
 
 

 

SOFIE - Secure Open Federation for Internet 
Everywhere 

779984 
 

DELIVERABLE D2.7 
 

Federation Framework, final version 
 

Project title SOFIE – Secure Open Federation for Internet Everywhere 

Contract Number H2020-IOT-2017-3 – 779984 

Duration 1.1.2018 – 31.12.2020 

Date of preparation 21.12.2020 

Author(s) Yki Kortesniemi, Dmitrij Lagutin & Wu Lei (AALTO), Nikos Fotiou,          
Iakovos Pittaras, Spyros Voulgrais & Vasilios A. Siris        
(AUEB-RC), Giuseppe Raveduto (ENG), Mait Märdin (GT),       
Antonio Antonino & Filippo Vimini (LMF), Ahsan Manzoor        
(ROVIO), Yannis Oikonomidis (SYN)  

Responsible person Yki Kortesniemi (AALTO), Yki.Kortesniemi@aalto.fi  

Target Dissemination Level Public  

Status of the Document Completed 

Version 1.0 

Project web-site https://www.sofie-iot.eu/  

 

 

 

 
 

This project has received funding from the European Union’s Horizon 2020           
research and innovation programme under grant agreement No 779984. 

mailto:Yki.Kortesniemi@aalto.fi
https://www.sofie-iot.eu/


 

 
 

Table of Contents 
List of abbreviations……………………………..…………………………...4 

1 Introduction…………………………………………………………………..5 

2 SOFIE Architecture……………………………………………………….... 6 
2.1 Requirements and Validation……………………………………………..
6 

2.2 Architecture overview……………………………………………………..8 

3 Interledger Component…………………………………………………...11 
3.1 Requirements and Validation………..…………………………………. 12 

3.2 Services and Interfaces………………………………………………....13 

3.3 The internal structure…………………………………………………....14 

4 Identity, Authentication and Authorisation Component……………19 
4.1 Requirements and Validation…………………………………………... 19 

4.2 Services and Interfaces………………………………………………....21 

4.3 The internal structure…………………………………………………....23 

5 Privacy and Data Sovereignty Component…………………………...25 
5.1 Requirements and Validation…………………………………………... 25 

5.2 Services and Interfaces………………………………………………....27 

5.3 The internal structure……………………………………………………29 

6 Semantic Representation Component………………………………... 32 
6.1 Requirements and Validation…………………………………………... 33 

6.2 Services and Interfaces………………………………………………....34 

6.3 The internal structure……………………………………………………35 

7 Marketplace Component………………………………………………....37 
7.1 Requirements and Validation…………………………………………... 38 

7.2 Services and Interfaces………………………………………………....40 

7.3 The internal structure…………………………………………………... 41 

 
SOFIE 2(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

8 Provisioning and Discovery Component……………………………...44 
8.1 Requirements and Validation…………………………………………... 44 

8.2 Services and Interfaces………………………………………………....45 

8.3 The internal structure……………………………………………………48 

9 Federation Adapters……………………………………………………....50 
9.1 Requirements and Validation……………………………………………50 

9.2 Food Supply Chain………………………………………………………51 

9.3 Decentralised Energy Flexibility Marketplace…………………………..52 

9.4 Decentralised Energy Data Exchange…………………………………. 53 

10 How Components are used in the SOFIE Pilots…………………....56 
10.1 Food Supply Chain……………………………………………………. 56 

10.2 Decentralised Energy Flexibility Marketplace Pilot…………………... 58 

10.3 Context-Aware Mobile Gaming Pilot…………………………………..60 

10.4 Decentralised Energy Data Exchange Pilot…………………………...62 

10.5 SMAUG………………………………………………………………... 62 

11 Summary………………………………………………………………….. 66 

12 References………………………………………………………………...67 
 
 
 

  

 
SOFIE 3(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

List of abbreviations 
API Application Programming Interface 
BLE Bluetooth Low Energy 
DID Decentralised Identifier 
DLT Distributed Ledger Technology 
DNS Domain Name Server 
DSO Distribution System Operator 
EV Electrical vehicle 
FSC Food Supply Chain 
HTLC Hash Time-Lock Contract 
IAA Identity, Authentication, authorisation [component] 
IL Interledger [component] 
IoT Internet of Things 
KSI Keyless Signing Infrastructure (GuardTime) 
MP Marketplace [component] 
P&D Provisioning and Discovery [component] 
PDS Privacy and Data Sovereignty [component] 
RFID Radio Frequency IDentification 
SR Semantic Representation [component] 
TD Things Descriptor 
URI Uniform Resource Identifier 
URL Uniform Resource Locator 
UUID Universally Unique Identifier 
WLAN Wireless Local Area Network 
WoT Web of Things  

 
SOFIE 4(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

1 Introduction 
SOFIE (Secure Open Federation for Internet Everywhere) is a three-year EU Horizon 2020             
research and innovation project that provides interoperability between existing IoT systems in            
an open and secure manner.  

The SOFIE Architecture described in the SOFIE Deliverable ‘2.6 - Federation Architecture,            
final version’ [D2.6] achieves interoperability by federating the actions between different IoT            
systems using interledger technologies. The Architecture consists of 1) 6 components that            
enable key functionalities for federation scenarios and 2) federation adapters used to connect             
the IoT systems to the architecture without requiring changes to the IoT devices. The              
architecture can be extended to support different use cases and the individual components             
can be implemented using technologies that best suit the context. 

This document, which supersedes the earlier SOFIE Framework deliverable D2.5 [D2.5],           
introduces the SOFIE Federation Framework, an example implementation of the Architecture           
available as open-source software in GitHub [Framework]. It describes all the           
components’/adapters' purpose, interfaces, and internal structure, how the SOFIE pilots          
leverage the components/adapters, and how the components have been validated against the            
requirements set in D2.6.  

The rest of the document is organised as follows: Section 2 presents an overview of the                
SOFIE Architecture and Framework. Then, Sections 3-9 detail the 6 components and the             
federation adapters and their validation. Finally, Section 10 describes how the SOFIE pilots             
utilise these components and Section 11 summarises the document. 

 

  

 
SOFIE 5(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

2 SOFIE Architecture 
This section provides an overview of the SOFIE Architecture, summarises the requirements            
for the Architecture, and reports the validation test results that show the requirements have all               
been met. 

2.1 Requirements and Validation 
Table 2.1 details the functional requirements and Table 2.2 details the privacy requirement for              
the SOFIE Architecture (from SOFIE deliverable D2.6). 

Table 2.1 Requirements for the SOFIE Architecture 

 

Table 2.2. Privacy requirements for implementation and deployment of the SOFIE Architecture 

  

The validation tests showing that the Architecture meets all the functional requirements have             
been summarised in Table 2.3.  

 
SOFIE 6(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Req. ID Requirement Description Priority Category 

RA01 SOFIE Architecture must define a clear separation between 
data management, control, and representation processes. 

MUST QUALITY 

RA02 SOFIE Architecture must be modular to enable different use 
cases and reuse of components. 

MUST QUALITY 

RA03 The interfaces of the SOFIE components must be well-defined 
and fully documented. 

MUST QUALITY 

RA04 Transactions must be immutable and verifiable. Parties must        
not be able to modify existing transactions without other parties          
noticing it. Every party should be able to independently verify          
the validity of transactions. 

MUST SECURITY 

RA05 The system must provide auditability. MUST SECURITY 

RA06 Support for transactions, where only authorised entities can        
participate. Minimal amount of information should be disclosed        
during authentication. 

MUST SECURITY 

RA07 All external and internal interfaces and communication links of         
the system must conform to the principle of least privilege. 

MUST SECURITY 

RA08 The SOFIE Architecture should be flexible and support        
different means of user authentication, including      
password-based, certification-based, and token-based. 

SHOULD SECURITY 

Req. ID Requirement Description Priority Category 

RP01 Privacy issues and business secrets must be considered        
carefully when deciding what data (including authentication/       
authorisation information, logs etc.) is collected, stored or        
exchanged between parties. 

MUST POLICY & 
REGULATION 



 

 
Table 2.3 SOFIE architecture validation matrix 

 
SOFIE 7(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Validation Process 

RA01 Requirement 
Description 

SOFIE architecture must define a clear separation between data         
management, control, and representation processes. 

Test approach Documentation 

Test Description  Architecture is divided into multiple components that carry out the different           
processes in separation of each other. 

Test location D2.6, Section 2.2, page 11 

RA02 Requirement 
Description 

SOFIE architecture must be modular to enable different use cases and           
reuse of components. 

Test approach Documentation 

Test Description  Architecture is divided into extendable components. SOFIE pilots are         
examples of how the components can be used for different use cases. 

Test location D2.6, Section 2.2, page 11 & Section 3, page 13- 

RA03 Requirement 
Description 

The interfaces of the SOFIE components must be well-defined and fully           
documented. 

Test approach Documentation 

Test Description  Component interfaces are described in the Framework documentation. 

Test location This document, Sections 3-8, page 11- 

RA04 Requirement 
Description 

Transactions must be immutable and verifiable. Parties must not be able to            
modify existing transactions without other parties noticing it. Every party          
should be able to independently verify the validity of transactions. 

Test approach Functional test 

Test Description  Event on one ledger automatically triggers the transfer of data/asset to           
another ledger. All information (initiation of transfer, acceptance of transfer,          
confirmation of acceptance) is stored on the ledgers, which makes the           
information immutable and verifiable. 

Test location https://github.com/SOFIE-project/Interledger/blob/master/tests/system/test
_interledger_ethereum.py 

RA05 Requirement 
Description 

The system must provide auditability. 

Test approach Functional test 

Test Description  The SMAUG reference application implements auditability for all the key          
functionalities. 

Test location https://github.com/SOFIE-project/SMAUG-Deployment/blob/master/docs/p
ages/requirements_validation.md 

https://github.com/SOFIE-project/Interledger/blob/master/tests/system/test_interledger_ethereum.py
https://github.com/SOFIE-project/Interledger/blob/master/tests/system/test_interledger_ethereum.py
https://github.com/SOFIE-project/SMAUG-Deployment/blob/master/docs/pages/requirements_validation.md
https://github.com/SOFIE-project/SMAUG-Deployment/blob/master/docs/pages/requirements_validation.md


 

 

 

Finally, although satisfying the privacy requirement is ultimately up to each implementation            
and deployment, the SOFIE Architecture provides all the necessary tools to this end. For              
instance, using the Interledger component it is possible to store all confidential information             
only in each organisation’s private storage and then store a hash to a public ledger for                
increased trust. If a dispute requires auditing the information in the private storage, the hash               
proves that the data was not modified after the hash was published. Further, the Privacy and                
Data Sovereignty component also supports privacy preserving surveys using differential          
privacy, thus avoiding the storage of privacy compromising information in the first place. 

2.2 Architecture overview 
The lack of interoperability between IoT systems has long been a significant limitation to the               
creation of solutions spanning multiple IoT systems. This situation has been further            
aggravated by the fact that adding interoperability to existing IoT systems can be hard due to                
some systems not being upgradable. The SOFIE Architecture enables interoperability          
between existing IoT systems in an open and secure manner by federating the actions              
between different IoT systems using interledger technologies. The Architecture consists of 6            
components that enable key functionalities for federation scenarios and of federation adapters            
used to connect the IoT systems to the architecture without requiring changes to the IoT               
platforms and devices. The architecture can be extended to support different use cases and              
the individual components can be implemented using technologies that best suit the context.             
The Architecture has been detailed in SOFIE Deliverable D2.6 [D2.6]. 

 
SOFIE 8(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RA06 Requirement 
Description 

Support for transactions, where only authorised entities can participate.         
Minimal amount of information should be disclosed during authentication. 

Test approach Documentation 

Test Description  Architecture (through the IAA component) can be configured to support          
any type of authorisation server including servers supporting minimal         
disclosure of information. 

Test location D2.6, Section 4.2, page 21 

RA07 Requirement 
Description 

All external and internal interfaces and communication links of the system           
must conform to the principle of least privilege. 

Test approach Documentation 

Test Description  Architecture has been designed with the principle of least privilege. 

Test location D2.6, Section 4.3, page 22 

RA08 Requirement 
Description 

The SOFIE architecture should be flexible and support different means of           
user authentication, including password-based, certification-based, and      
token-based. 

Test approach Documentation 

Test Description  IAA component can be configured to support any type of authorisation           
server including servers supporting different means of authentication. 

Test location D2.6, Section 4.2, page 21 



 

 
The SOFIE Framework detailed in this document is an example implementation of the             
Architecture designed to support the SOFIE pilots (the pilots are described in more detail in               
the SOFIE Deliverable D5.4 [D5.4]) and to fulfill the requirements set in D2.6. The full               
Framework, detailed technical documentation, and multiple examples of how the components           
and adapters can be utilised are all available as open-source software in the GitHub              
[Framework].  

Figure 2.1: The SOFIE framework architecture. 

A key element of the SOFIE Architecture, depicted in Figure 2.1, is that it is a framework                 
architecture that defines the types of functionalities provided by the components and adapters,             
but not an exhaustive list of supported functions. This is due to the fact that SOFIE is intended                  
to support IoT federation in many application areas and it is infeasible to define a set of                 
functions that would encompass all the needs (including future needs) of the different             
application areas. Instead, the Architecture defines key functionalities for federation and           
provides example implementations of each component and adapter in the SOFIE Framework.            
The provided examples are based on the pilots in the SOFIE project and they can be freely                 
adapted and expanded to suit the needs of other applications. 

The lowest level of the architecture contains the IoT systems: IoT assets/devices (or             
resources) that include, e.g. IoT sensors for sensing the physical environment and actuators             
for acting on the physical environment, and IoT platforms/gateways that include provide            
additional functionality, e.g. data stores, where the measurements from sensors are collected            
and made available to third parties. 

The federation adapter(s) are used to interface the IoT systems with the Architecture. This              
allows the IoT systems to interact with SOFIE without requiring any changes to the IoT               
systems themselves. Different scenarios and pilots can utilise different types of federation            
adapters, which expose only the required parts of the SOFIE functionality to the IoT system               
and which can implement different protocols, standards etc. depending on the application            
domain and devices used. The federation adapters used in the SOFIE pilots are discussed in               

 
SOFIE 9(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
Section 9 and they have been released as open-source software as part of the Framework               
[Framework]. 

The main functionality of the SOFIE Architecture is provided by the 6 components described in               
Sections 3-8:  

● Interledger enables secure federation by providing support for atomic transactions          
spanning two or more ledgers. 

● Identity, Authentication and Authorisation provides IAA functionalities for the different          
entities in the system by supporting multiple authentication and authorisation          
techniques. 

● Privacy and Data Sovereignty provides mechanisms that enable data sharing in a            
controlled way and supports privacy preserving surveys using differential privacy          
techniques. 

● Semantic Representation is used to enable semantic level interoperability between          
different IoT systems, services, and data by describing what functions they provide and             
what interfaces and formats they utilise. 

● Marketplace allows participants to trade resources by creating auctions, placing offers,           
and tracking trade completion in a secure, auditable, and decentralised way. 

● Discovery & Provisioning provides management and discovery of IoT devices,          
services, and data. 

Finally, all the components can expose application APIs, which provide the interfaces for IoT              
clients and applications to interact with the SOFIE components.  

Of the six components, the architecture emphasises the interledger component (described in            
Section 3) responsible for interconnecting the different types of decentralised ledger           
technologies (DLTs), which can have quite different features and functionality. Utilising           
multiple ledgers that are interconnected through interledger functionality instead of a single            
DLT for everything provides the flexibility to exploit these trade-offs.  

In Figure 2.1 the multiledger operations are positioned next to the Interledger component as it               
is mostly using that functionality, but any of the other components can also utilise multiledger               
operations when required. Also, the framework adapters and IoT applications can directly            
interact with the DLTs, but for simplification this is not shown in the figure. 

  

 
SOFIE 10(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

3 Interledger Component 
The main purpose of the SOFIE Interledger (IL) component is to enable transactions between              
actors belonging to different (isolated) IoT platforms or silos. SOFIE assumes that each IoT              
silo either utilises or is connected to one or more DLTs, with the Interledger component               
enabling transactions between these DLTs. Several techniques for implementing this type of            
functionality have been proposed in the literature [Sir2019] and of those the IL component              
implements a bridge-type connection, where activity on one ledger (the Initiator ledger)            
triggers activity on one or more ledgers (the Responder ledgers) in an atomic manner. The               
Framework’s IL component provides support for connecting different types of DLTs:           
Ethereum, Hyperledger Fabric, Hyperledger Indy, and KSI; support for additional DLT           
types can be easily added. 

With the Interledger component, it is possible to, e.g. integrate multiple ledgers to a cohesive               
storage platform that enables the most suitable type of DLT to be used for the type of                 
information at hand and to enable cross-ledger transactions, thus harnessing the individual            
strengths of the different DLTs. The IL component is used in all SOFIE pilots and the                
Framework also provides multiple code examples of using the IL including: 

● Transferring Data from one ledger to another. 

● Storing Data Hashes stores detailed information in a (private) ledger and a hash of the               
information is then stored in a (public) ledger at suitable intervals using Interledger to              
benefit from the higher trust of the public ledger. 

● Game Asset Transfer implements a state transfer protocol, which is used for managing             
in-game assets: the assets can either be used in a game or traded between gamers               
but not both. For both activities a separate ledger is used, and Interledger ensures that               
each asset is active in only one of the ledgers. 

● Hash Time Locked Contracts (HTLCs) describes how to use the Interledger to            
automate the asset exchange between two ledgers using HTLCs. 

 

 
Figure 3.1: Connection between the SOFIE components and the ledgers. 

 
SOFIE 11(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

https://github.com/SOFIE-project/Interledger
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-eth.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-fabric.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-indy.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-ksi.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/example-data_transfer.rst
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-ksi.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/example-game_asset_transfer.rst
https://github.com/SOFIE-project/Interledger/blob/master/doc/example-HTLC.md


 

 
All SOFIE components can directly access the ledgers, but for multi-ledger operations they             
usually rely on IL as shown in Figure 3.1, where the dashed lines represent multi-ledger               
operations and continuous lines represent single-ledger operations. In this example, the Asset            
and Access control ledgers can be permissioned ledgers such as Hyperledger Fabric to             
reduce costs, while payments and trades can take place on public ledgers such as Ethereum               
to improve trust. Finally, the oracle is a trusted third party in charge of making authoritative                
statements about the status of some system, e.g. the oracle may track the charging events in                
the Decentralised Energy Flexibility Marketplace pilot and notify the auction once the agreed             
amount of energy has been consumed in the correct district. The presence of the oracle and                
its connections with the ledgers depends on the use case. 

3.1 Requirements and Validation 
Table 3.1 details the requirements for the IL component (from SOFIE deliverable D2.6). 

Table 3.1. Requirements for the Interledger component 

 

Table 3.2 details how the component has been validated with the specific tests. All tests are                
available in the component repository at the specified location and all tests have successfully              
passed, and with them the component meets all the requirements. 

Table 3.2. Validation of SOFIE Interledger component 

 
The IL component has reached TRL 7: it is an integral part of all four SOFIE pilots, including                  
the TRL 7 pilots Food Supply Chain, Decentralised Energy Flexibility Marketplace, and            
Decentralised Energy Data Exchange as detailed in SOFIE Deliverable D5.4 [D5.4]. 

 
SOFIE 12(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Requirement Description Priority Category 

RF01 User interaction is not required for interledger operations. MUST USABILITY 

RF02 There should be support for atomic interledger operations. SHOULD SECURITY 

ID Validation Process 

RF01 Requirement 
Description 

User interaction is not required for interledger operations. 

Test approach Functional test 

Test 
Description 

Event on one ledger automatically triggers the transfer of data/asset to           
another ledger 

Test location Interledger: tests/system/test_interledger_ethereum.py 

RF02 Requirement 
Description 

There should be support for atomic interledger operations. 

Test approach Functional test 

Test 
Description 

Status of asset transfers is atomic, so that the asset can be accessible only              
in one ledger 

Test location Interledger: tests/system/test_interledger_ethereum, solidity/test/tokenTest   
(testing contract for GameToken) 



 

 

3.2 Services and Interfaces 
The IL component is used by configuring Interledger instances between the ledgers: each             
instance is a unidirectional connection between one Initiator and one or more Responders. It              
is also possible to enable bidirectional communication between two ledgers by configuring two             
Interledger instances in opposite directions, but multiple Initiators for a transaction are not             
supported due to the application specific semantics of such operations. However, applications            
can implement such functionality e.g. using smart contracts. 

 

 

Figure 3.2: An Interledger Instance has been configured between  
application smart contracts on Initiator and Responder ledgers. 

As shown in Figure 3.2, an application wishing to utilise IL has first deployed two Smart                
Contracts (SC) that implement the Sender and Receiver interfaces on the Initiator and             
Responder ledgers (detailed in Table 3.3), respectively, and then configured the Interledger            
instance between them. The IL component now listens for InterledgerEventSending-events          
from the configured Initiator ledger SC, and when one is emitted (1), it passes the data                
parameter to the configured SC on the Responder ledger(s) by calling the interledgerReceive             
function (2). The application SC on the Responder ledger then either has to accept or reject                
the call by emitting the corresponding event (InterledgerEventAccept or         
InterledgerEventReject) (3), and that reply is then conveyed to the Initiator ledger’s SC by              
calling the corresponding function (InterledgerCommit or InterledgerAbort) (4) thus completing          
the transaction. In step 2, the application smart contract also includes an application chosen id               
parameter, which is only used between the SC and IL (it is not passed to the Responder                 
ledger). The id does not need to be globally unique, so the application can e.g. use it to group                   
certain types of events or use unique values to distinguish each transaction. On the              
Responder side, an IL-generated nonce is used to track each transaction, and it is mapped               
back to the original id for step 4. This example uses Ethereum ledgers as Initiator and                
Responder. Depending on the ledger used, the details of invoking IL etc. may differ as not all                 
ledgers support smart contracts, events etc. Hyperledger Indy and KSI are examples of such              
ledgers, so their implementations in the Framework can be used as examples when adding              
support for similar ledgers. 

  

 
SOFIE 13(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

https://github.com/SOFIE-project/Interledger/blob/master/doc/Interledger_internals.rst#ledger-interfaces
https://github.com/SOFIE-project/Interledger#Configuration


 

 
Table 3.3. Interfaces of the IL component 

 

3.3 The internal structure 
The high level structure of the IL component is shown in Figure 3.3. The logic of passing the                  
transactions back and forth and maintaining the related state information is implemented in the              
IL Core, while the support for the different types of DLTs is enabled through the use of                 
stateless ledger-specific adapters, which enable the DLT to act as Initiator and/or Responder.             
The Framework’s IL component provides adapters with both roles for Ethereum and            
Hyperledger Fabric, Initiator support for Hyperledger Indy, and Responder support for KSI. 

  

Figure 3.3: Functional overview of the SOFIE IL component. 

The IL Core does not perform any processing on the data parameter it passes through, but the                 
adapters can implement such functionality if it is relevant for the DLT in question as has been                 
done with the KSI Responder adapter, which automatically calculates a hash of the data              
parameter and stores only the hash to KSI. Typically, though, adapters only pass through the               
information. 

 
SOFIE 14(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Interface Content 

IF01 
 

Name Sender Interface 

Description Used by the application smart contract on the Initiator ledger to trigger IL             
transactions 

Key inputs Transaction data 

Response Transaction success/failure status 

IF02 Name Receiver Interface 

Description Used by the application smart contract on the Responder ledger to receive the             
transaction 

Key inputs Transaction data 

Response Transaction success/failure status 

https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-eth.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-fabric.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-indy.md
https://github.com/SOFIE-project/Interledger/blob/master/doc/adapter-ksi.md


 

 
The Interledger Instance will operate in one of the two alternative modes depending on              
whether the Instance is between one Initiator and one Responder (one-on-one mode) or one              
Initiator and multiple Responder (multi-ledger mode). The multi-ledger mode has two sub            
modes: either all (all-N) or at least k of the N (k-out-of-N) Responders have to accept the                 
transaction or the whole transaction is rolled back. 

The interactions in the one-on-one mode is shown in Figure 3.4. The Initiator adapter is               
initialised with the listen_for_events function (1) after which it starts catching the            
InterledgerEventSending events from an Initiator ledger (2). For every caught event the            
adapter calls the Core’s send_tranfer function (3), which generates a nonce to replace the id               
parameter, stores all related data in an internal state structure, and finally calls the send_data               
function of the Responder adapter (4). The adapter then calls the application SC function              
interledgerReceive (5). The application then either accepts or rejects the transaction by            
emitting either the InterledgerEventAccepter or InterledgerEventRejected event (6). The         
Responder adapter passes the reply to the Core using the process_result function (7), which              
maps the nonce back to the original id and calls the Initiator adapter’s commit_sending or               
abort_sending function depending on the reply (8). The Initiator adapter completes the            
transaction by calling either the InterledgerCommit or InterledgerAbort of the application smart            
contract (9). 

 

Figure 3.4: Interledger in one-on-one mode. 

In the multi-ledger mode shown in Figure 3.5 all steps on the Initiator side (1-2 and 12-13)                 
remain the same, but the Responder side has some additional steps: it now implements a               
two-phase commit to ensure sufficiently many application SCs on the Responder ledgers            
accept the transaction. So the Core in step 4 calls the send_data_inquire function of each N                
Responders, which passes the inquiry to the application SC with the interledgerInquire            
function (5). After the application SC’s reply with either InterledgerInquiryAccepted or           
InterledgerInquiryRejected event (6), the Responder adapter then calls the Core’s          
transfer_inquiry function (7). After all the Responders have replied, the Core will either commit              
(adapter’s send_data function) or roll back the transaction (abort_send_data function) (8). The            
Responder adapter will then pass the information to the application SCs with either             
InterledgerReceive or InterledgerReceiveAbort function (9). The application SCs will confirm          
by emitting either InterledgerEventAccepted or InterledgerEventRejected event (10), and the          
adapter will pass the information to the Core with process_result function (11), after which the               
transaction concludes as in the one-on-one mode transaction. 

 
SOFIE 15(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

 

Figure 3.5 Interledger in Multi-ledger mode. 

 

Since the IL component communicates with multiple DLTs, it abstracts each ledger API (e.g.              
Web3 for Ethereum ) in order to be reusable as shown in Figure 3.6.  1

 

Figure 3.6: The Interledger component’s internal structure.  

 

1 https://web3py.readthedocs.io/en/stable/ 
 
SOFIE 16(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

https://web3py.readthedocs.io/en/stable/


 

 
The basic IL component is run on a single computer (single-node IL), which requires the               
applications and their users to trust the party running the node. The Framework also provides               
an initial version of a Decentralised Interledger (DIL), where a consortium of parties are jointly               
responsible for the IL services. Each member runs one or more IL nodes all of which are                 
coordinated using a shared state. This reduces the trust required as now the users of the IL                 
services only need to trust the consortium as a whole, as well as improves throughput and                
resiliency of IL. Switching to DIL in no way affects the external interfaces or use of the IL                  
service, only the internal operations of IL. 

 

Figure 3.7: Architecture of the Decentralised Interledger (DIL), where a shared state is used to               
coordinate multiple IL nodes. 

 
SOFIE 17(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
Overall, the DIL architecture remains very similar to the single node IL as all the changes                
required to support the DIL functionality only affect the IL Core, and all the ledger adapters                
and application smart contract remain the same. The major change from single node IL is that                
instead of the Core handing all transactions to the correct ledger adapter on the same node it                 
now writes the information to the shared state that keeps a shared records of transfers for all                 
DIL nodes in the consortium and the node responsible for continuing the transaction (together              
with standbys) is then chosen in a pseudo-random manner (by using a deterministic algorithm              
and a hash function as the source of randomness). Further redundancy can be provided by               
having all capable nodes (nodes may have different capabilities and not all nodes necessarily              
can operate with all ledgers) monitor the related ledgers and competing to update the shared               
state.  

The architecture and transaction flow of DIL are detailed in Figure 3.7. First, all capable nodes                
listen for events on the Initiator ledger (1) and compete to write it to the shared state (2) and                   
then check that the successful write is correct. Using a deterministic algorithm a             
pseudo-randomly selected node is chosen to perform the Responder operations while others            
are chosen as backups (3). As the Responder operation may be a multi-ledger operation that               
can take a while to complete, the chosen Responder will first signal that it will proceed with the                  
operation (4) and then proceed with the Responder operations of the transaction (5-6,             
multi-ledger operations will have further steps due to the two-phase commit), and once             
complete, it will write the result to the shared ledger (7) (if steps 4 or 7 time out, the first                    
backup node will take over steps 4-7 etc.). A validator node is chosen using the same                
algorithm (8), but this time it will not write a separate acceptance to the shared ledger as the                  
Initiator operation is much faster to complete involving only submitting the result to the Initiator               
ledger (9) and updating the shared status (10-11) (again, if step 11 times out, the first backup                 
will step in etc.). 

  

 
SOFIE 18(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

4 Identity, Authentication and Authorisation Component  
The goal of the Identity, Authentication and Authorisation (IAA) component is to provide             
mechanisms that can be used for authenticating and authorising users wishing to access a              
protected resource.  

User authentication and authorisation is implemented using access tokens. In its present form,             
the IAA component can use the following types of access tokens: Hyperledger Indy             
Decentralised Identifiers (DIDs) and Verifiable Credentials (VC), W3C-based VC, JSON web           
tokens (JWT), and JWT backed by Ethereum ERC-721 tokens (as described in [Fot2020]). 

 

Figure 4.1: IAA Overview 

The IAA component, as it can be seen in Figure 4.1, acts as an HTTP forward proxy and                  
intervenes in the communication between users and protected resources. Users include their            
access token in their HTTP request as an HTTP header, which IAA parses and validates; If                
the token is valid, the IAA forwards the request to the protected resource. One of the main                 
advantages of IAA is that it is transparent both to end-users and protected resources. 

Tokens are Base64URL-encoded JSON data structures. Token validation is based on access            
control policies included in the IAA configuration file. In particular, access control policies are              
expressed as a set of filters that are used for parsing the token. Filters, examples of which are                  
included in the conf/iaa.conf file in the IAA GitHub repository, may define rules for accepted               
token issuers, required claims, token structure, and other properties.  

4.1 Requirements and Validation 
Table 4.1 summarises the requirements for the IAA component (from D2.6). 

Table 4.1. Requirements for the IAA component. 

 
SOFIE 19(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Requirement Description Priority Category 

RF03 Resource owners must be able to delegate the authentication and          
authorisation tasks for their resources. 

MUST OPERA- 
TIONAL 

RF04 The IAA component must provide users the capability to revoke          
authorisations. 

MUST SECURITY 

RF05 The IAA component must allow individuals to control their personal          
information and digital identities (e.g. support self-sovereign identity        
technology). 

MUST SECURITY 

RF06 The IAA component must support secure, tamper-proof, and verifiable         
logging of transactions and events. 

MUST SECURITY 

RF07 The IAA component must support Role Based Access Control         
(RBAC). 

MUST SECURITY 



 

 

 
Table 4.2 details how the component has been validated with the specific tests. All tests are                
available in the component repository at the specified location and all tests have successfully              
passed, and with them the component meets all the requirements. 

Table 4.2. IAA validation results 

 
SOFIE 20(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RF08 Cryptographic algorithms used by SOFIE should be open-source and         
transparent and as independent as possible of any particular         
architecture. 

SHOULD AUDITA- 
BILITY 

RF09 SOFIE should support the execution of authorisation and        
authentication functionality on devices with constrained processing,       
storage, battery, and network connectivity. 

SHOULD OPERA- 
TIONAL 

RF03 Requirement 
Description 

Resource owners must be able to delegate the authentication and 
authorisation tasks for their resources. 

Test approach Documentation 

Test Description The IAA can be configured to operate with any authorisation server. 
Configuration examples will be provided 

Test location IAA’s repository documentation, “Configuration” chapter 

RF04 Requirement 
Description 

The IAA component must provide users the capability to revoke 
authorisations. 

Test approach Functional test 

Test Description A token is created, and it is logged in an ERC-721 smart contract. Then it is 
marked as revoked in the smart contract. IAA rejects the token. 

Test location IAA tests/test_erc721.py 

RF05 Requirement 
Description 

The IAA component must allow individuals to control their personal 
information and digital identities (e.g. support self-sovereign identity 
technology). 

Test approach Functional test 

Test Description The test is configured with a valid DID and a valid VC. It interacts with 
indy_agent.py which generates a challenge. The test sends a report to the 
challenge. 

Test location IAA tests/test_indy_agent.py 

RF06 Requirement 
Description 

The IAA component must support secure, tamper-proof, and verifiable 
logging of transactions and events. 

Test approach Functional test 

Test Description The test is configured with a valid token. It interacts with iaa_logger.py which 
records the token in a configured Ethereum smart contract. The test verifies 
the record. 

Test location IAA test/test_logging.py 



 

 

 
The IAA component has reached TRL 7: it is an integral part of two SOFIE pilots on TRL 7,                   
Food Supply Chain and Decentralised Energy Data Exchange as detailed in SOFIE            
Deliverable D5.4 [D5.4]. 

4.2 Services and Interfaces 
The IAA component provides the following 4 interfaces as shown in Figure 4.2 and detailed in                
Table 4.3: 

● IAA Proxy: This is an HTTP Proxy exposed by the component. It can be accessed               
directly by a client and its goal is to provide client authentication and authorisation. 

● Blockchain I/O: This interface is responsible for interacting with ledgers (or the            
interledger component), in order to read blockchain-based tokens.  

● Internal I/O: This interface is used by the component for interacting with the protected              
(HTTP) services 

● Administrative interface: This interface is used for configuring the component with           
the appropriate policies.  

The goals of the interfaces are: (i) to enable generic client applications or other components to                
access the IAA operations without significant effort, (ii) to allow protection of arbitrary             
HTTP-based resources, and (iii) to facilitate rich access control policies.  

 
SOFIE 21(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RF07 Requirement 
Description 

The IAA component must support Role Based Access Control (RBAC). 

Test approach Documentation 

Test Description RBAC is implemented with the use of VCs. IAA can be used to verify a VC. 

Test location IAA’s repository documentation, “Examples” chapter  

RF08 Requirement 
Description 

Cryptographic algorithms used by SOFIE should be open-source, 
transparent, and as independent as possible of any particular architecture. 

Test approach Documentation 

Test Description IAA supports standardised cryptographic algorithms. 

Test location IAA’s repository documentation, “Key technologies” chapter 

RF09 Requirement 
Description 

SOFIE should support the execution of authorisation and authentication 
functionality on devices with constrained processing, storage, battery, and 
network connectivity. 

Test approach Functional test 

Test Description The test pre-configures IAA with the DID document of a DID. Then IAA 
authenticates this DID using only local information, and without needing 
network connectivity. 

Test location IAA test/test_indy_api.py 



 

 

 

Figure 4.2: The IAA component’s interfaces. 
 

Table 4.3. Interfaces of the component. 

 
SOFIE 22(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Interface Content 

IF01 
 

Name IAA Proxy 

Description It is used by clients to access a protected resource 

Key inputs Access token 

Response The protected resource response, or an HTTP 401 error 

IF02 Name Blockchain I/O 

Description It is used by the component for reading ERC-721 based tokens stored in an              
Ethereum smart contract 

Key inputs Token Id 

Response Hash of the token, Ethreum address of the token owner 

IF03 Name Internal I/O 

Description It is used by the IAA component for communicating with the protected resources 

Key inputs The HTTP request of an authorised user 

Response The HTTP response of the protected resource 

IF04 Name Administrative interface 

Description It is used for configuring the IAA component with the proper access control policies 

Key inputs A JSON-encoded configuration file 

Response No output 



 

 

4.3 The internal structure 
As depicted in Figure 4.3, the IAA component is composed of 3 entities: Client modules,               
Blockchain modules, and the IAA proxy. 

Client modules 
This entity includes modules that can be used for generating HTTP authentication headers.  

Blockchain modules 
The IAA component includes tools for interacting with Hyperledger Indy as well as a smart               
contract that implements the functionality required by OAuth2-based authorisation using          
blockchains, as described in [Fot2020]. 

IAA proxy 
This entity is responsible for proxying HTTP requests to protected IoT platforms. It includes a               
number of Authentication and Authorisation mechanisms.  

 

Figure 4.3: IAA component internal structure. 

Operations 
The main operations related to the ΙAA component are illustrated in Figure 4.4. 

Initially, a client generates an HTTP request, which includes the access token in the              
appropriate HTTP header. Furthermore, and depending on the type of the token, it may              
include a proof-of-possession, using DPoP . Then it sends the request.  2

The HTTP request is received by the IAA proxy. The proxy extracts the access token and                
validates it. The validation process is based on the proxy configuration file. Depending on the               
token type, the proxy may use additional information provided by the IAA smart contract, i.e.,               
an Ethereum smart contract that implements the functionality described in [Fot2020]. 

2 https://tools.ietf.org/html/draft-ietf-oauth-dpop-02  
 
SOFIE 23(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

https://tools.ietf.org/html/draft-ietf-oauth-dpop-02


 

 
If the validation process is successful, the IAA proxy removes the authentication header and              
forwards the request to the protected resource; the resource responds and the proxy forwards              
the response back to the client.  

 

Figure 4.4: IAA component flowchart. 

 

  

 
SOFIE 24(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

5 Privacy and Data Sovereignty Component 
Τhe Privacy and Data Sovereignty (PDS) Component is composed of two modules: the             
Privacy module and the Data Sovereignty module. Each module can be used independently             
from the other. 

 

Figure 5.1: Privacy module overview. 
 

The Privacy module enables the creation of privacy preserving surveys. These are surveys             
that allow users to add noise to their responses using local differential privacy mechanisms.              
The addition of the noise prevents 3rd parties from learning meaningful information about             
specific users, but at the same time aggregated statistics can be extracted. The accuracy of               
the extracted statistics increases with the number of responses. An overview of the privacy              
module is illustrated in Figure 5.1. From a high level perspective, the privacy module allows               
data consumers to buy noisy responses from data providers. This process creates the             
following requirements: (i) responses must be filtered (by a system operator so as to mach               
some criteria set by the data consumer, (ii) a data consumer should only pay for the service if                  
an appropriate number of responses has been collected, and (iii) a data consumer should not               
be able to extract any statistics before it pays. All these requirements are accommodated              
using a smart contract.  

The Data Sovereignty module implements an OAuth 2.0 Authorisation Server. This server            
accepts authorisation grants and if the grant is valid it generates an access token encoded               
using the JSON web token (JWT) format. Accepted types of authorisation grants are:             
Decentralised Identifiers (DIDs), Verifiable Credentials (VCs), and pre-shared secret keys. The           
generated access token can be used by any web service, as well as with SOFIE's Identity,                
Authentication, and Authorisation (IAA) Component. 

5.1 Requirements and Validation 
Table 5.1 below summarises the requirements for the PDS component (from deliverable            
D2.6). 

  
 
SOFIE 25(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
Table 5.1. Requirements for the PDS component. 

 
Table 5.2 details how the component has been validated with the specific tests. All tests are                
available in the component repository at the specified location and all tests have successfully              
passed, and with them the component meets all the requirements. 

Table 5.2. PDS validation results. 

 
SOFIE 26(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Requirement Description Priority Category 

RF10 SOFIE must follow the data minimisation principle for personal         
data and only request or process what is necessary for the           
situation and purpose. 

MUST OPERA- 
TIONAL 

RF11 Processing of individual’s personal data must require a valid         
consent from the individual. 

MUST POLICY & 
REGULATION 

RF12 Consent of the actors to process their private data must be           
revocable at any time. 

MUST POLICY & 
REGULATION 

RF13 SOFIE must allow organisations and actors to manage (create,         
update, delete) their own data privacy policies. 

MUST POLICY & 
REGULATION 

RF14 SOFIE should support user privacy even when aggregate        
statistics are made public (e.g. using differential privacy        
mechanisms). 

SHOULD POLICY & 
REGULATION 

RF10 Requirement 
Description 

SOFIE must follow the data minimisation principle for personal data and only 
request or process what is necessary for the situation and purpose. 

Test approach Documentation 

Test 
Description 

PDS can be configured with a specific proof request 

Test location PDS’s repository documentation, “Configuration” chapter 

RF11 Requirement 
Description 

Processing of an individual's personal data is justified by a valid legal basis, 
e.g. a valid consent from the individual. 

Test approach Functional test 

Test 
Description 

The test is configured with a valid VC. The test invokes the VC verification, 
which generates a proof request. The test generates the proof and outputs 
the verification result. 

Test location PDS tests/test_indy_agent.py 

RF12 Requirement 
Description 

Consent to process personal data must be revocable at any time. 

Test approach Documentation 

Test 
Description 

The documentation described how to set an expiration time on a VC 

Test location PDS’s repository documentation, “Examples” chapter 



 

 

 
The PDS component has reached TRL 7: it is an integral part of two SOFIE pilots on TRL 7,                   
Food Supply Chain and Decentralised Energy Data Exchange as detailed in SOFIE            
Deliverable D5.4 [D5.4]. 

5.2 Services and Interfaces 
The Data sovereignty module provides the following 3 interfaces: 

● PDS API: This is the HTTP REST API of the module’s OAuth2.0 Authorisation Server,              
which can be accessed directly by a client. It receives as input an authorisation grant               
and it outputs an access token. 

● Blockchain I/O: This interface is responsible for interacting with ledgers (or the            
interledger component), in order to record tokens as well as audit logs.  

● Administrative interface: This interface is used for configuring the module with the            
appropriate policies.  

The Privacy module provides the following 2 interfaces: 
● Blockchain I/O: This interface is responsible for interacting with ledgers (or the            

interledger component), in order to record surveys and responses proofs.  
● Administrative interface: This interface is used for configuring the module with the            

appropriate cryptographic keys.  

The interfaces have been depicted in Figure 5.2 and detailed in Table 5.3. 

The goals of the interfaces listed above are: (i) to enable generic client applications or other                
components to access the PDS operations without significant effort, (ii) to allow fair exchange              
of statistics and tokens, and (iii) to facilitate access token generation rules.  

 
SOFIE 27(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RF13 Requirement 
Description 

SOFIE must allow organisations and actors to manage (create, update, 
delete) their own data privacy policies. 

Test approach Documentation 

Test 
Description 

PDS can be configured with arbitrary VC schemas.  

Test location PDS’s repository documentation, “Configuration” chapter 

RF14 Requirement 
Description 

SOFIE should support user privacy even when aggregate statistics are made 
public (e.g. using differential privacy mechanisms). 

Test approach Documentation 

Test 
Description 

PDS can be configured to apply RAPPOR local differential privacy 
mechanism. 

Test location tests/privacy/test_privacy.py 



 

 

 

Figure 5.2: The PDS component’s interfaces. 
 
Table 5.3. Interfaces of the component. 

 
SOFIE 28(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Interface Content 

IF01 
 

Name PDS API 

Description Used for accessing the OAuth2.0 authorisation server, implemented by the PDS           
component 

Key inputs Authorisation grant 

Response Access token 

IF02 Name Blockchain I/O 

Description This interface is used for recording blockchain-based tokens, as well as for logging             
access tokens to a smart contract-based log. Additionally, it is used for recording             
privacy-preserving surveys, as well as proofs of responses.  

Key inputs ERC721 token, encrypted token, survey configuration, hash of a survey response 

Response Record summary 

IF03 Name Administrative interface 

Description This interface is used for configuring the PDS component with rules for validating             
access tokens, as well as with parameters for the local differential mechanism 

Key inputs A JSON-encoded configuration file 

Response No output 



 

 

5.3 The internal structure 
The Privacy and Data Sovereignty component is composed of the following 3 entities: 

Client modules 
This entity includes modules that can be used for obtaining an access token using OAuth2.0,               
as well as for adding local differential noise to survey responses.  
Blockchain modules 
The PDS component includes tools for interacting with Hyperledger Indy, a smart contract that              
implements the functionality required by OAuth2-based authorisation using blockchains (this          
process is described in [Fot2020]), a smart contract used logging tokens, as well as a smart                
contract for recording proofs of responses to surveys.  

PDS authorisation server 
This entity implements an OAuth2.0 authorisation server.  

 

Figure 5.3: Privacy and Data Sovereignty component internal structure. 
 
Operations 
The Data sovereignty module implements OAuth 2.0 specifications, and in particular it            
implements section 4.4 of RFC6749 Client credentials grant. The only difference is that is              
adds three optional fields: 

 
SOFIE 29(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Field Semantics 

log-token Instructs the authorisation server to record the generated access token in an 
Ethereum smart contract 

erc-721 Instructs the authorisation server to create a supplementary ERC-721 based 
token 

enc-key Instructs the authorisation server to encrypt the generated token using the 
provided encryption key.  



 

 
 

The options log-token and enc-key should be combined, otherwise the token will be recorded              
in the blockchain in plaintext.  

The privacy module allows data providers to send to data consumers responses to surveys              
that are protected using local differential privacy. These responses are filtered by the system              
operator based on criteria specified by the data consumer. Τhe system operator and the data               
providers share a secret key (PSK). PDS implements the following protocols (see also figure              
5.4), using the following notation: 
 

 

 

Figure 5.4: Privacy module overview. Initially 3 data providers commit a response. The system 
operator approves 2 of them.  

 

Survey setup  
With this protocol, a system operator and a data consumer agree on a smart contract that                
includes: (i) the question that data providers should respond to, (ii) filtering rules, (iii) the               
number of responses that should be collected, (iv) an amount of digital currency each              
responder will receive, and (v) a service fee. Additionally, the system operator and the data               
consumer agree on a nonce n: all data providers (and the system operator) can derive an                
encryption key sk = HMAC(psk,n). Then, the system operator sends H(sk) to the data              
consumer. Finally, n is included in the smart contract.  

  

 
SOFIE 30(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Symbol Meaning 

E(k,m)  Symmetric encryption of message m, using the key k  

H(m)  Hash of message m  

HMAC(k,m)  Keyed MAC of message m using key k  



 

 
Response commit  
Any provider wishing to participate in the survey, prepares a noisy response R using local               
differential privacy. It derives sk using the nonce n included in the smart contact and               
generates a ciphertext C=E(sk,R). Then it records in the smart contract H(C), as well as               
H(H(C),H(sk)). Since a data consumer knows both H(C) (from the smart contract) and H(sk)              
(from the service operator) it can also calculate the second hash and verify that the data                
provider derived the correct key.  

Response filtering  
The system operator indicates in the smart contract which of the providers that responded              
abide by the agreed filtering criteria. If the number of the (valid) responders is bigger than the                 
number of the responses that should be collected, then the system operator indicates which of               
the responders will be compensated. It also reveals H(sk). All approved data providers send to               
the consumer the encrypted, noisy responses (i.e., C=E(sk,R) calculated with the Response            
Commit protocol)  

Fair exchange  
The data consumer verifies the integrity of the received encrypted responses with the hash              
stored in the smart contract. When it receives the agreed number of responses it deposits to                
the smart contract the appropriate amount of currency.Then the system operator reveals sk; if              
the hash of sk matches the one provided with the response filtering, the contract transfers the                
deposit to the appropriate entities.   

 
SOFIE 31(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

6 Semantic Representation Component 
The SOFIE Semantic Representation (SR) component enables semantic interoperability         
between applications and IoT systems by allowing the definition and enforcement of the             
semantics of data. The SR component offers two functionalities 

● Data semantic definition 
● Data validation 

As shown in Figure 6.1, systems implementing the SR component enable interoperability by             
defining a data semantic which can be used by other entities to exchange data. The               
interoperability is achieved with a data model, defined using JSON schemas and W3C WoT              
Thing Description . 3

This data model is then managed by the SR component, which allows users to define the                
accepted data models in the system. The benefits of using Semantic Representation is to              
make systems more transparent to external users. 

 

 
Figure 6.1: Shared data models enable interoperability. 

 
The second benefit is message validation, which assures the quality of the data exchanged              
between systems. This is achieved by validating the messages external systems send to the              
SR component. The functionality is implemented by validating the messages against the            
schema defined with the data definition functionality. An example is JSON message validation:             

3 https://www.w3.org/TR/wot-thing-description/ 
 
SOFIE 32(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

https://www.w3.org/TR/wot-thing-description/


 

 
this functionality acts as a filter for the data exchange to the system, informing the users                
whether the process is successful or what problems occurred. 

The SR component can be used with other components of the SOFIE Framework to enhance               
the functionalities of a system. An example is the P&D component that uses the SR               
component to enforce rules and requirements for the provisioning of devices. 

6.1 Requirements and Validation 
Table 6.1 summarises the requirements for the Semantic Representation component from           
SOFIE deliverable D2.6. 

Table 6.1. Requirements related to the Semantic Representation component. 

 

Table 6.2 details how the component has been validated with the specific tests. All tests are                
available in the component repository at the specified location and all tests have successfully              
passed, and with them the component meets all the requirements. 

Table 6.2 Validation of the Semantic Representation component. 

 
SOFIE 33(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Semantic representation 

RF15 SOFIE must define an IoT things description model based on          
well-known standards (e.g. W3C standards). 

MUST AUDITABILITY 

RF16 SOFIE must implement standardised metadata and data       
representation formats and support various data modalities. 

MUST AUDITABILITY 

RF17 The semantic representation model of the system must be open          
and extensible by third parties (e.g. support the extension of the           
existing knowledge base and associations by extracting       
supplementary triples from RDF documents). 

MUST AUDITABILITY 

RF18 SOFIE must provide service discovery and resources selection        
processes based on multiple criteria over the features,        
associations, and interaction patterns of integrated resources. 

MUST INTEROPERA
-BILITY 

RF19 SOFIE should support the semantic update and enhancement of         
resources’ descriptions and associations in a dynamic way. 

SHOULD INTEROPERA
-BILITY 

Semantic Representation 

RF15 Requirement 
Description 

SOFIE must define an IoT things description model based on well-known 
standards (e.g. W3C standards). 

Test approach Functional test 

Test 
Description  

The test shows that only objects conforming to the component schema (W3C 
standards) are validated. 

Test location Semantic Representation: tests/test_api.py -> test_api_validate() 

RF16 Requirement 
Description 

SOFIE must implement standardised metadata and data representation 
formats and support various data modalities. 



 

 

 
The SR component has reached TRL 7: it is an integral part of three SOFIE pilots, including                 
the TRL 7 pilots Food Supply Chain and Decentralised Energy Flexibility Marketplace as             
detailed in SOFIE Deliverable D5.4 [D5.4]. 

6.2 Services and Interfaces 
The Semantic Representation component provides the following 2 interfaces: 

● CRUD Data Schema: These are REST APIs to manage the Data Schema. With these              
APIs it is possible to create, read, update and delete the JSON Data Schema. 

● Message Validation: This REST API allows external actors to validate JSON           
messages with the SR’s Data Schema. 

The interfaces are depicted in Figure 6.2 and detailed in Table 6.3. 

 
SOFIE 34(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Test approach Documentation 

Test 
Description  

The component uses JSON objects. 

Test location Semantic representation’s repository documentation, “Main decision” chapter 

RF17 Requirement 
Description 

The semantic representation model of the system must be open and 
extensible by third parties (e.g. support the extension of the existing 
knowledge base and associations by extracting supplementary triples from 
RDF documents). 

Test approach Functional test 

Test 
Description  

The test shows how is possible to add a schema and subsequently add a 
schema extension. A message then is validated against both the extended 
schema and the schema extension. 

Test location Semantic Representation: tests/test_api.py -> test_api_extended_validation() 

RF18 Requirement 
Description 

SOFIE must provide service discovery and resources selection processes 
based on multiple criteria over the features, associations, and interaction 
patterns of integrated resources. 

Test approach Documentation 

Test 
Description  

The SMAUG architecture shows how it is possible to provide service 
discovery and resource selection combining semantic representation and 
Discovery & Provisioning components 

Test location  https://github.com/SOFIE-project/SMAUG-Deployment 

RF19 Requirement 
Description 

SOFIE should support the semantic update and enhancement of resources’ 
descriptions and associations in a dynamic way. 

Test approach Functional tests 

Test 
Description  

The test shows that a schema can be updated and enhanced with improved 
semantics.  

Test location Semantic Representation: tests/test_api.py -> test_api_update_schema() 

https://github.com/SOFIE-project/SMAUG-Deployment


 

 

 
Figure 6.2: Semantic Representation Interfaces. 

 
Table 6.3. Interfaces of the component 

 

6.3 The internal structure 
The SR component consists of the following parts as shown in Figure 6.3: 

● W3C IoT Thing Description Validator, which validates incoming JSON messages          
against JSON schemas saved in the DB. 

● SOFIE Thing Description Schema, which manages the JSON schemas in the DB. 

The Description validator is a JSON validator used to validate external parties’ incoming JSON              
messages as shown in Figure 6.4. When an external party sends messages to a SOFIE               
system, the Semantic Representation, with its Description validator component, checks that           
the JSON structure is correct, then it checks that the incoming message is compliant with the                
rules defined in the JSON schema. The JSON schema is managed with the Description              
Schema component. When an external client sends a valid message to the SOFIE system,              
the semantic representation component will inform the client that the message is validated.             
When messages do not pass validation, the client receives information about what was not              
correct with the message. 

 
SOFIE 35(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Interface Content 

IF01 
 

Name CRUD WoT TD Schema  

Description This collection of interfaces allow the component owner to manage JSON schemas            
in the components 

Key inputs JSON schema 

Response No output 

IF02 Name Message validation 

Description This interface allow the validation of a JSON message 

Key inputs JSON message 

Response Valid message / which the message is not valid 



 

 

 
Figure 6.3: Semantic Representation internal structure 

 
Figure 6.4: Message Validation sequence diagram.  

 
SOFIE 36(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

7 Marketplace Component 
The SOFIE Marketplace component enables the trade of different types of assets (e.g.             
electricity for charging a vehicle) in an automated, decentralised, and flexible way. A             
decentralised marketplace has the capability of operating without a single entity owning or             
managing it, which in turn increases competition and enhances its security, resiliency,            
transparency, and traceability. The decentralised marketplace can be either partially          
decentralised, when, e.g. a group of independent agriculture producers and retailers are            
managing it, or fully decentralised, when anyone can join and use the marketplace. 

 
Figure 7.1: The data flow of an auction trade enabled by the Marketplace component. 

Figure 7.1 shows the key functions of the Marketplace: the Manager can create auctions,              
Bidders can make bids for the item, after which the Manager decides the winner based on the                 
type of the auction. Once the winner has paid and the item has been delivered, the winner can                  
then confirm the receipt, thus concluding the transaction. 

 
SOFIE 37(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

 

Figure 7.2: The marketplace component interacts with other components and ledgers. 

Figure 7.2 shows a few examples of the marketplace component interacting with other             
components and ledgers. The marketplace interacts with the ledgers directly, unless it has to              
perform atomic operations involving multiple ledgers, in which case it uses the Interledger             
component. For instance, in the location based game pilot the marketplace component directly             
interacts with both the trade and asset ledgers to get information, and uses the interledger               
component to execute the trade. In the energy flexibility pilot the marketplace component             
again interacts with the asset and payment ledgers, and relies on an oracle to report on the                 
charging activity as explained in Section 3. 

7.1 Requirements and Validation 
Table 7.1 summarises the requirements for this component (from SOFIE deliverable D2.6). 

Table 7.1. Requirements for the Marketplace component. 

 
SOFIE 38(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Req. 
ID 

Requirement Description Priority Category 

RF20 The marketplace must log the configuration of all trading actions          
(including offers, bids, parameters of resources, transactions, etc.). 

MUST QUALITY 

RF21 The marketplace must provide actors the capability to post/claim         
offers and sell/negotiate/exchange/buy resources and digital objects. 

MUST INTEROPE- 
RABILITY 

RF22 The marketplace must support transparent trading of resources, i.e.         
the bid/offer matching process and the payments must be         
transparent. 

MUST OPERA- 
TIONAL 



 

 

 

Table 7.2 details how the component has been validated with the specific tests. All tests are                
available in the component repository at the specified location and all tests have successfully              
passed, and with them the component meets all the requirements. 

Table 7.2. Validation of SOFIE Marketplace component 

 
SOFIE 39(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RF23 The marketplace must provide evidence once trades have been         
completed and resources have been properly delivered to the         
buyers. 

MUST SECURITY 

RF24 The marketplace should allow integration of payment technologies.  SHOUL
D 

OPERA- 
TIONAL 

ID Validation Process 

RF20 Requirement 
Description 

The marketplace must log the configuration of all trading actions (including           
offers, bids, parameters of resources, transactions etc.). 

Test approach Functional test 

Test Description The test sets up an auction, accepts bids, and decides which offer wins -              
and verifies all the related information is stored on the ledger. 

Test location Marketplace: solidity/test/flowermarketplace 

RF21 Requirement 
Description 

The marketplace must provide actors the capability to post/claim offers and           
sell/negotiate/exchange/buy resources and digital objects. 

Test approach Unit tests 

Test Description The test sets up an auction, accepts bids, and decides which offer wins (and              
verifies all the related information is stored on the ledger). 

Test location Marketplace: solidity/test/flowermarketplace 

RF22 Requirement 
Description 

The marketplace must support transparent trading of resources, i.e. the          
bids/offers matching process and the payments must be transparent. 

Test approach Functional test 

Test Description The test sets up an auction, accepts bids, and decides which offer wins -              
and verifies all the related information is stored on the ledger. 

Test location Marketplace: solidity/test/flowermarketplace 

RF23 Requirement 
Description 

The marketplace must provide evidence once trades have been completed          
and resources have been properly delivered to the buyers. 

Test approach Functional test 

Test Description The transaction determining the winning bid is logged on the distributed           
ledger. Evidence of the delivery of resources must also be logged on the             
distributed ledger by the winner and seller, after which the evidence can be             
verified. 

Test location Marketplace : solidity/contracts/interfaces/TradeResource.sol 



 

 

 

The MP component has reached TRL 7: it is an integral part of two SOFIE pilots, including the                  
TRL 7 pilot Decentralised Energy Flexibility Marketplace as detailed in SOFIE Deliverable            
D5.4 [D5.4]. 

7.2 Services and Interfaces 
Figure 7.3 presents a marketplace that communicates with smart contracts and stores the             
data both in the database and on the blockchain. Customers can use this marketplace with a                
known URL or with a web application. 

 

 

Figure 7.3: The Marketplace component and its interfaces. 

 

The Marketplace component offers three interfaces: Request Maker for sellers to create,            
manage and conclude auctions, Offer Maker for buyers to participate and bid in auctions, and               
Event callbacks that provide a mechanism for monitoring events on the Marketplace. The             
interfaces are described in Table 7.3. 

Table 7.3. Interfaces of the component 

 
SOFIE 40(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RF24 Requirement 
Description 

The marketplace should allow integration of payment technologies. 

Test approach Documentation 

Test Description The marketplace component provides interfaces for integrating payment        
solutions and an example from the Energy Flexibility pilot provided by           
Engineering integrates the ERC20 tokens payment in the energy         
marketplace. 

Test location Marketplace: solidity/vendors/ENG/EnergyMarketPlace.sol 

ID Interface Content 

IF01 Name Request maker 

Description This interface has several functions for creating and submitting requests (to sell            
assets), for the matching process (of requests and offers), and for getting            
information about a request and its offers. 

Key inputs Request ID 



 

 

7.3 The internal structure 
The marketplace is used for trading assets (e.g. energy, digital assets, resource access, etc.).              
Figure 7.4 presents the internal structure of the marketplace component. The Marketplace            
module includes functionality for communicating with marketplace smart contracts (which are           
shown with dotted lines). The Marketplace interface smart contract includes offer maker and             
request maker interfaces. The Marketplace base includes all of base functionalities for the             
marketplace component, while Ethereum standards includes the standard Ethereum tokens          
like ERC20 . 4

 
Figure 7.4: The package class diagram of the marketplace component 

The Marketplace component offers three key functionalities: Request creation, Offer creation, 
and Decision. 
  

4 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md  
 
SOFIE 41(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Response It creates requests, returns their information, matches them with offers          
automatically, and logs the actions. 

IF02 Name Offer maker 

Description This interface has several functions for creating and submitting offers (to buy            
assets) and getting information about an offer. 

Key inputs Request ID, Offer ID 

Response It creates offers, returns their information, and logs the actions. 

IF03 Name Event callbacks 

Description This interface allows the registration of callbacks that will be called after the             
Marketplace smart contract emits some event 

Key inputs Event type, callback endpoint 

Response The callbacks endpoints will be invoked by the corresponding events emitted.  

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md


 

 
Request creation 
For trading assets, request creation, depicted in Figure 7.5, is the first step. The manager of                
an asset creates a request to sell the asset, and customers can then make offers based on                 
the request. 

 
Figure 7.5: Request creation sequence diagram 

Offer creation 
Once a request has been created, customers can then submit offers on the request. Figure               
7.6 shows how an offer can be created. 

 
Figure 7.6: Offer creation sequence diagram. 

 
  
 
SOFIE 42(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
Decision process 
When the deadline for offers has passed or the requestor wants to determine the result, the                
decision process should be run to choose the winning offer. Figure 7.7 shows how the               
decision process happens. 

 

Figure 7.7: Decision process sequence diagram. 

 

The current version of the smart contract implements an auction mechanism, in which the best               
offer is selected following the “lowest bidder” rule. In the future, the smart contract may be                
upgraded to consider alternative ways to select the winning offer, e.g. in addition to the price                
also taking other features of the offer into account. In the case of balancing the load on the                  
electricity grid, these can include, e.g. more fine-grained promises to use energy during a              
specific time. 

Proof of resource delivery 
The TradeResource interface allows the winner of an auction to confirm that the traded item               
has actually been delivered, and thus, the auction as a whole has been settled. The interface                
has been implemented as the settleTrade(requestID, offerIDs) in the Abstract Marketplace           
interface, where an event of TradeSettled(requestID, offerIDs) is emitted, so that applications            
can subscribe and get notified once the resource is delivered. Applications can further expand              
the logic in the smart contracts to allow e.g. external oracle addresses to confirm the delivery                
of the item. 

 
 

 

 

 

  

 
SOFIE 43(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

https://github.com/SOFIE-project/Marketplace/blob/master/solidity/contracts/interfaces/TradeResource.sol
https://github.com/SOFIE-project/Marketplace/blob/master/solidity/contracts/abstract/AbstractMarketPlace.sol


 

 

8 Provisioning and Discovery Component 
The goal of the Provisioning & Discovery (P&D) component is to manage the IoT resources in                
the system by provisioning the existing IoT devices to a working state and by enabling the                
discovery of new IoT resources along with their metadata. Using this functionality, it is              
possible to e.g. decentralise the process of making new resources available to systems and to               
automate the negotiations for the terms of use and the compensation for the use of these                
resources. This component works together with the SOFIE Semantic Representation          
component to provide meta-data for the IoT devices. 

The SOFIE Framework’s P&D component provides the following functionalities: 
● Provisioning of IoT resources including configuration of devices and enrolling new           

devices to system 
● Discovery of the new IoT resources using e.g. Bluetooth Low Energy (BLE) Discovery             

and DNS-Service Discovery 
● Licensing of the resources 

The first functionality of the component is to provision the devices using the meta-data              
provided by the SOFIE semantic representation file. The process of provisioning involves            
enrolling a device into the system and getting each device configured to provide the required               
service. In the component, the Provisioning interface goes through the meta-data and checks             
against the requirement before provisioning the device to the database. This also acts as a               
filter for either accepting or rejecting the newly discovered IoT resource. After enrolling the              
device, the provisioning interface provides the configuration for the device to bring it to a               
working state with the deployed platform. 

The second functionality of the component is the discovery of new IoT resources. The              
Bluetooth discovery interface provides operations to perform a BLE scan to discover open IoT              
devices nearby. It also provides a LAN discovery interface to discover devices published on              
the local (WLAN, etc.) network. The interfaces list newly discovered devices along with their              
meta-data before enrolling them in the system. 

The final functionality of the component is to license the device to automate the negotiations               
for the terms of use. The interface then later calls a smart contract on the blockchain and                 
compensates the owner of the device for the usage of the provisioned device. 

8.1 Requirements and Validation 
Table 8.1 summarises the requirements for the provisioning and discovery component           
introduced in this document. 

Table 8.1. Requirements related to the SOFIE provisioning and discovery component 

 
SOFIE 44(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Req. 
ID 

Requirement Description Priority Category 

RF18 SOFIE must provide service discovery and resources selection        
processes based on multiple-criteria over the features,       
associations and interaction patterns of integrated resources. 

MUST INTEROPER- 
ABILITY 

RF28 The component must provide actors the capability to configure         
the discovered IoT device 

MUST OPERATIONAL 

RF29 The component must provide actors to provision the device to          
the database. 

MUST OPERATIONAL 



 

 

 

Table 8.2 details how the component has been validated with the specific tests. All tests are                
available in the component repository at the specified location and all tests have successfully              
passed, and with them the component meets all the requirements. 

Table 8.2.Validation of the SOFIE provisioning and discovery component 

 

The P&D component has reached TRL 6: it is an integral part of the TRL 6 SOFIE pilot                  
Context-Aware Mobile Gaming as detailed in SOFIE Deliverable D5.4 [D5.4]. 

8.2 Services and Interfaces 
The four interfaces of the component have been detailed in Table 8.3: there are separate               
interfaces for discovery via Bluetooth and LAN, an interface for provisioning and a licensing              
interface. 

 
 
SOFIE 45(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RF30 The component should be able to discover new IoT devices          
using multiple protocols 

OPTION
AL 

INTEROPER- 
ABILITY 

ID Validation Process 

RF18 Description The component should be able to start discovery service on the IoT device.  

Test approach Functional test 

Test Description The test sets up an raspberry pi to act as an IoT device and enable               
discovery services. 

Test location Provisioning and discovery: /tests/tests_run.py 

RF28 Description The component should be able to configure the IoT device to work with the              
IoT platform. 

Test approach Functional test 

Test Description The test configure the raspberry pi to work as an IoT beacon 

Test location Provisioning and discovery: /tests/tests_run.py 

RF29 Description The component should be able to provision the discovered device to the            
database 

Test approach Documentation 

Test Description The mobile client provision the device to the given URL database 

Test location Provisioning and discovery: Android Application 

RF30 Description The component should be able to discovery IoT devices using multiple           
protocols 

Test approach Functional Test 

Test Description The test sets up the raspberry pi to be discovered over bluetooth and DNS. 

Test location Provisioning and discovery: /tests/tests_run.py 



 

 
Table 8.3. Interfaces of the component. 

 

Figures 8.1 and 8.2 present the information flow in the discovery and registration process.              
Here, the resource types, provided services, licences and compensation are all described            
using WoT TD semantic representations. 

In Figure 8.1, the mobile application connects to the local network and starts searching for the                
configured type of service on the network. After getting the list of matching services, the               
application requests for the semantic descriptions of the devices and checks that they meet              
the specified requirements. Finally, it provisions the accepted devices’ information to the            
database and updates the device configuration to work with the platform. 

 
SOFIE 46(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

ID Interface Content 

IF01 
 

Name Bluetooth discovery  

Description This interface provides operations to perform a Bluetooth scan and discover open            
Bluetooth devices  

Key inputs Bluetooth scanning interval and timeout. 

Response It lists all the Bluetooth devices and downloads the device description file using the              
URL provided by the Bluetooth service. 

IF02 Name Local network discovery 

Description This interface provides operations to perform a Multicast-DNS scan to find beacon            
services published on the local (WLAN, etc.) network. 

Key inputs Service type. 

Response It lists all the devices using the webthing service and downloads the device             
description file using the URL provided by mDNS discovery. 

IF03 Name Device provisioning  

Description This interface goes through the semantic representations and checks them          
against the requirement for provisioning of the device. 

Key inputs Semantics representation file of discovered beacons. 

Response It either adds the device to the client database or rejects it. 

IF04 Name Licensing provisioning 

Description The interface checks for the license in the semantic representation file and            
automatically makes a contract for usage of the device. 

Key inputs Semantics representation file and information for device usage. 

Response It deploys a contract and compensates for the usage of the provisioned device. 



 

 

 
Figure 8.1: The process of discovering new devices on a local network. 
 

 

In Figure 8.2, the user selects the bluetooth protocols from the mobile client, which starts               
scanning for nearby BLE devices and shows the list to the user. The mobile client then                
downloads the semantic representation file of the devices and checks it against the             
requirements. Finally, it provisions the accepted devices and their metadata to the database             
and connects the device over bluetooth to send the configuration details.  

 

 
SOFIE 47(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

 
Figure 8.2: The process of discovering new devices using BLE. 

8.3 The internal structure 
The structure of the Provisioning and Discovery component is shown in Figure 8.3. There are               
separate functionalities for Bluetooth and LAN discovery, and an example mobile app for             
performing device discovery. 

Bluetooth Low Energy (BLE) 
Bluetooth Low Energy is a form of wireless communication designed especially for short-range             
communication. In this component, a Bluetooth device with a custom advertising packet is             
used to discover the IoT devices in proximity and configure them to be used as beacons. The                 
Bluetooth GATT (Generic Attribute Profile) is the foundation for the design of any BLE system               
and defines the way an application interacts with the end-device. It is used after a connection                
has been established between the two devices. When a BLE device is advertising it will               
periodically transmit packets containing device information. In this component, a custom           
advertising packet contains the custom name, service UUIDs, and custom data i.e. URL. We              
use “0x24” URI for Advertising Data type for encoding URLs. It is important to know that an                 
advertising packet can consist of no more than 31 bytes. 

 
SOFIE 48(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
Eddystone is an open beacon format developed by Google and designed with transparency             
and robustness in mind. Eddystone can be detected by both Android and iOS devices. The               
Eddystone-URL frame broadcasts a URL using a compressed encoding format in order to fit              
more within the limited advertisement packet. In this component, an Eddystone-URL is used to              
broadcast the URL of the Semantic Representation file, then any client that received this              
packet can download the meta-data of the specific device. 

 
Figure 8.3 : SOFIE Provisioning and discovery Internals. 

 

DNS Service Discovery with multicast (DNS-SD) 
DNS service discovery (DNS-SD) allows clients to discover a named list of service instances              
of a given service type and to resolve those services to hostnames using standard DNS               
queries. It discovers devices and services on a local area network using IP protocols, without               
requiring the user to configure them manually. DNS service discovery requests can also be              
sent over a multicast link, and it can be combined with multicast-DNS (mDNS) to yield               
zero-configuration DNS-SD. DNS-SD can be used to discover the IoT devices available on the              
local (WLAN, etc.) network. It then provides access to the semantic file of the device, and the                 
provisioning interface also uses the same link to configure the device.  

Mobile Client 
The mobile client was developed for Android mobile devices using Android Studio. The mobile              
client performs automatic background scans for discovering new IoT devices based on the             
selected protocol by the user. After discovering the device, the client downloads the semantic              
file and goes through the meta-data and checks it against the requirements. The mobile client               
then stores the device information to the database and sends configuration details to the              
device to work with the IoT platform. 
  

 
SOFIE 49(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

https://developers.google.com/beacons/eddystone


 

 

9 Federation Adapters 
Federation adapters (FAs) are used to link the IoT systems to the SOFIE Architecture. They               
can be implemented in two ways: a thin adapter only provides the required linking functionality               
and some SOFIE functionality with the rest of the SOFIE functionality being implemented             
separately, whereas a thick federation adapter includes all the utilised SOFIE components,            
making it a complete stand-alone system.  

This section introduces the federation adapters from three SOFIE pilots: the Food Supply             
Chain (FSC) and Decentralised Energy Flexibility Marketplace (DEFM) pilots utilise the thin            
FA approach, while the Decentralised Energy Data Exchange (DEDE) pilot builds on a thick              
FA. 

9.1 Requirements and Validation 
Table 9.1 summarises the requirements for the federation adapters (from D2.6), and Table 9.2              
then details, how all the FAs meet all the requirements. 

Table 9.1: Requirements for the federation adapters. 

 

Table 9.2: Validation of the federation adapters. 

 
SOFIE 50(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

Req. ID Requirement Description Priority Category 

RF25 SOFIE deployments can utilise one or more Federation 
Adapters each capable of representing one or more IoT 
Devices/Platforms. 

MUST OPERATIONAL 

RF26 The IoT device/platform must be able to utilise all the 
SOFIE functionalities it requires through the Federation 
Adapter representing it. 

MUST OPERATIONAL 

RF27 Federation Adapters must not require changes to the IoT 
device/platform it represents. 

MUST OPERATIONAL 

Req. ID Requirement Description 

RF25 ● In the FSC pilot, Synfield, Aberon, and Transportation FAs are used to represent             
the Synfield, Aberon, and Transportation IoT platforms respectively 

● The DEFM pilot uses the DEFM and DEDE Federation Adapters. The first one is              
used to collect, store, and analyse data from the smart meters to identify the need               
for flexibility campaigns while the second one is demonstrated in the cross-pilot            
scenario. 

● In the DEDE pilot, the FA can represent one or more IoT Devices/Platforms by              
generating a separate DID for each one. 

RF26 ● In the FSC pilot, all IoT platforms (Synfield, Aberon, and Transportation) connect            
to the pilot’s platform only via the SOFIE Federation Adapters (Synfield FA,            
Aberon FA, and Transportation FA) 

● In the DEFM pilot, the FA enables the IoT devices to provide the live & historical                
data used to create the Marketplace requests.  

● In the DEDE pilot, all the SOFIE functionalities are offered by the FA and thus are                
available to the IoT device/platform using it. 



 

 

 

The FAs have all reached TRL 7: they are integral parts of the TRL 7 SOFIE pilots Food                  
Supply Chain, Decentralised Energy Flexibility Marketplace, or Decentralised Energy Data          
Exchange as detailed in SOFIE Deliverable D5.4 [D5.4]. 

9.2 Food Supply Chain  

In the Food Supply Chain (FSC) pilot shown in Figure 9.1, three IoT platforms (Synfield,               
Aberon, and Transportation) are federated into the pilot platform. Each IoT platform is             
connected to the pilot platform through a federation adapter, which 

● Provides an adaptation layer for data and resources to enable syntactic and semantic 
interoperability as well as secure usage of platform by exposing a RESTful API to the 
Supervisor Web Server (SWS). 

● Implements a domain-specific API to communicate with the SWS and allows rapid 
cross-platform access and application development.  

● Creates wallet addresses to register the IoT platform in the consortium ledger and 
digitally signs the data objects which are sent to the SWS. 

 
Figure 9.1: The Food Supply Chain pilot utilises three federation adapters 

 
SOFIE 51(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

RF27 ● In the FSC pilot, Synfield, Aberon, and Transportation FAs utilise the existing APIs             
provided by the Synfield, Aberon, and Kaa IoT platforms to federate them with the              
pilot’s platform, without requiring any changes in the existing IoT platforms. 

● The DEFM pilot adapter leverages the FIWARE Context Broker and IoT Agents to             
enable the connection with IoT devices without any changes required. 

● In the DEDE pilot, the FA is a pre-packaged component that supports services             
described in the OpenAPI service description format. A converter can always be            
made to expose any existing service as an OpenAPI service. 



 

 
Functionality from three SOFIE components (IAA, PDS, and SR) is included in the Food              
Supply Chain pilot Federation Adapters. The steps of the interaction between the SWS and              
the PDS and IAA components are the following: 

● The FA adapter uses its Ethereum wallet address to construct a Decentralised            
Identifier (DID). 

● Upon platform registration, the SWS configures the resource server (PDS) with the            
DID of the IoT platform. 

● The FA of the IoT platform completes the challenge/response via an endpoint and it              
receives a JWT token. 

● When the SWS interacts with the FA, the FA attaches an HTTP header, containing the               
JWT token along with its payload. 

● The SWS invokes the authorisation component (IAA) to verify the JWT token against             
the given FA wallet address. 

● If the response is HTTP_200 and the wallet address (embedded in step 2 in the sub                
field) matches the wallet address retrieved by Ethereum, the Federation Adapter           
payload is considered valid and secure. 

The Semantic Representation (SR) component is used in the Federation Adapter (FA) –             
Supervisor Web Server (SWS) communication. The FA has to provide an endpoint (usually             
the base endpoint ‘/’ of the FA API) that, once accessed via an HTTP GET call, outputs the                  
schema of the Federation Adapter. The SWS then reads the schema, retrieving information             
about the endpoints and functionality provided by the FA on behalf of the underlying IoT               
Platform. The flow can be described as follows: 

● When a new IoT platform is registered via the web application by the pilot admin and                
the Ethereum transaction is mined, an event is fired. When the SWS acknowledges the              
event, the SR component is invoked on an endpoint and the FA schema is registered               
with the SR component. 

● The SWS then retrieves the schema of the given platform, and via an HTTP POST               
request to the SR component to an endpoint, the platform is added. 

● Upon every SWS communication with the FA, the FA payload is validated by the SR               
component against the given schema.  

● If an IoT platform is removed from the FSC pilot platform, an Ethereum event is again                
generated. The SWS acts on this event to inform the SR component about the              
platform’s deregistration by invoking the deregistration endpoint of the SR component. 

More information about the adapters can be found in SOFIE Deliverable D3.5 [D3.5]. The FA               
for the Transportation IoT platform is available on GitHub along with installation and             
deployment instructions [FAs]. 

9.3 Decentralised Energy Flexibility Marketplace 
The Federation Adapter (FA) used in the Decentralised Energy Flexibility Marketplace (DEFM)            
pilot enables the collection, storage, and analysis of the data gathered from the IoT smart               
meters. The FA is based on the FIWARE platform and consists of a Context Broker, an IoT                 
Agent, a Short-Term Historical component, MongoDB no-sql database, Mosquitto MQTT          
broker, the appropriate configuration, documentation and examples. The FA enables the           
organisation of sensors and actuators in service groups, and the management of the whole              
lifecycle of context data. It has been released as open-source software in the GitHub [FAs]. 

 

 
SOFIE 52(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: Relation of the DEFM FA with the other 
pilot components 

 

Figure 9.3: Detailed view of 
the DEFM FA architecture 

 

The main function of the FA is the context management (i.e. information about entities) and               
the management of the context availability (i.e. information about the data providers). The             
relation between the FA and the other platform components in the DEFM pilot is represented               
in Figure 9.2, while Figure 9.3 details the individual components that constitute the FA. 

9.4 Decentralised Energy Data Exchange 
The Decentralised Energy Data Exchange (DEDE) pilot connects data providers with data            
consumers. Both the data providers and the data consumers connect to the platform through              
their own instance of the same Federation Adapter (FA), which is a common software              
component for both parties and needs no extension or customisation. All the SOFIE             
components utilised by the pilot have been integrated in the FA. 

As shown in Figure 9.4, the FA of a data consumer connects directly to the FA of a data                   
provider to exchange messages according to the DEDE FA communication protocol.           
Messages between the two FAs are transported securely over a mutually authenticated TLS             
connection, using Hyperledger Indy-based decentralised identifiers (DIDs) and verifiable         
credentials (VCs) to establish trust. The main function of the FA is to ensure interoperability               
and to secure the communication with other entities on the platform. It acts as a forward proxy                 
for the data consumer and as a reverse proxy for the data provider, but it can also be in both                    
roles at the same time, enabling entities that are both data consumers and data providers. The                
FA takes care of the security aspects of the integration and lets the data provider concentrate                
on implementing services and the data consumer to use these services. The only requirement              
for a data provider is to describe its services according to the OpenAPI 3.0 specification. 

 
SOFIE 53(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

 

Figure 9.4. The role of the FA in the DEDE pilot. 

From the implementation perspective, the two main responsibilities of the FA is to proxy              
messages and to manage the identity of the represented entity. The internal structure of the               
FA shown in Figure 9.5 mirrors this with two loosely coupled services: proxy and ssi-agent               
(Self-Sovereign Identity agent). Both of the components have public and private interfaces, for             
external and internal use, respectively. 

 
Figure 9.5. Internal structure of the DEDE FA. 

The information system of the data consumer first sends a request to the proxy’s private               
interface. The proxy uses the ssi-agent private interface to resolve the endpoint of the target               
DID and to sign the request with the source DID. Then, it initiates a secure connection to the                  
public interface of the data provider (target DID) proxy. Both sides use the ssi-agent private               

 
SOFIE 54(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
interface to retrieve the hash of the currently valid certificate to verify the authenticity of the                
connection.  

Once the connection is set up, the data provider proxy will use the ssi-agent private interface                
to verify the request’s signature. If the request is for a service that requires further               
authorisation, the data provider proxy will also use the ssi-agent private interface to get the               
proved values of the attributes required for the authorisation decision. If the data provider              
ssi-agent receives such a request, it will send a proof request to the public interface of the                 
data consumer ssi-agent. Once the data provider proxy has values for all the proved              
attributes, it can forward the request to the service implementation that is described using the               
OpenAPI 3.0 specification. The signing of the response and the verification of the response              
message signature is analogous to the processing of the request.  

 
SOFIE 55(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
 

10 How Components are used in the SOFIE Pilots 
This section describes how the SOFIE pilots and the SMAUG reference application each             
utilise the Framework components to provide key benefits to the use cases. More details              
about the pilots and SMAUG can be found in D5.4 [D5.4]. 

10.1 Food Supply Chain 
In the Food Supply Chain (FSC) a consortium distributed ledger is leveraged to federate three               
different IoT platforms and to establish a distributed and immutable data management layer             
that provides traceability and quality control services for transported products. This makes            
traversing the path from field to fork more robust, reliable, and time-efficient for all parties               
involved in the food supply chain. Figure 10.1 presents the pilot’s architecture in relation to the                
utilised SOFIE framework components. 

 

Figure 10.1: Food Supply Chain pilot platform architecture 

Two main services (bundled in a web application) are being offered via the pilot’s platform,               
namely the usage of QR codes to encode product history from the field to the market shelf,                 
and product quality audits and resolution of disputes for product quality degradation events.             
To offer these services, several SOFIE framework components are utilised: 

Interledger component 
The FSC pilot uses the following ledgers: 

1. A private consortium ledger (Ethereum) to store IoT data which is collected from the              
three companies operating the farming, transportation and warehouse segments,         
respectively. This data captures both the conditions and the handoffs of the trackable             
boxes as they move along the supply chain.  

 
SOFIE 56(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
2. A public ledger (Ethereum ROPSTEN), where hashes from the above mentioned           

transactions in the consortium ledger are stored in a master hash. This master hash is               
used by external entities (i.e. entities that do not have direct access to the consortium               
ledger, such as the supermarket organisation and the customers) to verify the            
authenticity of data requested from the consortium ledger. 

3. A KSI blockchain to create a unique signature (anchor) per master hash created in the               
public ledger. The KSI FSC Pilot integration happens at the final stage of the supply               
chain. 

The interledger is being used in the following ways: 
● for storing hashes: one Interledger instance is used to store the hashes to the public               

ledger and another instance is used with KSI. 
● for a proof of integrity operation to cross check data on the consortium and public               

ledger against the signatures stored in the public ledger and the KSI, thus validating              
the integrity of the data in audits on behalf of external entities. 

Identity, Authentication and Authorisation component 
In the FSC pilot, two IAA mechanisms are implemented for the actors and the IoT platforms,                
respectively. More specifically: 

1. Authentication and authorisation of actors: The username/password method of the IAA           
component is used to authenticate the actors of the various business segments. The             
AA API of the Oauth2 server (keycloak) is used by the FSC web application which               
implements the OAuth2 client. The Oauth2 server provides the client with     
authorisation tokens, so actors are able to access the endpoints of the Supervisor Web              
Server (SWS) based on their role.  

2. IoT platforms are authenticated in the consortium ledger by applying a simplified            
version of Model 2 of the IAA component (i.e. a smart contract that handles              
authorisation requests), since no payments are considered in the pilot case. Once an             
IoT platform is registered in the consortium ledger (i.e. its wallet address is recorded),              
the smart contract acts as an authorisation contract to confirm it has the authority to               
perform certain transactions. 

Privacy and Data Sovereignty 
The privacy and data sovereignty component provides tools for addressing data privacy in the              
implemented use cases and in the actors’ activities. In particular, the following policies have              
been implemented: 

● The SWS is a full node of the consortium ledger, which is responsible for providing           
wallet functionality to the federated IoT platforms.  

● Every transaction fired by an IoT platform to the consortium ledger is digitally signed              
using the platforms’ private key. 

● Upon registration of an actor into the FSC web application, a unique ID and role are                
assigned to it. Only the role information is included in the transactions written in the               
consortium ledger, and the mapping between actors’ profiles, IDs and roles is            
accessible only by the SOFIE system administrator.  

● In the preparation of data that relates to multiple actors (possibly belonging to different              
segments) which should be combined together, actor IDs are used to retrieve and             
chain information from the consortium ledger. 

  

 
SOFIE 57(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

Semantic Representation 
In the FSC pilot, three IoT platforms are federated into the system architecture. For each               
platform, an adaptation layer is implemented to interface the Supervisor Web Server (SWS)             
and to expose the platform’s functionality and the things’ services according to the same              
semantics, thus enabling cross platform access and interoperability. 

Federation Adapters 
Each federated IoT platform is connected to the pilot platform through a federation adapter as               
described in Section 9.1. 

Key benefits 
The key benefits for the FSC pilot from using the Framework components include: 

● The development of a decentralised and immutable data management and storage           
framework that leverages multiple DLTs using IL component to enable automated,           
reliable, and flexible operation of all critical data used in the food supply chain. It               
provides a similar level of trust for the stored data compared to storing all data to a                 
public ledger while radically reducing the associated costs as most operations take            
place on a private ledger. The use of DLTS also facilitates the development of further               
enabling services, e.g. by using add-on modules, processes or smart contracts to            
enable automated payments, trust evaluation, etc. among the parties. 

● The transparent federation of heterogeneous IoT silos used by the involved parties in a              
technology-agnostic way that enables cross-platform interoperability. As a result,         
applications or services can discover resources from different IoT platforms through           
the same interfaces and by using the same formats to communicate data.  

● The provision of secure data access and retrieval services in the sense of data              
confidentiality and integrity for all involved parties based on their role in the supply              
chain (e.g. viewing where the produce comes from, which steps it passes through,             
which other produce may be affected in the case of quality issues etc.). 

● The ability to replace any partner that has been part of the supply chain but for any                 
reason has paused his operation with another partner that is already registered in the              
pilot platform that has a proven record of offering high quality services. 

10.2 Decentralised Energy Flexibility Marketplace Pilot 
The Decentralised Energy Flexibility Marketplace (DEFM) pilot is centered around the SOFIE            
Marketplace component, which is used to create a decentralised marketplace, in which a             
Distribution System Operator (DSO) and Fleet Managers may request and offer energy            
flexibility in order to balance the excess of production on a local grid. The marketplace is                
complemented by the IL and SR components: the first one supports the marketplace by              
increasing the trustworthiness of the internal private DLT by recording its key events to an               
external public DLT, while the latter is used to analyse on-the-fly the data gathered from the                
smart meters, ensuring their consistency with the expected model before making a new             
market request based on them. 

The pilot also demonstrates the usage of IoT smart meters to obtain accurate forecasts and               
live data from the pilot site. The gathering, persistence, and analysis of the data produced               
from the smart meters is facilitated by the DEFM Federation Adapter (FA). 

Figure 10.2 presents the architecture and the SOFIE framework components used in the pilot.              
The framework components are leveraged in the following ways: 

 
SOFIE 58(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
 

 

Figure 10.2: DEFM pilot architecture. 

Marketplace 
The Marketplace component is used to run an Ethereum based decentralised marketplace.            
The requirements for the marketplace for the energy flexibility use case were defined already              
in the early phases of the project, and the latest implementation of the component is now                
deployed on the pilot site. The request side on the marketplace is managed by the DSO                
operator, while the Fleet Managers control the offer side. Each Demand Response campaign             
starts with a new flexibility request on the market created by the DSO. Each request is                
characterised by its deadline, delivery window (start and end times), requested amount,            
network zone and, finally, the maximum number of tokens that the DSO will pay to the winning                 
offer. The Fleet Managers receive the open requests on the marketplace and can decide to               
participate in an open campaign offering their availability to charge its electric vehicles using              
the charging stations in the specified zone during the specified time window. Each offer also               
includes the number of tokens required by the Fleet Manager as the reward. The smart               
contract defining the rules of the marketplace also includes the logic used to select the               
winning offer: a reverse auction is used, so the lowest bidding fleet manager wins.  

The tokens are not transferred until the delivery window starts: at this point, the smart contract                
can be queried to finalise the payment. The delivery is validated by using the charging station                
APIs and checking the recharged energy against the quantity agreed on the market request.              
When the required amount has been recharged, the payment is finalised and the request is               
closed successfully.  

Thanks to the Marketplace component, the DSO and the Fleet Manager can operate over a               
decentralised marketplace without the need to define a smart contract from scratch: the             
marketplace, together with its backend, includes the generic interfaces to be implemented to             
develop a marketplace smart contract. The interfaces define the basic functionalities (e.g. the             
requests/offers matchmaking process or the authorisation policies) and attributes (e.g. status           

 
SOFIE 59(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
indicators, quantities associated with the requests, number of tokens for each request/offer) to             
ensure that each phase can be completed as intended without inconsistencies. 

Semantic Representation 
The DEFM pilot uses live data from the smart meters on the field together with forecasts                
calculated using historical data to determine the need by the DSO for creating a new flexibility                
request on the marketplace and the quantity needed for each request. For this reason, it is                
important to verify the integrity of the data used on the application. The semantic              
representation component is used to validate on-the-fly the data retrieved by the application             
against the data model before displaying it on the web application.  

Interledger 
The DEFM pilot uses a private Ethereum ledger to run the smart contracts powering the               
decentralised marketplace and store the related data. The Interledger is then used to store the               
most important events for each request to a public ledger. The life cycle of a market request is                  
characterised by different stages as reported above in the marketplace section: the selection             
of the winning offer and the delivery phase are the two mandatory steps which separate a                
request closed and paid successfully from an incomplete request. For this reason the             
interledger component is used to broadcast the two events to a public ledger to maintain an                
immutable copy of the record, for validation and auditability purposes. 

Federation Adapter 
The DEFM FA was presented in detail in Section 9.2. It enables the management of the IoT                 
devices and the whole lifecycle of context data. In this way the platform is able to consume                 
context data from the smart devices in the pilot while remaining decoupled from the data               
sources. This allows the addition of new data sources and the extension of the platform to                
include new consumer applications without the need to reconfigure the platform. 

Key Benefits 
The key benefits for the DEFM pilot from using the Framework components include: 

● Easy development of a decentralised marketplace using smart contracts on Ethereum           
ledger to manage the platform. This enables auditability and automated payments           
among the parties in a trustworthy and tamper proof environment. 

● The ability to run over a combination of private and public ledgers thanks to the IL                
component. This, as the pilot emulation has evaluated, allows the marketplace to save             
significantly in execution costs while maintaining a high level of trustworthiness. 

● The technology-agnostic federation of different IoT platforms. 
● The ability to validate the data feed from the smart meters before reaching the end               

user's application, ensuring that the marketplace requests are based on valid data. 
● The possibility for new partners to join the marketplace at any time and start providing               

flexibility services, thus enhancing competition and the quality of the services offered. 

10.3 Context-Aware Mobile Gaming Pilot 
The focus of the mobile gaming pilot shown in Figure 6 is to explore how DLTs can be used to                    
provide new gaming features for players, as well as to validate the potential of location-based               
IoT use cases. The gaming pilot also leverages four SOFIE components to provide new              
gaming features and enhance player experience in the following ways: 

Interledger 
The Mobile Gaming pilot uses the SOFIE Interledger component to communicate between the             
permissioned Hyperledger Fabric and public Ethereum networks. Multiple games share and           
store in-game assets on a permissioned Hyperledger Fabric ledger and use interledger to             

 
SOFIE 60(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
transfer those assets to public Ethereum, where they can later be sold on the marketplace.               
The component helps link the closed ecosystem of games and game developers to the public               
ecosystem of trading games and other virtual assets. Transferring of the assets is achieved by               
calling smart contracts that are emitting and receiving events.  

  

Figure 10.3. Mobile Gaming Architecture with SOFIE components 

Provisioning and Discovery 
The mobile gaming pilot uses the Provisioning and Discovery component for gamifying the             
process of discovering, configuring and maintaining large IoT beacon deployments in the            
scavenger hunt game. The component scans nearby IoT devices, learns their capabilities, and             
determines which devices are suitable for provisioning based on the requirements set by             
game developers. After provisioning each IoT device, the component configures it to work as              
a BLE beacon that can be used as a Point-of-Interest (PoI) in the scavenger hunt prototype. 

 Semantic Representation 
The mobile gaming pilot uses the Semantic Representation component to describe the            
devices using WoT-Things Descriptions. The semantic file is encoded in a JSON format that              
also allows JSON-LD processing. Using this component, the IoT devices can describe their             
capabilities that can be later used to provision the device.  

Marketplace 
The mobile gaming pilot uses the Marketplace component for the trading of in-game assets.              
Players can place bids for virtual assets on the public Ethereum ledger. The component              
enables the actual trade of resources in an automated, trusted, and decentralised way. Once              
digital assets have been stored on the ledger, the ownership and the item itself cannot be                
altered. DLTs also help maintain the scarcity of a virtual item in a secure and verified way.  

Key Benefits 
The key benefits for the CAMG pilot from using the Framework components include: 

● The Interledger component helps to achieve interoperability between different         
distributed ledgers and could be used to create new business opportunities as closed             
platforms can be connected securely and transparently. Using Interledger also helps to            

 
SOFIE 61(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
get benefits of specific ledgers: Fabric for throughput and privacy, and Ethereum for             
security and traceability. 

● The Provisioning and Discovery component takes advantage of the already deployed           
Web of Things (WoT) devices. It also creates new business opportunities for device             
holders, namely micropayments for services used, and the whole process of           
discovering and provisioning can be trusted and automated through DLTs. 

● The Semantic Representation component helps unify different WoT devices used as           
beacons and also provides service interoperability. 

● Using the marketplace component, the in-game assets can have some real-world           
value also, e.g. trade a skin with electricity. The DLT-based marketplace grants            
security, transparency, and traceability, with the effect of increasing a healthy           
competition among the players participating. 

10.4 Decentralised Energy Data Exchange Pilot 
As described in Section 9.3, the Decentralised Energy Data Exchange (DEDE) pilot has             
integrated all the Framework components it uses into the thick DEDE FA. The following              
components have been utilised: 

● Privacy and Data Sovereignty - It is up to the service providers to say, which attributes                
they want their clients to prove about themselves. By default, the protocol expects the              
attributes to be proven with verifiable credentials, but the PDS component offers a             
simpler alternative by issuing a JSON Web Token (JWT) that proves certain attributes             
about the holder of the token. This token can be sent together with a request and thus                 
avoid the extra round trip for proof request. 

● Identity, Authentication, Authorisation - This is the counterpart component for the PDS            
component, if JWT based proved attributes are used. If the client sends a JWT              
together with a service request, the IAA component can verify this token. In this case,               
the authorisation decision can be made without an extra round trip to the client              
requesting proof of credentials. 

● Interledger - Each node can increase their trust for the Hyperledger Indy instance by              
periodically recording its state in the KSI blockchain. The interledger component takes            
care of this. It is not strictly required for the protocol to work, but can serve as an                  
additional tamper-proofing mechanism for private Hyperledger Indy deployments. 

Key Benefits 
The key benefits for the DEDE pilot from using the Framework components include: 

● The Privacy and Data Sovereignty component supports different credential and token           
types making it easier to integrate different systems with the DEDE FA. 

● Using tokens with the IAA component speeds up the access control process as extra              
round trips can be avoided. 

● Interledger enables higher trustworthiness levels by anchoring information on private          
ledgers to public ledgers. 

10.5 SMAUG 
SMAUG - Secure Marketplace for Access to Ubiquitous Goods - is a decentralised,             
blockchain-based auction marketplace for the rental of smart lockers. The marketplace           
mediates the interactions between Smart Locker Owners (SLO) and potential Smart Locker            
Renters (SLR), and at the same time provides decentralisation (anyone can participate in the              
marketplace interactions), auditability (all the steps of the rental process are immutably logged             

 
SOFIE 62(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
on the blockchain), and security (the smart contract logic powering the marketplace is secured              
by the blockchain consensus protocol).  

SMAUG was developed as a reference application demonstrating how all SOFIE components            
can easily be leveraged to create a fully functional application. The usage of the different               
components is described below. 

Marketplace 
The Marketplace component forms the core of SMAUG: it enables the interactions between             
SLOs and SLRs, and ensures the safety of the marketplace ecosystem. A representation of              
the different entities participating in the marketplace interactions is given in Fig. 10.4. The              
smart contract allows SLOs to create auctions, which optionally can also accept instant-rent             
offers, i.e. offers that aim to rent a locker for the specified slot of time thus bypassing the                  
auction process, though typically for a higher rent. SLRs can present offers for those auctions               
by escrowing enough Ethers to cover the whole rental time requested. If access is granted to                
the requester, the escrowed Ethers will be claimed by the SLO, thus increasing the SLO’s total                
balance. If, on the other hand, the offer submitted is not among the auction winners, the offer                 
creator will be notified to reclaim back the money previously escrowed, thus leaving the              
balance unchanged.  

 

Figure 10.4: The entities participating in the marketplace interactions.  

Interledger 
The SOFIE Interledger (IL) component is used for bi-directional data transfer between the two              
ledgers on which SMAUG relies. The marketplace-to-authorisation data transfer happens          
when an auction is closed, and the information about the winning offers is transferred to the                
authorisation ledger, where further processing is performed to generate the access tokens the             
winning SLRs will use to access the smart locker. The authorisation-to-marketplace data            
transfer happens, when the access tokens for all the winning offers of a given auction have                
been generated, and the encrypted access tokens are transferred back to the marketplace             
blockchain, which will then notify the interested actors about the new token. The different              
steps performed during the two Interledger flows are shown in Fig. 10.5. 

Identity, Authentication, and Authorisation 
The Identity, Authentication, and Authorisation (IAA) component is used in different parts of             
SMAUG. It is used by the SMAUG marketplace backend, as depicted in Fig. 10.4, to validate                

 
SOFIE 63(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
JWTs used by SLOs when interacting with the marketplace management interface.           
Furthermore, IAA is also used by the smart locker (SL) to verify the validity of the access                 
token presented by the winners of the auctions when they want to access the smart locker.                
This token is generated by the smart locker access manager, as shown in Fig. 10.5, and then                 
decrypted by the SLRs after they have been notified by the marketplace blockchain.  

 
Figure 10.5: The different steps performed during an Interledger process. 

Privacy and Data Sovereignty 
The Privacy and Data Sovereignty component is used in two parts of SMAUG. It is used by                 
the SMAUG marketplace backend to support DID-based authentication of SLOs accessing the            
web management interface. Specifically, PDS allows users to authenticate themselves using a            
DID previously registered on the platform, and upon successful authentication, PDS generates            
a JWT that the SLOs will successively use to perform the actions the management interface               
provides. The JWT issued by PDS is then verified by IAA upon presentation by the SLOs, as                 
explained in the section about IAA.  

The other part of SMAUG that uses PDS involves the smart locker access manager and the                
authorisation smart contract that is used to log and store the access tokens the smart locker                
access manager generates. Upon receiving Interledger information originating from the          
marketplace blockchain, the smart locker access manager utilises the PDS component to            
generate the access token and to log it on the authorisation blockchain. Once the process is                
completed, the smart locker access manager triggers an Interledger event to communicate the             
value of the access token(s) generated back to the marketplace blockchain.  

Semantic Representation 
The SOFIE Semantic Representation (SR) component is used in SMAUG to validate locker             
information that SLOs upload when registering a new locker. In order for SMAUG to be an                
open and decentralised smart locker marketplace, all smart lockers must follow a common             
representation. This is made possible by SR, and the SMAUG marketplace backend            
delegates to SR the validation of the new lockers that SLOs want to add to the SMAUG                 
ecosystem. 

  

 
SOFIE 64(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 
Provisioning and Discovery 
The SOFIE Provisioning and Discovery (PD) component allows smart lockers to be            
discoverable by interested nearby customers using the Bluetooth Low Energy (BLE) protocol.            
PD and SR together give SMAUG the unique properties of decentralisation and openness,             
allowing anyone willing to be part of the SMAUG ecosystem to 1. register the locker on the                 
marketplace by using the SMAUG semantic representation, and 2. to allow the locker to be               
discoverable by integrating the SOFIE PD component. 
Key Benefits 
The key benefits for SMAUG from using the Framework components include: 

● With the Marketplace component, all the logic is embedded in the smart contract,             
which guarantees that the business rules are always enforced by the marketplace. 

● The usage of Interledger is fundamental as it allows the system to make use of               
multiple blockchains, where each blockchain might offer different properties (as in the            
case of permissionless vs. permissioned DLTs), while still ensuring the safety and            
atomicity of the bridging process. 

● The main benefit of using PDS in SMAUG is the possibility to support DID-based              
authentication out of the box, and to uncouple the marketplace and authorisation            
blockchains by delegating access token generation and logging to several, potentially           
independent entities - the smart locker access managers.  

● The IAA component then provides support for simple implementation of the access            
control based on the tokens. 

● The Semantic Representation enables dynamic registration of new lockers by ensuring           
they follow the required representation. 

● The Provisioning and Discovery component enables automatic discovery of nearby          
smart locker, thus functioning as a distributed directory of lockers. 

 

  

 
SOFIE 65(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

11 Summary 
The SOFIE Framework provides example implementations of all the SOFIE components and            
federation adapters. The components are all utilised in the SOFIE pilots and in the reference               
application SMAUG, thus ensuring their maturity: the P&D component reached TRL 6, while             
all other components and FAs reached TRL 7.  

The Interledger (IL) component is the backbone of the SOFIE Framework, enabling easy             
federation over different ledgers. The component supports multiple ledger types and support            
for new ledgers can be easily added. The provided atomic transaction functionality can be              
leveraged to different types of applications as demonstrated by the multiple examples            
provided.  

The Identity, Authentication and Authorisation (IAA) component can be used to secure any             
HTTP-based resource with minimal effort. IAA operates transparently and requires no           
modification to the protected resource. Similarly, the only modification required to client            
applications is the addition of an HTTP header. IAA can be used with a variety of                
authentication and authorisation methods, including emerging standards such as         
Decentralised Identifiers (DIDs) and Verifiable Credentials (VCs), as well as with traditional            
mechanisms such as bearer tokens. Furthermore, it can be easily integrated to an OAuth2.0              
workflow. Finally, IAA can be configured with rich access control policies using JSON path. 

The Privacy and Data Sovereignty component extends OAuth2.0 to cover additional           
authorisation grants, including VCs and DIDs. Furthermore, the PDS authorisation server           
supports blockchain-based tokens, as well as logging to smart contracts. The privacy module             
of PDS allows for local differential privacy, which protects the end-users even from curious              
system operators. Additionally, a PDS smart contract enables fair exchange of privacy            
preserving responses and service fees: a data consumer pays service fees only if the              
appropriate number of responses has been collected, but cannot access the provided            
responses before it pays.  

The Semantic Representation component can be used to easily open the system data model              
to external parties. The implementation of this component allows the system to be used by               
other systems or IoT devices automatically, without the need of manual system integration.             
The component automatically validates the messages external systems are sending and can            
lower the effort on implementing security rules by integrating them in the data model. This               
functionality allows the system using the SR component to be reachable to everyone             
satisfying the security restrictions. 

The Marketplace component provides an open decentralised marketplace that anyone can           
join. It supports different pricing models for auction and fixed priced sales, and covers the               
whole sales process from creating the auction all the way to the buyer reporting successful               
receipt of the item thus supporting comprehensive transparency and accountability for the            
trading. 

The Provisioning and Discovery component can be used to discover new IoT devices using              
multiple discovery protocols with minimal effort. The component provisions the discovered           
devices based on the user requirements and it also configures the IoT devices. The              
component uses the SR component for providing the metadata to the IoT device. It uses               
Bluetooth and DNS as discovery protocols and can also be used with the already deployed               
beacons.   

 
SOFIE 66(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 



 

 

12 References 

 
 

  

 
SOFIE 67(67) 

Document: H2020-IOT-2017-3-779984-SOFIE/ 
D2.7 – Federation Framework, final version 

Security: Public Date: 21.12.2020 Status: Completed Version: 1.0 

[D2.5] Y. Kortesniemi et al. “SOFIE Deliverable 2.5 - Federation Framework, 2nd 
version”, December 2019. Available at: 
https://www.sofie-iot.eu/results/project-deliverables 

[D2.6] Y. Kortesniemi et al. “SOFIE Deliverable 2.6 - Federation Architecture, final 
version”, October 2020. Available at: 
https://www.sofie-iot.eu/results/project-deliverables 

[D5.3] I. Oikonomidis et al. “SOFIE Deliverable 5.3 - End-to-end Platform 
Validation”, July 2020. Available at: 
https://www.sofie-iot.eu/results/project-deliverables 

[D5.4] I. Oikonomidis et al. “SOFIE Deliverable 5.4 - Final Validation & Replication 
Guidelines”, December 2020. Available at: 
https://www.sofie-iot.eu/results/project-deliverables 

[FAs] SOFIE Federation Adapters, open-source implementations of the FAs used 
in the SOFIE pilots, available at: 
https://github.com/SOFIE-project/Federation-Adapters 

[Fot2020] N. Fotiou, I. Pittaras, V.A. Siris, S. Voulgaris, G.C. Polyzos, "OAuth 2.0 
authorization using blockchain-based tokens," Proceedings of the NDSS 
2020 Workshop on Decentralized IoT Systems and Security (DISS), San 
Diego, CA, USA, 2020 

[Framework] SOFIE Framework, an open-source software implementation of the SOFIE 
Architecture, available at: https://github.com/SOFIE-project/Framework 

[Sir2019] V.A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, G. Polyzos: 
Interledger Approaches. In: IEEE Access Bd. 7 (2019), S. 89948–89966 

https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://github.com/SOFIE-project/Federation-Adapters
https://github.com/SOFIE-project/Framework

