

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D2.5

Federation Framework, 2nd version

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 30.8.2019

Author(s) Yki Kortesniemi, Dmitrij Lagutin, Andrea Lisi, Mahdi Ghorbani
(AALTO), Vasilios Siris, Nikos Fotiou (AUEB-RC), Giuseppe
Raveduto (ENG), Margus Haavala (GT), Filippo Vimini (LMF),
Ahsan Manzoor (ROVIO), Sotiris Karachontzitis (SYN)

Responsible person Yki Kortesniemi (AALTO), Yki.Kortesniemi@aalto.fi

Target Dissemination Level Public

Status of the Document Completed

Version 1.00

Project web-site https://www.sofie-iot.eu/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

mailto:Yki.Kortesniemi@aalto.fi
https://www.sofie-iot.eu/

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Table of Contents
1 Introduction……………………….…………….…………….…………….. 5

2 SOFIE Architecture & Framework…………….…………….……………6
2.1 SOFIE Architecture…….…….………….………….………….………….… 6
2.2 SOFIE Framework…….…….…….…….…….…….…….………….……… 7

3 Interledger Component……….…………….…………….…………….… 9
3.1 Requirements and Scenarios…….………….………….………….……....10
3.2 Services and Interfaces…….………….………….………….………….….11
3.3 The internal structure…….………….………….………….………….…….12
3.4 Scenario walkthrough…….………..…….………….………….…………...15

4 Identity, Authentication and Authorisation Component……….….. 16
4.1 Requirements and Scenarios…….………….………….………….……....16
4.2 Services and Interfaces…….………….………….………….……………..18
4.3 The internal structure…….………….………….………….………….…….19

4.3.1 Operations………..………..………..………..………..………..…………….21
4.4 Scenario walkthrough…….………….………….………….………….…… 24

5 Privacy and Data Sovereignty Component……….…………….…….26
5.1 Requirements and Scenarios…….………….………….………….……....26
5.2 Services and Interfaces…….………….………….………….………….….28
5.3 The internal structure…….………….………….………….………….…….29

5.3.1 Operations………..………..………..………..………..………..……………. 30
5.4 Scenario walkthrough…….………….………….………….……….……....32

6 Semantic Representation Component……….…………….…………. 34
6.1 Requirements and Scenarios….………….……….………….……….…...34
6.2 The internal structure….………….……….………….……….……….……36
6.3 Scenario walkthrough….………….……….………….……………….…… 37

7 Marketplace Component……….…………….…………….……………. 39
7.1 Requirements and Scenarios….………….……….………….…………....40
7.2 Services and Interfaces….………….……….………….….………….……41
7.3 The internal structure….………….…….………….……….………….……42
7.4 Scenario walkthrough….………….……….………….……….…………… 44

SOFIE 2(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

8 Provisioning and Discovery Component……….…………….……….45
8.1 Scenarios………….……….………….……….……………………………..45
8.2 Services and Interfaces………….……….………….……….……………..46
8.3 The internal structure………….……….………….……….………………..47
8.4 Scenario walkthrough………….……….………….……….………………. 50

9 How Components are used in the SOFIE Pilots……….……………. 51
9.1 Food Supply Chain Pilot………….……….………….……….…………….51
9.2 Decentralised Energy Flexibility Marketplace Pilot….………….……….. 56
9.3 Location-based Mobile Gaming Pilot….………….……….………….……59
9.4 Decentralised Energy Data Exchange Pilot….………….……………….. 62

10 References……….…………….…………….…………….…………….. 64

SOFIE 3(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

List of abbreviations

API Application Programming Interface

AS Authorisation Server

CSO Charging Station Owner

DID Decentralized Identifier

DLT Distributed Ledger Technology

DSO Distribution System Operator

EV Electrical vehicle

FSC Food Supply Chain

HTLC Hash Time-Lock Contract

IAA Identity, Authentication, authorisation

IoT Internet of Things

KSI Keyless Signing Infrastructure (GuardTime)

PoI Point of Interest

RFID Radio Frequency IDentification

TD Things Descriptor

TSO Transmission System Operator

WoT Web of Things

SOFIE 4(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

1 Introduction
SOFIE (Secure Open Federation for Internet Everywhere) is a three-year EU Horizon 2020
research and innovation project that provides interoperability between existing IoT platforms in
an open and secure manner.

This document continues the work started in the SOFIE deliverable D2.3 [Paa2018] and
presents the SOFIE Federation Framework, an example implementation of the SOFIE
Federation Architecture introduced in the deliverable D2.4 [Elo2019]. The Architecture
consists of 6 internal components and the Framework provides an example implementation of
each, as well as a description of the components’ purpose, interfaces, and internal structure.
Scenarios derived from the SOFIE pilots described in deliverable D5.2 [Oik2019] are used to
explain how each component can be used and how the components meet the requirements
set in D2.4. Finally, there is a description of how the SOFIE pilots leverage the components.
More detailed technical descriptions of the components and their interfaces can be found in
the technical documentation accompanying the component code release available at
https://github.com/SOFIE-project/Framework.

During the SOFIE project, the architecture and framework will be developed further; the
deliverables D2.6 and D2.7 detailing these developments will be released in late 2020.

The rest of the document is organised as follows: Section 2 presents an overview of the
SOFIE Architecture and Framework. Then, Sections 3-8 detail the 6 internal components,
while Section 9 describes how the SOFIE pilots utilise these components and how the pilots
have implemented the interface components in their respective environments.

SOFIE 5(64)

https://github.com/SOFIE-project/Framework

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

2 SOFIE Architecture & Framework
This section introduces the SOFIE Federation Architecture used to federate operations across
IoT systems (silos) using distributed ledgers (DLTs) as bridges, and the SOFIE Federation
Framework, which is an example implementation of the Architecture.

2.1 SOFIE Architecture
The lack of interoperability between IoT systems has long been a significant limitation to the
creation of new solutions spanning multiple IoT system. This situation has been further
aggravated by the fact that adding interoperability to existing IoT systems can be hard due to
the systems not being upgradable, especially when the systems are owned by multiple
organisations, which can create further integration challenges due to the related trust and
liability issues.

The goal of the SOFIE Architecture is to overcome these challenges. It supports the
integration of IoT systems owned and operated by different organisations using a federation
approach and overcomes the lack of upgradability by using adapters to link the IoT devices to
the architecture. The SOFIE Architecture has been described in detail in deliverable D2.4
[Elo2019]. It defines SOFIE as a framework architecture, i.e. an architecture that defines types
of functionalities but not a single exact implementation for those functionalities, due to the fact
that SOFIE can be used to bridge so many different types of applications in so many fields
that no single set of functionalities or APIs is convenient to serve them all. Therefore, the
Architecture can be used as a foundation to define suitable functionalities and interfaces for
each application domain.

Figure 2.1 provides a functional overview of the SOFIE architecture. It depicts the internal
components of the SOFIE framework (orange boxes), the SOFIE interface components (white
boxes with orange outline) and their cross-domain interactions with external
domains/components (white boxes with black outline).

Figure 2.1: The SOFIE framework architecture

SOFIE 6(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

The lowest level of the architecture contains the IoT assets (or resources) that include, e.g.
IoT sensors for sensing the physical environment, actuators for acting on the physical
environment, and boxes with RFID tags used to transport products. IoT platforms include
platforms with data stores, where the measurements from sensors are collected and made
available to third parties, as well as servers providing IoT services.

The interface component Federation Adapter(s) (FAs) are used to interface the IoT platforms
with the SOFIE framework. This allows the IoT platforms to interact with SOFIE without
requiring any changes to the IoT platforms themselves. Note that a part of the adapter’s
functionality can be implemented, e.g. in smart contracts. Moreover, different scenarios and
pilots require different types of federation adapters, which may implement only the required
parts of the SOFIE functionality.

The main functionality of the Architecture is provided by the 6 internal components introduced
in Subsection 2.2 and detailed in Sections 3-8.

The Architecture emphasises the interledger functionality responsible for interconnecting the
different types of DLTs, which can have quite different features and functionality. Public (or
permissionless) DLTs can offer wide-scale decentralised trust and immutability, but this
necessitates a large network with many peers and/or a more demanding consensus
mechanism, thereby incurring a higher overall computation cost that will lead to longer
transaction conrmation times. On the other hand, permissioned or consortium DLTs have a
lower, or even zero, transaction cost and low latency; however, trust is determined by the
peers in the set of permissioned nodes that participate in the DLT’s consensus mechanism.
Moreover, the level of privacy afforded also differs: the transactions and data on public DLTs
are completely open to everyone, which is necessary to achieve wide-scale decentralised trust
and transparency, but forgoes any privacy. On the other hand, permissioned DLTs involve the
collaboration of peers that belong to a specic permissioned set and can arrange their records
to be inaccessible to others (private), or public (but only allowing the permissioned set to
contribute to the DLT). Thus, permissioned blockchains can support different levels of write
and read access, which allows them to support different levels of privacy. DLTs can also differ
in the functionality they provide: a DLT can focus, e.g. on cryptocurrency payments, recording
of IoT events, access authorisation, or providing resolution of decentralised identifiers (DIDs)
[Ree2019]. Utilising multiple ledgers that are interconnected through interledger functionality,
instead of a single DLT, provides the flexibility to exploit the aforementioned tradeoffs. Finally,
providing interledger mechanisms to interconnect different DLTs allows companies and
consortiums to select private/permissioned distributed ledgers based on their requirements
and constraints. Hence, interledger mechanisms can enhance interoperability across different
IoT platforms that utilise different distributed ledger technologies.

The architecture also illustrates the separation of data transfer and control message
exchanges. Some IoT data can be transferred directly between the IoT platforms and IoT
clients. Control messages related to authorisation logs, events, payments, etc. go through the
SOFIE framework. IoT data or hashes of data can also be handled by the SOFIE framework.

Finally, the upper component of the architecture is the interface component Application APIs,
which provides the interfaces for IoT clients and applications to interact with the SOFIE
framework. Similar to FAs, these are application specific.

2.2 SOFIE Framework
The SOFIE Federation Framework is an example implementation of the SOFIE Architecture
developed to support the SOFIE pilots and to serve as an example for future Architecture

SOFIE 7(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

implementations. It provides a description of each of the 6 internal components and an
overview of their implementation, while the related code release available at
https://github.com/SOFIE-project/Framework includes the more technical description of the
implementation.

In the Architecture, the internal components describe types of functions, which can be
implemented as separate components or as part of the interface components (Federation
Adapters and Application APIs). The 6 internal components are:

● Interledger, which provides support for operations spanning two or more ledgers,
including support for atomic transactions over multiple ledgers.

● Identity, Authentication and Authorisation, which provides IAA functionalities for the
different entities in the system by supporting multiple authentication and authorisation
techniques.

● Privacy and Data Sovereignty, which provides mechanisms that enable data sharing in
a controlled and privacy preserving way.

● Semantic Representation, which is used to enable interoperability between different
IoT devices, services, and data by describing what functions they provide and what
interfaces and formats they utilise.

● Marketplace, which allows participants to trade resources by placing bids and offers in
a secure, auditable, and decentralised way.

● Discovery & provisioning, which provides functionality for the discovery and
bootstrapping of IoT devices, services, and data.

The design and function of the internal components are discussed in Sections 3-8.

The framework also includes 2 interface components:
● Federation Adapters, which interface with the IoT devices/platforms.
● Application APIs, which interface with the applications utilising the SOFIE Framework.

The interface components are highly application specific and will have to implement different
protocols, etc. depending on the application domain and devices used. They can also be used
to implement some or even all of the functionalities of the internal components. The interface
components used in the SOFIE pilots are discussed in Section 9.

.

SOFIE 8(64)

https://github.com/SOFIE-project/Framework

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

3 Interledger Component
The purpose of the SOFIE interledger component is to enable transactions between actors
and devices belonging to different (isolated) IoT silos. Each silo either utilises or is connected
to one or more ledgers, and the interledger component then enables interaction between the
ledgers. The techniques proposed in literature to enable operations and transactions between
different ledgers are described in [Sir2019a].

By providing interledger transaction capabilities, SOFIE enables semantic level
communication between the different silos. Thanks to the Interledger component, it is possible
to, e.g. integrate multiple ledgers to a cohesive storage platforms that enables the most
suitable type of DLT to be used for the type of information at hand and to enable cross-ledger
transactions, thus harnessing the individual strengths of the different DLTs.

Figure 3.1: Connection between the SOFIE components and the ledgers

Figure 3.1 shows a few examples of ledgers and their connection to the SOFIE components.
Different types of ledgers can be used for different purposes, so, e.g. Asset and Access
control ledgers can be permissioned ledgers like Hyperledger Fabric to reduce costs, while
payments and trades can take place on public ledgers like Ethereum to improve trust.

Each ledger can also be accessed by multiple SOFIE components. The division of work is that
Interledger is responsible for implementing the multi-ledger operations while other
components implement operations that deal with individual ledgers. In Figure 3.1 the dashed
lines represent multi-ledger operations, while continuous lines represent single- ledger
operations.

Finally, the oracle is a trusted third party in charge of making authoritative statements about
the status of some system. For example, the oracle may track the charging events in the
Decentralized Energy Flexibility Marketplace pilot and notify the auction once the agreed
amount of energy has been consumed in the correct district. The presence of the oracle and
its connections with the ledgers depends on the use case.

SOFIE 9(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

3.1 Requirements and Scenarios
Table 3.1 summarises the requirements for this component (from SOFIE deliverable D2.4).

Table 3.1. Requirements for the Interledger component

ID Requirement Description Priority Category

RF01 User interaction is not required for interledger operations. MUST USABILITY

RF02 There should be support for atomic interledger operations. SHOULD SECURITY

Table 3.2 presents example scenarios, derived from the use cases presented in SOFIE
deliverable D5.2, to cover all requirements described above.

Table 3.2. Scenarios derived from the pilots use cases

ID Scenario Content

SC01

Description A player of the location-based game wants to sell a Vorpal Sword +2
in exchange for game tokens.

Stimulus The player chooses the Sell action on his game app.

Response The app sends a request to the game server, which in the asset
ledger labels the Vorpal Sword +2 as an asset that is being traded in
the game marketplace. This action triggers an Interledger operation
which adds the relevant sword information from the asset ledger to
the public trading ledger to initiate the trade.

Derived from use case MRMG _UC4: Asset Trading

Covers requirements RF01

SC02 Description At the end of the food supply chain (FSC), the transportation
company (TR) employee gives the smart box to the supermarket
(SM) employee.

Stimulus The TR employee gives the smart box to the SM employee and
records the action.

Response Based on the handover event, the Supervisor (see Section 9.1 for
more details) of the supply chain first produces the necessary smart
box-related data and its fingerprint (hash). Then, an interledger
operation is triggered to atomically store the data in the consortium
ledger, and the fingerprint together with handover related public data
to the public ledger.

Derived from use case FSC_UC8 : Hand over product: TR-SM

Covers requirements RF02

SOFIE 10(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

3.2 Services and Interfaces
As shown in Figure 3.2 and listed in Table 3.3, the Interledger component provides the
following interfaces:

● Atomic transactions: this interface provides the operations to atomically send
multiple transactions to two or more ledgers. The Interledger component should
guarantee that either all or none of the data is stored, as otherwise the system may
end up in an inconsistent state.

● Data transfer: this interface provides the operations to transfer some data from one
DLT to another. With it, it is possible to implement atomic data exchange between two
ledgers, like Atomic Swaps [Sir2019a].

● Proof of Integrity: this interface provides operations to verify that a set of data (e.g.
stored in an internal ledger) still matches a fingerprint previously stored in a (public)
ledger, thus guaranteeing that the data has not been modified since the fingerprint was
created.

Figure 3.2: The interfaces of the Interledger component

The Interledger interfaces required by the system are invoked through either the SOFIE
Application or Federation APIs, depending on the use case. Moreover, the Interledger
component interacts with the other SOFIE components, e.g. when it queries the IAA
component (described in Section 4) during a data audit to verify whether a caller has the right
to access the data stored in the consortium ledgers, or when the Marketplace component
(described in Section 7) relies on the Interledger component to trigger multi-ledger
marketplace operations. Finally, the Interledger component is connected to two or more DLTs.

SOFIE 11(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Table 3.3. Interfaces of the component

ID Interface Content

IF01

Name Atomic transactions

Description Provides operations to execute a set of transaction on multiple ledgers
in an atomic way: either all or none of the transactions are finalised.

Key inputs The transaction set and the ledger identifiers.

Response Either all or none of the transactions are executed successfully on all
the ledgers involved, modifying the state of the ledgers accordingly.

IF02 Name Data transfer

Description Some data stored in a ledger will be transferred to another ledger. This
interface supports only two ledgers.

Key inputs The ledger identifiers, the data to be transfered.

Response The data will be removed from the starting ledger, and it will only be
present in the destination ledger.

IF03 Name Proof of Integrity

Description Verify if a set of data has not been tampered with.

Key inputs The ledger addresses of the data to verify (stored in one ledger), the
ledger address of the associated fingerprint (stored in another ledger),
and the identifier of the hash function used.

Response True if the computed fingerprint over the data matches the stored
fingerprint, False otherwise.

3.3 The internal structure
Since the Interledger component communicates with multiple DLTs, it should abstract each
ledger API (e.g. Web3 for Ethereum) in order to be reusable. As shown in Figure 3.3, the 1

most common operations concerning ledgers are abstracted by an interface, called ILedger in
the figure. For example, if the Interledger component needs to support Ethereum, then an
abstraction of the Web3 library should be implemented (EthereumLedger in the figure)
following the ILedger interface. In this way, it is possible to have a general baseline of the
component.

Instantiating an ILedger implementation creates a connection to a specified ledger. As a
result, the Interledger component needs to instantiate multiple ILedger objects to connect to all
ledgers. Each ILedger object instance should be paired with a unique identifier, which in turn
will be used by external components requesting Interledger operations.

1 https://web3py.readthedocs.io/en/stable/

SOFIE 12(64)

https://web3py.readthedocs.io/en/stable/

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 3.3: The Interledger component’s internal structure

Atomic transactions
When two or more transactions are issued with the requirement to be atomic, the Interledger
component has to provide a technique to ensure that either all or none of them will be
executed in the target DLTs. Such atomicity is achieved by means of Hash Time Locked
Contracts (HTLC) (see SOFIE deliverable D2.4 and [Sir2019a] for more details). Within the
Interledger component, HTLC functionality is implemented using both software modules and
smart contracts.

Data transfer between DLTs
During the transfer of data, the Interledger component acts as a bridge between the two
involved ledgers. The Interledger component supports the registration of callbacks that are
triggered when a smart contract in one DLT executes a particular operation, e.g. a trading
operation, and emits an event. The callback should then implement the transfer of data. The
EventListener object, instantiated by the ILedger interface as shown in Figure 3.4, is
responsible for catching the events emitted by the smart contracts. When defining a ILedger
implementation, such as EthereumLedger, the event loop is implemented by extending the
EventListener class (EthereumListener in the figure).

Figure 3.4 describes the flow of the data transfer operation. The user performs an operation
which needs to transfer some data D from DLT1 to DLT2. The smart contract running on DLT1
executes an internal operation which triggers a callback registered by the Interledger
component: this callback is in charge of transferring D (or a subset of it) to DLT2. Finally, the
transaction receipt (tx_receipt) resulting from the (positively concluded) transaction will be
returned to the application.

SOFIE 13(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 3.4: Sequence diagram of data transfer between DLTs

Proof of Integrity
To verify the integrity of a set of data, the Interledger component requires the knowledge of
the hash algorithms used to produce the fingerprint of that data. Hence, the Interledger
component keeps an internal repository of hash functions used within the application domain.
As shown in Figure 3.5, the auditor requesting to verify the integrity of a set of data provides
the identifier of the transaction generating that data. The system retrieves the id of the hash
function used to produce the fingerprint, and the data and the fingerprint ledger addresses
connected to the input transaction id. The Interledger component receives these parameters,
retrieves the data and its fingerprint from the consortium and public ledgers respectively and
finally applies the relevant hash function. The result of the comparison between the calculated
fingerprint and the original one is returned back to the auditor.

Figure 3.5: Sequence diagram of verifying the proof of integrity using Interledger

SOFIE 14(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

3.4 Scenario walkthrough
Table 3.4 describes how the Interledger component satisfies the scenarios presented in
section 3.1.

Table 3.4. Scenario Walkthrough

ID Scenario Validation

W01

Description A player sets up for sale a gaming asset. [SC01]

Walkthrough When a player wants to sell a Vorpal Sword +2 he interacts with the
game app and presses the sell button on his asset. The game sends
a sell request to the game server, which marks the asset as ‘in trade’
on the asset ledger by calling the dedicated smart contract. The
smart contract marks the asset’s status as in ‘in trade’ in the asset
ledger and emits an event notifying that the asset is being traded.
This event triggers the Interledger callback registered to the trading
event by means of interface IF02. The callback executes the smart
contract stored on the trading ledger. This smart contract marks the
Vorpal Sword +2 item as ‘in trade’ in trading ledger, meaning that
interested parties may bid for the asset. Finally, the Interledger
component retrieves a transaction receipt (that the asset is now
being traded) from the trading ledger operation, and forwards it to the
game server.

W02 Description Registration of the last handover operation in food chain pilot. [SC02]

Walkthrough At the last step of the food supply chain, the TR employee hands
over a smart box to the SM employee. Therefore, the system invokes
the operations provided by IF01 to store the smart box metadata and
fingerprint in the consortium and public ledgers, respectively,
according to the pilot’s specifications. The key identifiers of the DLTs
involved will be provided as input.
The Interledger component initiates a series of transactions meant to
be atomic. If the operation succeeds, both the consortium and the
public ledger will have the smart box information properly stored;
otherwise, neither of the ledgers will have the state changed.

SOFIE 15(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

4 Identity, Authentication and Authorisation Component
The goal of the Identity, Authentication and Authorisation (IAA) component is to provide
mechanisms that can be used for identifying communicating endpoints, as well as for
authenticating and authorising users wishing to access a protected resource.

In its present form, the IAA component can authenticate users using username/passwords, or
Decentralised Identifiers (DIDs) and it uses the OAuth 2.0 protocol for user authorisation. The
user authorisation process is enhanced by a smart contract that provides conditional release
of an access token (e.g. when a user performs a payment). More details about the operations
performed by this smart contract are presented in section 4.3.1, as well as in [Sir2019b].

4.1 Requirements and Scenarios
Table 4.1 summarises the requirements for this component.

Table 4.1. Requirements for the IAA component

ID Requirement Description Priority Category

RF03 Resource owners must be able to delegate the
authentication and authorisation tasks for their resources.

MUST OPERA-
TIONAL

RF04 The IAA component must provide users the capability to
revoke authorisations.

MUST SECURITY

RF05 The IAA component must allow individuals to control their
personal information and digital identities (e.g. support
self-sovereign identity technology).

MUST SECURITY

RF06 The IAA component must support secure, tamper-proof,
and verifiable logging of transactions and events.

MUST SECURITY

RF07 The IAA component must support Role Based Access
Control (RBAC).

MUST SECURITY

RF08 Cryptographic algorithms used by SOFIE should be
open-source and transparent and as independent as
possible of any particular architecture.

SHOULD AUDITA-
BILITY

RF09 SOFIE should support the execution of authorisation and
authentication functionality on devices with constrained
processing, storage, battery, and network connectivity.

SHOULD OPERA-
TIONAL

Table 4.2 presents example scenarios derived from use cases in SOFIE deliverable D5.2 to
cover all requirements from the previous subsection.

SOFIE 16(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Table 4.2. Scenarios derived from the pilots use cases

ID Scenario Content

SC01

Description A producer accesses the Food Supply Chain (FSC) web application to
specify the box(es), which contain products to be delivered to a
transportation (TR) employee. Then, the TR employee accesses the
FSC web application, authenticates himself, accepts the responsibility
of these boxes, and confirm the transaction.

Stimulus The producer interacts, through the FSC web application, with the
appropriate interface of the authorisation server.

Response The producer has delegated access control decisions to the
authorisation server, and a set of Role based Access Control (RBAC)
policies have been defined. Access control decisions and
confirmations of the transactions are recorded in the blockchain.

Derived from use case FSC_UC3

Covers requirements RF03, RF06, RF07

SC02

Description A smart meter data owner (owner) interacts with an authorisation
server and removes access rights to his data that had been previously
granted to a data consuming service.

Stimulus The owner interacts with the server administration module of the
authorisation server.

Response RBAC policies are updated.

Derived from use case DEDE_UC4

Covers requirements RF04

SC03

Description A smart meter data owner (owner) configures her identifier.

Stimulus The owner interacts with the interface of the client entity of the IAA
framework that is responsible for managing DIDs.

Response DID created.

Derived from use case DEDE_UC1

Covers requirements RF05

SC04

Description A gamer joins a challenge and starts competing for the reward. This
procedure requires player authentication. Moreover, players interact
with the game using various types of mobile devices.

Stimulus The game player interacts with the interface of the client entity of the
IAA framework that is responsible for accessing an IoT platform.

SOFIE 17(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Response Access granted and game clues are provided, or access is denied.

Derived from use case MRMG_UC1

Covers requirements RF08, RF09

4.2 Services and Interfaces
The IAA component provides the following 3 interfaces as shown in Figure 4.1 and detailed in
Table 4.3:

● Client functions: This interface can be invoked by a client application (or other
internal components) using internal procedure calls, in order to access an IoT platform,
as well as to register a DID.

● Agent I/O: This interface is responsible for interacting with ledgers (or the interledger
component), in order to access blockchain-specific functions, as well as for notifying
the component about blockchain specific events.

● AA API: This is the REST API of the “Authorisation Server”. It can be accessed directly
by an OAuth2 client, or indirectly through a smart contract. Its goal is to provide client
authentication and authorisation.

Figure 4.1: The IAA component’s interfaces

The goals of the interfaces listed above are: (i) to enable generic client applications, or other
components, to access the IAA operations without significant effort, (ii) to abstract blockchain
access and to facilitate the incorporation of multiple ledger technologies as well as interledger
approaches, and (iii) to facilitate integration with existing, external, authorisation server
implementations.

SOFIE 18(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Table 4.3. Interfaces of the component

ID Interface Content

IF01

Name Client functions

Description It is used by client applications for accessing IoT platforms and for
registering DIDs.

Key inputs Platform identifier, access method, client authentication data.

Response Access token.

IF02

Name Agent I/O

Description The interface used for the communication with DLTs

Key inputs Operation, metadata.

Response Operation output, blockchain events.

IF03

Name AA API

Description The REST-based interface of the Authorisation Server used for client
authentication and authorisation.

Key inputs User authentication data.

Response Access token, metadata.

4.3 The internal structure
As depicted in Figure 4.2, the IAA component is composed of 5 entities: Client modules,
Smart contracts, IAA blockchain agent, Authorisation Server and IoT platform modules.

Client modules
This entity includes modules that can be used by an external client application in order to
access a platform using the IAA component. This entity is composed of the following modules:

1) Client functions: This module implements methods that allow client applications to
interface with the IAA component (see also section 4.2, IF01)

2) DID client: This module provides methods that allow DID registration, as well as DID
ownership verification

3) OAuth2 client: This module implements the OAuth2 client-side operations and
operations for accessing the functionality of the authorisation smart contract running on
the blockchain.

SOFIE 19(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 4.2: IAA component internal structure

Smart contracts
The IAA component includes two smart contracts, one for handling DIDs, and another that
implements the functionality required by OAuth2-based authorisation using blockchains (this
process is described in Section 4.3.1 and in [Sir2019b]).

IAA blockchain agent
This entity is responsible for mediating the communication between the authorisation server
(see next) and the smart contracts. It includes the following modules:

1) Blockchain I/O. This module is responsible for handling the communication to and from
the smart contracts (using the appropriate SDK). This module abstracts blockchain
operations and its purpose is to facilitate future integrations with other blockchain.

2) Agent I/O. This module implements IF02 and is responsible for translating smart
contract events into the appropriate REST API calls to the authorisation server (see
below), as well as for implementing a REST API that can be invoked by an
authorisation server when it requires functionality provided by the smart contracts.

Authorisation server
This entity is an enhanced version of the OAuth2 php server and includes the following 2

modules:

1) AA API. This component implements IF03, i.e. a REST API that can be used either by
OAuth2 clients or by the Agent I/O module. A client API call may result in messages
from the authorisation server to the IAA blockchain agent (c.f. the sequence diagrams
below).

2) OAuth2 Authorisation server. This module implements the functionality required by the
OAuth2 protocol. This includes generating access tokens.

2 https://github.com/bshaffer/oauth2-server-php

SOFIE 20(64)

https://github.com/bshaffer/oauth2-server-php

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

3) AA mechanisms. This module implements user authentication and authorisation
mechanisms. Currently this module implements password-based and DID-based
authentication, and simple authorisation policies.

IoT platform modules
These are IAA modules that have to be implemented by an IoT platform in order to interact
with the component. In order to be compatible with the IAA component, an IoT platform should
be extended with an “OAuth2 token processing” module, which is responsible for validating
the OAuth2 tokens sent by the platform clients.

4.3.1 Operations
This subsection describes three key operations of the IAA component: DID creation and
registration, Entity Authentication, and User Authorisation.

DID creation and registration
One of the goals of the IAA component is to enable the management of DIDs which are
compatible with W3C’s draft specifications. In its present form the IAA component relies on 3

an Ethereum smart contract that conforms to ERC-1056, i.e. an Ethereum standard for smart 4

contracts used for creating and updating DIDs. The DID-client internal module is responsible
for interacting with this smart contract.

User Authentication
The IAA component currently supports two authentication methods: username/password
based and DID-based.

Figure 4.3. DID-based user authentication.

3 https://w3c-ccg.github.io/did-spec/
4 https://github.com/ethereum/EIPs/issues/1056

SOFIE 21(64)

https://w3c-ccg.github.io/did-spec/
https://github.com/ethereum/EIPs/issues/1056

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Username/Password based authentication: For this authentication method the component
relies on the Client Credentials authentication method (section 1.3.4, RFC 6749) as
implemented by the OAuth2 php server.

DID-based based authentication: For this authentication method the component relies on DIDs
as specified by W3C. In particular, a DID is treated as a key to a (key, value) data structure
maintained by a smart contract. The value part of this pair contains a DID document, i.e. a
JSON-LD encoded document that contains information about a DID, including a public key. 5

Therefore, as shown in Figure 4.3, whenever a client requests access and presents her DID,
the authorisation server retrieves the corresponding public key and generates a challenge that
the client must digitally sign in order to be considered authenticated.

User Authorisation
The IAA component relies on OAuth 2.0 for user authorisation. A smart contract can be used
i) for controlling the decryption of an access token (e.g. the token decryption key is provided
only after a user has paid a specific amount of money), or ii) to handle authorisation requests
(e.g. in order to provide resilience against DoS attacks).

Model 1: Smart contract implements conditional token decryption key reveal
With this model the initial communication between the client and the authorisation server (AS)
occurs as in the normal OAuth 2.0 framework as shown in Figure 4.4. However, instead of the
AS providing the client with authorisation credentials after consent is given by the resource
owner, the authorisation credentials are disclosed after a specific, pre-defined event (e.g. a
payment) is recorded on the blockchain. Hence, the resource owner does not need to be
online to provide consent, as in the case of the normal OAuth 2.0 procedure.

Specifically, initially the client requests resource access from the AS over a secure channel.
The AS generates a random Proof-of-Possession (PoP) key, which it sends to the client
together with its encryption with the secret key Thing, shared by the IoT platform and the AS; 6

the client can use this PoP key to establish a secure communication link with the IoT platform.
Also, the AS sends to the client the access token encrypted with a secret s, Es(token), the
hash h = Hash(s) of the secret s, and a condition for revealing s. In the current implementation
the latter condition is expressed with a price that a client should pay, but other forms of
conditions (not necessarily only monetary) can be considered. The secret s is a one-time
secret randomly generated by the AS for each individual request, and is required for the client
to decrypt Es(token) and obtain the access token; the AS will reveal the secret s once it
confirms that the required condition has been met, i.e. in the current implementation the
payment for resource access is performed on the blockchain. The difference with normal
OAuth 2.0, in addition to the AS responding immediately to the resource access request
without obtaining consent from the resource owner, is that the AS sends the encrypted access
token Es(token) instead of the access token in plaintext. Also, the AS sends the hash h and
the condition for resource access.

As a next step, two hashes are submitted to the blockchain: the first one is the hash of the
token that the AS will reveal once the condition has been satisfied. The second one is the
hash of three items: the PoP key encrypted with the secret key the AS shares with the Thing
EThing(PoP), the PoP key, and the encrypted token Es(token); the second hash serves as proof
of the information that is communicated using OAuth between the AS and the client. The two

5 https://www.w3.org/TR/2014/REC-json-ld-20140116/
6 The secret key that the IoT platform and AS share is established during a configuration phase, during
which the IoT platform is bound to the AS.

SOFIE 22(64)

https://www.w3.org/TR/2014/REC-json-ld-20140116/

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

hashes immutably record on the blockchain the information that has been exchanged, which
can be validated in the case of disputes; however, they do not ensure that the access token
the client obtains from the AS indeed allows access to the IoT platform.

Figure 4.4: User Authorisation model 1: Authorisation grants are linked to blockchain
payments and the hash of the information communicated using OAuth is immutably
recorded on the blockchain.

Additionally, in this step a hash time-locked contract is created on the blockchain, which
allows the client to trigger an event that satisfies the imposed condition (i.e. in the current
implementation, to pay the appropriate amount of money). If the hash time-locked involves
money/token transfer from the client to another account, as in the current implementation, the
transfer takes place iif the secret s (hash-lock) is submitted to the contract by the AS within
some time interval. If the time interval is exceeded, then the client can request a refund of the
amount it deposited. Once the secret s is revealed, the client can obtain s from the blockchain
and decrypt Es(token), thus obtain the access token. At this point, the client has all the
necessary information to request access from the IoT platform.

Model 2: Smart contract handles authorisation requests
In the second model, a smart contract is used to transparently access conditions and other
authorisation policies defined by the resource owner, which is also the owner of the smart
contract. Examples of such policies include permitting resource access to specific clients
determined by their public keys on the blockchain, and dependence of access authorisation on
IoT events that are recorded on the blockchain. Whereas in the previous model the client and
the AS communicated directly, in this model the interaction is through the smart contract, as
shown in Figure 4.5. The smart contract code is executed by all blockchain nodes, providing a
secure and reliable execution environment; this provides higher protection against DoS
attacks. An additional advantage achieved by allowing a smart contract to handle resource

SOFIE 23(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

authorisation requests is that the smart contract can securely bind the protected resource with
the AS responsible for handling authorisation requests.

Figure 4.5: User Authorisation model 2: Smart contract handling authorisation requests
and encoding authorisation policies

As in the previous model, a hash time-lock is enabled, allowing the client to trigger an event
that results in the hash-lock being unlocked by the AS by revealing the secret s. Once
revealed, the client can obtain the secret s, together with the other necessary authorisation
information to access the protected resource. If the blockchain is public, then s can be read by
anyone, hence everyone can obtain the access token. However, the access token cannot be
used alone, since the PoP key is also required for accessing the resource. Nevertheless,
privacy concerns might require that the token is kept secret; this can be achieved by encoding
the token with the client’s public key. In this scenario, the AS sends to the smart contract the
PoP key encrypted both with the IoT platform’s key, EThing(PoP), and with the client’s public
key, EPKclient(PoP). Hence, only the IoT platform and the client can obtain the PoP key. On the
other hand, in the first model, the PoP key was sent from the AS to the client over a secure
communication link, hence its encryption was not necessary

4.4 Scenario walkthrough
The following table describes how the IAA component satisfies the scenarios presented in
section 4.1.

SOFIE 24(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Table 4.4. Scenario walkthrough

ID Scenario Validation

W01

Description A producer hands over box(es) containing produce toa transportation
employee. [SC01]

Walkthrough The IoT resources of this scenario are the boxes that contain the
products, and the client is the TR employee. The producer has
interacted with the server administration (external) module of the
authorisation server and has specified the appropriate access control
policies. The TR employee requests access to a box through IF01.
The sequence of messages illustrated in Figure 4.4 (or 4.5) takes
place. In this scenario there is no payment. Instead, the condition
specified by the authorisation server, in order for the TR employee to
gain access to the decryption key of the authorisation token, is that
the TR employee should ‘accept the responsibility of these boxes’.

W02

Description A smart meter data owner removes the access rights for his data.
[SC02]

Walkthrough This process is currently not implemented by the IAA component.
Instead, the server administration module of the authorisation server,
which is an external module, is responsible for that.

W03

Description A smart meter data owner (owner) configures her identifier. [SC03]

Walkthrough Currently, in this scenario we consider DIDs. The application of the
smart meter owner interacts with IF01 and specifies her DID. The
DID client module is eventually invoked, which interacts with the
appropriate functions of the DID contract. After successfully
completing the procedure, the client application receives the
appropriate event generated by the smart contract and forwarded
through the DID client module.

W04

Description A gamer joins a challenge. [SC04]

Walkthrough The IoT resources of this scenario are the game clues and the clients
are the gamers. The walkthrough of this scenario is the same as in
SC01 with the following two differences: (i) the clients are using
diverse mobile platforms (which may be constrained), and (ii) the
condition for unlocking the decryption key of the authorisation token
is game specific (e.g. the user has enough game credits).

SOFIE 25(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

5 Privacy and Data Sovereignty Component
The Privacy and Data Sovereignty component provides mechanisms that allow actors to
better control their data, as well as mechanisms that protect clients’ privacy.

In its present form, this component extends the IAA component in the following ways: (i) it
enables flexible authorisation server delegation, and (ii) it enables client authentication and
authorisation using verifiable credentials (VCs). This component is based on research work
published in [Fot2018] and in [Lag2019].

5.1 Requirements and Scenarios
Table 5.1 summarises the major requirements for this component

Table 5.1. Requirements for the IAA component

ID Requirement Description Priority Category

RF10 SOFIE must follow the data minimisation principle for
personal data and only request or process what is
necessary for the situation and purpose.

MUST OPERA-
TIONAL

RF11 Processing of individual’s personal data must require
a valid consent from the individual.

MUST POLICY &
REGULATION

RF12 Consent of the actors to process their private data
must be revocable at any time.

MUST POLICY &
REGULATION

RF13 SOFIE must allow organisations and actors to manage
(create, update, delete) their own data privacy
policies.

MUST POLICY &
REGULATION

RF14 SOFIE should support user privacy even when
aggregate statistics are made public (e.g. using
differential privacy mechanisms).

SHOULD POLICY &
REGULATION

Table 5.2 presents example scenarios derived from use cases in SOFIE deliverable D5.2 to
cover all requirements from the previous subsection.

Table 5.2. Scenarios derived from the pilots use cases

ID Scenario Content

SC01

Description A smart meter data owner configures the component with policies
regulating access to his/her smart meter data and accessing rights.
Later on, she modifies them.

Stimulus The data owner interacts with the appropriate interfaces and
manages her own policies

Response Access control policies created/modified/deleted.

SOFIE 26(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Derived from use case DEDE_UC1

Covers requirements RF13

SC02

Description An energy services provider, or a smart meter system operator
requests access rights for some data from their owner.

Stimulus The interested entity authenticates itself and requests authorisation
for accessing some particular data.

Response The data owner consents or denies access to her data. The
appropriate verifiable credentials are constructed and delivered to the
interested party.

Derived from use case DEDE_UC3

Covers requirements RF11

SC03

Description An authorized service provider starts downloading some smart meter
data and uses them based on an agreed contract.

Stimulus The energy service provider authenticates itself by presenting the
appropriate verifiable credentials and requests data.

Response Access granted and data start to flow, or access denied.

Derived from use case DEDE_UC2

Covers requirements RF10, RF14

SC04

Description The data owner revokes an actor’s authorisation to access her data.

Stimulus The data owner interacts with the appropriate interface, authenticates
herself, and requests the revocation of some specific verifiable
credentials.

Response The “verifiable credentials” are revoked, or operation not permitted
(e.g. an owner tries to revoke some credentials not issued by her).

Derived from use case DEDE_UC4

Covers requirements RF12

SOFIE 27(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

5.2 Services and Interfaces
The Privacy and Data Sovereignty component includes the same interfaces as the IAA
component, extended to support the additional functionalities offered. In particular the
interfaces of the IAA component are extended as follows:

● Client functions: This interface is extended to handle VC management.
● Agent I/O: This interface is extended to support interactions with a Hyperledger Indy

pool.
● AA API: This interface is extended to handle client authentication using VCs.

Table 5.3. Interfaces of the component

ID Interface Content

IF01

Name Client functions

Description It is used by client applications for accessing IoT platforms, for
registering a DID, and for managing VCs.

Key inputs Platform identifier, access method, client authentication data.

Response Access token, delegation token.

IF02

Name Agent I/O

Description The interface of the “PDS blockchain agent” used for communicating
with DLTs.

Key inputs Operation, metadata.

Response Operation output, blockchain events.

IF03

Name AA API

Description The REST-based interface of the Authorisation server used for client
authentication and authorisation.

Key inputs User authentication data, delegation information.

Response Access token, metadata.

SOFIE 28(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

5.3 The internal structure

Figure 5.1: Privacy and Data Sovereignty component internal structure

The Privacy and Data Sovereignty component is composed of the following 6 entities:

Client modules
These are in essence the same modules as in the IAA component, extended with an
additional module that adds support for verifiable credentials.

Smart contracts
The Privacy and Data Sovereignty component currently includes a single Ethereum smart
contract which manages the “access control delegation” functionality of the component. The
principal operation of this smart contract is that it allows resource owners to register the
addresses of the authorisation servers that are responsible for managing their resources.

DID and VC management system
DIDs and VC credentials are managed by an instance of Hyperledger Indy (usually referred to
as a pool). The component can be configured to be used with any Indy pool, i.e. a different
installation of Hyperledger Indy managed by different trusted nodes.

PDS blockchain agent
Similarly to the IAA component, this component includes a blockchain agent entity that
mediates the communication between the authorisation server (see next), the authorisation
delegation smart contract, and the Hyperledger Indy pool. This entity also includes a
Blockchain I/O module and an Agent I/O module.

Authorisation server
The authorisation server of this component is the same as in the server of the IAA component,
but it includes an enhanced AA mechanisms module. The enhanced module includes (i)

SOFIE 29(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

mechanisms for enabling VC-based authorisation, and (ii) mechanisms for handling
authorisation delegation.

IoT platform modules
These are the modules used by the IAA component, enhanced to support the functionalities
required for delegating authorisation (see next for more details).

5.3.1 Operations
This subsection describes three key operations of the Privacy & Data Sovereignty component:
User authentication using VCs, Access delegation setup, and User authorisation with
delegation enabled.

User authentication using VCs
In order to enhance the clients’ privacy, this module adds support for user authentication
based on VCs. This process is implemented as follows (see [Lag2019] for more details):

● The client requests authorisation from the AS to access a protected resource.
● The AS examines the access control policy that protects the requested resource,

determines the credentials that the client should have and generates a proof request.
● The client creates the appropriate proof and sends it back to the AS.

The client’s privacy is enhanced in the sense that: (i) the AS learns the minimum information
required in order for the client to get access, and (ii) certain client credentials can be proven
using zero-knowledge proofs (e.g. a client may prove that she is over 18 years old without
revealing her actual age).

Access delegation setup
Access delegation enables resource owners to delegate access control decisions to a
selected AS, which becomes responsible for authorising clients to access a protected
resource.The client authorisation operations described in the following assume a setup phase.
During this phase, the delegation smart contract is configured with the available resource
identifiers (referred to as URIresource), the corresponding pointers to access control policies,
referred to as URIpolicy, and the public keys of the authorisation servers that manages each
policy, referred to PAS. For simplicity of presentation it is assumed that each resource is
protected by a single URIpolicy provided by a single PAS.

User authorisation with delegation enabled
This operation can be implemented using two models that both extend a ‘straw man approach’
by enhancing its security properties.

The strawman approach: In this approach, initially a client Pclient requests a protected resource
from an IoT platform and the platform responds with a delegation token (tokend) and the URI
of the delegation smart contract. Then, the second model for user authorisation, described in
section 4.3.1 is used, with the following additions: the request_access() method is now
implemented by the delegation contract, the client includes tokend when invoking
request_access(), and the AS instead of encrypting the PoP key with the key shared between
the AS and IoT platform, calculates a new key which is the HMAC of tokend using the shared
key as the HMAC key. The latter key is referred to as ThingSK.

SOFIE 30(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Model 1. Platform Identity verified by the authorisation server
One way of improving the straw man approach is by allowing an AS to verify that a client is
communicating with a legitimate IoT platform (Figure 5.2). In order to achieve this goal, the
request_access() method of the smart contract is extended to include an additional field, i.e.
HThingSK(tokend). The value for this field is provided by the IoT platform, in its response to a
client request. Now an AS, after generating the ThingSK, calculates HThingSK(tokend), and
checks if the value of the latter calculation is equal to the value provided by the platform. If this
is true, then the platform is considered legitimate.

Figure 5.2: Client authorisation with delegation enabled model 1. The authorisation
server verifies the identity of the IoT platform (the PDS blockchain agent module is
omitted for brevity).

Model 2. AS-platform trust relationship verified by the smart contract
The first model can be further extended to enable the delegation smart contract to verify the
relationship between an IoT platform and an AS, i.e. the contract can verify that the platform
and the AS indeed share a secret key (Figure 5.3). This functionality is achieved by having the
client “challenge” the platform during her request. The challenge used is a random number,
which the platform should obfuscate in a way that only an AS that shares a secret key with the
platform could read. The smart contract should therefore learn the challenge from the client
and should expect it from the AS. In order to “hide” the challenge a hash function is leveraged
using the process described below.

The platform responds to a challenge with H(HThingSK(challenge)). Given a challenge, only an
entity that can generate ThingSK can calculate HThingSK(challenge). Note that, in addition to the
platform, this key can be calculated by the AS that protects the resources stored in that
platform. Furthermore, given HThingSK(challenge) any entity, including the delegation smart
contract, can easily calculate H(HThingSK(challenge)) (but the reverse process is not possible
due to the properties of the hash functions). Hence, the request_access() method is extended
to include H(HThingSK(challenge)) and the authorize() method is extended to include
HThingSK(challenge). Then, the smart contract can calculate the hash of the HThingSK(challenge),

SOFIE 31(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

received by the AS, and compare the output with the hash value it received from the client. If
both hash outputs are the same, the contract proceeds with the subsequent steps.

Figure 5.3: Client authorisation with delegation enabled model 2. The delegation
contract verifies the trust relationship between the AS and the IoT platform (the PDS
blockchain agent module is omitted for brevity).

5.4 Scenario walkthrough
The following table describes how the Privacy and Data Sovereignty component satisfies the
scenarios presented in section 5.1

Table 5.4. Scenario walkthrough

ID Scenario Validation

W01

Description A smart meter data owner configures the component with policies
regulating access to his/her smart meter data and access rights. Later
on, she modifies them. [SC01]

Walkthrough This process is currently not implemented by the Privacy and Data
Sovereignty component; instead, the “server administration” module
of the authorisation server, which is an external module, is
responsible for that.

W02

Description An energy services provider, or a smart meter system operator
requests access rights for some data by their owner. [SC02]

Walkthrough The smart meter of this scenario holds the role of the IoT resource
and the energy service provider (or the smart meter system operator)

SOFIE 32(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

holds the role of the client. The sequence of messages illustrated in
Figure 5.3 (or 5.4) takes place. Requirement RF14 is not currently
satisfied; in the next version of the component, this requirement will
be satisfied using differential privacy mechanisms.

W03

Description An energy service provider is interested in providing energy service to
a smart meter data owner and needs access to the energy
consumption data. After access rights are given, the provider can
start downloading the data and use this data to fulfill the contract.
[SC03]

Walkthrough Data owners, currently, can issue VCs for any entity requesting
access by interacting with IF02 (i.e. the Agent I/O interface). VCs are
issued by following Hyperledger Indy’s procedure. Then these VCs
can be used by the authorised entity (i.e. the energy service provider
in this scenario) in order to access the desired data. This is
implemented using the operations described in section 5.3.1.

W04

Description The data owner revokes an actor’s authorisation to access her data.
[SC04]

Walkthrough Currently, data owners can revoke authorisation by revoking issued
VCs. This can be done by interacting with IF02 (i.e. the Agent I/O
interface) and by following Hyperledger Indy’s procedures.

SOFIE 33(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

6 Semantic Representation Component
Semantic representation (SR) is a mechanism for describing the data model and the services
of IoT devices. It defines a common representation model for IoT Things devices, their
services and their data, which enables interoperability and automation in the deployment of
services and applications on top of federated IoT environments.

The needs of this mechanism can be easily understood by considering the food supply chain
pilot. In that context, a stakeholder could join the supply chain with its own IoT system. The
new stakeholder’s IoT system has a different data model and services compared to the one
already in place in the FSC. This new stakeholder will use the semantic representation to
translate their data model to one compatible with the SOFIE system, enabling the
communication between their IoT system and the existing one.

6.1 Requirements and Scenarios
Table 6.1 summarises the requirements for this component (from SOFIE deliverable D2.4).

Table 6.1. Requirements for the Semantic Representation component

ID Requirement Description Priority Category

RF15 The system must define an IoT things description model
which is based on well-known standards (e.g. W3C
standards).

MUST AUDITA-
BILITY

RF16 The system must implement standardised metadata and
data representation formats and support various data
modalities.

MUST AUDITA-
BILITY

RF17 The semantic representation model of the system must be
open and extensible by third parties (e.g. support the
extension of the existing knowledge base and associations
by extracting supplementary triples from RDF documents).

MUST AUDITA-
BILITY

RF18 The system must provide service discovery and resources
selection processes based on multiple-criteria over
features, associations and interaction patterns of integrated
resources.

MUST INTEROPE-
RABILITY

RF19 The system should support the semantic update and
enhancement of resources’ descriptions and associations
in a dynamic way.

SHOULD INTEROPE-
RABILITY

SOFIE 34(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Table 6.2 presents example scenarios, derived from the use cases presented in SOFIE
deliverable D5.2, to cover all requirements described above.

Table 6.2 scenarios derived from the pilot use cases

ID Scenario Content

SC01

Description A new participant joins the food supply chain. She has to enable the
data interaction between her IoT silo and the existing system.

Stimulus The new participant implements a Federation Adapter using the
Semantic Representation data models.

Response The actors of the FSC system can share information with the new
participant and vice versa.

Derived from use case None

Covers requirements RF15, RF16

SC02

Description During gameplay, a player’s smartphone automatically discovers any
new BLE beacons. The smartphone reads the BLE beacon
information and sends it to the gaming company’s server, which can
then review the eligibility of the beacon to be included in future game
challenges. The game administrator needs to check, e.g. whether the
device can be utilised by the user and does this based on the license
which is included in the BLE beacon information.

Stimulus The player is playing the game and the device automatically scans for
new BLE beacons.

Response Rovio obtains the information about the BLE beacon.

Derived from use case MRMG _UC5

Covers requirements RF18

SC03

Description A partner of the food supply chain updates her IoT system with new
functionalities which are not supported by the current SOFIE system
Semantic Representation.

Stimulus The partner implements an extended semantic representation
module.

Response The participants in the system can exchange data with the partner’s
IoT system.

Derived from use case None

Covers requirements RF17, RF19

SOFIE 35(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

6.2 The internal structure
The Semantic Representation is not a separate software module with a defined internal
structure and a set of APIs which can be called by other elements in the system. Rather, it is a
logical component that can be implemented as part of other components to define the data
and service models of an IoT system.

The SR can vary between different instances of the SOFIE framework because there is no
universal semantic representation for everything. The SR can be derived from well known
standards (e.g. W3C WoT, Fiware) or developed adhoc for a project.

The pilots use Web of Thing (WoT) standards to enable device interoperability. “WoT provides
mechanisms to formally describe IoT interfaces to allow IoT devices and services to
communicate with each other, independent of their underlying implementation, and across
multiple networking protocols. In addition, WoT offers a standardised way to define and
program IoT behaviour.” [Kov2019] However, the pilots do not implement all the WoT
components, but focus only on the WoT’s Thing Description (TD). “TD is the central building
block, as it allows to describe the metadata and network-facing interfaces of Things. The WoT
Thing Description specification defines an information model based on a semantic vocabulary
and a serialised representation based on JSON. TDs provide rich metadata for Things in a
way that is both human-readable and machine-understandable. For semantic interoperability,
TDs may make use of domain-specific vocabulary, for which explicit extension points are
provided.” [Kov2019]

Thing Description
The WoT Thing Description (TD) is a central building block in the W3C Web of Things (WoT)
and can be considered as the entry point of a Thing (much like the index.html of a Web site).

A TD instance has four main components:
1. Textual metadata about the Thing itself,
2. Interaction Affordances that indicate how the Thing can be used and how actors can

interact with the Thing.
3. Schemas for the machine-readable data exchanged with the Thing, describing the data

format used.
4. Links that express any formal or informal relation with other Things or documents on

the Web.
WoT standards also enable Thing Description extensions through the TD Context Extension.
For such TD Context Extensions, the Thing Descriptions use the @context mechanism known
from JSON-LD. When using TD Context Extensions, the value of @context of the Class Thing
is an Array with additional elements.

As an example, Figure 6.1 presents a TD from the FSC pilot and highlights the different
components and extensions.

SOFIE 36(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 6.1: Things description (TD) of the food supply chain pilot

6.3 Scenario walkthrough
The following table describes how the Semantic Representation component satisfies the
scenarios presented in section 6.1
Table 6.4. Scenario walkthrough

ID Scenario validation

W01

Description A new participant joins the food supply chain. [SC01]

Walkthrough The new participant implements the Federation Adapter (FA)
following the SR logic. The FA translates the data model of the new
participant’s IoT silos to a data model compatible with the WoT TD,
enabling interoperability between the new IoT silos and the existing
systems.

W02 Description The player’s smartphone discovers new beacons. [SC02]

Walkthrough Rovio shares the WoT TD-based SR required for all beacons to be
included in the game. The partner creates a file according to the
Rovio’s TD, and the file is deployed in the BLE beacon. When the
smartphone connects to a new beacon, the file is retrieved by the
Provisioning and Discovery component. The player’s smartphone
then forwards the TD file to the gaming company’s server, which
reads the TD and check the license and devices fields. If the TD
passes the checks, the BLE beacon device is added to the game.

SOFIE 37(64)

https://www.draw.io/?page-id=IZcODnIAG5uLiFQ3rEy7&scale=auto#G1npkDQ4pVSE4HywAAVu-cdlOzuU4Ns-dU

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

W03 Description A partner of the FSC updates her IoT system with new functionality.
[SC03]

Walkthrough The partner creates an extension of the TD through the TD Context
Extension mechanism. The extension supports the new
functionalities of the partner’s IoT system. The partner updates the
WoT TD of the IoT system linking the new TD extension in the
@context field. The participants of the SOFIE system can then
manage the new functionalities of this partner IoT system by reading
the context field of the TD and retrieving the extension to the TD.

SOFIE 38(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

7 Marketplace Component
The goal of the SOFIE marketplace component is to enable the trade of different types of
assets (e.g. electricity for charging a vehicle) in an automated, decentralised, and flexible way.
In this context, a decentralised marketplace has the capability of operating without a single
entity owning or managing it, which in turn increases competition and enhances its security,
resiliency, transparency, and traceability. The decentralised marketplace can be either
partially decentralised, when, e.g. a group of independent agriculture producers and retailers
are managing it, or fully decentralised, where anyone can join and use the marketplace.

The actors (buyers and sellers) on the marketplace should be able to agree on the terms of
the trade, perform payments, and verify that the trade has been carried out successfully with
as little user interaction as possible. The marketplace must also provide auditability to help
with potential dispute resolutions.

Figure 7.1 shows a few examples of the marketplace component interacting with other
components and ledgers. The marketplace interacts with the ledgers directly, unless it has to
perform atomic operations involving multiple ledgers, in which case it uses the Interledger
component. For instance, in the location based game pilot the marketplace component directly
interacts with both the trade and asset ledgers to get information, and uses the interledger
component to execute the trade. In the energy flexibility pilot the marketplace component
again interacts with the asset and payment ledgers, and relies on an Oracle to report on the
charging activity as explained in Section 3.1.

Figure 7.1: The marketplace component and its communication with other components
and ledgers.

SOFIE 39(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

7.1 Requirements and Scenarios
Table 7.1 summarises the requirements for this component (from SOFIE deliverable D2.4).

Table 7.1. Requirements for the Marketplace component

Req.
ID

Requirement Description Priority Category

RF20 The marketplace must log the configuration of all trading
actions (including offers, bids, parameters of resources,
transactions, etc.).

MUST QUALITY

RF21 The marketplace must provide actors the capability to
post/claim offers and sell/negotiate/exchange/buy
resources and digital objects.

MUST INTEROPE-
RABILITY

RF22 The marketplace must support transparent trading of
resources, i.e. the bid/offer matching process and the
payments must be transparent.

MUST OPERA-
TIONAL

RF23 The marketplace must provide evidence once trades
have been completed and resources have been properly
delivered to the buyers.

MUST SECURITY

RF24 The marketplace should allow integration of payment
technologies.

SHOULD OPERA-
TIONAL

Table 7.2 presents example scenarios derived from use cases in SOFIE deliverable D5.2 to
cover all requirements from the previous subsection.

Table 7.2. Scenarios derived from the pilots use cases

ID Scenario Content

SC01 Description To balance the load on the electricity grid, the DSO offers incentives
for EV users to charge their vehicles at specific times and locations.
The DSO publishes these flexibility requests on the marketplace,
stating that a certain amount of energy needs to be used at a certain
time and location. EV users can offer bids stating that they can fulfill
the request for a specified amount of incentives.
Trading agreements (matching bids and offers), verification of trade
(both parties have carried out their obligations), as well as
compensation after the trade has been completed should all happen
as automatically as possible. Finally, for accountability and auditability
purposes, all trading-related actions should be logged.

Stimulus A party that wants to trade assets (either buyer or seller).

SOFIE 40(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Response Bids and offers have been matched, and after the charging has taken
place, the EV user is properly compensated. All above mentioned
actions have been logged.

Derived from use case DEFM_UC1, DEFM_UC2, DEFM_UC3, DEFM_UC8,
DEFM_UC9, MRMG_UC4, MRMG_UC7

Covers requirements RF20, RF21, RF22, RF23, RF24

7.2 Services and Interfaces
Figure 7.2 presents a marketplace that communicates with smart contracts and stores the
data both in the database and on the blockchain. Customers can use this marketplace with a
known URL or with a web application.

Figure 7.2: The Marketplace component and its interfaces

The Marketplace component offers two interfaces: Request Maker for sellers to create,
manage and conclude auctions, and Offer Maker for buyers to participate and bid in auctions.
The interfaces are described in Table 7.3.

SOFIE 41(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Table 7.3. Interfaces of the component

ID Interface Content

IF01 Name Request maker

Description This interface has several functions for creating and submitting
requests (to sell assets), for the matching process (of requests and
offers), and for getting information about a request and its offers.

Key inputs Request ID

Response It creates requests, returns their information, matches them with offers
automatically, and logs the actions.

IF02 Name Offer maker

Description This interface has several functions for creating and submitting offers
(to buy assets) and getting information about an offer.

Key inputs Request ID, Offer ID

Response It creates offers, returns their information, and logs the actions.

7.3 The internal structure
The marketplace is used for trading assets (e.g. energy, digital assets, resource access, etc.).
Figure 7.3 presents the internal structure of the marketplace component. Marketplace module
includes functionality to communicate with marketplace smart contracts (which are shown in
dotted line). Marketplace interface smart contract includes offer maker and request maker
interfaces. Marketplace base includes all of base functionalities for the marketplace
component, while Ethereum standards includes the standard Ethereum tokens like ERC20 . 7

Figure 7.3: The package class diagram of the marketplace component

7 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

SOFIE 42(64)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Three key functionalities of the marketplace component, Request creation, Offer creation, and
Decision process are described next.

Request creation
For trading assets, request creation, depicted in Figure 7.4, is the first step. The manager of
an asset creates a request to sell his assets, and customers can then make offers based on
his request.

Figure 7.4: Request creation sequence diagram

Offer creation
Once a request has been created, customers can then submit offers on the request. Figure
7.5 shows how an offer can be created.

Figure 7.5: Offer creation sequence diagram

SOFIE 43(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Decision process
When the deadline for offers has passed or the requestor wants to determine the result, the
decision process should be run to choose the winning offer. Figure 7.6 shows how the
decision process happens.

Figure 7.6: Decision process sequence diagram

The current version of the smart contract implements an auction mechanism, in which the best
offer is selected following the “lowest bidder” rule. In the future, the smart contract may be
upgraded to consider alternative ways to select the winning offer, e.g. in addition to the price
also taking other features of the offer into account. In the case of balancing the load on the
electricity grid, these can include, e.g. more fine-grained promises to use energy during a
specific time.

7.4 Scenario walkthrough
The following table describes how the Semantic Representation component satisfies the
scenarios presented in section 7.1.

Table 7.4. Scenario walkthrough

ID Scenario Validation

W01

Description Trading assets is carried out by the bidding system. [SC01]

Walkthrough To start trading, the owner initiates a request for assets that he wants
to sell and submits it by calling the request creation and submission
function from IF01. The function emits an event on the blockchain,
allowing interested parties to notice the request. Buyers initiate offers
for the request and submit them by calling the offer creation and
submission function from IF02. The request is closed automatically
after the deadline has passed or manually by the seller. The matching
process function is called and the accepted offer for the request is
determined. Then, the seller and the winning buyer carry out their
obligations. Finally, all information is recorded on the blockchain.

SOFIE 44(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

8 Provisioning and Discovery Component
The goal of the provisioning and discovery component is to enable the discovery of new IoT
resources and their related metadata. Using this functionality, it is possible to decentralise the
process of making new resources available to systems utilising the SOFIE framework and to
automate the negotiations for the terms of use and the compensation for the use of these
resources. As an example, a location-based game can discover new IoT devices usable for
expanding the game world and automatically add them to the resource database, if the
resources are accompanied with the necessary metadata including the licence for using the
device and the terms of compensation.

8.1 Scenarios
Table 8.1 summarises the requirements for provisioning and discovery component from
SOFIE deliverable D2.4.

Table 8.1. Requirements related to the provisioning and discovery component

Req.
ID

Requirement Description Priority Category

RF18 SOFIE must provide service discovery and resources
selection processes based on multiple-criteria over the
features, associations and interaction patterns of
integrated resources.

MUST INTEROPER-
ABILITY

Table 8.2 presents example scenarios derived from use cases in SOFIE deliverable D5.2.

Table 8.2: Scenarios derived from the pilot use cases

ID Scenario Content

SC01

Description The scavenger hunt location-based game uses IoT beacons to
provide the proximity location of the players when they visit Points of
Interest (PoIs). These beacons communicate with the player’s
smartphone using Bluetooth Low Energy (BLE). Upon arriving to a
PoI, the mobile application detects the BLE beacon and notifies the
player with the relevant task. However, the mobile also detects any
new beacons present in the area, and notifies the game server so
they can be added to the repository (if they meet the necessary
requirements) and later used as PoIs in the game. A list of known and
previously rejected beacons prevents the re-submissions of the same
beacon.

Derived from use
case

MRMG_UC1 (Play challenges / tasks),
MRMG _UC5 (Design new challenges).

Stimulus Player’s mobile device detects a new beacon with suitable metadata.

Response Game server has verified the beacon’s metadata and added the
beacon to the repository.

Covers requirements RF18

SOFIE 45(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

8.2 Services and Interfaces
As shown in Figure 8.1, the provisioning and discovery component provides the following
functionalities: service discovery using Bluetooth and DNS, and device and licence
provisioning.

Figure 8.1: High-level overview of Provisioning and Discovery component and its interfaces

The figure above shows the high-level architecture of the component. The mobile client uses
Bluetooth and DNS service discovery protocols to search for new IoT devices and later,
checks wherever the semantic description of the device matches the predefined requirements.
If requirements are fulfilled, the devices (in this example IoT Beacon, Raspberry Pi, and
television) are provisioned to the given database.

Table 8.2. Interfaces of the component

ID Interface Content

IF01

Name Bluetooth discovery

Description This interface provides operations to perform a Bluetooth scan and
discover open Bluetooth devices

Key inputs Bluetooth scanning interval and timeout.

Response It lists all the Bluetooth devices and downloads the device description
file using the URL provided by the Bluetooth service.

IF02 Name Local network discovery

Description This interface provides operations to perform a Multicast-DNS scan to
find beacons services published on the local (WLAN, etc.) network.

SOFIE 46(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Key inputs Service type.

Response It lists all the devices using the webthing service and downloads the
device description file using the URL provided by mDNS discovery.

IF03 Name Device provisioning

Description This interface goes through the semantic representations and checks
them against the requirement for provisioning of the device.

Key inputs Semantics representation file of discovered beacons.

Response It either adds the device to the client database or rejects it.

IF04 Name Licensing provisioning

Description The interface checks for the license in the semantic representation file
and automatically makes a contract for usage of the device.

Key inputs Semantics representation file and information for device usage.

Response It deploys a contract and compensates for the usage of the provisioned
device.

8.3 The internal structure
Discovery of the IoT devices is implemented using the following two existing protocols:
Bluetooth Service Discovery protocol and DNS Service Discovery with multicast.

Bluetooth Service Discovery protocol
In Bluetooth environments, services can be discovered using the Service Discovery Protocol
(SDP) and they can then be accessed using other protocols defined by Bluetooth. The SDP
provides a means for applications to discover which services are available and to determine
the characteristics of those available services. It is a peer-to-peer protocol. The Bluetooth
emitter will therefore use this protocol for the discovery of devices within its proximity, and
then go further to search for services found on these devices. SDP focuses primarily on
discovering services available from or through Bluetooth devices.

DNS Service Discovery with multicast
DNS service discovery (DNS-SD) allows clients to discover a named list of service instances,
given a service type, and to resolve those services to hostnames using standard DNS queries.
It discovers devices and services on a local area network using IP protocols, without requiring
the user to configure them manually. DNS service discovery requests can also be sent over a
multicast link, and it can be combined with multicast-DNS (mDNS) to yield zero-configuration
DNS-SD.

Figure 8.2 presents the internal structure of the Discovery and Provisioning component.

SOFIE 47(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 8.2: Internal structure of Provisioning and Discovery

In more detail, the main entities shown in Figure 8.2 are:

Application: E.g. a mobile application to search for the new IoT devices on the WLAN or using
the Bluetooth interface.

SDP Server: An SDP server is any Bluetooth device that offers a service or services to other
Bluetooth devices. Information about the services is maintained in SDP databases. Each SDP
server has its own database; there is no central database.

SDP Client: SDP clients use the services provided by servers. To allow them to do this,
servers and clients exchange information about services using service records

Database: Stores the information about available IoT devices. The application connects to
database by the provided URL and sends the IoT device information to the database to
provision devices. The database is run by the party utilising the component.

DNS discovery: Service query is used to find all the particular type of service on the network
e.g. “_webthing._tcp”. Multicast-DNS is used to return the name of the services found and add
them to the cached list on the device. When an application wants to use a service,
multicast-DNS resolves the chosen service name to an IP address and port.

Figure 8.3 presents the information flow in the discovery and registration process. Here, the
resources types, provided services, licences and compensation are all described using WoT
TD semantic representations.

SOFIE 48(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 8.3: The process of discovering new devices on a local network

After the mobile application connects to the local network, it starts searching for the particular
type of service on the network. After getting the list, the application request for the semantic
description of the devices and check them again the requirements. In the end, it sends new
devices information to the database.

SOFIE 49(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

8.4 Scenario walkthrough
Table 8.4 describes how the Discovery and provisioning component satisfies the scenario
presented in section 8.1.

Table 8.4 Scenario walkthrough

 ID Scenario Validation

W01

Description Discovering and provisioning of devices using service discovery

Walkthrough The player’s game application on the mobile phone starts searching
for the devices in the background using the WLAN. Whenever the
mobile connects to a network, it uses the IF02 interface to discover
the devices available over the local area network and requests their
semantic description to look for the services provided. Once the client
checks that the requirements are met, it calls the IF03 interface to
automatically provision the device to database along with its details.
The IF04 interface will be used to automatically create a contract for
the usage of the discovered device

W02 Description Discovering and provisioning of devices using Bluetooth

Walkthrough For Bluetooth discovery, the client calls the IF01 interface to scan for
Bluetooth devices nearby and then, using IF03 interface, adds all
devices to the database after checking them against the
requirements. The IF04 interface will be used to automatically create
a contract for the usage of the discovered device.

SOFIE 50(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

9 How Components are used in the SOFIE Pilots
This section details how the SOFIE pilots are utilising the framework components to realise
some of the key functionalities of their use cases and how the functionalities have been
implemented in the Federation Adapter and Application API components.

9.1 Food Supply Chain Pilot
The Food Supply Chain (FSC) pilot makes use of a consortium DLT to federate otherwise
siloed IoT platforms and to establish a distributed and immutable data management layer that
makes traceability and quality control of transported products more robust, reliable and time
efficient for all parties of the food supply chain process. The business process of the pilot is
shown in Figure 9.1.

Figure 9.1: Overview of the food supply chain pilot

The pilot federates three IoT platforms and operates data related to trackable assets (i.e.
smart boxes that carry produce over the chain) as those are handled and handed off by the
corresponding business segments before finally reaching the selling point. The system
architecture makes use of SOFIE framework components to guarantee data integrity,
interoperability and privacy towards improving efficiency of traceability, food safety and quality
control services. In particular, the pilot aims to demonstrate two enabling services: i) a QR
code-based service for retrieval of product history by the consumers, and ii) an audit service

SOFIE 51(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

for involved business parties to identify and verify points of failure affecting produce quality as
produce is transported from the farm to the selling point.

The key benefits of applying SOFIE technology in the FSC are summarised as:
● The development of a decentralised and immutable data management and storage

framework that leverages DLTs to enable automated, reliable and flexible operation of
all critical data used in the food supply chain. This aims to ease the development of
further enabling services, e.g. by using add-on modules, processes or smart contracts
to enable automated payments, trust evaluation, etc., among the involved parties.

● The transparent federation of heterogeneous IoT silos used by the involved parties in a
technology-agnostic way that enables a ‘cross platform access’ pattern of
interoperability. As a result, applications or services to be developed can discover
resources from different IoT platforms through the same interfaces and by using the
same formats to communicate data.

● The provision of secure data access and retrieval services in the sense of data
confidentiality and integrity for all involved parties based on their role in the supply
chain (e.g. viewing where the produce comes from, which steps it passes through,
which other produce may be affected in the case of quality issues, etc.).

The following section presentes how the various SOFIE framework components are used in
the FSC pilot to reach the above mentioned benefits.

Interledger component
The FSC pilot uses the following ledgers:

1. A private consortium ledger (Ethereum) to store IoT data which is collected from the
three business companies operating the farming, transportation and warehouse
segments, respectively. This data captures both the conditions and the handoffs of the
trackable boxes as they move along the supply chain.

2. A KSI blockchain to create a unique signature (anchor) per box by hashing the series
of data which refers to that specific box and has been stored in the consortium ledger.

3. A public ledger (Ethereum) where the above mentioned signatures are stored. These
signatures are used by external entities (i.e. entities who do not have direct access to
the consortium ledger, such as the supermarket organisation and the customers) to
verify the authenticity of data requested from the consortium ledger.

The integration between the interledger component and the data management layer of the
pilot is under development. In particular, the interledger will be used in the following ways:

● for data transfer, a multi-ledger operation that implements a one-way transfer of data
(signatures) from the consortium ledger through the KSI to the public ledger. This
involves running smart contracts in both Ethereum ledgers to control transactions and
to exchange information between them, as well as using the interface of the KSI
blockchain to produce signatures.

● for a proof of integrity operation to cross check data on the consortium ledger against
the signatures stored in the public ledger, thus validating the integrity of the data in the
case of audits on behalf of external entities.

SOFIE 52(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Identity, Authentication and Authorisation component
In the FSC pilot, two IAA mechanisms are implemented for the actors and the IoT platforms,
respectively. More specifically:

1. Authentication and authorisation of actors: The username/password method of the IAA
component is used to authenticate the actors of the various business segments. The
AA API of the Oauth2 server (keycloak) is used by the FSC web application which
implements the OAuth2 client. The Oauth2 server provides the client with authorisation
tokens, so actors are able to access the endpoints of the Supervisor Web Server
(SWS) based on their role.

2. IoT platforms are authenticated in the consortium ledger by applying a simplified
version of Model 2 of the IAA component (i.e. a smart contract that handles
authorisation requests), since no payments are considered in the pilot case. Once an
IoT platform is registered in the consortium ledger (i.e. its wallet address is recorded),
the smart contract acts as an authorisation contract to confirm whether it has the
authority to perform certain transactions or not.

Privacy and Data Sovereignty
In the FSC pilot, the privacy and data sovereignty component provides guidelines for how to
address data privacy in the implemented use cases and in the actors’ activities. In particular,
the following policies have been implemented:

● The SWS is a full node of the consortium ledger which is also responsible for providing
wallet functionality to the federated IoT platforms. These platforms are registered
directly to the consortium ledger

● Every transaction that is fired by an IoT platform to the consortium ledger is digitally
signed by using the platforms’ private key.

● Upon registration of an actor into the FSC web application, a unique ID and role are
assigned to it. This information is the only one related to the actor profile which is
included in the transactions written in the consortium ledger. The mapping between
actors’ profiles, IDs and roles is accessible by the SOFIE system administrator only
(referred to as the consortium certifier organisation).

● In the preparation of data that relates to multiple actors (possibly belonging to different
segments) which should be combined together, actor IDs are used to retrieve and
chain information from the consortium ledger.

Semantic Representation
In the FSC pilot, three IoT platforms are federated into the system architecture. For each
platform, an adaptation layer is implemented to interface the SWS and to expose platform’s
functionality and things’ services according to the same semantics, thus enabling cross
platform access and interoperability.

The information model that is implemented in the FSC system architecture is shown in Figure
9.2.

SOFIE 53(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 9.2: Conceptual data model of the food supply chain pilot

The model defines the following main entities:
● Actors: actors register to the FSC architecture by defining profile details (e.g. their role,

business segment, username/password, etc.) and also provide (meta)data about how
they handle assets (boxes) during their activities.

● Authentication server: it is responsible for creating (unique) IDs for actors as well as for
creating and verifying role-based JWT tokens, which are used by the FSC web
application and the SWS to control how actors access the provided services.

● FSC web application: it provides a set of forms to be used by the actors. It performs
role-based access control and initiates token refresh by requesting a new access token
whenever needed.

● Supervisor Web Server (SWS): it implements all the backend logic of the system about
how to collect, filter and manage data objects, tokens and resources. It is a full node of
the consortium ledger that prepares and executes all the transactions performed by the
various actors. It exposes a number of Restful API endpoints to share data objects,
tokens and signatures to other modules of the model.

● Consortium ledger: it executes smart contracts to maintain the status of the pilot, e.g.
status and ownership of boxes, registered actors and IoT platforms, etc.

● Public ledger: a public ledger where signatures of the consortium ledger data are
stored.

● Interledger: It is responsible for transferring signatures between the consortium ledger
and the public ledger, as well as for verifying the binding between these signatures and
the corresponding data of the consortium ledger.

● Federation adapter: it implements syntactic and semantic interoperability between the
corresponding IoT platform and the pilot information model. It exposes a RESTful API
to provide data and things services to the SWS and also uses the platform’s PKI to
digitally sign every data object that is sent to the SWS.

● IoT platform: each federated IoT platform exposes a northbound API to provide its
services and data.

SOFIE 54(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Marketplace
This component is not used in the FSC pilot.

Provisioning and Discovery
The provisioning and discovery component will enable the FSC pilot application to find and
use resources across platforms in a dynamic way through uniform interfaces. This component
will be integrated into the second release of the FSC pilot architecture.

Federation Adapters
Each federated IoT platform is connected to the pilot system architecture through a federation
adapter which is responsible to:

● Provide an adaptation layer for data and resources, so as to enable unified syntactic
and semantic interoperability and secure usage of platform resources, services and
data.

● Implement a domain-specific API to communicate with SWS and allow rapid
cross-platform access and application development.

● Create wallet addresses to register the IoT platform in the consortium ledger and
digitally sign data objects which are sent to the SWS.

SOFIE 55(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

9.2 Decentralised Energy Flexibility Marketplace Pilot
Most of the electricity produced from renewable sources (e.g. solar cells) will normally be
consumed by energy customers adjacent to the generation plant, however, an excess of the
generated power will create reverse power flows through the substation of the Low Voltage
(LV) distribution network. One of the objectives of the Distribution System Operator (DSO)
managing the distribution network is to reduce this reverse power flow, since it can cause
malfunctions and reduce equipment lifetime.

To achieve this objective, the DSO will create Demand-Response (DR) campaigns to
consume the surplus of energy. DR campaigns will be directed to Electric Vehicle (EV) Fleet
Managers due to their ability to consume large amounts of energy by recharging electric
vehicle batteries. Fleet Managers are incentivised to participate in DR campaigns thanks to
the economic bonus granted for the flexibility provided to the DSO.

To satisfy the flexibility request, the Fleet Manager will create an auction to request lower
priced electricity supply from the Energy Retailers. In this scenario, the DSO has avoided
reverse power flows and solved the problems of the electricity network, the Fleet Manager has
charged its fleet of electric vehicles at an advantageous price, and the Energy Retailer has
achieved its daily energy buying and selling goals.

Considering the current trend in distribution networks, in which the amount of distributed
generators is increasing, the DSO is assuming increasing responsibility as coordinator of
distributed local resources. The reliable and secure observability of the network is crucial for
enabling market participation of distributed generators and will allow the implementation of a
flexibility market and peer-to-peer transactions. In addition, real time measurements are a
pillar for the deployment of real time management of the distributed resources carried out by
the DSO or other stakeholders (e.g. Aggregator, RESCO companies). In this environment, the
SOFIE framework enables the DSO to provide the aforementioned services for managing
real-time data in a secure and open way and potentially also enables new business scenarios
for the fleet managers and energy retailers.

SOFIE’s role
The SOFIE framework makes it possible to have

● a clear identification of the actors involved and their role in the marketplace
● the standardisation of different IoT environments such as the DSO metering

infrastructure or the Fleet Manager equipment
● the interaction of different platforms with different blockchain technologies for data
● process and market management as well as micro-contracts and micro-payments

management in a quick and user-friendly way
● interoperability, security, transparency, and auditability of the marketplace actions.

Figure 9.3 provides an overview of the Energy Flexibility Marketplace pilot’s implementation.

SOFIE 56(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 9.3: The Energy Flexibility Marketplace pilot’s implementation.

Semantic Representation, Discovery and Provisioning
Thanks to SOFIE Semantic Representation and Provisioning and Discovery components, it is
possible for client applications to use the services and devices available on the network and to
know the models describing IoT Things and services on top of federated IoT environments. In
this way, for example, the DSO can know in advance how many Fleet Managers operate
under its network, what kind of flexibility service they provide (e.g. day-ahead or intra-day
market) and how to communicate with them. In the same way, a fleet manager can query for
the services requested by the DSOs managing the networks in the zones it operates in and
can understand such requests. In turn, the Fleet Manager can query for the market offers
made by the energy retailers in advance and select the offer that best suits its needs.

Marketplace
The SOFIE Marketplace component is the key component of this scenario. It enables the
actual trade of resources in an automated, trusted, and decentralised way. The blockchain
powering the marketplace grants it security, resilience, transparency, and traceability, with the
effect of increasing a healthy competition among the actors participating. Trades are
negotiated and verified, and payments are performed seamlessly on behalf of the actors with
the least user interaction possible, but always allowing for transparent verification.

Interledger
Thanks to the Interledger component, it is possible to enrich the scenario with different
features. The first and most obvious way to use it, is to build an additional layer on top of the
marketplace, that further improves its security and transparency. In the scenario, the
marketplace is meant to be run on a private distributed ledger. This choice maximizes the
privacy and keeps the network control secure from external entities, but sacrifices the
redundancy and auditability granted by a public ledger. Using a second layer public ledger as
a trust anchor helps to keep the benefits of the private ledger together with the benefits of the
public one.

SOFIE 57(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Another interesting use case enabled by the interledger component, is the usage of a smart
contract capable blockchain (e.g. Ethereum) together with another blockchain dedicated to the
micro-payments (e.g. Lightning Network payments over Bitcoin blockchain).

Finally, the interledger component enables the capability to federate together in the same
scenario services and actors operating natively on different blockchains.

Federation Adapters
SOFIE Federation Adapters federate the IoT systems constituting the infrastructure used by
the smart meters, the electrical vehicles and the supply equipment, providing data and
services representation according to the SOFIE semantic representation and supporting
authentication and authorisation.

Pilot implementation

Figure 9.4: The DSO uses a dashboard to monitor the network.

The business logic of each actor is enabled by a set of specific APIs. The client applications
will use the SOFIE services to provide the “common” features, while the specific APIs are
being called to provide specific functionalities. For instance, the SOFIE federation adapters
enable access to the data provided by the IoT smart meters, and the DSO is able to visualise
them on its dedicated dashboard, together with the forecast obtained by invoking its own
production/consumption forecasting service via the API. The resulting forecast will then be
used by the operator as a decision support tool before creating a new day-ahead DR
campaign using the SOFIE marketplace component.

SOFIE 58(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

9.3 Location-based Mobile Gaming Pilot
The gaming pilot utilises the SOFIE framework to explore how DLTs can be leveraged to
provide new gaming features for players as well as on validating the potential of the
location-based IoT use cases.

Multiple use cases will be studied throughout the pilot. The first use case utilises a prototype
game that enables players to collect and trade in-game content (e.g. characters, weapons,
equipment, parts) either by swapping with or buying from other players. Here, DLTs are used
to provide player ownership of the asset, transparency, and consistency of asset attributes
and transactions.

In the second use case, a prototype scavenger hunt location-based game uses IoT beacons
and an ecosystem backed by a DLT. The players need to solve the riddles using the clues
they receive on their smartphones. Solving the riddle will reveal the location of the IoT beacon
and the player has to physically visit those areas to collect the points. The competition is to
find the beacon locations and solve the tasks until the last beacon has been reached. After
performing a series of tasks and visiting multiple locations, the players are awarded points,
which they can later redeem for rewards. Here, DLTs will be used to manage, e.g. player
check-ins, points collection and rewards.

Figure 9.5: Overview of the location based mobile gaming pilot.

SOFIE 59(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

SOFIE’s role
Multiple SOFIE framework components are used in the gaming pilot to address the above
challenges.

Identity, Authentication and Authorisation (IAA)
In the gaming pilot, the IAA component is utilised to authenticate the actors of the various
business segments. The IAA component ensures that only authorised players can participate
in transactions on both ledgers. Decentralised identifiers (DIDs) are used to manage the
identity of participants. For the authorised entities, a secure data exchange channel will be
used. The gaming services can only be accessed using the custom credentials and session
services will be used for authenticating players. The session and the associated user are
accessible only from the device the session was created on.

Interledger
The gaming pilot uses the following ledgers:

1. A private consortium ledger (Hyperledger Fabric) to store game data which is collected
from the gaming companies and the Points of Interest (PoIs). This ledger provides a
contractual relationship between the PoI and the game. It is also used to register the
User Generated Content (UGC) along with keeping track of their owners. Finally, it is
also used to issue the rewards or vouchers and keep track of them.

2. A public ledger (Ethereum) that enables the trading of different types of assets. Users
are able to freely negotiate the trades and the ledger also provides auditability to help
with potential dispute resolutions.

The Interledger component will be used as a bridge between the Ethereum and Hyperlegder
Fabric ledgers. The required asset information from the Fabric will be transferred to Ethereum
using the data transfer interface of the interledger .The asset can than be traded on the
Ethereum marketplace. The main role of the Interledger is to register callbacks to certain
events and then react when such events are caught. This involves running smart contracts in
both ledgers to control transactions and exchange information between them.

Provisioning and Discovery
The provisioning and discovery component will enable the gaming pilot application to find and
use IoT beacons in a dynamic way. Already deployed working Bluetooth devices can be
discovered and added to the repository, so that they can be later used as PoIs in the pilot. In
this way, we can increase the number of IoT beacon devices used for the game without the
additional cost of deploying and purchasing the beacons. This component will be used along
with semantic representation that exposes the functionality of the devices and the methods of
communication with them, thus enabling cross-platform access and interoperability.

The component also provides beacons with decision support, helping them make decisions in
real time. This provisioning capability allows owners to control who can communicate with
their devices and what they can do with them. The mobile application will automate decision
support by uploading digital contracts for the devices discovered. These contracts stipulate
requirements that must be met in order to gain access to the devices, under what conditions
access can be given, for how long and how often. This allows new devices to be introduced
and their owners to be compensated without human intervention if the terms of the contract
posed on the device fall within the guidelines of the game company thus distributing and
automating the required negotiations.

Marketplace

SOFIE 60(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

The SOFIE Marketplace component will be used for the trading of the in-game virtual assets.
It enables the actual trade of resources in an automated, trusted, and decentralised way.
Once digital assets have been stored on the ledger, the ownership and the item itself cannot
be altered. DLTs also help maintain the scarcity of a virtual item in a secure and verified way.
The DLT-based marketplace grants security, transparency, and traceability, with the effect of
increasing a healthy competition among the players participating.

Semantic representation
SOFIE's Semantic Representation component will be used to provide a solution for device and
service interoperability. This component will be used along with provisioning and discovering
component. After discovering the beacons, the semantic representation will be used to unify
different IoT devices used as beacons. Web of Things (WoT) standards are used for defining
the description of the IoT beacons.

SOFIE 61(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

9.4 Decentralised Energy Data Exchange Pilot
The decentralised energy data exchange pilot is focused on providing a proof-of-concept for
secure data exchange and access rights management between smart meter data owners and
energy service providers (intermediaries, distributors, and brokers). The pilot utilises the
capabilities of the SOFIE framework for the validation and demonstration of the defined
scenarios and use cases.

The pilot uses the Estfeed data hub (connecting 700 000 smart meters in Estonia) as a main
source for data exchange demonstration. The data that is used in the Pilot is anonymised and
with the same structure and characteristics as is in production Estfeed data hub. The main
concepts are described in the following figure, where the SOFIE approach and the added
value are presented.

Figure 9.6: An overview of the Energy Data Exchange Pilot

SOFIE’s role
The architecture of the Energy Data Exchange pilot has been depicted in Figure 9.7.

The SOFIE Federation Adapters will be used to enable data exchange with different smart
meter systems:

● National data hub - existing information system having information about users and
their consumption history.

● Single metering point - the adapter will enable requesting metering data from existing
devices.

● Wind farm network - the adapter enables data exchange with a group of smart meter
devices for consumption and production data.

SOFIE 62(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

Figure 9.7: The architecture of the Energy Data Exchange Pilot

Existing smart meter data systems use different technologies and representation models,
which makes integration more complex. The SOFIE federation adapter introduces a common
data model to represent measuring data, so the details of existing smart meter data systems
will be hidden and different participants will have no need to be aware of those. When new
systems are added to the platform they only need to map their existing data model to the
model provided by federation adapter.

Identity, Authentication and Authorisation
The SOFIE IAA (Identity, Authentication, Authorisation) component makes it possible to
support the requirement that only authorised entities can participate in transactions.
Decentralised identifiers (DIDs) are used to manage the identity of participants, so the actors
are not dependent on external identity providers, which minimises 3rd party data leakages. To
map real-life identities with DIDs some special issuers are needed to support the credentials.
For the authorised entities, a secure data exchange channel will be used. A person, who is the
owner of the metering device, should be able to grant and revoke access to its data.
Decentralised identifiers give complete control to data owner over its data.

Semantic Representation and Provisioning and Discovery
The Semantic Representation and the Provisioning and Discovery components provide a
solution for device and service interoperability. Measuring devices and measuring data have
semantic representation to unify different devices used as smart meters. Web of Things (WoT)
standards are used for the descriptions.

Federation Adapter
The central component for the pilot is the federation adapter. From the data owner’s point of
view it provides the possibilities to make the data available for other market participants in a
secure and transparent way. The federation adapter also helps service providers to handle
secure data exchange with data owners.

SOFIE 63(64)

Document: H2020-IOT-2017-3-779984-SOFIE/

D2.5 – Federation Framework, 2nd version

Security: Public Date: 30.8.2019 Status: Completed Version: 1.00

10 References
[Elo2019] T. Elo et al. “SOFIE Deliverable 2.4 - Federation Architecture, 2nd version”, June

2019. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.4-Federation_Architectur
e_2nd_version_v1.00.pdf.

[Fot2018] N. Fotiou, V.A. Siris, G.C. Polyzos, "Interacting with the Internet of Things Using
Smart Contracts and Blockchain Technologies", Proc. of Security, Privacy, and
Anonymity in Computation, Communication, and Storage 2018 (SpaCCS 2018),
Melbourne, Australia, 2018.

[Kov2019] M. Kovatsch et al. “Web of Things (WoT) Architecture”, retrieved August 2019,
Available at: https://www.w3.org/TR/wot-architecture/.

[Lag2019] D. Lagutin, Y, Kortesniemi, N. Fotiou, V.A. Siris, "Enabling Decentralised
Identifiers and Verifiable Credentials for Constrained Internet-of-Things Devices
using OAuth-based Delegation," NDSS Workshop on Decentralized IoT Systems
and Security (DISS), San Diego, CA, USA, 2019.

[Oik2019] I. Oikonomidis et al. “SOFIE Deliverable D5.2 - Initial Platform Validation”, June
2019. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-Initial_Platform_Validat
ion.pdf.

[Paa2018] S. Paavolainen et al. “SOFIE Deliverable D2.3 - Federation Framework, 1st
version”, October 2018. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.3-Federation_Framework
_1st_version_v1.00.pdf.

[Sir2019a] V.A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, G.C. Polyzos,
“Interledger Approaches,” IEEE Access, July 2019.

[Sir2019b] V.A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, G.C. Polyzos, "OAuth 2.0 meets
Blockchain for Authorization in Constrained IoT Environments," IEEE 5th World
Forum on Internet of Things, Limerick, Ireland, 2019.

SOFIE 64(64)

https://media.voog.com/0000/0042/0957/files/SOFIE_D2.4-Federation_Architecture_2nd_version_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.4-Federation_Architecture_2nd_version_v1.00.pdf
https://www.w3.org/TR/wot-architecture/
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-Initial_Platform_Validation.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-Initial_Platform_Validation.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.3-Federation_Framework_1st_version_v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.3-Federation_Framework_1st_version_v1.00.pdf

