
SOFIE - Secure Open Federation for Internet
Everywhere

779984

Deliverable 2.6

SOFIE Federation Architecture, Final Version

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 12.5.2021

Author(s) Yki Kortesniemi (AALTO), Tommi Elo (AALTO),
Dmitrij Lagutin (AALTO), Lei Wu (AALTO),
Nikos Fotiou (AUEB-RC), Giuseppe Raveduto (ENG),
Mait Märdin (GT), Filippo Vimini (LMF),
Ahsan Manzoor (ROV), Yannis Oikonomidis (SYN)

Responsible persons Yki Kortesniemi (AALTO), Yki.Kortesniemi@aalto.fi

Target Dissemination Level Public

Status of the Document Completed

Version 1.10

Project web-site https://www.sofie-iot.eu/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

mailto:Yki.Kortesniemi@aalto.fi
https://www.sofie-iot.eu/

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Summary of changes
Version Major changes

1.10 The major changes from version 1.00 include:
1) Added clarifications to sections 1, 2, and 4 that as a framework/meta

architecture, the SOFIE Architecture only defines the functionalities each
component should provide, but no APIs or implementation for the
functionality - each system is free to use the most suitable technologies
for their implementation. The SOFIE Framework provides one example
implementation for each component.

2) The source for each of the architecture and component requirements
was added to Tables 2-4 in Section 2.

3) The pilot architecture figures in Section 3 are now all based on the
SOFIE Architecture figure in Section 2

4) Added references to D2.7 and D4.5 for the validation of requirements
and architecture KPIs in Section 2.2, respectively.

5) Added Table 5 to Section 3 to summarise, which SOFIE component is
used in which pilot and reference application SMAUG.

6) Added references to D2.7 and D3.5 for the benefits and utilisation of
each SOFIE Framework component in each of the Pilots in Sections
3.1-3.4

7) Added clarifications on existing component reuse to Section 6.

SOFIE 2(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Table of Contents

Summary of changes…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..……... 2

List of abbreviations….. 4

1 Introduction….. 5

2 SOFIE Architecture…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…. 7

2.1 Requirements for the SOFIE Architecture and Framework.. 7

2.2 Validation of Requirements and Architecture KPIs... 12

2.3 Architecture overview... 12

3 SOFIE Pilots…..…….. 15

3.1 Food Supply Chain Pilot... 16

3.2 Decentralised Energy Flexibility Marketplace Pilot... 17

3.3 Mixed Reality Mobile Gaming Pilot... 18

3.4 Decentralised Energy Data Exchange Pilot..19

4 Architecture Components…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..……. 21

4.1 Interledger.. 21

4.2 Identity, Authentication, Authorisation.. 23

4.3 Privacy and Data sovereignty... 24

4.4 Semantic Representation... 26

4.5 Marketplace.. 28

4.6 Provisioning and Discovery.. 30

5 Federation Adapters…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..………. 33

5.1 Decentralised Energy Flexibility Marketplace.. 33

5.2 Decentralised Energy Data Exchange..34

6 External Components and Interfaces…..…..…..…..…..…..…..…..…..…..…..…..…..…....36

6.1 Web of Things (WoT) Thing Description (TD).. 36

6.2 FIWARE.. 37

6.3 Integrating additional FIWARE components... 38

7 Summary…..………... 40

References…..……. 41

SOFIE 3(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

List of abbreviations
API Application Programming Interface
AS Authorisation Server
BLE Bluetooth Low Energy
DEDE Decentralized Energy Data Exchange
DEFM Decentralised Energy Flexibility Marketplace
DID Decentralised Identifier
DLT Distributed Ledger Technology
DNS Domain Name System
DNS-SD DNS Service Discovery
DSO Distribution System Operator
FA Federation Adapter
FM Fleet Manager
FSC Food Supply Chain
GE Generic Enabler
HTLC Hash Time-Locked Contract
IAA Identity, Authentication, Authorisation (Architecture component)
IL Interledger (Architecture component)
IoT Internet of Things
JSON JavaScript Object Notation
KSI Keyless Signature Infrastructure
MP Marketplace (Architecture component)
MQTT Message Queuing Telemetry Transport
P&D Provisioning and Discovery (Architecture component)
PDS Privacy and Data Sovereignty (Architecture component)
PEP Policy Enforcement Point
PoI Point of Interest
RBAC Role Based Access Control
RFID Radio Frequency IDentification
SR Semantic Representation (Architecture component)
SSI-agent Self-Sovereign Identity agent
TD Things Description
TSO Transmission System Operator
VC Verifiable Credentials
W3C World Wide Web Consortium
WLAN Wireless Local Area Network
WoT Web of Things

SOFIE 4(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

1 Introduction
Fragmentation and lack of interoperability among different platforms is a major issue with the
Internet of Things (IoT). Currently, IoT platforms and systems are vertically oriented silos,
unable or unwilling to exchange data with, or perform actions across, each other. This leads to
multiple problems: reduced competition and vendor lock-ins as it is difficult for customers to
switch IoT providers, worse privacy as vendors usually force their customers to move at least
some of their data or metadata to the vendor’s cloud, and reduced functionality compared to
what would be possible with better interoperability. Since IoT systems are becoming prevalent
in everyday life, lack of interoperability and limited use of relevant data is growing into a
significant problem for individuals, organisations, and the society as a whole.

SOFIE (Secure Open Federation for Internet Everywhere) is a three-year EU Horizon 2020
research and innovation project that provides interoperability between existing IoT platforms in
an open and secure manner. The SOFIE Architecture is a way of overcoming the lack of
interoperability by federating the actions between different IoT systems using interledger
technologies. Blockchains and distributed ledgers (DLTs) form a natural basis for building trust
between different parties by providing transparency and accountability to operations.
Interledger technologies then build on top of the strengths of individual ledger technologies by
enabling cross-ledger transactions thus harnessing the individual strengths of different
ledgers. Finally, smart contracts allow the automation of many transactions, and thus lower the
operating costs of the system.

Figure 1. The SOFIE food supply chain pilot collects data as the produce moves
from the farm through transporters and distributors to the supermarket.

A key benefit of the SOFIE Architecture is that it allows the creation of solutions, which
connect many individual systems to a whole that provides significant new functionality. For
instance, as depicted in Figure 1, the growth and transportation conditions of agricultural
produce all the way from the field to the consumer can be recorded as it moves along the
supply chain, providing accurate information to customers, while helping companies in dispute
resolution.

As shown in Table 1, architectures can exist on many levels, such as framework/meta,
system, and component architecture levels. This document describes the
framework/meta-level SOFIE Architecture, which provides a high level overview of the SOFIE
components and federation adapters, but leaves their implementation up to the individual
pilots, which can each use the most appropriate technologies to implement the architecture.
The system-level architectures specific to each SOFIE pilot are then briefly described in
Section 3 of this document, with more details provided in ‘Deliverable 5.3 - End-to-end Platform

SOFIE 5(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Validation’ [D5.3]. Finally, the SOFIE Framework [Framework], an open-source software
implementation of the SOFIE Architecture for use in the SOFIE pilots, is described in the
‘Deliverable 2.7 - Federation Framework, final version’ [D2.7] due in December 2020. In the
rest of this document the term architecture refers to the framework-level SOFIE Architecture
unless otherwise specified.

Table 1. Multiple levels of architecture

Architecture
Level

Scope Level of Detail SOFIE deliverable

Framework SOFIE Broad: defines, what
functionalities the architecture
components must provide, but
their implementation is left to the
individual system architectures.

This document (D2.6)

System SOFIE Pilot Pilot specific. Defines how the
system (including the SOFIE
Architecture components used in
that system) is to be
implemented.

D5.3

Component SOFIE Component Internal structure of SOFIE
components and adapter

D2.7 (December 2020)

This document supersedes the previous Architecture deliverable ‘D2.4 - SOFIE Federation
Architecture, 2nd version’ [D2.4]. The structure of this deliverable is as follows: Section 2
presents the SOFIE Architecture as well as the requirements it was based on. Section 3
describes the system architectures of the four SOFIE pilots. The SOFIE Framework
components and federation adapters are described in Sections 4 and 5, respectively. Section
6 discusses integrating external components to the SOFIE Architecture and, finally, Section 7
summarises the SOFIE Architecture.

SOFIE 6(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

2 SOFIE Architecture
The SOFIE Architecture is a framework architecture, i.e. an architecture that defines types of
functionalities but no APIs or exact implementations for those functionalities due to the fact
that SOFIE can be used in so many types of applications in different fields that no single set of
functionalities or APIs is capable of serving them all. Therefore, the architecture is designed
as a foundation that can be built upon to define suitable functionalities and interfaces for each
application domain.

The SOFIE Architecture is also a modular architecture, i.e. it consists of 6 components
(introduced in Section 2.3 and detailed in Section 4), some or all of which can be utilised in
any particular system, depending on the application requirements. The SOFIE pilots and some
additional use cases were used to identify the 6 components that perform key functions for IoT
federation and are, therefore, common to a large part of federation use cases. The pilot
architectures provide example implementations of the SOFIE Architecture.

Finally, one of the most fundamental design goals for the SOFIE Architecture is that it has to
be able to support different types of IoT and ledger technologies without requiring changes to
those technologies. This is due to the large installed base of existing technologies that do not
allow changes and the fact that different parties and consortiums will continue to select their
own IoT and distributed ledger technologies based on the different strengths of those
technologies. By allowing federations to be IoT- and ledger-agnostic, SOFIE enables
interoperability across technology silos. To this end, the ledger-related Interledger component
supports ledger adapters that make it easy to add support for new types of ledger, and the
Architecture also includes the concept of Federation Adapters (introduced in Section 2.3 and
detailed in Section 5) that link IoT systems to the Architecture.

Together, the modular framework architecture and adapters make it easy to adapt the SOFIE
Architecture to different IoT federation situations.

The SOFIE Framework described in SOFIE Deliverable ‘D2.7 - Federation Framework, final
version’ [D2.7] provides example implementations of each of the components and a few
federation adapter examples as open-source software [Framework]. The provided examples
are tailored to the requirements of the SOFIE pilots, but they can be freely adapted and
expanded to suit the needs of other applications, as the SOFIE Architecture supports
customising the components to the needs of the individual application areas.

2.1 Requirements for the SOFIE Architecture and Framework
Requirements for the SOFIE Architecture were gathered from different sources: during the first
half of the project, meetings were organised between pilot consortium members and
end-users of all relevant application domains to capture and define business and end-user
requirements. In particular, in the energy domain, several meetings and sessions were
organised with TSOs and DSOs (Transmission and Distribution System Operators) experts
from cross-functional areas, especially from Estonia and Denmark, to gather industrial
requirements and to get insights about recent standardisation directions at EU level, while
ASM Terni, as a consortium member of SOFIE, provided valuable feedback on prioritising
needs and achieving a consensus in setting up the final requirements. In the food supply chain
domain, the “7 grapes–Pegasus Coop” company was subcontracted as an end user and early
adopter of the corresponding pilot to transfer knowledge about food supply chain business
operations and to assist in end-user requirements elicitation. Finally, in the mobile gaming
domain, several hackathons were organised both internally in Rovio, a consortium member,
and with external experts in digitisation and gaming customer services to identify business

SOFIE 7(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

opportunities of using DLT and IoT in mobile gaming and to understand customer needs.
Overall, through these processes, all relevant types of end-users to the SOFIE pilots have
been invited to discuss and to identify pilot-oriented, end-user requirements.

Once collected, these requirements were further analysed by the SOFIE technical partners to
identify system requirements for the SOFIE Architecture and Framework components. For
instance, in the SOFIE pilots there is a need for accountability and auditability between
multiple parties, who do not always fully trust each other - which can be achieved using DLTs.
However, due to privacy requirements and the need to maintain business secrets, it is not
feasible to store all data to a single (public) DLT - instead, multiple DLTs should be used: all
data is stored in a private ledger and then a hash of a transaction tree is stored to the public
ledger as a trust anchor, which increases the security, transparency, and auditability of the
system, as parties cannot modify existing transaction logs after the hash has been publicly
revealed. Furthermore, several DID operations rely on a related DLT (e.g. Hyperledger Indy
based DIDs rely on a permissioned ledger to manage information related to public DIDs),
therefore in order to connect identifier creation, authorisation, and authentication functionality
to the rest of the SOFIE Framework, interaction between the DLT ledger and other ledgers
used by SOFIE is necessary. Finally, various DLTs have trade-offs in terms of throughput,
latency, cost and scalability; therefore, interledger operations between the DLTs must be
supported by SOFIE.

Tables 2-4 list the requirements for the SOFIE Architecture, the privacy-related requirements
for the implementation and deployment of the SOFIE Architecture, and the requirements for
the SOFIE Framework. Each requirement is associated with a unique reference ID, a short
description, a priority level, and a category. Six categories are used (QUALITY, AUDITABILITY,
INTEROPERABILITY, USABILITY, SECURITY, POLICY & REGULATION). Two priority levels are
used according to the following rule:

● Must – The requirement is a “must have”
● Should – The requirement is needed for improved operation, and the fulfilment of the

requirement will create immediate benefits

The sources for the requirements have been indicated in the tables as follows: SOFIE
Description of Action (DoA), legislation (L), project pilots (FSC/DEFM/CAMG/DEDE) and the
reference application SMAUG (S).

Table 2. Requirements for the SOFIE Architecture

Req. ID Requirement Description Priority Category Source

RA01 SOFIE Architecture must define a clear
separation between data management,
control, and representation processes.

MUST QUALITY FSC, DEFM,
CAMG, DEDE

RA02 SOFIE Architecture must be modular to
enable different use cases and reuse of
components.

MUST QUALITY FSC, DEFM,
CAMG, DEDE,
S

RA03 The interfaces of the SOFIE components
must be well-defined and fully documented.

MUST QUALITY FSC, DEFM,
CAMG, DEDE,
S

SOFIE 8(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

RA04 Transactions must be immutable and
verifiable. Parties must not be able to modify
existing transactions without other parties
noticing it. Every party should be able to
independently verify the validity of
transactions.

MUST SECURITY FSC, DEFM,
CAMG, DEDE,
S

RA05 The system must provide auditability. MUST SECURITY FSC, DEFM,
CAMG, DEDE,
S

RA06 Support for transactions, where only
authorised entities can participate. Minimal
amount of information should be disclosed
during authentication.

MUST SECURITY FSC, DEFM,
DEDE, S

RA07 All external and internal interfaces and
communication links of the system must
conform to the principle of least privilege.

MUST SECURITY FSC, CAMG, S

RA08 The SOFIE Architecture should be flexible
and support different means of user
authentication, including password-based,
certification-based, and token-based.

SHOULD SECURITY FSC, DEDE, S

The SOFIE Architecture satisfies all the architectural requirements (RA01 - RA08 in Table 2),
as explained below. Section 2.3 of this document explains how the SOFIE Architecture
separates data management, control and representation, hence fulfilling the first requirement
(RA01). The SOFIE Architecture consists of six pluggable framework components that can be
used independently depending on the required functionality (RA02). The interfaces of
framework components and federation adapters are defined and documented in SOFIE
Deliverable 2.7 (RA03). Requirements RA04 and RA05 are satisfied through the usage of
DLTs in the SOFIE Architecture, while requirements RA06 and RA08 are satisfied by the
SOFIE Identity, Authentication, Authorisation (IAA) component. The SOFIE Privacy & Data
Sovereignty (PDS) component fulfils requirement RA07 (principle of least privilege) by
providing different APIs and interfaces and related access control policies for different uses.

Table 3. Privacy requirements for implementation and deployment of the SOFIE Architecture

Req.
ID

Requirement Description Priorit
y

Category Source

RP01 Privacy issues and business secrets must be
considered carefully when deciding what data
(including authentication/ authorisation information,
logs etc.) is collected, stored or exchanged between
parties.

MUST POLICY &
REGULATION

L, FSC

Though satisfying this requirement is ultimately up to each implementation and deployment,
the SOFIE Architecture provides all the necessary tools to this end. For instance, using the
Interledger component it is possible to store all confidential information only in each
organisation’s private storage and then store a hash to a public ledger for increased trust. If a

SOFIE 9(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

dispute requires auditing the information in the private storage, the hash proves that the data
was not modified after the hash was published. Further, the Privacy and Data Sovereignty
component also supports privacy preserving surveys using differential privacy, thus avoiding
the storage of privacy compromising information in the first place.

Table 4. Requirements for the SOFIE Framework

Req.
ID

Requirement Description Priority Category Source

Interledger

RF01 User interaction is not required for interledger
operations.

MUST USABILITY FSC, DEFM,
CAMG, S

RF02 There should be support for atomic
interledger operations.

SHOULD SECURITY CAMG

IAA

RF03 Resource owners must be able to delegate
the authentication and authorisation tasks for
their resources.

MUST OPERATIONAL FSC, S

RF04 The IAA component must provide users the
capability to revoke authorisations.

MUST SECURITY FSC

RF05 The IAA component must allow individuals to
control their personal information and digital
identities (e.g. support self-sovereign identity
technology).

MUST SECURITY DoA

RF06 The IAA component must support secure,
tamper-proof, and verifiable logging of
transactions and events.

MUST SECURITY FSC

RF07 The IAA component must support Role Based
Access Control (RBAC).

MUST SECURITY FSC

RF08 Cryptographic algorithms used by SOFIE
should be open-source, transparent, and as
independent as possible of any particular
architecture.

SHOULD AUDITABILITY FSC, S

RF09 SOFIE should support the execution of
authorisation and authentication functionality
on devices with constrained processing,
storage, battery, and network connectivity.

SHOULD OPERATIONAL S

Privacy & Data Sovereignty

RF10 SOFIE must follow the data minimisation
principle for personal data and only request or
process what is necessary for the situation
and purpose.

MUST OPERATIONAL FSC

SOFIE 10(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

RF11 Processing of individual’s personal data is
justified by a valid legal basis, e.g. a valid
consent from the individual.

MUST POLICY &
REGULATION

L

RF12 Consent to process personal data must be
revocable at any time.

MUST POLICY &
REGULATION

L

RF13 SOFIE must allow organisations and actors to
manage (create, update, delete) their own
data privacy policies.

MUST POLICY &
REGULATION

FSC, S

RF14 SOFIE should support user privacy even
when aggregate statistics are made public
(e.g. using differential privacy mechanisms).

SHOULD POLICY &
REGULATION

DoA

Semantic representation

RF15 SOFIE must define an IoT things description
model based on well-known standards (e.g.
W3C standards).

MUST AUDITABILITY FSC,
CAMG, S

RF16 SOFIE must implement standardised
metadata and data representation formats
and support various data modalities.

MUST AUDITABILITY FSC,
CAMG, S

RF17 The semantic representation model of the
system must be open and extensible by third
parties (e.g. support the extension of the
existing knowledge base and associations by
extracting supplementary triples from RDF
documents).

MUST AUDITABILITY FSC,
CAMG, S

RF18 SOFIE must provide service discovery and
resources selection processes based on
multiple criteria over the features,
associations, and interaction patterns of
integrated resources.

MUST INTEROPERA-
BILITY

CAMG, S

RF19 SOFIE should support the semantic update
and enhancement of resources’ descriptions
and associations in a dynamic way.

SHOULD INTEROPERA-
BILITY

CAMG

Marketplace

RF20 The marketplace must log the configuration of
all trading actions (including offers, bids,
parameters of resources, transactions etc.).

MUST QUALITY DEFM,
CAMG, S

RF21 The marketplace must provide actors the
capability to post/claim offers and
sell/negotiate/exchange/buy resources and
digital objects.

MUST INTEROPERA-
BILITY

DEFM,
CAMG, S

RF22 The marketplace must support transparent
trading of resources, i.e. the bids/offers

MUST OPERATIONAL DEFM,
CAMG, S

SOFIE 11(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

matching process and the payments must be
transparent.

RF23 The marketplace must provide evidence once
trades have been completed and resources
have been properly delivered to the buyers.

MUST SECURITY DEFM,
CAMG, S

RF24 The marketplace should allow integration of
payment technologies.

SHOULD OPERATIONAL DEFM,
CAMG, S

Provisioning & Discovery

RF18 SOFIE must provide service discovery and
resources selection processes based on
multiple criteria over the features,
associations, and interaction patterns of
integrated resources.

MUST INTEROPERA-
BILITY

CAMG, S

RF28 The component must provide actors the
capability to configure the discovered IoT
device

MUST OPERATIONAL CAMG, S

RF29 The component must provide actors to
provision the device to the database.

MUST OPERATIONAL CAMG, S

RF30 The component should be able to discover
new IoT devices using multiple protocols

OPTIONA
L

INTEROPER-
ABILITY

CAMG, S

Federation Adapter

RF25 SOFIE deployments can utilise one or more
Federation Adapters each capable of
representing one or more IoT
Devices/Platforms.

MUST OPERATIONAL FSC

RF26 The IoT device/platform must be able to utilise
all the SOFIE functionalities it requires
through the Federation Adapter representing
it.

MUST OPERATIONAL FSC

RF27 Federation Adapters must not require
changes to the IoT device/platform it
represents.

MUST OPERATIONAL FSC, DEFM

2.2 Validation of Requirements and Architecture KPIs
Validation of the requirements for the SOFIE Framework is reported in Sections 3-9 of
deliverable ‘D2.7 - Federation Framework, final version’ [D2.7]. Architecture KPIs and their
validation is reported in Section 2 of deliverable ‘D4.5 - Final Architecture, System, and Pilots
Evaluation Report’ [D4.5].

2.3 Architecture overview
The key role of the SOFIE Architecture is to enable the secure federation of IoT systems.
Figure 2 provides a functional overview of the SOFIE Architecture. In particular, it depicts the

SOFIE 12(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

six components that provide the SOFIE functionality (green boxes) and the Federation
Adapter(s) used to interact with the IoT platforms and devices.

The lowest level of the architecture contains the IoT assets (or resources), that include e.g.
IoT sensors for sensing the physical environment, actuators for acting on the physical
environment, and boxes with RFID tags that are used to transport products. IoT assets can be
connected to or integrated in actual devices. IoT platforms include platforms with data stores,
where the measurements from sensors are collected and made available to third parties, as
well as servers providing IoT services.

Figure 2. The SOFIE Framework architecture

The federation adapter(s) are used to interface the IoT platforms with the SOFIE Architecture.
This allows the IoT platforms to interact with SOFIE without requiring any changes to the IoT
platforms themselves. Different scenarios and pilots can utilise different types of federation
adapters, which expose only the required parts of the SOFIE functionality to the IoT platform.

Of the six components, the architecture emphasises the Interledger component responsible
for interconnecting the different types of DLTs, which can have quite different features and
functionality. Public (or permissionless) DLTs can offer wide-scale decentralised trust and
immutability, but this necessitates a large network with many peers and a more demanding
consensus mechanism, and thereby incurs a higher overall computational cost that will lead to
higher costs and longer transaction confirmation times. Permissioned or consortium DLTs, on
the other hand, have a lower transaction cost and latency; however, trust is determined by the
peers in the set of permissioned nodes that participate in the DLT’s consensus mechanism.
Moreover, the level of privacy afforded also differs: the transactions and data on
public/permissionless blockchains are completely open to everyone, which is necessary to
achieve wide-scale decentralised trust and transparency but forgoes any privacy. On the other
hand, private/permissioned DLTs involve the collaboration of peers that belong to a specific
permissioned set and can arrange their records to be opaque to others (private), or public (but
only allowing the permissioned set to contribute to the DLT). Thus, permissioned blockchains

SOFIE 13(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

can support different levels of write and read access, which allows them to support different
levels of privacy. DLTs can also differ in the functionality they provide: a DLT can focus e.g. on
cryptocurrency payments, recording of IoT events, access authorisation, or providing
resolution of decentralised identifiers (DIDs) [Ree2020]. Utilising multiple ledgers that are
interconnected through interledger functionality, instead of a single DLT, provides the flexibility
to exploit the aforementioned trade-offs. Finally, providing interledger mechanisms to
interconnect different DLTs allows companies and consortiums to select private/permissioned
distributed ledgers based on their requirements and constraints. Hence, interledger
mechanisms can enhance interoperability across different IoT platforms that utilise different
distributed ledger technologies.

The other SOFIE Framework components are: Identity, Authentication, and Authorisation
(IAA), which provides identity management and supports multiple authentication and
authorisation techniques; Privacy and Data Sovereignty (PDS), which provides mechanisms
that enable data sharing in a controlled and privacy preserving way and privacy preserving
surveys using differential privacy techniques; Semantic Representation (SR), which provides
tools for describing services, devices, and data in an interoperable way; Marketplace (MP),
which allows participants to trade resources by placing bids and offers in a secure, auditable,
and decentralised way; and Provisioning and Discovery (P&D), which provides functionality for
the management of existing and the discovery of new IoT devices.

All the components can expose application APIs, which provide interfaces for IoT clients and
applications to interact with the SOFIE components. In Figure 2, the multiledger operations
are positioned next to the Interledger component as it is mostly using that functionality, but any
of the other components can also utilise multiledger operation when required. Also, the
framework adapters and IoT applications can directly interact with the DLTs, but for simplicity
this is not shown in the figure. The figure also does not show the interactions between the
components, which include the PDS component managing access policies, which the IAA
component then enforces, the P&D component relying on SR in discovering new compatible
IoT devices, or the MP and IL co-operating in enabling trade, where payments are
implemented on one ledger and the traded items reside on another ledger. These interactions
will be discussed in more detail in D2.7

The architecture also illustrates the separation of data transfer and control message
exchanges. Some IoT data can be transferred either directly between the IoT platforms and
IoT clients or via the SOFIE Architecture, while control messages related to authorisation logs,
events, payments, etc. go through the SOFIE Architecture.

SOFIE 14(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

3 SOFIE Pilots
This section describes how the SOFIE Architecture is utilised in the four SOFIE pilots and their
respective system architectures. Figure 3 depicts how pilot components are connected to the
SOFIE Architecture. At the bottom of the figure are IoT devices and platforms, while other
components used by the pilots are in the upper part of the figure.

Figure 3. SOFIE Architecture and Pilots

The pilots utilise the SOFIE components as detailed in Table 5.

Table 5. SOFIE component usage in each pilot and reference application SMAUG.

Pilot FCS DEFM CAMG DEDE SMAUG

Interledger X X X X X

Identity, Authentication, and Authorisation X X X

Privacy and Data Sovereignty X X X

Semantic Representation X X X X

Marketplace X X X

Provisioning and Discovery X X

The rest of this section details the architectures of each of the four SOFIE pilots. More detailed
description about the pilots themselves can be found in ‘SOFIE Deliverable 5.3 - End-to-End
Platform Validation’ [D5.3].

SOFIE 15(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

3.1 Food Supply Chain Pilot
An overview of the Food Supply Chain (FSC) pilot’s final architecture in relation to the SOFIE
components is shown in Figure 4. This architecture offers two main applications (bundled in a
web application), namely the usage of QR codes to encode product history from the field to
the market shelf, and product quality audits and resolution of disputes in product quality
degradation events. Both of these services, as well as other simple services, are provided to
the pilot actors through an FSC web application.

The pilot utilises 3 Federation Adapters (FA) (one for each IoT platform) and 4 SOFIE
components: Identity, Authentication, Authorisation (IAA), Privacy and Data Sovereignty
(PDS), Semantic Representation (SR), and Interledger (IL). As shown at the bottom of the
Figure 4, three IoT platforms are federated:

1. the SynField IoT platform that collects measurements about the growing conditions in
the field,

2. a Transportation IoT platform that collects measurements about the produce as they
are transferred from one site to another, and

3. the Aberon IoT platform that is responsible for collecting measurements related to the
storage conditions of produce in the warehouse.

Figure 4. Food Supply Chain pilot’s final architecture and SOFIE components’ relation

A Federation adapter has been developed for each of these IoT platforms and has been
applied on top of the northbound API of each IoT environment to adapt the corresponding data
and metadata using the SOFIE Semantic Representation component and, also, to support
authentication and interledger procedures.

As shown in Figure 4, the architecture makes use of three different ledger deployments to
guarantee secure data storage and integrity, i.e. a private consortium ledger where all
(meta)data used to enable the pilot IoT applications are stored, a public ledger which is used

SOFIE 16(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

to store the hashes of the (meta)data, and the KSI (Keyless Signature Infrastructure)
blockchain which is used to create “summary” hashes of the data. In addition to the SOFIE
components, the pilot architecture also introduces an additional web application component
for: 1) orchestrating the data flow and handling data and metadata management, 2) exposing
a public API for the requests the actors receive through the SOFIE FSC web application, and
3) supervising the status of each asset on the provenance business platform (the boxes that
carry produce over the whole food chain are considered assets) and scheduling the proper
execution of the services provided by the SOFIE components.

The benefits provided to the FSC pilot by each of the SOFIE components used are identified
in D2.7 Section 10.1, while technical details on how they are being used are described in D3.5
Section 3.2.

3.2 Decentralised Energy Flexibility Marketplace Pilot
The Decentralised Energy Flexibility Marketplace (DEFM) pilot, as shown in Figure 5,
integrates the IoT subsystems and software modules used in the pilot site to control the smart
meters, the electric vehicles, and the electric vehicle supply equipment with three SOFIE
components: Marketplace (MP), Interledger (IL), and Semantic Representation (SR). In
addition to the SOFIE components, some pilot-specific components like the Federation
Adapter, the Smart Contracts, and the Data Access layer are utilised to integrate the pilot
architecture with the existing infrastructure. The pilot is then completed by the applications
used by the two main actors, the Fleet Manager (FM) and the DSO operators. Each
application has its own dashboard and backend which provide the application-specific logic.

Figure 5. The Architecture of the Decentralised Energy Flexibility Marketplace Pilot

The Marketplace component can be considered to be the pilot’s core component. It provides
all the required functionalities to operate a decentralised marketplace built on top of the

SOFIE 17(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Ethereum blockchain. The basic functionalities (e.g. creating a new marketplace request or
participating in an ongoing marketplace request with an offer) were abstracted in an extensible
interface that can be adapted to different use cases. For the DEFM pilot, an extended smart
contract was developed, specifying the offer-selection process (lowest bid auction) and the
attributes characterising a marketplace transaction (network zone, delivery time window,
quantity). The MP component also includes the tools needed for compiling, testing, and
deploying the derived smart contract. The use case is complemented by the Semantic
Representation and the Interledger components. The SR component validates the data feed
from the smart meters before creating a new market request. In this way, the operator knows
that data gathering is progressing as expected and the market request will be based on valid
data. On the other hand, the Interledger component is used to add transparency to the key
events during and after the auction: the selection of the winning offer and the payment to the
winning fleet manager after the delivery time were modeled as trigger events and the
component propagates both to a public ledger every time a new event is emitted.

The benefits provided to the DEFM pilot by each of the SOFIE components used are identified
in D2.7 - Federation Framework, final version in section 10.2. More details about their
integration are provided in D3.5 - Final Business Platform Integration Report, in section 3.4.

3.3 Mixed Reality Mobile Gaming Pilot
The focus of the mobile game pilot shown in Figure 6 is to explore how DLTs can be used to

provide new gaming features for players, as well as to validate the potential of location-based
IoT use cases. It seeks to overcome a known technical issue: the ability of DLTs to scale
cost-effectively to support millions of active users per day with hundreds of transactions per
second. Multiple use-cases that leverage IoT and blockchain technology are studied and
implemented throughout the pilot to test their technical applicability and performance for
mobile gaming.
A prototype has been developed to understand the use of DLTs for content ownership by
players, enabling them to collect and trade in-game content with other players (e.g.
characters, weapons, equipment, parts). DLTs provide player ownership of the asset,
transparency, and consistency of asset attributes and transactions.

The second use-case studied is a context-aware scavenger hunt game prototype using IoT
beacons and an ecosystem backed by a DLT. In the prototype, the player needs to solve
riddles using clues to reveal the location of the next IoT beacons. These beacons are used to
provide the proximity location of the players when they visit Point of Interests (PoI). At each
correct PoI, the player answers a question by observing their physical surroundings. If they
answer the question correctly, the player receives the riddle for the next location. After visiting
all locations in a hunt, the player is rewarded with in-game coins and item rewards, which are
stored on a DLT.

The pilot utilises four SOFIE components: Provisioning & Discovery (P&D), Marketplace (MP),
Semantic Representation (SR), and Interledger (IL). The benefits provided to the mobile
gaming pilot by each of the SOFIE components used are identified in D2.7 - Federation
Framework, final version in section 10.3. More details about their integration are provided in
D3.5 - Final Business Platform Integration Report, in section 3.5.2.

SOFIE 18(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Figure 6. Mobile Gaming Architecture with SOFIE components

3.4 Decentralised Energy Data Exchange Pilot
The Decentralised Energy Data Exchange (DEDE) platform depicted in Figure 7 connects
energy data providers with energy data consumers in a secure, open and decentralised way.
Both the data providers and the data consumers connect to the platform through their own
instance of the same Federation Adapter (FA). The FA of a data consumer connects directly to
the FA of a data provider to exchange messages according to the FA communication protocol.
Messages between the two FAs are transported securely over a mutually authenticated TLS
connection, using Hyperledger Indy based decentralised identifiers and verifiable credentials
to establish trust.

The FA is the key element in enabling the DEDE platform. Its main function is to ensure
interoperability and to secure the communication with other entities on the DEDE platform. It
acts as a forward proxy for the data consumer and as a reverse proxy for the data provider,
but it can also be in both roles at the same time, enabling entities that are both data
consumers and data providers. The FA takes care of the security aspects of the integration
and lets the data provider concentrate on implementing services and the data consumer to
use these services. The only requirement for a data provider is to describe its services in
OpenAPI 3.0 format.

Each entity on the DEDE platform is identified by a Decentralised Identifier (DID), which form
the base layer for Verifiable Credentials (VC) that are used to make authorisation decisions in
the FA. Every DID is associated with a public key and the mapping is published on a
Hyperledger Indy instance - a distributed ledger built for this purpose. The private key that

SOFIE 19(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

gives control over the DID is stored in a wallet managed by the FA. This makes it possible for
the FA to sign every message sent out from the FA. Use of DIDs and VCs makes the DEDE
platform not dependent on DNS names and traditional certificate authorities. Although there
are many different methods to define DIDs and basic operations to manage them , the DEDE1

platform currently supports the Sovrin method implemented by Hyperledger Indy.

Figure 7. Decentralised Energy Data Exchange Pilot Architecture

The FA is also a natural place to construct the audit log of the messages exchanged between
entities. A data provider will have a log of signed request messages that can be used to prove
which data consumer has asked for which data. Likewise, a data consumer will have a log of
signed response messages to prove which data provider gave out which data. The FA will
take care of securing this audit log with KSI.

The pilot utilises three SOFIE components: Identity, Authentication, Authorisation (IAA),
Privacy and Data Sovereignty (PDS), and Interledger (IL).The benefits provided by the SOFIE
components to the DEDE platform are described in D2.7 (Section 10.4). Technical details
about the usage of SOFIE components are described in D3.5 (Section 3.3).

1 https://w3c-ccg.github.io/did-method-registry/

SOFIE 20(41)

https://w3c-ccg.github.io/did-method-registry/

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

4 Architecture Components
The SOFIE Architecture consists of the following 6 components: Interledger (IL), Identity,
Authentication, Authorisation (IAA), Privacy and Data Sovereignty (PDS), Semantic
Representation (SR), Marketplace (MP), and Provisioning and Discovery (P&D). As a
framework architecture, the SOFIE Architecture only defines what functionalities these
components should provide, but defines no APIs or implementations for the components -
these are up to the individual system architectures that can utilise the most appropriate
technologies for the implementation.

The SOFIE Framework [Framework] provides example implementations of all the components
and the component descriptions in this section often refer to the Framework implementation
when discussing implementation details.

4.1 Interledger
The main purpose of the SOFIE Interledger (IL) component is to enable transactions between
actors belonging to different (isolated) IoT platforms or silos. SOFIE assumes that each IoT
silo either utilises or is connected to one or more DLTs. The Interledger component then
enables interaction between these DLTs.

Figure 8. A high-level overview of Interledger component

Using different DLTs is often necessary because of the advantages and disadvantages each of
them has. For instance, the public Ethereum ledger offers a high level of immutability, and is
very suitable for handling payments and automating tasks via smart contracts when specific
conditions are triggered, such as a payment. Nevertheless, Ethereum has a high cost and
uses a consensus mechanism which causes delays in the execution of transactions, which

SOFIE 21(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

might not be suitable for an IoT use case. On the other hand, the Hyperledger Fabric is
permissioned and uses a Byzantine Fault Tolerant consensus mechanism, which makes
transactions execute almost immediately, but it does not provide the same level of immutability
and trust as e.g. Ethereum does. Using multiple ledgers is also often desirable from the
privacy point of view: personal data should not be stored in public ledgers.

Typically, the Interledger component provides support for different types of ledgers such as
Ethereum, KSI, Hyperledger Fabric, and Hyperledger Indy ledgers as shown in Figure 8.
Generally speaking, it should enable two types of functionalities across ledgers:

● Transferring data from one ledger to another.
● Transferring value from one ledger to another.

In these transactions, one ledger acts as the Initiator, which sends the data/value and the
other(s) act as the Responder(s) that receive the data/value. These transactions are,
therefore, unidirectional, but if bidirectional connections are required, this can be achieved
with two unidirectional connections in opposite directions.

Depending on the use cases and IoT platforms, IL can support e.g. the following features (the
SOFIE Framework’s implementation of the Interledger component supports all these use
cases):

● Transferring data from one ledger to one or more ledgers so that all or none of the
recipients receive the data.

● Transferring data from one ledger to multiple ledgers so that at least the defined
minimum number of recipients (k-out-of-N) receive the data.

● Storing hashes of data to a (public) ledger based on the data stored in a (private)
ledger.

● Atomic transfer of asset state between two ledgers. The asset can exist in both
ledgers, but remains active in only one of them, and its state is simultaneously
changed in both or none within a transaction.

● When using Hash Time-Locked Contracts (HTLCs) [Sir2019], the Interledger
component can be used to automate the asset exchange between two ledgers using
HTLCs.

● Strengthening the security of the ledger providing DIDs by periodically auditing the
hash fingerprint that is recorded in a public ledger.

The interledger functionality can be implemented either by a stand-alone node run by a single
trusted (third) party, or in a decentralised manner by multiple nodes run by a consortium of
(third) parties as shown in Figure 9. The implementation manner depends on the trust model
within a certain application. If there is a trusted or neutral party, the Interledger node can be
implemented and run in a centralised-controlled way. On the other hand, the decentralised
mode can significantly reduce the trust required compared to a single node, while at the same
time it can provide better scalability in terms of performance and improved resiliency.

The Interledger component can cooperate with other SOFIE components, providing the
possibility to interact with multiple distributed ledgers at the same time. For instance, the
Mixed Reality Mobile Gaming Pilot utilises the Interledger and Marketplace components for
trading the gaming assets: the Interleger component makes sure that the active state of a
gaming asset is switched between the gaming consortium ledger and the public trading ledger
in an atomic manner.

SOFIE 22(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Figure 9. Interledger - a stand-alone node or a consortium of nodes

4.2 Identity, Authentication, Authorisation
The Identity, Authentication, and Authorisation (IAA) component enables access control for
shared resources. The component operates as a firewall that stands between end-users and
resources, and filters out unauthorised requests. As illustrated by Figure 10, IAA can either
authenticate and authorise users by itself, or it can just act as a Policy Enforcement Point
(PEP) and enforce access control decisions that have been taken by another entity (e.g., by
the Privacy and Data sovereignty component described below). Compared to existing
approaches, IAA has many benefits. IAA builds on emerging standards for user identification
that support decentralisation, self-sovereignty, and privacy preservation. Furthermore, by
leveraging blockchain technology and Ethereum smart contracts, IAA supports revocation and
immutable logging.

When IAA performs user authentication and authorisation, it relies on a number of
identification mechanisms and pre-configured access control policies. Currently, the IAA
component in the SOFIE Framework supports user identification based on Hyperledger Indy
Decentralised Identifiers and Verifiable Credentials, as well as based on W3C’s Verifiable2

Credentials.3

When IAA acts as a PEP, it expects access tokens that include authorisation decisions. These
tokens are validated by the component using pre-configured token verification rules. Currently,

3 https://www.w3.org/TR/vc-data-model/
2 https://www.hyperledger.org/use/hyperledger-indy

SOFIE 23(41)

https://www.w3.org/TR/vc-data-model/
https://www.hyperledger.org/use/hyperledger-indy

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

the Framework IAA component supports JSON web tokens, as well as blockchain-based4

tokens stored in an Ethereum smart contract using ERC-721 and the solution described in5

[Fot2020]. Additionally, it supports two modes for associating an access token with the
corresponding user: the bearer mode, in which any users that has a token is considered its
legitimate owner, and the proof-of-possession mode, in which the access token includes a
public key and the user has to prove that s/he is the owner of the corresponding private key.

Figure 10. IAA can perform both user authentication as well as user authorisation
based on access tokens.

IAA implementations should allow flexible access control policies and token verification rules,
so that users may take full advantage of the supported mechanisms. For instance, SOFIE
Framework’s implementation of IAA supports JSON Path, a feature-rich query language that6

can be used for validating JSON-encoded objects. Furthermore, all IAA implementations are
encouraged to be as transparent to the protected resources as possible, this way facilitating
their adoption even in use cases that include constrained resources. As an example, SOFIE
Framework’s IAA implementation acts as an HTTP forward proxy that intercepts all requests
between end-users and the protected (HTTP) resources. Using this approach, the
implementation can be used to protect any HTTP-based service.

4.3 Privacy and Data sovereignty
The Privacy and Data Sovereignty (PDS) component enables access control delegation, as
well as privacy preserving data sharing.

Access control delegation is enabled by allowing the use of Authorisation Servers (AS) that
act as Policy Decision Points (PDPs) as shown in Figure 11. An AS receives from users
authorisation grants and outputs access tokens. The AS functionality provided by the PDS
component in the SOFIE Framework supports the following types of authorisation grants:

6 https://goessner.net/articles/JsonPath/
5 https://eips.ethereum.org/EIPS/eip-721
4 https://tools.ietf.org/html/rfc7519

SOFIE 24(41)

https://goessner.net/articles/JsonPath/
https://eips.ethereum.org/EIPS/eip-721
https://tools.ietf.org/html/rfc7519

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Hyperledger Indy Decentralised Identifiers and Verifiable Credentials, W3C’s Verifiable
Credentials, and pre-shared secret keys. These grants are validated based on pre-configured
policies. Similarly, a PDS-enabled AS can generate JSON web tokens, as well as
blockchain-based tokens stored in an Ethereum smart contract using ERC-721 and the
solution described in [Fot2020]. The generated access token can be sent directly to the user
and/or stored (encrypted) in an Ethereum-based smart contract. In the latter case, further
token exchange mechanisms can be considered, e.g. smart contract based fair-exchange of
tokens with digital currency. Access tokens can then be consumed by service end-points that
provide user authorisation (e.g. by the IAA component described in the previous section).

Figure 11. PDS acting as a Policy Decision Point. It receives authorisation grants from
users and outputs access tokens.

Privacy-preserving data sharing can be enabled by using local differential privacy
mechanisms, as in Figure 12. As an example, the PDS component in the SOFIE Framework
provides modules that enable data obfuscation and the extraction of statistics out of the
obfuscated data. Local differential privacy has been selected since it allows users to preserve
their privacy without relying on a third party to add noise to the aggregated data. Furthermore,
local differential privacy allows collected data to be stored in public repositories or even in
smart contracts. Indeed, the PDS component contains a smart contract where (obfuscated)
data is stored. From there, any third party can extract a number of statistics. PDS also
supports encryption of data, so that only authorised third parties can extract statistics (e.g.,
users that have paid a predefined amount of digital currency).

SOFIE 25(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Figure 12. PDS Privacy modules. Data providers provide anonymised responses using
local differential privacy. Data consumers extract meaningful statistics.

PDS implementations should follow standards-based approaches for implementing the AS
functionality. The SOFIE Framework’s implementation of PDS follows the OAuth2.0 standard
and it treats the provided authorisation grants similarly to how OAuth2.0 handles the client
credentials grant. Similarly, PDS implementations should be flexible on how an AS should7

verify the provided grants. SOFIE’s PDS implementation allows the definition of rules using
JSON path. When it comes to privacy-preserving data sharing, PDS implementations should
consider lightweight local differential privacy mechanisms so that also constrained devices can
be used. SOFIE’s PDS implementation uses the RAPPOR local differential mechanism
[Erl2014] that enables end-users privacy using only lightweight operations. Furthermore, PDS
implementations should not be tailored for specific types of data or aggregated statistics,
instead they should be generic and allow a wide range of applications. For example, SOFIE’s
implementation of PDS allows the creation of surveys with an arbitrary number of possible
responses.

4.4 Semantic Representation
Exchanging data between different IoT platforms and systems can be challenging as the
platforms often utilise different formats for their data representation and definition, and one
system may not know which data model the other system can handle. The SOFIE Semantic
Representation (SR) component mitigates this problem and restores semantic interoperability
between systems and IoT platforms by allowing the definition and enforcement of the
semantics of the data. The SR component typically offers two functionalities

● Data semantic definition
● Data validation

7 https://tools.ietf.org/html/rfc6749#section-4.4

SOFIE 26(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

As shown in Figure 13, systems implementing the SR component enable interoperability by
defining a data semantic which can be used by other entities to exchange data. The
interoperability is achieved with a data model, which can be defined using different data
representation standards, such as JSON schemas and W3C WoT Thing Description, but
proprietary models can also be implemented when required by the application.

This data model is then managed by the SR component, which allows users to define the
accepted data models in the system. An example could be the definition of security rules in
the schema stored in the SR component: defining the security rules forces third parties’
schema implementations to satisfy them if they want to communicate with the system. Another
example is the definition of a schema which defines the main properties and interfaces of the
IoT devices that can interact with the system.

Figure 13. System interoperability

The second functionality, message validation, shown in Figure 14, assures the quality of the
data exchanged between systems. This can be done by validating the messages an external
system sends to the SR component. The functionality can be implemented by validating the
messages against the schema defined with the definition functionality. An example is JSON
messages validation: this functionality acts as a filter for the data exchange to the system,
informing the users that sent the data whether the process is successful or what problems
occurred. The functionality can be used only if a schema is stored in the semantic
representation component. Third party users, such as IoT platforms, can send JSON
messages to the system that implements the component, specifying to which schema the

SOFIE 27(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

message conforms. The SR component then validates the message against the defined
schema to check that the data conforms to the schema’s rules.

Figure 14. Message validation representation

The SR component can be used with other components of the SOFIE Framework to enhance
the functionalities of a system. An example is the P&D component that uses the SR
component to enforce rules and requirements for the provisioning of devices.

4.5 Marketplace
The goal of the SOFIE marketplace component is to enable the trade of different types of
resources (e.g. electricity for charging vehicles) in an automated, decentralised, and flexible
way. In this context, a decentralised marketplace is a marketplace that does not have a single
entity owning or managing it, which in turn increases competition and enhances its security,
resiliency, transparency, and traceability. The marketplace can be partially decentralised, when

SOFIE 28(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

e.g. a group of independent agriculture producers and retailers are managing it, or fully
decentralised where anyone can join and use the marketplace.

Figure 15. An example flow of the marketplace process.

Resources exchanged on the marketplace can include both physical and virtual goods such
as energy, access to data, actuation, or spaces, in-game assets, and cryptocurrencies.The
actors (buyers or sellers) on the marketplace must be able to negotiate trades using different
pricing models, perform payments, and verify that the trade has been carried out successfully
with as little user interaction as possible. The marketplace must also provide auditability to
help with potential dispute resolutions. The example flow of the marketplace process is shown
in Figure 15.

SOFIE 29(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

The main functionality of the SOFIE Marketplace is to:

● Allow actors to list resources on the marketplace and bid for them.
● Allow actors to view and update resource descriptions.
● Match bids and offers.
● Provide evidence that the trade has been carried out and resources have been

correctly exchanged.
● Keep history of all trading actions (such as offers, bids, resource descriptions,

transactions, etc.).

The marketplace functionality can be implemented e.g. on top of an Ethereum blockchain
utilising smart contracts, though the marketplace may also interact with other kinds of DLTs
(the SOFIE Framework provides an implementation built on top of Ethereum). The usage of a
DLT facilitates interoperability between the different actors by providing high availability for
shared immutable data, provides a rapid and user-friendly mechanism to negotiate contracts,
and affords security, transparency, and auditability.

The decentralised nature of the Marketplace component opens the possibility of trusted and
auditable trading of resources among parties who do not necessarily trust each other. Such
trading enables the flow of data, value, and resources across originally isolated IoT silos.
Many of those IoT silos are connected to different DLTs, which remains an obstacle for trading
on the marketplace. This issue can be resolved by combining the Marketplace component
together with the SOFIE Interledger (IL) component, which allows the passing of information,
value, and state of assets across different ledgers in a secure and atomic manner.

4.6 Provisioning and Discovery
The goal of the Provisioning & Discovery (P&D) component is to manage the IoT resources in
the system by provisioning existing the IoT device to a working state with the platform and by
enabling the discovery of new IoT resources along with their related metadata, the interaction
of which is illustrated in Figure 16. Using this functionality, it is possible to e.g. decentralise the
process of making new resources available to systems and to automate the negotiations for
the terms of use and the compensation for the use of these resources. This component works
together with the SOFIE Semantic Representation component to provide meta-data for the IoT
devices.

The SOFIE Framework’s P&D component provides the following functionalities
● Provisioning of IoT resources including

○ Configuration of Devices
○ Enrolling new devices to system

● Discovery of the new IoT resources using e.g.
○ Bluetooth Low Energy discovery
○ DNS-Service Discovery

● Licensing of the resources

SOFIE 30(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Figure 16. SOFIE Provisioning and discovery Internals.

The first functionality of the component is to provision the devices using the meta-data, which
includes enrolling a device into the system, and getting each device configured to provide the
required service and to send data to the right place on the network. The first part is
establishing the initial connection between the device and the IoT solution by registering the
device. In the component, the Provisioning interface goes through the meta-data and checks
against the requirement before provisioning the device to the database. This also acts as the
filter for either accepting or rejecting the newly discovered IoT resource. After enrolling the
device, the interface provides for the configuration related information for the device to bring it
to a working state, including defining the desired state of the device.

The second functionality of the component is the discovery of new IoT resources. This
component’s interface provides operations to perform a scan and discover open IoT devices
nearby. It also provides an interface to discover devices published on the local (WLAN, etc.)
network. The discovery interface lists newly discovered devices along with their related
meta-data before enrolling them in the system.

The final functionality of the component is to license the device to automate the negotiations
for the terms of use. The interface calls a smart contract on the blockchain and compensates
the owner of the device for the usage of the provisioned devices.

As an example, a location-based game can discover new IoT devices usable for expanding
the game world and automatically add them to the resource database if the resources are
accompanied with the necessary metadata including the licence for using the device and the
terms of compensation. This example was implemented using the following two existing

SOFIE 31(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

protocols: BLE Discovery and DNS-SD with multicast. A mobile application is used to search
for the new IoT devices on the WLAN or using the Bluetooth interface. The meta-data for the
beacons is defined by the SOFIE Semantic Representation component. After retrieving the
device information, the provisioning interface goes through defined rules and requirements
before enrolling the devices. It also connects to the database and sends the IoT device
meta-data to the database for provisioning. It also connects to the Ethereum blockchain and
calls smart contracts in order to provide compensation for the device usage.

SOFIE 32(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

5 Federation Adapters
Two IoT platforms can be federated if they are interoperable, which means they understand
each other's interfaces, and thus can exchange data and make sense of it. However good the
SOFIE components are, they cannot accommodate the federation of every conceivable IoT
platform on their own - a gap will always exist between the capabilities of existing IoT
platforms and that which the SOFIE Framework can make use of. To bridge this gap, the
SOFIE Architecture has a place for federation adapters. It is the role of these adapters to take
into account the individual nature of every federated IoT platform, and adapt it to the SOFIE
Architecture.

Due to the wide range of IoT systems SOFIE can be connected to, no single general-purpose
adapter can be created. Rather, each IoT system requires a separate adapter that
accomodate the individual requirements of the IoT system and the use case (including the
business case). Examples of such federation adapters have been provided as part of the
SOFIE Framework detailed in D2.7 [D2.7].

Federation adapters can take on this responsibility at different levels. For example, in the
Decentralised Energy Data Exchange (DEDE) pilot, the federation adapters are completely in
charge and take care of the secure communication between two IoT platforms, as well as the
identity management and the service description format. The federation adapter makes use of
the SOFIE components and calls them when needed. There is no central entity that the
federation adapter could rely on to run the SOFIE components. This approach is described in
more detail in section 5.2 below.

Another example is the federation adapter in the Decentralised Energy Flexibility Marketplace
pilot, where it is used at the IoT device level and its sole purpose is to collect data from
different IoT devices. The federation adapter knows nothing about the SOFIE components. A
technical description of this federation adapter is in the following section.

5.1 Decentralised Energy Flexibility Marketplace
The DEFM pilot utilises a Federation Adapter based on the FIWARE platform. The adapter8 9

combines FIWARE components (Orion Context Broker, JSON Iot-Agent, and Comet
Short-Term Historic) with third-party components (MongoDB No-SQL database and10

Mosquitto MQTT broker). The main purpose of the adapter is to manage the lifecycle of the
data retrieved from the IoT sources. Within the pilot, it is used to retrieve and store the
readings from the IoT smart meters, but it can also be used for different kinds of data in
different contexts.

After the initial configuration and deployment, the FA is able to:
● define service groups
● define sensors and actuators
● communicate with the IoT devices via MQTT
● retrieve and aggregate historical data

Figure 17 illustrates the federation adapter’s architecture and software components.

10 FIWARE components are discussed in more detail in Sections 6.2 and 6.3
9 https://www.fiware.org
8 https://github.com/SOFIE-project/efm-federation-adapter

SOFIE 33(41)

https://www.fiware.org
https://github.com/SOFIE-project/efm-federation-adapter

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Figure 17. Federation Adapter of the Decentralised Energy Flexibility Marketplace pilot.

5.2 Decentralised Energy Data Exchange
The two main responsibilities of the FA in the DEDE pilot is to proxy messages and to manage
the identity of the represented entity. The internal structure of the FA shown in Figure 18
mirrors this with two loosely coupled services: proxy and ssi-agent (Self-Sovereign Identity
agent). Both of the components have public and private interfaces, for external and internal
use accordingly.

The information system of the data consumer first sends a request to the proxy’s private
interface. The proxy uses the ssi-agent private interface to resolve the endpoint of the target
DID and to sign the request with the source DID. Then, it initiates a secure connection to the
public interface of the data provider (target DID) proxy. Both sides use the ssi-agent private
interface to retrieve the hash of the currently valid certificate to verify the authenticity of the
connection. Once the connection is set up, the data provider proxy will use the ssi-agent
private interface to verify request signature. If the request is for a service that requires further
authorisation, data provider proxy will also use the ssi-agent private interface to get the proved

SOFIE 34(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

values of the attributes required for the authorisation decision. If the data provider ssi-agent
receives such a request, it will send a proof request to the public interface of the data
consumer ssi-agent. Once the data provider proxy has values for all the proved attributes, it
can forward the request to the service implementation that is described using the OpenAPI 3.0
specification. The signing of the response and the verification of the response message
signature is analogous to the processing of the request.

Figure 18. Internal structure of the FA

An alternative for the data consumer to proving its credentials on demand, is to send them
together with the request, as a JSON Web Token issued by the SOFIE Privacy and Data
Sovereignty (PDS) component. In this setup, it is the responsibility of the data consumer to
acquire the token accepted by the data provider and include it in the request header. The data
provider could itself be the issuer of such tokens. If the data provider proxy receives a request
with a token, it will use the SOFIE Identification, Authentication, and Authorisation (IAA)
component to verify the token and get the trusted values for the attributes that are required for
the authorisation decision.

The ssi-agent on both sides uses the SOFIE Interledger component to periodically record the
state of the Hyperledger Indy instance with KSI.

SOFIE 35(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

6 External Components and Interfaces
This section describes the key external components and interfaces used by the SOFIE
Architecture implementation in the SOFIE Framework. As the SOFIE project promotes the
reuse and reusability of SOFIE components to enable others to leverage existing work, it
makes sense for SOFIE components to reuse existing standards and macro-level
components. This section details how WoT-TD and FIWARE have been utilised in SOFIE.

6.1 Web of Things (WoT) Thing Description (TD)
Web Of Things (WoT) is a set of standards developed by the W3C consortium to enable
interoperability between IoT devices. The SOFIE Architecture focuses on WoT standards
defining IoT devices: the WoT Thing Description (TD). The WoT TD allows the metadata
definition of a Thing that can be any virtual or physical device that has to interact with other
systems as shown in Figure 19.

Figure 19. WoT Thing Descriptions enable interoperability.

With the definition of such a standard, the SOFIE system can be connected to any external
systems, IoT siloes, and devices that can recognise and process the WoT TD. On the other
hand, SOFIE systems can recognise external systems that implement the WoT TD. When an
external system does not implement WoT TD, the SOFIE system must do an ad-hoc
adaptation of that system, which requires more work.

WoT TD can be integrated in many ways, and in the SOFIE Architecture the Semantic
Representation component helps the integration process in different ways. One example is to
define the system data model: the SOFIE system can define its properties, interactions,
supported actions, data schema, security vocabulary and more. Another functionality enabled
by the SR component in conjunction with WoT TD is to validate the external systems, IoT
platform, and devices to assure that the external devices are able to communicate with it: the
SR component can check that the external system is congruent with WoT TD before enabling
any communication.

SOFIE 36(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

The benefit of building on top of an established W3C standard is the ability of entities using
the SR component to extend their WoT-TD with existing ontologies compatible with W3C WoT
specification, including well-known and respected ontology definitions such as Dublin Core or11

QUDT measurement ontologies . These extendability benefits, nor the use of existing tools12

and libraries would not have been possible at the same level using a bespoke approach.

6.2 FIWARE
FIWARE is an open source initiative, which aims to facilitate the development of platforms for13

different domains, such as Smart Cities and Smart Energy, by defining a universal set of
standards for context data management.

FIWARE is a well-known platform, entirely based on open source technologies and open
standards. This means that it can be implemented and evolved without restrictions. In
particular, it allows interoperability by enabling the connection of devices through different IoT
protocols (such as MQTT, Ultralight 2.0, or LWM2M) via different kinds of networking
technologies (e.g. WiFi, 3G, or any other data network connected to the Internet). The
platform’s maturity ensures scalability, robustness, and high availability.

FIWARE offers a set of open source platform components, as illustrated in Figure 20, which
can be assembled together to easily build smart solutions. The integration of components,
their interoperability and portability are enabled by a powerful API (FIWARE NGSI). The
common need for any different smart platform is the gathering and management of context
information, making it possible to process that information and to react by altering or enriching
the current context. FIWARE addresses the need for context information management with its
Context Broker component, which enables software platforms to perform updates and access
the current context state. The Context Broker is complemented by several optional platform
components, covering different stages of the process from supplying context data to data
processing, analysis, and visualisation.

Figure 20. Architecture of a typical FIWARE platform.

13 https://www.fiware.org/
12 http://qudt.org/
11 http://dublincore.org/

SOFIE 37(41)

https://www.fiware.org/
http://qudt.org/
http://dublincore.org/

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

FIWARE NGSI enables the portability of different applications across different FIWARE
platforms, as well the extensibility of existing platforms by using additional components.

The Federation Adapter used in the DEFM pilot and illustrated in section 5 leverages some of
the most popular FIWARE platform components.

The FIWARE Context Broker Generic Enabler, in charge of the context information
management, is the minimum and mandatory requirement to label a platform as “Powered by
FIWARE” .14

6.3 Integrating additional FIWARE components
The usage of the Context Broker as part of the DEFM adapter enables bi-directional
connectivity between FIWARE platforms and the federation adapter:

As shown in Figure 21, the external FIWARE platform components will be able to publish
context information updates to the Federation Adapter’s Context Broker, for example enabling
the federation adapter to consume data gathered from external or new data sources.

Figure 21. Connection of the DEFM pilot with a third-party data provider.

The external FIWARE platform components will be able to subscribe to the Federation
Adapter’s Context Broker, as in Figure 22, being able to react to updates and process the data
managed by the federation adapter.

14 https://www.fiware.org/developers/catalogue/

SOFIE 38(41)

https://www.fiware.org/developers/catalogue/

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

Figure 22. Connection of the DEFM pilot with a third-party consumer application.

SOFIE 39(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

7 Summary
The key features of the SOFIE Architecture, as earlier discussed in ‘Deliverable 4.3 - First
Architecture and System Evaluation Report’ [D4.3] and ‘Deliverable 4.4 - Second Architecture
and System Evaluation Report’ [D4.4], are the following: 1) decentralisation, 2) open business
platform support, 3) federation, 4) multiple ledgers support, and 5) combined support for trust,
security, transparency, availability, and accountability.

The SOFIE Architecture is decentralised by design and involves multiple self-contained
components, which can be combined to provide the service and satisfy the requirements of
applications. This design allows, e.g. the distribution of the load of ledger operations to
multiple entities to increase scalability and throughput.

SOFIE’s architecture and framework components are open with clearly defined operations and
interfaces, contributing to open business platforms, which allow anyone to join by conforming
to the SOFIE Architecture and the practices of the business platform. The openness is further
assured by the fact that no single party controls the platform, as SOFIE builds on the
federation approach, where anyone can join the platform as an equal member.

The support for multiple ledgers may more accurately reflect the interaction between different
parties, and allows different tradeoffs in terms of technical properties such as transaction cost
and delay, smart contract capability, transparency, and privacy.

Security is supported by complementing existing privacy standards with revocation and
immutability through the use of ledger technologies and smart contracts, and privacy is
supported, e.g. with anonymous identifiers and privacy-preserving data sharing using local
differential privacy mechanisms. Finally, trust, transparency, and accountability are supported
through distributed ledgers and the interledger functionality, while availability is an inherent
feature of distributed ledgers, and the different types of ledgers, such as public, private, and
permissioned, feature different tradeoffs among these features.

Therefore, the added value of the SOFIE Architecture does not rely solely on novel
component implementations but more fundamentally on the way they are used together to
enable the secure and privacy preserving federation of IoT systems over organisational
boundaries. So, the individual components can be implemented purely using existing
standards and software thus supporting interoperability with legacy systems, promoting higher
security, and speeding up deployment, but when existing standards do not suffice,
implementing new solutions is also possible.

Both approaches are exemplified in the SOFIE Framework, which is an implementation of the
SOFIE Architecture for use in the SOFIE pilots (it is described in SOFIE Deliverable 2.7 [D2.7]
and available as open-source software in GitHub [Framework]). It provides an example
implementation of all the components and several federation adapters, and it can be used as
is, or the individual components and adapters can be extended or even replaced with
alternative implementations to better suit the application requirements. This modular approach
makes it easy to adapt SOFIE to different IoT use cases, and the use of federation and ledger
adapters enables support for IoT devices without requiring any changes to the devices
themselves.

SOFIE 40(41)

Document: H2020-IOT-2017-3-779984-SOFIE/
D2.6 – Federation Architecture, final version

Security: Public Date: 12.5.2021 Status: Completed Version: 1.10

References
[D2.4] Y. Kortesniemi et al. “SOFIE Deliverable 2.4 - Federation Architecture, 2nd

version”, December 2019. Available at:
https://www.sofie-iot.eu/results/project-deliverables

[D2.7] Y. Kortesniemi et al. “SOFIE Deliverable 2.7 - Federation Framework, final
version”, December 2020. Available at:
https://www.sofie-iot.eu/results/project-deliverables

[D4.3] V.A. Siris et al. “SOFIE Deliverable 4.3 - First Architecture and System
Evaluation Report”, December 2019. Available at:
https://www.sofie-iot.eu/results/project-deliverables

[D4.4] V.A. Siris et al. “SOFIE Deliverable 4.4 - Second Architecture and System
Evaluation Report”, April 2020. Available at:
https://www.sofie-iot.eu/results/project-deliverables

[D4.5] V.A. Siris et al. “SOFIE Deliverable 4.5 - Final Architecture, System, and
Pilots Evaluation Report”, December 2020. Available at:
https://www.sofie-iot.eu/results/project-deliverables

[D5.2] I.Oikonomidis et al. “SOFIE Deliverable 5.2 - Initial Platform Validation”,
June 2019. Available at: https://www.sofie-iot.eu/results/project-deliverables

[D5.3] I.Oikonomidis et al., “SOFIE Deliverable 5.3 - End-to-end Platform
Validation”, July, 2020, Available at:
https://www.sofie-iot.eu/results/project-deliverables

[Erl2014] U. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal Response,” in Proc. of ACM
SIGSAC Conference on Computer and Communications Security, 2014

[Framework] SOFIE Framework, an open-source software implementation of the SOFIE
Architecture, available at: https://github.com/SOFIE-project/Framework

[Fot2020] N. Fotiou, I. Pitarras, V.A. Siris, S. Voulgaris, G.C. Polyzos," OAuth 2.0
authorization using blockchain-based tokens," Proceedings of the NDSS
2020 Workshop on Decentralized IoT Systems and Security (DISS), San
Diego, CA, USA, 2020

[Ree2020] D. Reed, “Decentralized Identifiers (DIDs) v1.0 – Core architecture, data
model, and representations”. W3C Working Draft, 12 October 2020.
Available at: https://w3c.github.io/did-core/.

[Sir2019] V.A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, G. Polyzos:
Interledger Approaches. In: IEEE Access Bd. 7 (2019), S. 89948–89966

SOFIE 41(41)

https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
https://github.com/SOFIE-project/Framework
https://w3c.github.io/did-core/

