm6hmZr0WR/CbpK8P8LFJXQVkTz/
pLWh0FiLXoYgJsBgEBByQEIn4CAQFhA0dUAGILQUxlMi0xLTI6NwBjAQ5kBwWtx7WfCNQIIwIhAaI
Wuu0Fd2LqmTI9pH1gjkGLe8nwPBppX599QSJx/
f7aCCMCIQEufMdK6elJ53CvtSlMoBbzPlBYZ/RQXCfhoWGggsujRwgjAiEBQjTqPnQLu3sgQmMjRy1
vKmQA3gR7aa6Z5P+zxLF/
36CIAQCnAgRfRmINAwELAwIBnQMBCwUhAXFmjf5+uYmr7qlangXve4i4Cz+yI33ENNtDXpHhzNr/
BgEBByIEIH4CAQFhA0dUAGIJQVNlMi0wOjEAYwEBZAcFrce1pPTkByYBAQECIQHuUnjFbMzRR6i
anVqcbSf8G5mDRprfy3Zm3VcgaDTj0QgjAiEBkqTemUkIRtYKwr+BoUOTDtzmQsGB
mQpLmJia/
77UKMWIAQFbAgRfRmINAwELAwIBnQUhATA04uIWex9wiwJXY3upz1TBR3XPMC2ZpxrgFsDbJb+
QBgEBByAEHn4CAQFhA0dUAGIHQU5lMjowAGMBBmQHBa3HtaU8WwgjAiEB7UnSMQshB
UbNke5YRsk+EIRjUZMeHsiPXpRrCVCeQxQHIwIhAZPsOQmOvnMyZ1p6s1c56ZF6nisycskECuNty
+FtNhwKByMCIQHZZ5RVwa9/iG50eXD1WWH2RtjedLAXKI951X/
AiQHnJwcjAiEBYCK2FYmHuEWCSZtowd3oMkgz6c1XjAXAypYuEc/dD84IIwIhAfuhOPeft7qpADSYQ
yNJmI0XSSDYBV/
a99h4vfYKACMICCMCIQHbTuI1k5r4K+JNnK7GPbc98TEcAFVLDSM51jsFHqNuTAcmAQEBAiEBN
FbFDIKSNbSKRLqWfWVqpb2fOIiLuQbHwnydA85jjAmIAQCkAgRfRmINAwELBSEB1kD
0b9NDCin4vapGx64pBnqKYrRCcfAirYfq3+EUI7IGAQEHJgEBPwIhAQAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAByYBASwCIQHkiubCUX2uuCvgR8oAIhNPtr/
XwVt0XBAR4rrRIHRXjAgjAiEBkCYSYaoJj5PZJ5woc2JDig+T8HA2j52OJstJbAV0E4qIAgI8AQRfRmI
NAgRfRmINBSEBcZQA5e/2VAOHiaayFkwZoiz7kMs2QpSC/hLbqpGj/
EcIIQGw/hhtRV8j7XebAyWmPMEQpQKn6luBbXZ/GwhcWYeZjwghAR3nAXgk5yS1jVeQFWaIzpYp
M8sKfogXYuhFi11NvoP0CCEBB6XzTWnOv9ullE8NFpbtkp0vjc/h0JDQO6E/
PVpyKAoIIQHS9B8xONz4b8g/plYjSC+Z8ECSZOU8UQdmiekL4/vITAghAYJHtvGM2tnwc1Frs2kT2c
dK1kOQna/swOo8by85UknACCEBU/
zq8+ecX8zAoqN4C59WiVSvOwQdo5MqD09/8dkBh4gIIQFV3SL5K6veWVOfEPZbVpbkUtE03Ojpz9
T9yr65busj3QghAYVTvOLl/
UWnEqoyz5xE8WITUIf1ehMnOJ+ezw5bPWaTCCEBHazb165CHNaZC5c/PzzQcHpqAuRbiHf+Eet0
SXmo5AUIIQGHQy9MH2LCiBI+qg/7XRTg3WsYP3xHQSL5bAxQmMrw7QghAas/
GScAfb6ffBiauw8OPdwdAmV49wu2+5gOHbh698gVCCEBVre3MhAq26G12NxCAkvHKKygFC81aLn
rZUdQeYa2UNcIIQHrw6sdhmQVgRMKw8cHe3G2e7pMkVUw6f5JuYdp/
I3K6wghAUlvwBINhU51NLmSqzLsMEWyDUvuG/vkVk/Qks6voItyCCEBu0T9NqXzze57XG3zpgmKC
eNTM1tgKfFHdQJYin43vgCIBQFRMCkCBF9GYg0EIQGtvB79k34CMpWn10/e1/
wLfRILF7rPBQZJTC9p3gn9NIALASIBFjEuMi44NDAuMTEzNTQ5LjEuMS4xMQCAAgEALsQEom7Xr
A0f8lI55jfyRtEu03+Q+25wYy0o34XIkbRoNbv4QFgo1y689fcJOvzFL6tfGdS5KT
5bA7QIChe8EqrrOZswAgTdq5wOZxJB0ymlwXOHoq3MdYCJS/K0zLx8k5DawPxckzd9XMCDKsa6g
Tr1BB/
zZOyRZxxYjcNcej5Rl8tBR97fX2ag19ksI91FV8OZvhWGGha4IzPlJgz1ab5BMNNou7y+hAlWikeKN5
NSH9VQsbxv8lUvxb/
k5ddwNOauRM92T8lfAsqQUBn5JJhkED5bOwmC1/7ruri7W31z6uApdR9qrcprd+tndjICbmfCLW8xJn
cJLzojAKv1VAMEBaG2MA==",

Figure 3.2.d: Example KSI entry.

3.2.2.2 Privacy and Data Sovereignty

In the FSC pilot, SOFIE’s PDS component is used by the Federation Adapters, where each
constructs a Decentralized IDentifier (DID) using their Ethereum wallet addresses:

Figure 3.2.e: Wallet address configuration.

Upon an IoT platform registration, the Supervisor Web Server component configures the PDS
with the DID of the IoT platform:

Figure 3.2.f: PDS configuration.

The FA adapter of each IoT platform completes the challenge - response interaction via an
endpoint (http://pds:9001/gettoken) and it receives a JWT token:

SOFIE 16(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

 "details": {
 "dataHash": {
 "algorithm": "SHA-256",
 "value": "07pvSJKPYIL+lx91m674+iY9gQ/i5d9alcXBoVJv7D0="
 },
 "aggregationTime": 1598448141000,
 "identity": "GT :: GT :: GT :: katja :: ot.vdcutr"
 },
 "metadata": {},
 "createdBy": "ot.vdcutr",
 "createdAt": 1598448142069,
 "verificationResult": {
 "status": "OK",
 "policyResults": [
 {
 "policyResultCode": "OK",
 "policy": "KEY_BASED_POLICY"
 }]
 }
 }
}

wallet_address = '0xb0057716d5917badaf911b193b12b910811c1497b5bada8d7711f758981c3773'
wallet_handle = await wallet.open_wallet(client['wallet_config'], client['wallet_credentials'])
client_did, client_verkey =
 await did.create_and_store_my_did(wallet_handle, json.dumps({'seed': wallet_address[2:] }))

wallet_address = ‘0xb0057716d5917badaf911b193b12b910811c1497b5bada8d7711f758981c3773’
client_did = 'Q3f3yDjBJPkxZ8GQjdFK8s'
client_verkey = 'DZXLK6rjZUeq8aguq6wo89DAGdydxqTCunDnBosV246P'
now = datetime.utcnow()
nbf = time.mktime(now.timetuple()) # Not before
exp = time.mktime((now + timedelta(days=1)).timetuple()) # Expiration time
aud = 'sofie-iot.eu' # The domain name of the protected resource
payload = {
 'action': 'add',
 'did': client_did,
 'verkey': client_verkey,
 'metadata': json.dumps({'aud': aud, 'nbf': nbf, 'exp': exp, 'sub': wallet_address})}
response = requests.post("http://pds:9002/", data=payload).text

Figure 3.2.g: PDS Token example.

When the Supervisor Web Server component interacts with the FA, the FA attaches an HTTP
header, containing the JWT token along with its payload:

PDS interactions with the FAs and other components are depicted in Figure 3.2.h:

3.2.2.3 Identity, Authentication and Authorisation component

As mentioned in 3.2.2.2, the FA uses an HTTP header which contains a JWT token when
interacting with the Supervisor Web Server component. The Supervisor component invokes
the IAA component to verify the JWT token against the given FA wallet address:

If the response is HTTP_200 and the wallet address which was embedded during the PDS
configuration steps (please refer to 3.2.2.2, “payload.metadata.sub” field) matches the wallet
address retrieved by the ECRECOVER Ethereum algorithm, the DA payload is considered
valid and secure.

IAA interactions with the FAs and other components are depicted in Figure 3.2.h:

SOFIE 17(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

Example token:
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJhdWQiOiJzb2ZpZS1pb3QuZXUiLCJzdWIiOiIweGIw
MDU3NzE2ZDU5MTdiYWRhZjkxMWIxOTNiMTJiOTEwODExYzE0OTdiNWJhZGE4ZDc3MTFmNzU
4OTgxYzM3NzMiLCJleHAiOjE1OTU1NzM4MjAuMCwibmJmIjoxNTk1NDg3NDIwLjB9.rVOfnYVsl-dg
Qlopkv57obKERGakFImnvDZTZhLMIt5tenfggSyW9LUpazrSrVu_C334WbuiUjKt2NYCOeW0KButyus
RRpT6Ho3n8MSDU9wUoEUOie4nTdlyXYrnuRWmQMY9oDWjd9zvijf3Q98_-eZHoYFVM7TD_4qvNI
nUkEoSIlKqOG40Zf4PSTRw6Z6CWrIg3y2p707Ioznsy5FK179lyK4SF9DLXh1iNtSQ7wJjUDe0GwdJ8
gSOa4fDksWFHmVWL9QVwdFJPJLXIk8c-gM2awIRlNzAfX9A86exKHBAWrsrp8RT5zHtuKDO2fW0
veBXDodpmRk5PyaAUZN7Bw

Token decoded:
Header:
{
 "alg": "HS256",
 "typ": "JWT"
}

Payload:
{
 "aud": "sofie-iot.eu",
 "sub": "0xb0057716d5917badaf911b193b12b910811c1497b5bada8d7711f758981c3773",
 "exp": 1595573820,
 "nbf": 1595487420
}

HTTP_AUTHORIZATION = Token <jwt_token>

payload = {'token-type':'Bearer', 'token':jwt}
response = requests.post("http://iaa:9000/verifytoken", data = payload).text

Figure 3.2.h: PDS/IAA interactions in the FSC FA.

3.2.2.4 Semantic Representation
In the scope of the FSC pilot, the Semantic Representation (SR) component of the SOFIE
platform is used in the Federation Adapter (FA) - Supervisor Web Server (SWS)
communication. The FA of an IoT platform participating in the pilot has to provide an endpoint
(usually the base endpoint / of the FA API) that once accessed via an HTTP GET call, outputs
the schema of the FA. The Supervisor component reads the schema, retrieving information
about the endpoints and functionality provided by the FA for the underlying IoT platform.

When a new IoT platform is registered via the Web Application by the pilot administrator, and
the Ethereum transaction is mined, a LogPlatformRegistered event is triggered. When the
SWS acknowledges the event, the SR component is invoked on endpoint /api/add_schema
and the FA schema is registered with the Semantic component. The SWS component then
retrieves the schema of the given platform and via an HTTP POST request to the SR
component to the /api/add_schema the platform is added. An example of POST payload is
given in Figure 3.2.i:

SOFIE 18(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

{
 "name": "TransportIoT",
 "schema": {
 "name": "TransportIoT",
 "schema": {
 "@context": "https://www.w3.org/2019/wot/td/v1",
 "title": "TransportationThing",
 "id": "urn:dev:wot:com:sofie:fcp:adapter:transportation",
 "description": "Transportation Federation Adapter Thing Description model for the
 Food Supply Chain pilot",

Figure 3.2.i: SR schema.

Upon every SWS communication with the FA, the FA payload is validated via the SR
component for the given schema. The SR component /api/validate endpoint is invoked. If an
IoT platform is removed from the FSC pilot platform, a LogPlatformRemoved Ethereum event
is generated. The SWS acts on this event to inform the SR component of platform
deregistration. The SWS component invokes the endpoint api/remove_schema of the SR
component.

The interaction between the IoT platform, the FA, the SWS and the SR components are show
in Figure 3.2.j:

SOFIE 19(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

 "securityDefinitions": {
 "nosec_sc": {
 "scheme": "nosec"
 }
 },
 "security": "nosec_sc",
 "properties": {
 "transports": {
 "type": "array",
 "readOnly": true,
 "description": "The array of transport ids served from the underlying Transportation IoT
platform",
 "items": {
 "type": "string",
 "description": "The transport id in hashed/encrypted form"
 },
 "forms": [{
 "op": "readproperty",
 "href": "https://192.168.1.167/transportation/api/transports",
 "contentType": "application/json"
 }]
 },
 ...
 }
 }
 }
}

Figure 3.2.j: Semantic Representation interactions in the FSC FA.

3.2.2.5 Federation Adapters

The Federation Adapters in the FSC pilot are three, one for each IoT platform (SynField,
Aberon, and Transportation). One of the FAs (the one developed for the Transportation IoT
platform) is publicly available on the projects repository [FSC adapter]. A FA interaction with
the other SOFIE components as well as the pilot’s platform modules is described in the
previous subsections in this document.

SOFIE 20(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

3.3 Decentralized Energy Data Exchange Pilot

The Decentralized Energy Data Exchange (DEDE) pilot is a proof-of-concept for secure data
exchange and management of access rights between smart meters, infrastructure owners and
energy service providers (intermediaries, distributors, brokers).

3.3.1 Pilot architecture

The DEDE pilot connects data providers with data consumers. Both the data providers and the
data consumers connect to the platform through their own instance of the Federation Adapter
(FA), which is a common software component for both sides and needs no extension or
customisation.
As shown in Figure 3.3.a, the FA of a data consumer connects directly to the FA of a data
provider to exchange messages according to the FA communication protocol. Messages
between the two FAs are transported securely over a mutually authenticated TLS connection,
using Hyperledger Indy-based decentralised identifiers (DIDs) and verifiable credentials (VCs)
to establish trust.

Figure 3.3.a. The architecture of the DEDE pilot.

3.3.2 Usage of SOFIE components

All the SOFIE components utilised by the DEDE pilot have been integrated in the FA. To
understand the role of the components, we need to first look at the internals of the FA.

The main function of the FA is to ensure interoperability and to secure the communication with
other entities on the platform. It acts as a forward proxy for the data consumer and as a
reverse proxy for the data provider, but it can also be in both roles at the same time, enabling
entities that are both data consumers and data providers. The FA takes care of the security
aspects of the integration and lets the data provider concentrate on implementing services and

SOFIE 21(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

the data consumer on using these services. The only requirement for a data provider is to
describe its services according to the OpenAPI 3.0 specification.

From the implementation perspective, the two main responsibilities of the FA is to proxy
messages and to manage the identity of the represented entity. The internal structure of the
FA shown in Figure 3.3.b mirrors this with two loosely coupled services: proxy and ssi-agent
(Self-Sovereign Identity agent). Both of the components have public and private interfaces, for
external and internal use accordingly.

Figure 3.3.b. Internal structure of the DEDE FA.

The information system of the data consumer first sends a request to the proxy’s private
interface. The proxy uses the ssi-agent private interface to resolve the endpoint of the target
DID and to sign the request with the source DID. Then, it initiates a secure connection to the
public interface of the data provider (target DID) proxy. Both sides use the ssi-agent private
interface to retrieve the hash of the currently valid certificate to verify the authenticity of the
connection. Once the connection is set up, the data provider proxy will use the ssi-agent
private interface to verify the request’s signature. If the request is for a service that requires
further authorisation, the data provider proxy will also use the ssi-agent private interface to get
the proved values of the attributes required for the authorisation decision. If the data provider’s
ssi-agent receives such a request, it will send a proof request to the public interface of the
data consumer’s ssi-agent. Once the data provider’s proxy has values for all the proved
attributes, it can forward the request to the service implementation that is described using the
OpenAPI 3.0 specification. The signing of the response and the verification of the response
message signature is analogous to the processing of the request.
Following is a description of how the different SOFIE components are used within the pilot.

3.3.2.3 Interledger
Each node can increase their trust for the Hyperledger Indy instance by periodically recording
its state in the KSI blockchain. The Interledger component takes care of this. It is not strictly
required for the protocol to work, but can serve as an additional tamper-proofing mechanism
for private Hyperledger Indy deployments.

SOFIE 22(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

The Interledger component must be configured to observe DIDs on the Indy ledger. The
configuration (Figure 3.3.c) is done by specifying indy as the left side type and the direction as
left-to-right, since writing to the Indy ledger is not supported:

Figure 3.3.c: Interledger configuration.

The ssi-agent component in the FA generates one DID by default and this can be specified as
the target_did property. The genesis_file_path property points to the genesis file of the Indy
ledger that is used. In the DEDE pilot, this is the SOFIE Consortium Indy ledger.

3.3.2.1 Privacy and Data Sovereignty
The service providers decide which attributes their clients have to prove about themselves. By
default, the protocol expects the attributes to be proven with verifiable credentials, but the
PDS component offers a simpler alternative by issuing a JSON Web Token (JWT) that proves
certain attributes about the holder of the token. This token can be sent together with a request
and thus avoid the extra round trip for proof request.

To configure the PDS component for token issuance, the default configuration can be used
(Figure 3.3.d):

Figure 3.3.d: PDS configuration.

SOFIE 23(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

[service]
direction=left-to-right
left=left
right=...

[left]
type=indy
pool_name=sofie
protocol_version=2
target_did=<target-did>
genesis_file_path=<path-to-genesis-file>

{
 "port":9001,
 "adminport":9002,
 "wallet_config": {
 "id": "as_wallet",
 "storage_config":{
 "path":"conf"
 }
 },
 "wallet_credentials": {
 "key": "server_wallet_key"
 },
 "only_wallet_lookup": true,
 "as_public_key":"conf/keys/as_public_key.pem",
 "as_private_key":"conf/keys/as_private_key.pem"
}

It is necessary to generate the key pair specified by the as_public_key and as_private_key
configuration properties. The wallet_config and wallet_credentials properties can remain with
the default values, as these features are not used when issuing tokens.

3.3.2.2 Identity, Authentication, Authorisation
This is the counterpart component for the PDS component, if JWT based proved attributes are
used. If the client sends a JWT together with a service request, the IAA component can verify
this token. In this case, the authorization decision can be made without an extra round trip to
the client requesting proof of credentials.

To configure the IAA component for token verification, the defaults in the configuration file can
be used (FIgure 3.3.e):

Figure 3.3.e: IAA configuration.

It is, however, important to make sure that the as_public_key configuration property points to
the public key file generated for the PDS component. So, this public key file needs to be
shared between the PDS component that issues the tokens and the IAA components that
verify these tokens.

3.4 Decentralized Energy Flexibility Marketplace Pilot
The Decentralized Energy Flexibility Marketplace (DEFM) pilot demonstrates the applicability
of blockchain-based solutions in the context of energy flexibility marketplaces, with special
focus on features like smart contracts and fungible crypto-tokens.

The pilot leverages the SOFIE Marketplace component to run a marketplace in which electric
Distribution Service Operators (DSO) can pay for the services of Electric Vehicles (EV) fleet
managers that, using specific charging stations in specific time windows, contribute to balance
the production on the network.

A detailed description of the pilot, including the scenarios and use cases considered, can be
found in deliverables D5.1 Baseline System and Measurements and following.

3.4.1 Pilot architecture
The pilot platform consists of:

● SOFIE Components

SOFIE 24(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

{
 "port":9000,
 "wallet_config": {
 "id": "server_wallet",
 "storage_config": {
 "path":"conf"
 }
 },
 "wallet_credentials": {
 "key": "server_wallet_key"
 },
 "only_wallet_lookup": true,
 "as_public_key":"conf/keys/as_public_key.pem",
 "target":"sofie-iot.eu",
 "tokens_expire": true
}

● Pilot-specific components
● Existing services and infrastructures

Figure 3.4.a shows an overview of the platform architecture, highlighting the different groups
of software components.

Figure 3.4.a: DEFM Pilot Architecture.

The SOFIE components used are the Marketplace, Interledger (IL), and Semantic
Representation (SR) components. Section 3.4.2, below, describes the integration of each
component while D2.7 Federation Framework, final version describes in detail the
components functionalities. The connection with the existing IoT devices is enabled by a
specific Federation Adapter (FA).

Finally, the application logic and the interaction with the end users are delegated to the
backend and frontend of the web applications used by the DSO and fleet manager operators.

Figure 3.4.b, below, illustrates the integration of the pilot platform. The DSO application
consists of two software modules for the frontend and the backend.

SOFIE 25(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

Figure 3.4.b: Pilot Integration.

The application frontend is developed using Vue.js, an open-source JavaScript framework
which follows the model-view-viewmodel design pattern, while the backend is developed in
Javascript using the Express.js library and Node.js as runtime. Both software modules are
developed to run as containers: isolated instances virtualized at the OS level that can be
managed through specific applications such as Docker. The use of containers ensures that
the application is tested under the same environment of a production instance and simplifies
the deployment process. To deploy a new version of the application, it is sufficient to pull the
current images from the registry and run it using a container orchestration system.

3.4.2 Usage of SOFIE components

Following is a description of how the different SOFIE components are integrated in the DEFM
pilot, and what benefits they bring.
3.4.2.1 Marketplace
The marketplace component is the core component of the DEFM pilot. The marketplace
includes a set of Ethereum smart contracts and the related backend functionalities and API.

The DEFM marketplace was developed by extending the generic SOFIE marketplace smart
contract to fit the pilot’s specific needs. In particular, the requests and the offers extend the
generic ones by adding the relevant attributes to the energy flexibility use case such as the
network zone to be used for charging the EV, the energy amount requested by the DSO, and
the time window for the flexibility delivery. The business logic was also adapted to the specific
use case: the lowest bid is in fact selected as the winning offer for each request, with the
timestamp as a tie-breaker in case of multiple winners and the requests are finalised only after
the flexibility requested is delivered by the fleet manager.

The DEFM smart contracts were developed from scratch following the examples provided by
the marketplace component but were subsequently included in the marketplace release as
additional examples. The marketplace backend component is deployed on the pilot site as a
containerized application while the smart contracts are deployed on the DEFM private

SOFIE 26(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

Ethereum network. The marketplace is configured to point to the smart contracts address and
manages the communication with the smart contract through specific client libraries.

3.4.2.2 Interledger
The Interledger (IL) component mirrors the main events (i.e. the selection of a winning offer
and the final payment) of each market request from the internal private ledger to a public
ledger. The usage of a private and permissioned ledger for the operational purposes coupled
with a public ledger as a trust anchor provides an optimal trade-off between privacy, security,
trust, and execution costs. The IL component runs on the pilot platform as a containerized
application. The component was configured to operate in the so-called left-to-right mode (one
direction). On the right side (i.e. the receiving end), it was used as the receiver smart contract,
included as a sample with the component. The left side (i.e. the sender) was developed by
implementing the sender smart contract interface. The component configuration (smart
contracts addresses, the account of the contracts owner, connection details) was provided by
editing the dedicated configuration files.

The private/public ledgers, being decentralized networks, are not part of the IL component and
are accessed remotely using specific client libraries.

3.4.2.3 Semantic Representation

The Semantic Representation (SR) component validates the data gathered from the smart
meters ensuring that the format and the attributes returned are consistent with the expected
model. Since the day ahead forecasts are the starting point for each flexibility request on the
marketplace, it is important that the data provided by the smart meters are reliable and
annotated following the SOFIE representation.

The SR component is not deployed within the pilot platform, but instead it is integrated as an
external service called via an API. The SR component can be used as a containerized
application. The component is used through its APIs and the integration process consists in
the definition of a JSON-schema that follows W3C TD data model structure, as shown in
Figure 3.4.c. This data model is then saved in the component internal DB.

Figure 3.4.c: DEFM data model.

SOFIE 27(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

3.5 Context-Aware Mobile Gaming Pilot
The focus of the mobile game pilot is to explore how DLTs can be used to provide new
gaming features for players, as well as to validate the potential of location-based IoT use
cases. It seeks to overcome a known technical issue: the ability of DLTs to scale
cost-effectively to support millions of active users per day with hundreds of transactions per
second. Multiple use-cases that leverage IoT and blockchain technology are studied and
implemented throughout the pilot to test their technical applicability and performance for
mobile gaming. The gaming pilot also leverages SOFIE components to provide new gaming
features and enhance the player experience.

3.5.1 Pilot architecture

Figure 3.5.a: Mobile Gaming pilot architecture with SOFIE components.

We developed a Scavenger Hunt game prototype to explore location-based IoT gaming. In the
game, the player starts a hunt, which takes them on a journey of predetermined real-world
locations. At each location, a Bluetooth Low Energy (BLE) beacon is deployed and when the
mobile game client detects the beacon, they receive a task in the form of a question. By
observing their real-world surroundings, the player can learn the answer to the question, and
receive the clue on where the next correct location is. At the end of a hunt (a series of tasks
and clues), the player receives rewards that can bring in-game advantages in the next hunts.
As additional rewards, the player receives items that are stored on a distributed ledger as
non-fungible tokens. To browse and manage these items, a companion application was
created: Blockmoji.
In addition to the use cases, we integrated SOFIE Interledger and Marketplace components
into our pilot for trading the in-game assets. Furthermore, the SOFIE Provisioning and
Discovery along with the Semantic Representation component can be used to discover IoT
beacons and add them to the database for a location-based game, such as for our Scavenger
Hunt prototype.

SOFIE 28(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

3.5.2 Usage of SOFIE components

3.5.2.1 Interledger
The mobile gaming pilot uses the SOFIE Interledger component to communicate between the
permissioned Hyperledger Fabric and public Ethereum networks. In-game assets from the
Scavenger Hunt use-case are stored on a permissioned Hyperledger Fabric ledger, and the
Interledger component is used to transfer those assets to public Ethereum, to be traded on the
SOFIE marketplace.
In order to integrate the SOFIE interledger, an instance of the component is hosted on an
AWS EC2 instance. Similarly, the Fabric ledger network is also managed by AWS. After
cloning the GitHub repository, we configured the network connection profile that helps the
component to connect to the Fabric network by providing all the required information. We also
updated the smart contracts to emit events that can be listened to by the component. Once
the Interledger component is triggered, it passes the data payload containing asset
information from the Fabric ledger to the Ethereum ledger.
The component links the closed ecosystem of games and game developers to the public
ecosystem of trading games and other virtual assets. The component helps to achieve
interoperability between different distributed ledgers and could be used to create new
business opportunities as closed platforms can be connected securely and transparently.

The smart-contract can be found in the Mobile Gaming repository of the SOFIE project [MG
smartc-contract]

3.5.2.2 Provisioning and Discovery
The mobile gaming pilot uses the SOFIE Provisioning and Discovery component for exploring
the use case of discovering, configuring and maintaining the large IoT beacon deployments
used in the scavenger hunt game. The component scans nearby IoT devices, learns their
capabilities, and determines which devices are suitable for provisioning based on the
requirements set by game developers. After provisioning the IoT device, the component
configures it to work as BLE beacons, that can be used as PoIs in the scavenger hunt
prototype.

We used a Raspberry Pi 4 to act as an IoT device for this component. The SOFIE
Provisioning and Discovery component is used along with SOFIE semantic representation,
which provides the meta-data for the device. After hosting the semantic file on AWS, we
update the URL in the component and run the component. We use an Android application to
discover the device and provision it to the AWS DynamoDB, which also stores all IoT beacon
related information for the gaming pilot. The newly provisioned device can then also be used
in the creation of new hunts in the game.

The component takes advantage of the already deployed Web of Things (WoT) devices. It
also creates new business opportunities for device holders, namely micropayments for
services used, and the whole process of discovering and provisioning can be trusted and
automated through DLTs.

3.5.2.3 Semantic Representation
The mobile gaming pilot uses the SOFIE Semantic Representation component to describe the
semantic description of devices using WoT-Things Description. This component is used along
with the Provisioning and Discovery component. The semantic file is encoded in a JSON
format that also allows JSON-LD processing.

SOFIE 29(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

After creating the semantic representation file (Figure 3.5.c) for the IoT device, we run the
component instance on AWS EC2 in order to validate it. After validation, we host it on an AWS
S3 bucket and use the URL from the Provisioning and Discovery component.
Using the Semantic Representation component, IoT Devices can describe their capabilities
that can be later used to provision the devices. The component helps to unify different WoT
devices used as beacons and also provides service interoperability.

Figure 3.5.c: W3C WoT TD schema.

SOFIE 30(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

3.5.2.4 Marketplace

The mobile gaming pilot uses the SOFIE Marketplace component for the trading of the
in-game assets. Players can place bids for trading in-game virtual assets on a public
Ethereum ledger. The component enables the actual trade of resources in an automated,
trusted, and decentralized way. Once digital assets have been stored on the ledger, the
ownership and the item itself cannot be altered. DLTs also help maintain the scarcity of a
virtual item in a secure and verified way.

We used the Solidity smart contracts provided by the component and deployed them on the
Ethereum network hosted on the AWS EC2 instance. We updated the smart contracts with the
emitting event and configured them to work with the SOFIE Interledger component. The
assets stored on the Fabric ledger are transferred and traded on SOFIE marketplace.

Using the Marketplace component, the in-game assets can have some real-world value also,
e.g. trade skin with electricity. DLT-based marketplace grants security, transparency, and
traceability, with the effect of increasing a healthy competition among the players participating.

SOFIE 31(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

4 Summary
In the SOFIE project WP3 is responsible for integration of the SOFIE Business Platforms and
coordinating the SW pipelines per SOFIE pilot. This deliverable presents the methodologies
and the work the SOFIE partners have been done to integrate the SOFIE framework
components into the business platform. These platforms demonstrate how the SOFIE
framework can be used to create systems that solve relevant business problems, and how
SOFIE components can be integrated to such business platforms to satisfy specific business
requirements. SMAUG pilot demonstrates for a decentralized marketplace use case how all
the framework components can work together and seamlessly integrate in one system. The
SOFIE deliverable 5.4 ‘Final Validation Replication Guidelines’ [D5.4] provides a deeper view
on the business platforms and their goals, together with validation results to confirm that the
components are able to enable business application.

Moreover, the business platforms integration demonstrates that the framework component
integration is seamless and coherent among all the pilots. The framework components are
handled as containers which are configured with pilot’s specific information, with the exception
of the interledger and marketplace components. The interledger component requires the
creation of a smart-contract to work properly with diverse blockchains. The Marketplace has
been extended to add pilot specific functionalities, such as support for instant-rent offers and
Interledger sender/receiver in the SMAUG pilot and adding the relevant attributes to the
energy flexibility use case in the DEFM pilot.

SOFIE 32(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

5 References

SOFIE 33(33)

Document: H2020-IOT-2017-3-779984-SOFIE/
D3.5 – Final Business Platform Integration Report

Security: Public Date: 23.12.2020 Status: Completed Version: 1.00

[D2.6] Y. Kortesniemi et al. “SOFIE Deliverable 2.6 - Federation Architecture,
final version”, Nov 2020. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.6-Federation_A
rchitecture_final_version-2.pdf

[D2.7] Y. Kortesniemi et al. “SOFIE Deliverable 2.7 - Federation Framework,
final version”, Dec 2020. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.7-Federation_F
ramework_final_version.pdf

[D4.5] S. Vasilios et al. “SOFIE Deliverable 4.5 - Final Architecture, System,
and Pilots Evaluation Report”, Dec 2020. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.5-Final_Archite
cture_System_and_Pilots_Evaluation_Report.pdf

[D5.4] I. Oikonomidis. “SOFIE Deliverable 5.4 - Final Validation & Replication
Guidelines”, Dec 2020. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.4-Final_Validati
on_Replication_Guidelines.pdf

[MG
smart-contract]

Available at:
https://github.com/SOFIE-project/Marketplace/blob/master/solidity/contra
cts/HouseRenovationMarketPlace.sol

[FSC private] Food Supply Chain repository, smart-contract adapter for consortium
blockchain. Available at:
https://github.com/SOFIE-project/fsc-consortium-smart-contracts/blob/ma
ster/contracts/FoodChainAdapter.sol

[FSC public] Food Supply Chain repository, smart-contract adapter for consortium
blockchain. Available at:
https://github.com/SOFIE-project/fsc-public-adapter-contract/blob/master/
contracts/SofieFSCAdapter.sol

[FCS Adapter] Food Supply Chain repository, federation adapter repository. Available
at:
https://github.com/SOFIE-project/fsc-transportation-federation-adapter

https://media.voog.com/0000/0042/0957/files/SOFIE_D2.6-Federation_Architecture_final_version-2.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.6-Federation_Architecture_final_version-2.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.7-Federation_Framework_final_version.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.7-Federation_Framework_final_version.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.5-Final_Architecture_System_and_Pilots_Evaluation_Report.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.5-Final_Architecture_System_and_Pilots_Evaluation_Report.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.4-Final_Validation_Replication_Guidelines.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.4-Final_Validation_Replication_Guidelines.pdf
https://github.com/SOFIE-project/Marketplace/blob/master/solidity/contracts/HouseRenovationMarketPlace.sol
https://github.com/SOFIE-project/Marketplace/blob/master/solidity/contracts/HouseRenovationMarketPlace.sol
https://github.com/SOFIE-project/fsc-consortium-smart-contracts/blob/master/contracts/FoodChainAdapter.sol
https://github.com/SOFIE-project/fsc-consortium-smart-contracts/blob/master/contracts/FoodChainAdapter.sol
https://github.com/SOFIE-project/fsc-public-adapter-contract/blob/master/contracts/SofieFSCAdapter.sol
https://github.com/SOFIE-project/fsc-public-adapter-contract/blob/master/contracts/SofieFSCAdapter.sol
https://github.com/SOFIE-project/fsc-transportation-federation-adapter

