

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D2.4

SOFIE Federation Architecture 2nd Version

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 20.12.2019

Author(s) Tommi Elo (AALTO), Pekka Nikander (AALTO), Dmitrij
Lagutin (AALTO), Yki Kortesniemi (AALTO), Vasilios Siris
(AUEB-RC), Nikos Fotiou (AUEB-RC), Giuseppe Raveduto
(ENG), Priit Anton (GT), Margus Haavala (GT), Mikael
Jaatinen (LMF), Petri Laari (LMF), Antonio Antonino (LMF),
David Mason (ROV), Sotiris Karachontzitis (SYN)

Responsible persons Yki Kortesniemi (AALTO), Yki.Kortesniemi@aalto.fi
Tommi Elo (AALTO), tommi.elo@aalto.fi

Target Dissemination Level Public

Status of the Document Completed

Version 1.10

Project web-site https://www.sofie-iot.eu/

mailto:Yki.Kortesniemi@aalto.fi
mailto:tommi.elo@aalto.fi
https://www.sofie-iot.eu/

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 2(41)

Summary of changes

Version Major changes

1.10 This version has the following changes:

- In Section 2.1 an updated architecture picture and description

- In Section 2.4 more details on the requirements gathering process

- Pilot architecture pictures in Section 3 have been updated to match the updated
architecture picture in Section 2.1

- More details on the use of vocabularies in Section 4.4

- Extended description of the Federation Adapter in Section 4.7

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 3(41)

Table of Contents

Summary of changes .. 2

List of abbreviations ... 4

1. Introduction ... 5

2. SOFIE Architecture ... 7

2.1 Architecture overview ... 7
2.2 Entities and Roles .. 9

2.3 Actor interaction model ... 12
2.4 Requirements for SOFIE .. 13

3. Pilot Architectures .. 18

3.1 Food Supply Chain Pilot Architecture... 18
3.2 Decentralised Energy Flexibility Marketplace Pilot Architecture 22
3.3 Mixed Reality Mobile Gaming Pilot Architecture 25
3.4 Decentralised Energy Data Exchange Pilot Architecture 28

4. Framework Components and Federation Adapter 30

4.1 Interledger .. 30

4.2 Identity, authentication, authorisation ... 31
4.3 Privacy and Data sovereignty ... 31
4.4 Semantic Representation ... 32

4.4.1 Service and Thing descriptions ... 32
4.4.2 Data description .. 33

4.5 Marketplace .. 34
4.6 Provisioning and Discovery .. 35
4.7 Federation Adapter ... 35

5. External Components and Interfaces .. 36

5.1 Web of Things (WoT) discovery ... 36
5.2 FIWARE ... 36

6. Deployment Considerations .. 38

6.1 Module Categories ... 38
6.2 Extending existing systems .. 38

References .. 41

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 4(41)

List of abbreviations

API Application Programming Interface

AS Authorisation Server

CSO Charging Station Owner

DID Decentralised Identifier

DLT Distributed Ledger Technology

DSO Distribution System Operator

EV Electrical vehicle

FSC Food Supply Chain

GE Generic Enabler

HTLC Hash Time-Lock Contract

IAA Identity, Authentication, Authorisation

IoT Internet of Things

PoI Point of Interest

RFID Radio Frequency IDentification

TD Things Descriptor

TSO Transmission System Operator

WoT Web of Things

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 5(41)

1. Introduction

Fragmentation and lack of interoperability among different platforms is a major issue with the
Internet of Things (IoT). Currently, IoT platforms and systems are vertically oriented silos unable
(or unwilling) to exchange data with, or perform actions across, each other. This leads to multiple
problems: reduced competition and vendor lock-ins as it is difficult for customers to switch IoT
providers, worse privacy as vendors usually force their customers to move at least some of their
data or metadata to the vendor’s cloud, and reduced functionality compared to what would be
possible with better interoperability. Since IoT systems are becoming prevalent in everyday life,
lack of interoperability and limited use of relevant data is growing into a significant problem for
individuals, organisations and the society as a whole.

SOFIE (Secure Open Federation for Internet Everywhere) is a three-year EU Horizon 2020
research and innovation project that provides interoperability between existing IoT platforms in
an open and secure manner. The SOFIE architecture is a way of overcoming the lack of
interoperability by federating the actions between different IoT systems using interledger
technologies. Blockchains and distributed ledgers (DLTs) form a natural basis for building trust
between different parties by providing transparency and accountability to operations. Interledger
technologies then build on top of the strengths of individual ledger technologies by enabling
cross-ledger transactions thus harnessing the different strengths of different types of ledgers.
Finally, smart contracts allow the automation of many transactions and, thus, lower the
operating costs of the system.

A key benefit of the SOFIE architecture is that it allows the creation of solutions that connect
many individual systems to a whole that provides significant new functionality. For instance, as
depicted in Figure 1, the growth and transportation conditions of agricultural produce is recorded
as it moves along the supply chain, providing accurate information to customers while helping
companies in dispute resolution.

Figure 1. An overview of the SOFIE food supply chain pilot, demonstrating how data is
collected as produce moves from the farm to the supermarket through transporters and

distributors.

As shown in Table 1, architectures can exist on many levels, such as framework architecture,
system architecture, and component architecture. In the scope of SOFIE, this document
describes the SOFIE framework architecture, which provides a high level overview of the overall
SOFIE system, its components and adapter, entities, actors, and the interactions between them.
The system-level architectures specific to SOFIE pilots are briefly described in Section 3 of this
document, with more details provided in SOFIE Deliverable “D5.2 - Initial Platform Validation”
[Oik2019]. Finally, the individual SOFIE components and adapter will be described in the SOFIE
deliverable “D2.5 - Federation Framework, 2nd version”, due in August 2019. In the latter part

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 6(41)

of this document the term architecture refers to the framework architecture unless otherwise
specified.

Table 1. Multiple levels of architecture

Architecture Level Scope Level of Detail
Relevant SOFIE
deliverable

Framework SOFIE Broad This document (D2.4)

System SOFIE Pilot Pilot specific D5.2 (June 2019)

Component SOFIE Component Internal structure
of SOFIE
components and
adapter

D2.5 (August 2019)

The structure of this document is as follows: Section 2 presents the SOFIE architecture,
including entities, roles, and actors, as well as the requirements that pilots pose on the
architecture. Based on the overall SOFIE architecture, Section 3 describes the system
architectures of the four SOFIE pilots. The SOFIE framework components & adapter, and
utilised external components are described in Sections 4 and 5 respectively, while Section 6
discusses deployment considerations.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 7(41)

2. SOFIE Architecture

One of the most fundamental assumptions of SOFIE is that it has to be able to support different
types of IoT and ledger technologies without requiring changes to those technologies. This is
due to the large installed base of existing technologies that do not allow for changes and the
fact that different parties and consortiums will continue to select their own IoT and distributed
ledger technologies based on the different strengths of those technologies. By allowing the
federation of such self-selected ledgers, SOFIE enables interoperability across the technology
silos created by the manufacturers, who control those silos.

2.1 Architecture overview
Figure 2 provides a functional overview of the SOFIE architecture. In particular, it depicts the
six components that provide the SOFIE functionality (green boxes) and the Federation
Adapter(s) used to interact with the IoT platforms and devices.

M
u

lt
ile

d
g

er
o

p
er

a
ti

o
n

s
A

ll
co

m
p

o
n

en
ts

 m
a

y
in

te
ra

ct
 w

it
h

 D
LT

s

Public DLT /
timestamping

DLT service

Public /
permissioned
DLT for DIDs

Interledger

IoT platforms/gateways

IoT applications

IoT devices/assets

SOFIE

IoT clients

Off-chain
communication

DID (Decentralized
Identifier) resolution

Authorisations,
access logs (hashes),
events, payments, etc.

Multiledger
operations

Smart contract

SOFIE component

Identity,
Authentication
& Authorisation

Marketplace

Semantic
Representation

Discovery &
Provisioning

Privacy &
Data Sovereignty

Private /
permissioned

DLT

All components may implement application APIs

Federation Adapter(s)

SOFIE Components

Figure 2. The SOFIE framework architecture

A key element of the SOFIE architecture is that it is a framework architecture that defines the
types of functionalities provided by the components and adapter, but not an exhaustive list of
supported functions. This is due to the fact that SOFIE is intended to support IoT federation in
many application areas and it is infeasible to define a set of functions that would encompass all
the needs (including future needs) of the different application areas. Instead, SOFIE defines
types of functionalities and provides example implementations of each component and adapter
in the SOFIE Framework to be described in SOFIE Deliverable “D2.5 - Federation Framework,
2nd version”, due in August 2019. The provided examples are based on the pilots in the SOFIE
project and they can be freely adapted and expanded to suit the needs of other applications.

The lowest level of the architecture contains IoT assets (or resources), that include e.g. IoT
sensors for sensing the physical environment, actuators for acting on the physical environment,
and boxes with RFID tags that are used to transport products. IoT assets can be connected to
or integrated in actual devices. IoT platforms include platforms with data stores, where the

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 8(41)

measurements from sensors are collected and made available to third parties, and also servers
providing IoT services.

The federation adapter(s) are used to interface the IoT platforms with the SOFIE framework.
This allows the IoT platforms to interact with SOFIE without requiring any changes to the IoT
platforms themselves. Different scenarios and pilots can utilise different types of federation
adapters, which expose only the required parts of the SOFIE functionality to the IoT platform.

Of the six components, the architecture emphasises the interledger component responsible for
interconnecting the different types of DLTs, which can have quite different features and
functionality. Public (or permissionless) DLTs can offer wide-scale decentralised trust and
immutability, but this necessitates a large network with many peers and/or a more demanding
consensus mechanism, thereby incurring a higher overall computation cost that will lead to
longer transaction confirmation times. On the other hand, permissioned or consortium DLTs
have a lower, or even zero, transaction cost and low latency; however, trust is determined by
the peers in the set of permissioned nodes that participate in the DLT’s consensus mechanism.
Moreover, the level of privacy afforded also differs: the transactions and data on
public/permissionless blockchains are completely open to everyone, which is necessary to
achieve wide-scale decentralised trust and transparency but forgoes any privacy. On the other
hand, private/permissioned DLTs involve the collaboration of peers that belong to a specific
permissioned set and can arrange their records to be opaque to others (private), or public (but
only allowing the permissioned set to contribute to the DLT). Thus, permissioned blockchains
can support different levels of write and read access, which allows them to support different
levels of privacy. DLTs can also differ in the functionality they provide: a DLT can focus e.g. on
cryptocurrency payments, recording of IoT events, access authorisation, or providing resolution
of decentralised identifiers (DIDs) [Ree2019]. Utilising multiple ledgers that are interconnected
through interledger functionality, instead of a single DLT, provides the flexibility to exploit the
aforementioned trade-offs. Finally, providing interledger mechanisms to interconnect different
DLTs allows companies and consortiums to select private/permissioned distributed ledgers
based on their requirements and constraints. Hence, interledger mechanisms can enhance
interoperability across different IoT platforms that utilise different distributed ledger
technologies.

The other SOFIE framework components are: Identity, Authentication, and Authorisation (IAA),
which provides identity management and supports multiple authentication and authorisation
techniques; Privacy and data sovereignty, which provides mechanisms that enable data sharing
in a controlled and privacy preserving way; Semantic representation, which provides tools for
describing services, devices, and data in an interoperable way; Marketplace, which allows
participants to trade resources by placing bids and offers in a secure, auditable, and
decentralised way; and Discovery & provisioning, which provides functionality for the discovery
and bootstrapping of services.

Finally, all the components can expose application APIs, which provide the interfaces for IoT
clients and applications to interact with the SOFIE components. In the Figure 2, the multiledger
operations are positioned next to the Interledger component as it is mostly using that
functionality, but any of the other component can also utilise multiledger operation when
required. Also, the framework adapters and IoT applications can directly interact with the DLTs,
but for simplification this is not shown in the figure. The figure also does not show the
interactions between the components – this will be discussed in more detail in D2.5.

The interactions with the DLTs that support DIDs can include DID document
creation/modification, DID resolution, credential recording/revocation, etc. The format and
information contained in the transactions will be identified in the detailed description of the
framework components in D2.5.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 9(41)

The architecture also illustrates the separation of data transfer and control message exchanges.
Some IoT data can be transferred directly between the IoT platforms and IoT clients. Control
messages related to authorisation logs, events, payments, etc. go through the SOFIE
framework. IoT data or hashes of data can also be handled by the SOFIE framework.

2.2 Entities and Roles
In the scope of SOFIE, an entity can be either physical or non-physical, with a distinct and
independent existence. Every entity has at least one unique identity, which separates it from all
other entities, and each identity utilises one or more identifiers. Identities can express various
roles of the entity, e.g. a person can have identities related to work and private life. For example,
a personal mobile phone could be used as a key to both the office photocopying machine and
as a personal car key. In order to protect privacy from correlation attacks there can be a large
number of identifiers associated with a single identity. An important feature of identifiers is self-
sovereignty, i.e., the entity can generate, manage and discard identifiers by itself, without
permission from any third-party.

A SOFIE-based system is a system that follows the SOFIE architecture. Table 2 presents the
various entities of SOFIE-based systems, and Table 3 presents the entities, platforms, devices
and resources participating in the SOFIE pilots.

Table 2: Different types of entities in a SOFIE-based system.

Entity Description

Person Individual (human) that can act e.g. as a customer or organisation
employee.

Organisation Entity which can own or operate platforms and resources, and which
consists of employees (persons).

Service Mechanism to enable access to one or more capabilities1.

Agent An automated or semi-automated software component acting on behalf
of a person or organisation within the constraints defined by the
originating entity.

Device IoT device, such as a sensor or actuator.

IoT platform Hardware and software entity providing an IoT service.

IoT gateway Entity that interconnects one or more devices to a wide area network.

Resources Physical or digital assets.

Network Used for communicating data and control. Examples include Internet,
private networks and device-to-device (D2D)

Distributed ledger Transaction bookkeeping mechanism implemented in a decentralised
manned. There are different types, e.g., public/permissionless,
permissioned (or consortium).

Smart contract Program executed on the virtual machine of a distributed ledger (e.g.,
Ethereum’s EVM). A smart contract can implement a subset of the

1 A service is a mechanism to enable access to one or more capabilities, where the access is provided
using a prescribed interface and is exercised consistent with constraints and policies as specified by the
service description [Mac2006].

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 10(41)

functionality of a framework component.

Interledger Entity implementing interledger (operations spanning 2 or more ledgers)
functionality. Can also be viewed as a specialised agent acting on
behalf of a smart contract.

Oracle Entity allowing smart contracts to interact with the Internet (e.g. call
APIs). Can also be viewed as a specialised form of an agent acting on
behalf of a smart contract.

Table 3: Entities, platforms, devices and Resources in the SOFIE pilots.

Pilot Organisational
entities (OE)

Other entities Platforms Devices Resources
(assets)

Food Supply
Chain

Producer

Transporter

Warehouse

Supermarket

Employees (of
OEs)

Consumer

Farm (SynField)
IoT

Transportation
IoT

Warehouse
(Aberon) IoT

SynField
nodes

Sensors

RFID readers

Smartphones

Boxes

Decentralised
Energy
Flexibility
Marketplace

DSO

CSO

Fleet Manager

(Electricity
provider)

Charging
station

EV user

Electricity
management
system

Charging station
platform

Sensors

Smart meters

IoT device in
EVs

EVs

Energy

Smart meter
measurements

Incentive
tokens

Decentralised
Energy Data
Exchange

TSO

DSO

Smart meter
system operator

Energy producer

Energy
consumer

Smart meter
owner

Smart meter
platform

Smart meters

Energy

Smart meter
measurements

Mixed Reality
Mobile Gaming

Game company

Ad company

PoI company

Game
developer

Challenge
designer

Ad manager

PoI employee

Player

Game server Sensors

Smartphones

Beacons

Gaming
rewards

In-game
assets

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 11(41)

An actor is a participant or its delegate that interacts with the SOFIE system. The different
service roles actors can have in the SOFIE system are shown in Table 4. In some scenarios,
the same actor can assume different roles or the same role for different purposes. For example,
a farm owner can be both an owner and producer of agricultural produce. Moreover, an actor
can have one or more roles concurrently and may change them over time and in different
contexts, even over the course of a particular interaction [Mac2006].

Table 4: Service roles in the SOFIE-based system

Role Description

Consumer Role performed by a participant who interacts with a service in order to fulfil a
need.

Provider Role performed by a participant who offers a service.

Intermediary Role that facilitates the interaction and connectivity to provide a service.

Owner Role performed by a participant that claims or exercises ownership over an entity
or service.

Delegate Role played by a person or by an automated or semi-automated agent on behalf
of a participant. The delegate must have the participant’s authority.

Table 5 describes actors of SOFIE pilots, while Section 3 contains more details about pilots.

Table 5: Actors in the SOFIE pilots.

Pilot Actors

Food Supply
Chain

Producer: Provider that produces agricultural produce, e.g., a farm.

Transportation company employee (transporter): Provider that is responsible for
transporting produce, e.g. between a farm and a warehouse, or a warehouse and
a supermarket.

Warehouse employee: Individual employed by the warehouse.

Supermarket employee: Individual employed by the supermarket.

Supermarket customer: Consumer buying produce from the supermarket.

Consortium certifier organisation: Provider that administers the common ledger
system that stores data related to asset tracking. It acts as an authority that grants
and enables access to participants’ data. It is also the actor who activates and
supervises the process of audit and dispute resolution in the case of a breach or
when a customer reports an issue about product quality.

Decentralised
Energy
Flexibility
Marketplace

Energy provider (DSO): Provider who manages the electrical grid and provides
electricity transfer services.

Fleet manager: Provider that manages a fleet of EVs and offers related services
(e.g., rental) to its customers

EV user: Consumer using an EV.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 12(41)

Decentralised
Energy Data
Exchange

Energy service provider: Provider responsible for providing the energy service to
the end-user (customer). Can have the role of a DSO or an energy company. Main
communicator between the customer and grid operator (i.e., the TSO).

Smart meter system operator: Provider responsible for the national or regional
smart meter network. Acts as a delegate of the smart meter owner.

Smart meter owner: Individual or company that is legally bound to a smart metering
point and is interested in consuming/producing energy.

Mixed Reality
Mobile Gaming

Game player: Consumer who can join any challenge, view their profile and reward
data through a mobile application.

Game developer (administrator): has complete access to the game and its data. It
can view and edit all the challenges, player profiles, and related information.

Challenge designer: Provider who can create new challenges, assets, tasks and
puzzles for the existing beacons

Ads manager (administrator): Provider, who can monitor and approve the
advertisements shown in the application.

PoI employee: can view data about the PoI challenges, offer rewards, or create
new PoI challenges.

2.3 Actor interaction model

Figure 3. Actor interaction model

The actor interaction model in Figure 3 presents the interactions between the various actors
identified in the previous subsection and the entities performing the actor roles. The interfacing
of the providers (IoT platforms) with the network and the DLTs is implemented using federation
adapters as discussed in Section 2.1, and these interfaces, as well as the security,
management, and governance actions, can span ownership and administration boundaries. The
interfaces and actions across boundaries are scenario and pilot specific; more details are

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 13(41)

presented in the specific pilot descriptions in Section 3 of this deliverable. Finally, consumers
(IoT applications and clients) access services through application APIs. The interaction of the
various actors takes place with messages, through which the exchange of information and value
pertaining to the specific service will be performed. The behaviour and actions across the
interfaces will be defined by the corresponding protocols that will be discussed in the SOFIE
deliverable “D2.5 - Federation Framework, 2nd version”, due in August 2019.

2.4 Requirements for SOFIE
Requirements for the SOFIE Architecture were gathered from different sources: during the first
half of the project, various types of meetings were organised between pilot consortium members
and end-users of all relevant application domains to capture users’ experiences and views,
identify different needs, and define business and end-user requirements. In particular, in the
energy domain, several meetings and sessions were organised with TSOs and DSOs
(Transmission and Distribution System Operators) experts from cross-functional areas,
especially from Estonia and Denmark, to gather industrial requirements and get insights about
recent standardisation directions at EU level, while ASM Terni, as a consortium member of
SOFIE, provided valuable feedback on prioritising needs and achieving a consensus in setting
up the final requirements. In the food supply chain domain, “7 grapes–Pegasus Coop” company
was subcontracted as an end user and early adopter of the corresponding pilot to transfer
knowledge about food supply chain business operations and assist in end-user requirements
elicitation. Last, in the mobile gaming domain, several hackathons were organised both
internally in Rovio, a consortium member, and with external experts in digitisation and gaming
customer services to identify business opportunities of using DLT and IoT in mobile gaming and
understand customer needs. Overall, through these processes, all relevant types of end-users
to the SOFIE pilots have been invited to discuss and to identify pilot-oriented, end-user
requirements. Once collected, these requirements were further analysed by SOFIE technical
partners to identify system requirements for SOFIE architecture and framework components.

For instance, in the SOFIE pilots there is a need for accountability and auditability between
multiple parties, who do not always fully trust each other, which can be achieved using DLTs:
storing a hash of a transaction tree to the public ledger would provide a trust anchor and further
increase the security, transparency, and auditability of the system as parties cannot modify
existing transaction logs after the hash has been publicly revealed. However, due to privacy
requirements and the need to maintain business secrets, it is not feasible to store all the data
to a single (public) DLT - instead, multiple DLTs should be used. Furthermore, various DLTs
have trade-offs in terms of throughput, latency, cost and scalability; therefore, interledger
operations between the DLTs must be supported by SOFIE. Finally, several DID operations rely
on a related DLT, therefore in order to connect identifier creation, authorisation, and
authentication functionality to the rest of the SOFIE framework, interaction between the DLT
ledger and other ledgers used by SOFIE is necessary.

Tables 6-8 list detailed requirements for the SOFIE architecture, the SOFIE framework
components and Federation Adapter, and privacy-related requirements for the implementation
and deployment of the SOFIE architecture. Each requirement is associated with a unique
reference ID, a short description, a priority level and a category. Six categories are used
(QUALITY, AUDITABILITY, INTEROPERABILITY, USABILITY, SECURITY, POLICY & REGULATION).
Two priority levels are considered according to the following rule:

Must – The requirement is a “must have”
Should – The requirement is needed for improved operation, and the fulfilment of the
requirement will create immediate benefits

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 14(41)

Table 6. Requirements for the SOFIE architecture

Req.
ID

Requirement Description Priority Category

RA01 SOFIE architecture must define a clear separation between data
management, control, and representation processes.

MUST QUALITY

RA02 SOFIE architecture must be modular to enable different use
cases and reuse of components.

MUST QUALITY

RA03 The interfaces of the SOFIE components must be well-defined
and fully documented.

MUST QUALITY

RA04 Transactions must be immutable and verifiable. Parties must not
be able to modify existing transactions without other parties
noticing it. Every party should be able to independently verify the
validity of transactions.

MUST SECURITY

RA05 The system must provide auditability. MUST SECURITY

RA06 Support for transactions, where only authorised entities can
participate. Minimal amount of information should be disclosed
during authentication.

MUST SECURITY

RA07 All external and internal interfaces and communication links of the
system must conform to the principle of least privilege2.

MUST SECURITY

RA08 The SOFIE architecture should be flexible and support different
means of user authentication, including password-based,
certification-based, and token-based.

SHOULD SECURITY

The SOFIE architecture satisfies architectural requirements (RA01 - RA08) in the following way:
Section 2.1 of this document explains how the SOFIE architecture separates data management,
control and representation, hence fulfilling the first requirement (RA01). The SOFIE architecture
is divided into six framework components and therefore satisfies requirement RA02. The
interfaces of framework components will be defined and documented in upcoming SOFIE
deliverable D2.5 (requirement RA03). Requirements RA04 and RA05 are satisfied through
usage of DLTs in SOFIE architecture, while requirements RA06 and RA08 are satisfied by the
SOFIE IAA component. The Privacy & data sovereignty component fulfils the requirement RA07
(principle of least privilege) by providing different APIs and interfaces for different uses and
requiring access control policies for all APIs and interfaces.

Table 7. Requirements for SOFIE framework components

Req.
ID

Requirement Description Priority Category

Interledger

RF01 User interaction is not required for interledger operations. MUST USABILITY

RF02 There should be support for atomic interledger operations. SHOULD SECURITY

2 https://en.wikipedia.org/wiki/Principle_of_least_privilege

https://en.wikipedia.org/wiki/Principle_of_least_privilege

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 15(41)

IAA

RF03 Resource owners must be able to delegate the authentication
and authorisation tasks for their resources.

MUST OPERATIONAL

RF04 The IAA component must provide users the capability to revoke
authorisations.

MUST SECURITY

RF05 The IAA component must allow individuals to control their
personal information and digital identities (e.g. support self-
sovereign identity technology).

MUST SECURITY

RF06 The IAA component must support secure, tamper-proof, and
verifiable logging of transactions and events.

MUST SECURITY

RF07 The IAA component must support Role Based Access Control
(RBAC).

MUST SECURITY

RF08 Cryptographic algorithms used by SOFIE should be open-
source, transparent, and as independent as possible of any
particular architecture.

SHOULD AUDITABILITY

RF09 SOFIE should support the execution of authorisation and
authentication functionality on devices with constrained
processing, storage, battery, and network connectivity.

SHOULD OPERATIONAL

Privacy & Data Sovereignty

RF10 SOFIE must follow the data minimisation principle for personal
data and only request or process what is necessary for the
situation and purpose.

MUST OPERATIONAL

RF11 Processing of individual’s personal data is justified by a valid
legal basis, e.g. a valid consent from the individual.

MUST POLICY &
REGULATION

RF12 Consent to process personal data must be revocable at any
time.

MUST POLICY &
REGULATION

RF13 SOFIE must allow organisations and actors to manage
(create, update, delete) their own data privacy policies.

MUST POLICY &
REGULATION

RF14 SOFIE should support user privacy even when aggregate
statistics are made public (e.g. using differential privacy
mechanisms).

SHOULD POLICY &
REGULATION

Semantic representation

RF15 SOFIE must define an IoT things description model based on
well-known standards (e.g. W3C standards).

MUST AUDITABILITY

RF16 SOFIE must implement standardised metadata and data
representation formats and support various data modalities.

MUST AUDITABILITY

RF17 The semantic representation model of the system must be
open and extensible by third parties (e.g. support the
extension of the existing knowledge base and associations by
extracting supplementary triples from RDF documents).

MUST AUDITABILITY

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 16(41)

RF18 SOFIE must provide service discovery and resources
selection processes based on multiple criteria over the
features, associations, and interaction patterns of integrated
resources.

MUST INTEROPERA-
BILITY

RF19 SOFIE should support the semantic update and enhancement
of resources’ descriptions and associations in a dynamic way.

SHOULD INTEROPERA-
BILITY

Marketplace

RF20 The marketplace must log the configuration of all trading
actions (including offers, bids, parameters of resources,
transactions etc.).

MUST QUALITY

RF21 The marketplace must provide actors the capability to
post/claim offers and sell/negotiate/exchange/buy resources
and digital objects.

MUST INTEROPERA-
BILITY

RF22 The marketplace must support transparent trading of
resources, i.e. the bids/offers matching process and the
payments must be transparent.

MUST OPERATIONAL

RF23 The marketplace must provide evidence once trades have
been completed and resources have been properly delivered
to the buyers.

MUST SECURITY

RF24 The marketplace should allow integration of payment
technologies.

SHOULD OPERATIONAL

Federation Adapter

RF25 SOFIE deployments can utilise one or more Federation
Adapters each capable of representing one or more IoT
Devices/Platforms.

MUST OPERATIONAL

RF26 The IoT device/platform must be able to utilise all the SOFIE
functionalities it requires through the Federation Adapter
representing it.

MUST OPERATIONAL

RF27 Federation Adapters must not require changes to the IoT
device/platform it represents.

MUST OPERATIONAL

These requirements and how the SOFIE components address them will be discussed in more
detail in D2.5.

Table 8. Privacy requirements related to implementation and deployment of SOFIE
architecture

Req.
ID

Requirement Description Priority Category

RP01 Privacy issues and business secrets must be considered
carefully when deciding what data (including
authentication/authorisation information, logs etc.) is collected,
stored or exchanged between parties.

MUST POLICY &
REGULATION

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 17(41)

The SOFIE Privacy & data sovereignty component also enables fulfilment of requirement RP01
by providing support for e.g. access control and differential privacy schemes. The SOFIE
Interledger component will also be used to limit access to data: a subset of data will be stored
in another ledger, and access to the ledger containing more data will be more restricted.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 18(41)

3. Pilot Architectures

This section details how the four pilots in the SOFIE project utilise the SOFIE framework
architecture to implement their respective system architectures. Figure 4 presents an overview
of how the SOFIE framework relates to the various pilots and the existing components used by
them. At the bottom of the figure are IoT devices and platforms, while other components used
by the pilots are in the upper part of the figure. Dashed line denotes a connection between
existing and external components or devices.

Figure 4. Overview how SOFIE framework relates to SOFE pilots and their components

The rest of this section details the architectures of each of the four SOFIE pilots. More detailed
description about pilots themselves can be found in SOFIE Deliverable “D5.2 - Initial Platform
Validation” [Oik2019].

3.1 Food Supply Chain Pilot Architecture
An overview of the food supply chain pilot architecture is shown in Figure 5. This architecture
aims to validate the SOFIE federation framework by offering two main IoT applications, namely
the usage of QR codes to encode product history from the field to the market shelf, and product
quality audits and resolution of disputes in the case of product quality degradation events. Both
these services, as well as other simple services, are provided to the actors through a Food
Supply Chain (FSC) web application.

At the lowest level, three IoT platforms are federated, namely the SynField IoT platform that
collects measurements about growing conditions in the field, a Transportation IoT platform that
collects measurements about products as they are transferred from one site to another, and the
Aberon IoT platform that is responsible for collecting measurements related to the storage
conditions of products in the warehouse. A Federation adapter is applied on top of the
northbound API of each IoT environment to adapt the corresponding data and metadata
according to the SOFIE semantic representation and, also, to support authentication and
interledger procedures. As shown in Figure 5, the architecture makes use of three different
ledger deployments to guarantee secure data storage and integrity, i.e. a private consortium

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 19(41)

ledger where all (meta)data used to enable the pilot IoT applications are stored, the KSI
(Keyless Signature Infrastructure) blockchain which is used to periodically create signatures of
these data, and a public ledger which is used to store these signatures. In addition to the SOFIE
components, the pilot architecture also introduces an additional Data Management & Reasoning
component with the following main responsibilities: i) orchestrate the data flow defined by the
architecture and take over data and metadata management, ii) expose a public API to address
the requests which are received by the actors through the SOFIE FSC web application, and iii)
supervise the status of each asset of the provenance business platform (in pilot terminology,
the boxes that carry products over the whole food chain are considered assets) and schedule
the proper execution of the services which are provided by the SOFIE components based on
actors’ activity.

M
u

lt
ile

d
g

er
o

p
er

a
ti

o
n

s
A

ll
co

m
p

o
n

en
ts

 m
a

y
in

te
ra

ct
 w

it
h

 D
LT

s

KSI

Public DLT

IoT platforms (SynField, Transportation, Aberon)

Interledger

IoT applications (QR creation and product quality audit)
Actors (producer, transporter, warehouse, supermarket)

SO
FI
E

Off-chain
communication

Authorisations,
access logs (hashes),
events, payments, etc.

Multiledger
operations

Smart contract

Applicable

Identity,
Authentication
& Authorisation

Marketplace

Semantic
Representation

Discovery &
Provisioning

Privacy &
Data Sovereignty

Consortium
Ledger

Public API

Federation Adapters

SOFIE Components

Not applicable

Pilot Software

Data Management
& Reasoning

Actors/IoT
registration

Interledger
client

Consortium
Ledger Client

Figure 5. Food supply chain pilot architecture

Table 9 briefly summarises the use cases in the pilot and Figure 6 shows how the actors of the
food supply chain interact with the system. More details of the pilot are provided in [Oik2019].

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 20(41)

Table 9: Use cases of the Food Chain pilot

ID Use case Description

1 Register crop The producer provides information about farm location, crop
establishment date and product variety which will be transferred to the
warehouse or supermarket.

2 Box product The producer specifies which boxes (of those that have been received
from the transportation company) will be used to carry product to the
warehouse. He also provides information about the cultivation process,
e.g. used fertilisers, dates of audits from public authorities, harvesting
date, etc.

3 Handover
Producer -
Transporter

The producer and the transporter agree to transfer responsibility of one or
more boxes carrying (raw) product. Parameters such as weight of boxes,
ripening level of product etc. are also confirmed between the two parties.

4 Handover
Transporter -
Warehouse

The transporter and the warehouse employees agree to transfer
responsibility of one or more boxes carrying either raw or packetised
product.

5 Register
session

The transporter establishes a session that refers to the product transfer
from the field to the fork. He specifies one or more boxes (by using their
RFID tags) to be used for carrying the specific product from the specific
producer. The boxes are delivered to the producer.

6 Pick truck The transporter specifies the truck that will be used to carry boxes from an
origin site (field or warehouse) to a destination site (warehouse or
supermarket).

7 Transfer
box(es)

Boxes carrying product are transferred from one site to another by the
transporter.

8 Handover
Transporter -
Supermarket

The transporter and the supermarket (employee) agree on the delivery
and transfer of responsibility of one or more boxes carrying packetised
product.

9 Store box(es) The warehouse employee specifies the storage rooms where each box is
placed based on the quality and safety specifications of the contained
product (e.g. ripening level, temperature etc).

10 Packetise
product

The warehouse employee deposits the raw product into the food
packaging automation system where packages are made. The packets
are placed inside one or more boxes specified by the employee.

11 Create QR
code

The supermarket employee creates a QR code for a specific box that
records the history of the carried product from the field to the supermarket.
A QR label is attached to each packet of the box.

12 Release
box(es)

The warehouse, the supermarket, or the transporter employee releases
one or more boxes which are not used any more (e.g. after removing all
the contained product).

13 Read QR
code

The customer uses his smartphone to scan a QR code (which is attached
on the surface of a package) and gets the full history of the contained
product.

14 Product audit The supermarket employee reports a quality issue related to one or more
boxes used to carry products. The consortium certifier organisation

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 21(41)

initiates the audit process to track the full history of the box(es) and identify
the business segment which is responsible for that issue. The certifier
finally informs the supermarket about the audit results.

Figure 6. Food supply chain pilot use cases

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 22(41)

3.2 Decentralised Energy Flexibility Marketplace Pilot Architecture
The main goal of the pilot is to avoid reverse power flow in the electrical grid by using electrical
vehicles to absorb extra energy produced by renewable sources, such as wind and solar.

The architecture presented in Figure 7 enables the two main actors (DSO and Fleet Manager)
to participate in the SOFIE decentralised marketplace. At the lowest level, the smart meters
(SMX), the electrical vehicles (EV), and the electric vehicle supply equipment (EVSE) IoT
systems are federated through the SOFIE Federation Adapters, providing data and services
representation according to the SOFIE semantic representation and supporting authentication
and authorisation.

M
u

lt
ile

d
g

er
o

p
er

a
ti

o
n

s
A

ll
co

m
p

o
n

en
ts

 m
a

y
in

te
ra

ct
 w

it
h

 D
LT

s

Private DLT

KSI

IoT platforms (SMX, EV, EVSE)

Interledger

Dashboards (DSO, Fleet Manager)

SO
FI
E

Off-chain
communication

Authorisations,
access logs (hashes),
events, payments, etc.

Multiledger
operations

Smart contract

Applicable

Identity,
Authentication
& Authorisation

Marketplace

Semantic
Representation

Discovery &
Provisioning

Privacy &
Data Sovereignty

Public API

Federation Adapters

SOFIE Components

Not applicable

Pilot Software

Backend

Local storage Services

Consortium
Ledger Client

Figure 7. Decentralised energy flexibility marketplace pilot architecture

A private ledger is used to run the smart contract governing the decentralised marketplace,
while the KSI blockchain is used periodically to create signatures of the private ledger status.
The SOFIE Interledger component manages the two different ledgers operating and securing
the pilot. The pilot architecture utilises also backend components in charge of exposing APIs
addressing the requests received by the actors via the dedicated dashboards and orchestrating
the communication with the SOFIE components.

The key benefit of SOFIE is the federation of existing platforms (i.e. the EV platform managed
by the EV manager and the Advanced Metering Infrastructure managed by the DSO). As a
result, the DSO and fleet manager can interoperate in the same decentralised marketplace,
keeping intact their own internal IoT platforms, resulting in a discounted EV charge, network
balancing, and efficient integration of renewable energy into the grid.

SOFIE implementation is going to produce benefits for both sides, on the one hand, services
are temporally synchronised and benefits of the actors are optimised, on the other hand, new
services can be investigated in the future and provided to third parties, opening new business

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 23(41)

models for the actors themselves. In this respect, the DSO could receive monetary incentive for
a stable prediction of the active power exchanges with the Transmission System Operator
(TSO) by balancing the loads of the charging points and the production of distributed generators.

The pilot will benefit from the application of the SOFIE components, in particular the SOFIE
decentralised blockchain-based Marketplace that, together with the Semantic Representation,
Identity, Authentication, and Authorisation, and Interledger components and the SOFIE
Federation Adapters to collect data from smart meters, EVs, and EVSEs, will contribute to the
goal of building a new decentralised, fair, transparent, and secure marketplace for the energy
flexibility. In summary, the actors involved will be provided with a rapid and user-friendly
mechanism to negotiate micro-contracts which grants security, transparency and auditability of
the operation and enables the interoperability among different siloed IoT systems.

Table 10 summarises the use cases of this pilot and Figure 8 shows how the actors interact
with the system. [Oik2019] provides a more detailed description for each use case.

Table 10: Use cases of the Electric Vehicle pilot

ID Use Case Description

1 Flexibility
Request

When the DSO foresees a potential reverse flow, the IoT system creates a new
request in the flexibility marketplace

2 EV (Electric
Vehicle) Offers
Request (Pull)

When the fleet owner performs day ahead itinerary and charging plans for its EV
fleet, he will accept the flexibility requests available in the flexibility marketplace
if the requests are compatible with his needs

3 EV Offers
Request (Push)

When the user receives a discounted price notification, he will accept the
flexibility request available in the flexibility marketplace if the request is
compatible with his transport needs.

4 EV/EVSE (EV
Supply
Equipment)
Fleet Monitoring

To perform both Energy Pilot Scenarios, Fleet Manager have to constantly
monitor the EV/EVSE fleet

5 EVSE Fleet
Management

To perform both Energy Pilot Scenarios, Fleet Manager must be able to remotely
control the EVSE, thus having the ability to remotely start or stop a charging
session or change the power output.

6 EV Load
Forecasting

To perform the Pull Offers Scenario, the Fleet Manager has to constantly
calculate EV load forecasting to estimate the amount of energy that electric
vehicles can consume to meet the DSO's flexibility demand.

7 District
Forecasting

To perform Energy Scenarios, the DSO has to constantly calculate building
consumption forecasting, PV production forecasting and manage batteries to
estimate the amount of energy demand at ASM substation

8 Electricity
Supply Request

When the Fleet Manager accepts the flexibility requests available in the flexibility
marketplace, he will request an electricity supply to energy retailers.

9 Electricity
Supply Offer

The energy retailer that offers the electricity supply at the lowest price signs a
micro contract with the Fleet Manager.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 24(41)

Figure 8. Decentralised energy flexibility marketplace pilot use cases

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 25(41)

3.3 Mixed Reality Mobile Gaming Pilot Architecture
The gaming pilot leverages SOFIE to provide new gaming features for players. In the first use-
case, the gaming pilot uses a DLT platform to provide players with direct ownership of their
assets as well as transparency and consistency of asset attributes and transactions. The SOFIE
marketplace is then used for trading gaming assets and for providing security and traceability.
In the second use-case, the pilot uses the SOFIE framework to establish a hybrid data
organisation, where some data is stored locally and some is shared, and the SOFIE identity and
authentication component secures access to the data. Finally, the SOFIE interledger module is
used for end-to-end security for data transactions. An overview of the game pilot architecture is
shown in Figure 9.

M
u

lt
ile

d
g

er
o

p
er

a
ti

o
n

s
A

ll
co

m
p

o
n

en
ts

 m
a

y
in

te
ra

ct
 w

it
h

 D
LT

s

Public DLT
(Ethereum)

DID DLT
(Indy)

IoT Beacons

Interledger

Game and Web Applications

SO
FI
E

Off-chain
communication

DID (Decentralized
Identifier) resolution

Authorisations,
access logs (hashes),
events, payments, etc.

Multiledger
operations

Smart contract

Applicable

Identity,
Authentication
& Authorisation

Marketplace

Semantic
Representation

Discovery &
Provisioning

Privacy &
Data Sovereignty

Private DLT
(Fabric)

API

Federation Adapters

SOFIE Components

Not applicable

Pilot Software

Game Server

Local storage DLT services

Figure 9. Mixed reality mobile gaming pilot architecture and their components

The gaming pilot will consist of several components:
● Mobile Application: A mobile application with a graphical user interface running on

the Android platform. Players will install the application to play the challenges, to
redeem rewards, and to trade assets on the SOFIE marketplace. This application
communicates with the game server using REST APIs.

● Web Application: A web interface for services related to the game. It is only
accessible by the game company and Point of Interests (PoI). It can be used to
configure game related services, access the Google cloud to get beacon-related
information, and also provide a GUI to do transactions with blockchain. A PoI can use
the web application to create custom challenges and also provide rewards.

● Game Server: A server that provides services to the game and also acts as
middleware for communicating with the SOFIE platform. It can be accessed through
the REST APIs. It will also be connected to a private database to store the information
related to the game and players.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 26(41)

● Hyperledger Fabric: A permissioned blockchain to store data from the game. Smart
contracts will be coded and used to generate transactions that will be recorded on
ledger.

● IoT beacons server: A server that provides services to design a new challenge and
also acts as middleware to communicate with the SOFIE platform. It is responsible for
handling IoT beacon services such as providing beacons status or pushing clues /
tasks to the games. It can be accessed through the APIs.

Table 11 summarises the use cases of the pilot and Figure 10 shows how the actors interact
with the system. [Oik2019] provides a more detailed description for each use case.

Table 11: Use cases of the mixed reality mobile gaming pilot.

ID Use case Description

1 Play challenges /
tasks

The player can join any challenge, receive the clues and compete for
the reward.

2 Redeem rewards After completing the challenge, points are calculated for each player
and the winner receives the reward (Coupons, Tokens, etc.)

3 View In-App
Advertisements

During the challenges, players will be given the option to view
advertisements.

4 Asset trading Players can trade coupons and tokens on the marketplace.

5 Design new
challenges

New challenges are created using the installed beacons. Custom clues
can be added for each beacon.

6 Access
management

New accounts for developers, PoI employees, and ad managers need
to be approved by the game company.

7 Offer rewards The offered rewards should be added to the blockchain using the
smart contracts before publishing the new challenge.

8 Publish new
advertisements

New ads for In-App advertisement can be published using the smart
contract.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 27(41)

Figure 10. Mixed reality mobile gaming pilot use-cases

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 28(41)

3.4 Decentralised Energy Data Exchange Pilot Architecture
In the Decentralised Energy Data Exchange pilot, the SOFIE federation adapters will be used
to enable data exchange with different smart meter systems:

 National data hubs - existing information systems having non-standard integration
options. The existing data hub has information about users and their consumption
history. Each data hub needs to be integrated separately.

 Single metering point - the adapter will enable requesting metering data from existing
devices.

 Wind farm network - the adapter enables data exchange with a group of smart meter
devices for consumption and also production data.

Consumption data is stored on a data owner and data hub level. When a secure connection is
established between the parties, data exchange will be performed point-to-point.

End users will interact with the system through web interfaces and mobile applications. A
middleware layer will provide different APIs for those applications to enable onboarding,
interaction with SOFIE components and other activities required for secure data exchange.
SOFIE components will be used to help manage service discovery, IAA, privacy and data
sovereignty, and for following semantic representation rules.

An overview of the Estonian energy pilot architecture is shown in Figure 11.

M

u
lt

ile
d

g
er

o
p

er
a

ti
o

n
s

A
ll

co
m

p
o

n
en

ts
 m

a
y

in
te

ra
ct

 w
it

h
 D

LT
s

Private DLT

DID DLT
(Indy)

Smart meters (national data hubs, single metering points)

Interledger

End user mobile & web applications

SO
FI
E

Off-chain
communication

DID (Decentralized
Identifier) resolution

Authorisations,
access logs (hashes),
events, payments, etc.

Multiledger
operations

Smart contract

Applicable

Identity,
Authentication
& Authorisation

Marketplace

Semantic
Representation

Discovery &
Provisioning

Privacy &
Data Sovereignty

KSI

Public API

Federation Adapters

SOFIE Components

Not applicable

Pilot Software

Data Exchange
Middleware

User
onboarding

Auditability

Services

Figure 11. Decentralised energy data exchange pilot architecture

Table 12 briefly summarises the use cases in the pilot and Figure 12 shows how the actors of
the energy pilot interact with the system. More details of the pilot are provided in [Oik2019].

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 29(41)

Table 12: Use cases of the decentralised energy data exchange pilot.

ID Use case Description

1 Configure access to
metering data

Data owner initiates the connection to the SOFIE network to enable
access to their smart meter data and related access rights.

2 Request metering
data

A service provider is interested in providing energy service to data
owner and needs access to the energy consumption data. After
access rights have been granted, the service provider can start
downloading the data from data owner and use this data to fulfil the
contract.

3 Give access rights Data owner can grant access rights for their data to service providers

4 Remove access
rights

Data owner can revoke previously granted access

5 Request audit log Any actor of the pilot can request an audit log of their activities and
interactions with other parties.

6 Handle dispute In case of dispute any actor of the pilot can get proof of their activities
related to data exchange and granting access. Data integrity and
time can be verified by an external expert.

Figure 12. Decentralised energy data exchange pilot use cases

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 30(41)

4. Framework Components and Federation Adapter

This section provides a high-level description of the six SOFIE framework components and the
Federation Adapter that can be used to implement a specific system architecture for a pilot or
any other system following the SOFIE framework architecture. SOFIE deliverable “D2.5 -
Federation Framework, 2nd version” due in August 2019 will describe the design and
implementation of the components and Federation Adapter in more detail.

4.1 Interledger
The main purpose of the SOFIE interledger component is to enable transactions between actors
and devices belonging to different (isolated) IoT platforms or silos. Each IoT silo either utilises
or is connected to one or more DLTs. The interledger component then enables interaction
between these DLTs. By providing interledger transaction capabilities, SOFIE enables the
semantic level communication between the different silos by connecting devices residing in
different silos and their respective ledger realms.

Using different DLTs is often necessary because of the advantages and disadvantages each of
them has. For instance, the Ethereum blockchain is very suitable for handling payments and
automating tasks via smart contracts when specific conditions are triggered, such as a payment.
Nevertheless, the Ethereum blockchain uses a consensus mechanism which causes delays in
the execution of transactions, which might not be suitable for an IoT use case. On the other
hand, the Hyperledger Fabric blockchain is permissioned and uses a Byzantine Fault Tolerant
consensus mechanism, which makes transactions execute almost immediately.

SOFIE’s pilots and evaluation scenarios will utilise Ethereum, HyperLedger Fabric, Guardtime
KSI blockchain and HyperLedger Indy. Cross-chain transactions can take different forms
depending on the specific scenario and its requirements. For example, interactions between a
public and a permissioned ledger can use hashed time-lock contracts to cryptographically link
transactions and events on the two ledgers. In such a scenario, the public ledger can record
payments while the permissioned ledger can record authorisation transactions and events.
Alternatively, hashes of records stored on the permissioned ledger can be periodically recorded
on the public ledger in order to provide a timestamped anchoring point, exploiting the wide-scale
decentralised trust provided by the public ledger. Finally, interactions between a public or
permissioned ledger and a ledger storing DID documents can focus on the resolution of DIDs
to DID documents. The interledger functionality can be implemented in different entities, which
include the entities that are interacting, a third party, or multiple third parties. In the latter case,
some coordination between the entities may be necessary. A detailed survey of interledger
approaches is contained in [Sir2019].

Hashed Time-Locked Contracts (HTLCs) are one type of interledger mechanism. They rely on
two mechanisms that are already widely used in the blockchain domain. The first mechanism is
a hashlock. A party creates a transaction according to the specific needs and also a hash of it
using a nonce and its private key, which makes the transaction spendable, and hence valid,
only upon revealing the used nonce, which is known only by the transaction creator. This
prevents the transaction receiver from spending the transaction unless the creator reveals the
used nonce. In this context, revealing the nonce is associated with a condition verified on
another blockchain. The second mechanism is timelock. A transaction containing a time-lock
allows its creator to revert it in the case of the transaction not being finished within the agreed
upon timeframe. Put together, Hashed Time-Locked Contracts allow for conditional transaction
execution (hashed contracts) without holding the transaction creator resources involved in the
transaction indefinitely in case the conditions are never met (time-locked contracts).

In SOFIE, HTLCs can be used to e.g. enable secure actuations, where a permissioned DLT first
requires a cryptographic proof of payment before allowing access to the resource. Such
payment can be performed on the public Ethereum blockchain, and the information stored on
Ethereum only contains a hash of the actual payment. The preimage of the transaction hash

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 31(41)

can then be used to prove the authenticity of the payment, so that the receiver can verify whether
it fulfils the agreed upon conditions. If the conditions are met, access is granted to the IoT device
or a set thereof. Furthermore, these transaction receipts are auditable by both the members of
the consortium ledger i.e. the private DLT realm, and by the independent auditors. The public
blockchain also extends the non-repudiation guarantees of the private DLT so that it becomes
resistant even to collusion of the consortium ledger members.

If the federated IoT silo relies upon a consortium ledger, these consortium ledgers can be
connected via SOFIE to the degree allowed by both the device owner, and the connected ledger
governance or owner, provided that the silo has been enabled to support SOFIE federation.

4.2 Identity, authentication, authorisation
The goal of the Identity, Authentication, Authorisation (IAA) component is to provide
mechanisms that can be used for entities’ and services’ identification and authentication, and
consumers’ authorisation. To this end, it supports the following Identification/Authentication
mechanisms: URIs (e.g., Web of Things URIs) for identification coupled with digital certificates
for authentication, usernames for identifications bounded to secret passwords used for
authentication, and decentralised identifiers (DIDs) associated with a DID document3, and used
for authentication. A popular DID implementation, also considered by our component, is
Hyperledger Indy.4 Consumers’ authorisation is primarily implemented with the widely used
OAuth2.0 protocol. The IAA component supports vanilla OAuth2.0, OAuth2.0 tailored for
constrained devices (as defined by the IETF ACE-group), and OAuth2.0 combined with DIDs.
Furthermore, it supports various token types and encodings. In addition to OAuth2.0, the IAA
component supports the UMA (User-Managed Access) protocol.

The IAA component can use smart contracts in order to link authorisation decisions with
payments, as well as for logging transaction-specific information that can be later used for
auditing and dispute resolution. Moreover, authorisation decisions can be linked to IoT events
that are recorded on the blockchain.

4.3 Privacy and Data sovereignty
The goal of the Privacy and Data sovereignty component is to enable data sharing in a
controlled and privacy preserving way. This component considers privacy preservation as a
two-dimensional problem. The first dimension concerns the privacy of the data provider,
whereas the second dimension concerns the privacy of the data consumer. Data provider
privacy is related to the amount and the accuracy of information a 3rd party (including the
consumer) can deduce about the provider from all the available data. This can be achieved by
reducing or obfuscating the data stored on a public ledger. A mechanism to reduce the data is
to store only hashes on a public blockchain, while the actual information is stored in
private/permissioned ledgers. Mechanisms to obfuscate data include differential privacy
mechanisms. In particular, this component enables election of a special purpose node that acts
as a data accumulator which is in charge of adding noise to the (encrypted) collected data. An
alternative can be adding noise directly at the sources; however, in order to achieve the required
amount of privacy and accuracy of the results, this approach requires a large number of sources.
The coordination among the entities, namely the data provider, data consumer, and data
accumulator, is achieved through a smart contract. Consumer privacy is related to the amount
and the accuracy of information a 3rd party (including the provider) can deduce about the
consumer during the authentication, authorisation, and payment processes, and is enabled
through the use of verifiable credentials. To this end, our component supports attribute-based
access control where consumers can prove the possession of some attributes using verifiable
credentials and zero-knowledge proofs. The underlying mechanisms support the minimum

3 Organisational DID documents may be stored in the ledger for extra security, auditability, and

availability.
4 https://www.hyperledger.org/projects/hyperledger-indy

https://www.hyperledger.org/projects/hyperledger-indy

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 32(41)

disclosure of information necessary to obtain a service. Additionally, multiple identifiers can be
used to further improve privacy.

Data sovereignty is achieved through access control mechanisms. Our component supports
two access control schemes, namely access control through delegation to an authorisation
server [Fot2018], and crypto token-based access control imposed by smart contracts. The first
scheme enables data owners to define an authorisation server (AS), i.e., a special type of
mediator that vouches about the eligibility and/or handles payments made by a consumer to
access a particular resource. In this scheme a smart contract is used as an AS registry, which
handles payments and can verify that an AS is indeed authorised by an owner to implement the
access control policy. Verification of the AS can be performed using verifiable credentials. The
second scheme leverages blockchain-backed crypto tokens and enables owners to define
access control policies based on these tokens. Crypto tokens can be granted only through a
blockchain transaction and blockchain-specific functions, such as transfer, aggregation, etc.,
can be applied on these tokens. On the other hand, an access control policy can be verified
either by interacting with a smart contract in the blockchain or by executing the smart contract
locally.

4.4 Semantic Representation
Communication between SOFIE framework components and different IoT devices requires
common understanding of the Thing, Service, and Data descriptions. The Thing Description
(TD) allows other entities to discover the properties of the Things and Services using commonly
agreed definitions. Similarly, the Data Model used in the SOFIE components and other entities
defines the way the data is structured. To be semantically interoperable, all devices and
software components have to use similar descriptions.

The Semantic Representation component handles the required TD and data model processing
as well as the potentially needed translations between different data models.

4.4.1 Service and Thing descriptions

The goal of the Service/Things description model of SOFIE framework is to define a common
representation model for IoT Things and services that enables interoperability and automation
in the deployment of enabling services and applications on top of federated IoT environments.
To this end, the SOFIE framework makes use of the W3C WoT Things Description model
[Kae2019].

WoT relies on well-established web technologies and RESTful interfaces to expose IoT Things,
services and resources. It introduces a conceptualisation of Web resources into the IoT world
by modelling the notions of Thing Description and Interaction, as the core WoT resources. By
making use of W3C semantics vocabulary, the WoT TD model accomplishes the following two
critical objectives: i) it describes Things instances with general metadata (such as name, ID,
human-readable information etc.) and makes these descriptions exchangeable with other
agents, and ii) it exposes Things to the Web through a set of interactions, which correspond to
their interface to the physical world. In particular, the model is based on the following
technologies:

● Semantic metadata for the Thing itself by using WoT semantics vocabulary.
● An interaction model based on WoT's Properties, Actions, and Events paradigms.
● A JSON based semantic schema to make data models machine understandable.
● Several web linking features to establish relations among Things.

In SOFIE, WoT TD modelling can be implemented e.g. as part of the Federation Adapter, which
is responsible for adapting and annotating the corresponding, federated IoT environment. The
hierarchical view of the used classes and fields is depicted in Figure 13. The WoT TD model
can be seen as the index.html for Things, as it provides the entry point to the SOFIE discovery
and provision services. As already mentioned, the used information model is based on the W3C
semantic vocabulary, which is split into three independent parts referring to the TD core model,

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 33(41)

the TD data schema model, and the TD security model, respectively. The used representation
format is JSON-LD that enables more advanced and enriched semantic processing than raw
JSON (which is also supported) of the metadata and is also aligned with Linked Data.

Figure 13. Overview of TD classes and vocabulary used by SOFIE

4.4.2 Data description

Data description can be divided into two separate models: a high level information model and a
more detailed data model. In this document, guidelines are given about what is expected from
the information and data models. SOFIE deliverable D2.5 will contain description of high level
information models, while the detailed data models will be fully described in SOFIE deliverable
“D2.7 - Federation Framework, final version”.

SOFIE Information Model
The information model describes each component’s functionality as well as the interfaces it uses
to communicate with other components. This model does not go into implementation details but
remains on a high level to give the reader an understanding of the capabilities that the
corresponding component provides. In this document, the high-level descriptions of the SOFIE
components are given in Section 4. SOFIE deliverable D2.5 will have a more detailed
description of the components used in the SOFIE platform, and it will also describe the
interfaces that the components have.

Data Models
Following the defined Information Model, separate Data Models are generated for each
implementation of the SOFIE framework, so e.g. each SOFIE pilot uses a different data model.
Each implementation is free to choose the most suitable domain-specific vocabulary and the
data schema to structure the data model depending on the type of data used and the other
parties the data is being shared with. The pilots or the party implementing the sematic
representation component must then create a document specifying the domain-specific
vocabulary. This document must be accessible to third parties to let them create a compatible
Thing Description and exchange data with the system.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 34(41)

The data model is not static but can evolve during the system lifetime: data model structure,
vocabulary terms, devices properties, actions, security patterns, etc. can all be updated. The
data model evolution involves both the TD data schema and the TD implementation (i.e.
vocabulary, devices, etc.). TD data schema can be updated when a new version of the WoT TD
standard is released, or it can be updated using the context extension functionality of the WoT
TD standard. The TD implementation can be updated adding new information in the TD by
modifying the TD file. The SOFIE framework does not provide a standard way to update the TD,
but rather the party implementing the framework decides if the TD can be updated, how these
updates happen, and who can update the TD. To be effective, the updates must be visible to
all the partners utilising the TD. The SOFIE framework does not provide a standardised
procedure to share the updated data model, but the system developers choose the data model
sharing implementation that suits best the scope of their system, i.e. third parties can send or
retrieve updates from the Federation Adapter component, the data model updates can be
shared between all the parties involved in the project, etc.

Data retrieval and handling
The TD defines the services that are provided by the Things. In addition, the information model
describes the interfaces that are used by the components and entities. Using this information
any entity can communicate with any other entity.

Once the data is retrieved, the parsing of data can be done using the defined data model. As it
is unlikely that all components and entities use the same data model, a translation may be
needed from one model to another. This will be done in the Semantic Representation module.

4.5 Marketplace
The goal of the SOFIE marketplace component is to enable the trade of different types of
resources (e.g. electricity for charging a vehicle) in an automated, decentralised, and flexible
way. In this context, a decentralised marketplace is a marketplace that does not have a single
entity owning or managing it, which in turn increases competition and enhances its security,
resiliency, transparency, and traceability. The marketplace can be partially decentralised, when
e.g. a group of independent agriculture producers and retailers are managing it, or fully
decentralised where anyone can join and use the marketplace.

The actors (buyers or sellers) on the marketplace must be able to negotiate trades, perform
payments, and verify that the trade has been carried out successfully with as little user
interaction as possible. The marketplace must also provide auditability to help with potential
dispute resolutions.

Resources exchanged on the marketplace can include both physical and virtual goods such as
energy, access to data, actuation, or spaces, in-game assets, and cryptocurrencies.

The main functionality of the SOFIE marketplace is to:
● Allow actors to list resources on the marketplace and bid for them.
● Allow actors to view and update resource descriptions.
● Match bids and offers.
● Provide evidence that the trade has been carried out and resources have been correctly

exchanged.
● Keep history of all trading actions (such as offers, bids, resource descriptions,

transactions, etc.).

The SOFIE marketplace is implemented on top of an Ethereum blockchain utilising smart
contracts, though the marketplace may also interact with other kinds of DLTs. The usage of a
DLT facilitates interoperability between the different actors by providing high availability for
shared immutable data, provides a rapid and user-friendly mechanism to negotiate micro-
contracts, and affords security, transparency, and auditability.

In the future, the SOFIE marketplace will also support various sophisticated algorithms to
implement dynamic pricing models, in addition to simple auction-like bids and offers.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 35(41)

4.6 Provisioning and Discovery
In a network scenario, provisioning and discovery protocols make it possible for client
applications to use the services and devices available on the network. This applies to both
hardware resources (e.g. network printers) and software (e.g. multimedia streaming).
In this scenario, we can easily identify the following roles:

● Service Providers: network nodes offering a specific service
● User Agents (or Clients): devices using a service offered by service providers
● Service Brokers: network nodes in charge of coordinating the way services are

discovered and providing information about the services present in the network.

From the architecture point of view, we can classify services into Centralised services, where
clients send requests to selected devices acting as service brokers, which reply with information
about the required services (typically, the location of the service on the network), and
Decentralised services in which each client broadcasts its requests and service providers send
back replies accordingly.

In SOFIE, a hybrid approach will be used: the Federation Adapters act as local service brokers
within a single framework implementation, while a central Service Broker communicates with
the adapters, interrogating them to gather the required service descriptions adopting the WoT
Thing Description (TD) model: an abstraction describing physical or virtual entities interacting
in the web of things.

4.7 Federation Adapter
The purpose of the federation adapter is to interface the SOFIE components with existing IoT
platforms. This allows the IoT platforms to interact with SOFIE without requiring any changes to
the IoT platforms themselves. Depending on the functionality the IoT device itself already
provides, the Federation Adapter can then provide e.g.

 communication protocols for interacting with the IoT Device/Platform

 an adaptation layer for data and resources, so as to enable unified syntactic
and semantic interoperability

 support for secure usage of platform resources, services and data (in connection with
the IAA component).

Different SOFIE deployments will utilise different IoT platforms, and therefore use different types
of federation adapters. As an example, in the Energy Flexibility Marketplace pilot the Federation
Adapter is based on the Orion Context Broker (CB), which is used to manage context
information in smart applications, enabling updates and access to data. The CB can also be
used to create a shared information model that can be used by service providers to offer their
services, promoting interoperability across different systems. In the pilot, to enable the smart
meters used in the pilot to work in conjunction with the CB, a specific Bridge software module
has been developed: once configured with the parameters needed to point to a specific smart
meter (ID, network address), the bridge formats the information received and communicates
with the CB.

SOFIE deliverable D2.5 will describe in more detail federation adapters used by SOFIE pilots.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 36(41)

5. External Components and Interfaces

This section describes the external components and interfaces used by SOFIE.

5.1 Web of Things (WoT) discovery
The WoT model5 enables the retrieving of lists of Web Things in response to an HTTP GET
request on the destination URL of a things link.

The provisioning and discovery SOFIE component, unifying the different IoT platforms under
the same TD model, enables interoperability with existing WoT-compliant platforms.

5.2 FIWARE
The FIWARE platform provides a group of powerful APIs that ease the development of Smart
Applications in multiple vertical sectors6. In context/data management, FIWARE delivers a
number of Generic Enablers (GEs) to collect, exchange and analyse data in an efficient way7.
One of the core GEs is the Orion Context Broker, an implementation of the NGSIv2 REST API8.

The Context Broker operates together with different platform components, supplying context
data (from IoT sensors for example), processing, analysing or visualising data.

The usage of the Orion Context Broker is the minimum requirement for an application to qualify
as “Powered by FIWARE” so, in order to communicate with external platforms using FIWARE,
the provisioning and discovery SOFIE component is compatible with the NGSI v2
specifications9. In this way, any other siloed platform compliant with FIWARE will be able to be
"SOFIE-compliant" through the NGSI broker.

5 http://model.webofthings.io
6 https://www.fiware.org
7 https://www.fiware.org/developers/
8 https://fiware-orion.readthedocs.io/en/latest/
9https://swagger.lab.fiware.org/?url=https://raw.githubusercontent.com/Fiware/specifications/master/Op
enAPI/ngsiv2/ngsiv2-openapi.json

http://model.webofthings.io/
https://www.fiware.org/
https://www.fiware.org/developers/
https://fiware-orion.readthedocs.io/en/latest/
https://swagger.lab.fiware.org/?url=https://raw.githubusercontent.com/Fiware/specifications/master/OpenAPI/ngsiv2/ngsiv2-openapi.json
https://swagger.lab.fiware.org/?url=https://raw.githubusercontent.com/Fiware/specifications/master/OpenAPI/ngsiv2/ngsiv2-openapi.json

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 37(41)

Figure 14. Sample IoT over MQTT architecture based on FIWARE components10

Figure 14 shows an example FIWARE architecture using the Orion Context Broker and the
JSON IoT Agent. The IoT Agent is the FIWARE component acting as a bridge between simple
JSON protocol and NGSI Context Brokers. The SOFIE Federation adapter is connected to the
Context Broker.

10 https://fiware-tutorials.readthedocs.io/en/latest/iot-over-mqtt/index.html

https://fiware-tutorials.readthedocs.io/en/latest/iot-over-mqtt/index.html

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 38(41)

6. Deployment Considerations

This section discusses the different options for integrating existing systems with SOFIE.

6.1 Module Categories
While a specific deployment architecture cannot be mandated (deployment is within an
organisation’s own control boundary), it is still possible to describe some typical deployment
scenarios, which will in turn assist discussions on concrete technologies and implementation
architectures.

There are essentially two different approaches to a deployment: 1) organisational silos extended
with SOFIE-compatible interfaces and 2) building a SOFIE-enabled system from scratch.

Overall, different modules within the system can be described as:

 Adapters when they implement a SOFIE interface either as inbound (service) or
outbound (client) protocol, and they offer an open interface for the organisation or
developer to integrate into. An example of this type would be a code library implementing
a SOFIE interface client code, and the business logic would use this library to interface
with a SOFIE-compliant system.

 Translators when they implement two different interfaces (a SOFIE one and another
one), contain both the client and server capability, and translate one protocol to another.
An example of this would be a program that serves a SOFIE-compliant interface for
retrieving data from IoT devices, and forwards these requests to another system.

 Gateway, while technically also a translator, would be a module that talks to a specific
type of system, for example, an IoT gateway.

 Native, e.g. they implement a SOFIE-compliant interface directly.

In most cases SOFIE will utilise existing protocols, for which widespread implementations for
interfacing are likely to already exist. From SOFIE’s point of view, even if an organisation uses
these existing implementations, they would be categorised as native interfaces. “Adapters” and
“translators” within SOFIE’s scope are relevant only for protocols or combinations of protocols
that are SOFIE-specific (see the SOFIE Deliverable “D2.5 - Federation Framework, 2nd
version”). Note that this means that a set of protocols may be standard, but there exists a SOFIE
adapter implementation that combines different protocol implementation to provide a specific,
more narrowly defined functionality (such as a specific business platform).

6.2 Extending existing systems
An important consideration for the SOFIE architecture is how well it is suited for use with existing
(aka legacy) systems. It is unlikely that a new system will be developed entirely from scratch -
more likely it will be an adaptation of an existing system, or a new module that employs existing
systems and interfaces. For this purpose, Figure 15 shows some potential approaches that can
be taken when the goal is to add SOFIE-compliant interfaces to an existing system. Each of the
approaches a-f is discussed below.

Case a: A separate adapter service (or a translator, depending on the complexity of the task) is
developed, it connects to the existing service interfaces and provides a new interface. It is
possible that some operations on the new interface do not have a corresponding primitive
operation on the existing interface, requiring the adapter to be able to perform multiple
operations on the legacy system to provide support for the new interface.

Case b: Alternatively, the new interface can be implemented directly on the existing service.

https://docs.google.com/document/d/1iNx4LAUnemXV3De8uYYJqfeol_u8BjlWoEE9mQVGrAI/edit#fig_extend_legacy

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 39(41)

Figure 15: Different approaches to extending existing systems for SOFIE compatibility.

https://docs.google.com/document/d/1iNx4LAUnemXV3De8uYYJqfeol_u8BjlWoEE9mQVGrAI/edit#figur_extend_legacy

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 40(41)

Case c: If the old interface needs to be supported, one possibility is to add a new interface that
co-exists with the existing interface. This may require interlocking between the interfaces to
ensure consistency.

Case d: One option is always to completely rewrite the existing system from scratch. As noted
earlier, this is often not a realistic approach unless the service being replaced is lightweight.

Case e: Even if a rewrite is possible as in previous case, it may be necessary to support the old
interface for legacy clients.

Case f: If the legacy service is a front to existing services such as a network of IoT devices, one
option is to let the new interface access the backing resources directly while maintaining the old
interface for compatibility reasons.

Eventually the approach taken depends on the particulars of each case and no specific
approach can be recommended or assumed.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.4 – Federation Architecture, 2nd
Version

Security: Public Date: 20.12.2019 Status: Completed Version: 1.10

SOFIE 41(41)

References

[Fot2018] N. Fotiou, V. A. Siris, G. C. Polyzos, "Interacting with the Internet of Things Using
Smart Contracts and Blockchain Technologies", Proc. of Security, Privacy, and
Anonymity in Computation, Communication, and Storage 2018 (SpaCCS 2018),
Melbourne, Australia, 2018

[Kae2019] S. Kaebisch, T. Kamiya, M. McCool, and V. Charpenay. "Web of Things (WoT)
Thing Description," W3C Candidate Recommendation 16 May 2019, May 2019.
Available at: https://www.w3.org/TR/wot-thing-description/.

[Mac2006] C. M. MacKenzie et al. “OASIS Reference Model for Service Oriented Architecture
1.0”, OASIS Standard, 12 October 2006. Available at: http://docs.oasis-
open.org/soa-rm/v1.0/.

[Oik2019] I. Oikonomidis et al. “SOFIE Deliverable D5.2 - Initial Platform Validation”, June
2019. Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-
Initial_Platform_Validation.pdf.

[Ree2019] D. Reed, “Decentralized Identifiers (DIDs) v0.13 – data model and syntaxes for
decentralized identifiers (DIDs),” W3C Community Group Draft Report, June 2019.
Available at: https://w3c-ccg.github.io/did-spec/.

[Sir2019] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, G. C. Polyzos,
“Interledger Approaches,” accepted for publication in IEEE Access, 2019.

https://www.w3.org/TR/wot-thing-description/
http://docs.oasis-open.org/soa-rm/v1.0/
http://docs.oasis-open.org/soa-rm/v1.0/
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-Initial_Platform_Validation.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-Initial_Platform_Validation.pdf
https://w3c-ccg.github.io/did-spec/

