

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D2.3

Federation Framework, 1st version

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 31.10.2018

Author(s) Santeri Paavolainen (AALTO), Mikael Jaatinen (LMF),
Vasilios Siris (AUEB-RC), Spyros Voulgaris (AUEB-RC),
Nikolas Fotiou (AUEB-RC), Tommi Elo (AALTO), George
Xylomenos (AUEB-RC), Yannis Oikonomidis (Synelixis),
Sotiris Karachontzitis (Synelixis), Pekka nikander (AALTO)

Responsible person Santeri Paavolainen (AALTO),
santeri.paavolainen@aalto.fi

Target Dissemination Level Public

Status of the Document Completed

Version 1.0

Project web-site https://www.sofie-iot.eu/

mailto:santeri.paavolainen@aalto.fi
https://www.sofie-iot.eu/

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 2(36)

Table of Contents

1. Introduction ... 4

1.1 Overview .. 4

1.2 Structure ... 4

2. Components .. 5

2.1 Protocols .. 5

2.1.1 General ... 5
2.1.2 IoT devices ... 6
2.1.3 Distributed ledgers and blockchains ... 6

3. Business platforms ... 8

3.1 Overview .. 8

3.2 Integration .. 8

4. Offer marketplace ... 9

4.1 Overview .. 9

4.2 Process flows ... 10

4.2.1 Marketplace lifecycle management ... 10
4.2.2 Information queries ... 11

4.2.3 Request lifecycle management ... 12
4.2.4 Making offers .. 14

4.2.5 Offer blinding... 14
4.2.6 Escrow .. 15

4.3 Protocols .. 15

4.3.1 Service description .. 15
4.3.2 Marketplace request ... 16
4.3.3 Marketplace offer .. 16

4.3.4 Decision result .. 16

5. Provenance chain for trackable assets ... 18

5.1 Overview .. 18

5.2 Terminology .. 19

5.3 Assets and entities ... 19
5.3.1 Asset lifecycle ... 19
5.3.2 Nodes and the flow of assets and containers ... 20

5.3.3 System entities .. 23

5.4 Claims, information, purposes and the provenance chain 24

5.4.1 Overview ... 24

5.4.2 Purposes of information use ... 24
5.4.3 Claims and information ... 25

5.5 The “System” .. 26

5.6 Interactions ... 26

5.6.1 Overview ... 26
5.6.2 Hand-off of assets ... 26
5.6.3 Asset creation ... 27
5.6.4 Asset release .. 28
5.6.5 Asset finalization ... 28

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 3(36)

5.6.6 Containers and container-specific claims .. 28
5.6.7 Consumer interaction .. 28
5.6.8 Dispute resolution ... 30

5.7 Quality control .. 31

5.8 Request traceability .. 31

5.9 Examples .. 31

6. IoT resource access ... 32

6.1 Overview .. 32

6.2 Process flows ... 32

6.2.1 Configuration and smart contract creation .. 32
6.2.2 Setup .. 33

6.2.3 Resource access .. 33

7. Conclusions .. 35

References .. 36

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 4(36)

1. Introduction

This document is work-in-progress and will be updated during the SOFIE project.

1.1 Overview

This document specifies interfaces and protocols that implement the SOFIE Architecture
requirements, and “business platform” pattern in general, and several specific business
platform models used in the SOFIE project. Please note that the SOFIE Architecture sets out
generic requirements and does not itself specify any particular set of technologies to be used.
This document also tries to follow the architectural requirements on backward compatibility, so
that future versions of the framework specification are as much backward compatible as
feasible.

This document does not prescribe any particular programming language, nor any runtime or
deployment environment. There does exist, however, a SOFIE Reference Platform that
implements all the required components specified in this document, and does this within the
context of a specific language and deployment environment.

“Business platform” is not a technical term — instead it refers to a platform where business
takes place. Business platforms1 can vary from the everyday and mundane, such as a grocery
store (which features a physical space open at specified times of day, open access with the
proprietor reserving the right to expulse badly behaving individuals, with the exit criteria of
having paid for the selected merchandise), to elaborate, such as multiparty auctions (think of
flower auctions in the Netherlands), or market matchmaking platforms (Apple Store, Google
Play).

Within the SOFIE project, several generic business platform models have been identified.
These are not specific business platforms, but generic implementations that can be configured
for different situations, and that would often require custom business logic to be included.

1.2 Structure

A detailed list of protocols, interfaces and approaches for the SOFIE framework is outlined in
Section 2, below. See the SOFIE Architecture document for the general requirements that
apply to the framework and its implementations. Section 3 discusses integration patterns for
business platforms and business platform templates. Specific business platform templates are
described in numbered sections thereafter. Section 4 describes an offer marketplace, Section
5 provenance tracking for trackable assets, and Section 6 IoT resource access.

1 Not to be mixed with “platform business”, which is a specific business strategy, which may or may not result in the
existence of a business platform. Not all business strategies are business platforms.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 5(36)

2. Components

The subsections below lists different use cases and protocols that MUST be used, when
relevant, for the implementation of SOFIE components and software. If there is no suitable
use case for a specific situation, the implementation may choose any protocol, but with the
caveat that in a future SOFIE Framework specification version that particular area may end up
to be covered by the specification.

2.1 Protocols

2.1.1 General

The “general” protocol requirements apply to most situations, except for cases specifically
listed in further sections.

Table 1: Situations and protocols.

Situation Protocol Notes

General remote
resource access
protocol

HTTPS

Resource access
pattern

REST “REST” is not a protocol per se, but an
approach for defining resource access
patterns.

Data interchange
format

JSON

Data linkage Linked Data, JSON-LD2 When feasible, data linkage
information should be provided

REST API descriptions OpenAPI 3.03

IoT device integrations W3C Web of Things4 This includes linkage to IoT devices,
including gateways, description of
interfaces and actions supported by
IoT devices etc.

Delegated application
authorization

OAuth2

Delegated party-to-
party authorization

User-Managed Access
2 (UMA2)

Federated
authentication

OpenID Connect
(OIDC)

Data governance
information

?

2 https://json-ld.org/ and https://www.w3.org/2018/json-ld-wg/
3 https://www.openapis.org/
4 https://www.w3.org/WoT/

https://json-ld.org/
https://www.w3.org/2018/json-ld-wg/
https://www.openapis.org/
https://www.w3.org/WoT/

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 6(36)

Data provenance
information

?

Data ontology
categorization

?

Payments W3C Web Payments5 For generic situations, methods
applicable to specific situations (on-
ledger payments, for example) are not
covered by this

2.1.2 IoT devices

Specifically, protocols which are suitable for resource-constrained devices. In general, one
should use general protocols such as HTTPS as they allow maximal interoperability. However,
in some situations a resource-constrained device may not be able to operate a full HTTP/TLS
stack, being restricted to a lower-level protocol. Also note that if a resource-constrained device
does not operate an Internet Protocol stack at all, and is connected through a non-IP protocol
to a gateway, the specification really applies to the gateway, and not the device itself.

Table 2: Situations and protocols for IoT devices.

Situation Protocol Notes

Overall W3C Web of Things The W3C WoT patterns in general
must be followed.

Communication
protocol (constrained)

CoAP or MQTT

Session security DTLS (or TLS) Pre-shared and other keying (detailed
later)

2.1.3 Distributed ledgers and blockchains

At this stage in blockchain development, it is impossible to mandate the use of a particular
blockchain, although the use of Ethereum, Hyperledger Fabric and Guardtime KSI Blockchain
can be suggested. Thus, the protocol descriptions below cover only some very general cases,
or a specific mature protocol on a particular ledger technology. In some situations we specify
multiple protocols or implementations in which case any of them is suitable (although this may
lead to a situation where general interoperability would require clients to implement multiple
protocols, in the case of blockchains this is not a general problem, since specific services are
usually closely coupled to a particular set).

Table 3: Situations and protocols for blockchain-related protocols. Note that many of these are
specific to a particular blockchain implementation or network.

Situation Protocol Notes

Interface discovery ERC-165 (Ethereum)

Payments Native format
(blockchains with

5 https://www.w3.org/blog/wpwg/

https://www.w3.org/blog/wpwg/

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 7(36)

cryptocurrencies)
Interledger Protocol6

Distributed identity Sovrin7
uPort8
Veres One9

Interledger operations Hashed time-locked
contracts

6 https://interledger.org/
7 https://sovrin.org/
8 https://www.uport.me/
9 https://veres.one/

https://interledger.org/
https://sovrin.org/
https://www.uport.me/
https://veres.one/

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 8(36)

3. Business platforms

3.1 Overview

This section contains an overview of what business platforms (BPs) are listed and how their
descriptions are structured. The individual BPs are described in the following sections. Note
that in some cases the description can be very brief, in which case a link to more
comprehensive document is provided (for example, in a case that the business platform has
an implementation template residing in a public repository).

The following business platforms, implementations (within the SOFIE project), and their
current status are listed below:

Business Platform Status Description

1 Offer marketplace Under development Generic model of request-offer (or
proposal-bid) batch transaction
model

2 Provenance chain for
trackable assets

Under design Establishment and recording into
ledger provenance information for
trackable assets

3 IoT resource access Under design Access mediation to generic IoT
resources

3.2 Integration

The term “business platform” refers to a comprehensive whole upon which a business typically
operates. Such a platform typically comprises of multiple different components. A business
may operate on a platform that consists of a batch-auction marketplace, sourcing
management, billing and invoicing systems, etc. Another business may use some of these
components, but arranged differently for their business platform. However, for our purposes, a
“business platform” is something that can (at least theoretically) be used singularly to
implement an actual business platform (assuming that owning and operating that particular
platform would be the sole purpose of the business platform). This is a question of context and
scope.

It is assumed that the business platforms described below will form only a single component of
a comprehensive and deployed business platform.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 9(36)

4. Offer marketplace

4.1 Overview

The offer marketplace is a service that operates a batched, limited-time request-offer
marketplace. The marketplace has the following defining characteristics:

● Request-driven: There is a request for offers, with the request defining different
conditions that the offers must conform to.

● Time-limited: Each offer to a request must be submitted within a limited time window.
● Batched: The requestor picks out winning offers only at the end of the round (end of

time window).
● Non-repudiability: The marketplace offers non-repudiation guarantees for both

requests and offers. This can be fully or partially implemented using a distributed
ledger.

This offer marketplace can have different configurable or customizable aspects that give each
specific offer marketplace their specific form, such as:

● Can offers be made by anyone, is some form of identification required (and what), or is
there some form of pre-approval process for parties making offers?

● Can a single entity make multiple offers (exclusive to each other), and can an offer be
revoked within the time window?

● Are the details of requests public, or available only to identified or pre-approved
parties?

● Are the details of offers public, or hidden to other parties than the requestor?
● Are the details of offers available to the requestor until the end of the round? (Single or

double envelope?)
● Are the details of the selection open to everybody, or pseudonymous, or can selected

offers be identified by the offer-maker without divulging information to non-selected
parties?

● Are requests and offers signed? (This gets into the whole question of signed
certificates, or public keys, or public key hashes etc. etc.)

● Can requests be cancelled, or are they required to run to completion?
● Additional details on the interaction between non-DLT and DLT components, while part

of the implementation, also affect the transparency and trustability of the system, such
as:

○ Are the details of the request stored in the DLT, or only the minimal (non-
repudiable) reference to it in an external system?

○ Are offers made directly to the DLT (with full information), is the offer in the DLT
a non-repudiable reference to one retained by the offer-maker, or are the offer
details first stored in an external service with non-repudiable proof of receipt?

○ Are requests and offers stored in the DLT at all, in any form, even if finalization
results are stored there? If so, this would require signing and countersigning of
requests and offers to guarantee non-repudiation.

○ If offer details are held by offer-makers, is there some form of external
commitment required (e.g. escrow) to ensure the details are published in time?

○ Is the offer selection made on the DLT (by use of a smart contract, for
example), or only partially, or fully outside of the DLT?

Furthermore the actual request and offer formats, apart from generic aspects, are dependent
on the actual business performed on the marketplace. Note also that not all implementations
following the general offer marketplace pattern necessarily support all of the options listed
above. Thus, while the generic aspect of the offer marketplace BP defines the minimum
required to operate any kind of marketplace following the specifications listed above, a

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 10(36)

specific instantiation of the marketplace can include further and more refined information on
the request and offers such as logical or geographic constraints, price tiering etc. (See also
the section on protocols below for more information on how the protocols vary depending on
the marketplace type.)

4.2 Process flows

The way an offer marketplace works is a sequence of steps, some of them embedded within
others. The primary ones are:

1. Marketplace lifecycle management, e.g. commissioning and decommissioning --
creation of the marketplace smart contract, and its (potential) destruction. (While a
single non-DLT service component may operate on multiple contracts, for trustability
reasons a single “marketplace” should be defined only as the lifetime of its smart
contract.)

2. Information queries, such as retrieving metadata of the marketplace itself, retrieving
information on requests, on offers (if allowed), and request’s final status (selection).

3. Request lifecycle management, e.g. creation and finalisation (selection process).
4. Making offers.

4.2.1 Marketplace lifecycle management

At least on Ethereum, smart contracts cannot be modified after their creation. While it is
possible to use contract proxies, their use can make the system less trustworthy as any
contract validation has limited usefulness10. The overall lifecycle management events are
described in the figure below.

Figure 1: Offer marketplace lifecycle events.

10 A contract proxy is one that delegates calls to it to another contract. The target contract is defined as a variable,
and can be changed during the contract proxy’s lifetime. Thus, auditing the contract proxy and a target contract

does not give any assurances if and when the target contract is changed later.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 11(36)

Since deployment of the backend requires knowledge of the smart contract address,
conceptually this has to occur later in the process (although, since the backend is mutable,
this does not really matter in practice). On the other hand, some information required for the
smart contract (backend URL discovery address etc.) need to be stored, but not necessarily
immutably in either the contract and/or in well-known Ethereum registry services (global
registrar, hash registrar and URL hint registrar) after the contract creation.

During decommissioning, the reverse needs to happen — services unregistered, the contract
killed and the deployment removed. (Although, the contract is not required to have a kill
switch, so it might be permanent. In this case the contract would be unregistered and left
otherwise unused.)

The commissioning process may include other steps such as smart contract auditing,
publication of the smart contract address etc. and other assurance steps that occur mostly on
the organizational or communication level between the marketplace owner and (potential)
marketplace participants.

4.2.2 Information queries

Information queries can be sent to either the smart contract, or the backend. Some of these
may require that the caller is authenticated or identified. Any discovery, authentication or
identification needs to follow the SOFIE Framework specification. In general, the query
interfaces can be categorized as follows:

1. Discovery and description interfaces. These can offer different information based on
the authentication/identification of the requester (e.g. public vs. private interfaces).

a. The smart contract address must be discoverable through the metadata of the
backend and vice versa.

b. The fact that this is an implementation of this particular marketplace needs to
be identifiable in the metadata.

2. Metadata about the marketplace operation. This would identify externally visible
configuration parameters and quantification of the trust model (e.g. is selection done in
smart contract, or in the backend; are multiple offers allowed; can offers be revoked;
are requests and offers presented via handles or directly, and so on — see above on
the configurable aspects).

3. Retrieve status of current and past requests.
4. Retrieve information about open offers. This information may not be available at all, or

be provided only to authorized entities, and may be limited to include only information
on an entity’s offers.

In some cases the entity retrieving the information may want to confirm non-repudiability
aspects by retrieving information initially from the DLT, and using this information to retrieve a
copy or full version of the referred information from the backend as shown in the figure below.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 12(36)

Figure 2: Fetch and validate full request data.

The reverse also applies — if the market participant first retrieves data from the backend, they
can verify that it has been publicly announced in the DLT by fetching data from the smart
contract and cross-validating it. Also note that if the request data is small in size, it may be
stored fully in the smart contract. In that case the participant retrieves all information directly
from the DLT (although the reverse does not apply — they would need to cross-validate data
from the DLT if they first retrieved it from the backend).

4.2.3 Request lifecycle management

The creation of requests, and finalizing a request at the end of its time window are among the
most complicated operations on the marketplace. Naturally, only a person with sufficient
authorization (e.g. access to the address that the smart contract accepts as a valid operator)
can initiate request lifecycle operations.

Since we assume that the non-DLT backend always has a copy (not necessarily non-
repudiable) of the request information, it is kept in the loop even in situations where all of the
request information is stored in the DLT. Also, the interactions described below assume the
most heavy-duty security approach is taken (with signatures etc.) — some of these may be
omitted when operating fully on a DLT, for example. Similarly we assume the need to have the
backend integrated maximally such as having the selection performed at the backend.

The creation of a request starts with the manager making a request to the backend to create a
new request. The manager supplies any necessary information for the request (time window,
other parameters). Since we assume the manager is within the trust boundary of the offer
marketplace, they can safely use the backend directly (and assume it works correctly)11.

11 While this diagram describes the manager interacting directly with the backend, in reality the “manager” here is
really another service offering the user interface to the manager (potentially a page application, or a whole other
management system tied to the company enterprise systems.)

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 13(36)

Figure 3: Request creation flow from manager to backend to smart contract.

During the time window that the request is available it is possible for the manager to use the
information querying interfaces to monitor the state of offers made so far. If requests can be
cancelled, then a similar sequence of actions occurs (if the smart contract is configured to
allow cancellation).

The next step is the finalization of the request, e.g. the selection of a winning offer or offers.
The process of selection is highly specific to the marketplace, and may require steps taken to
unblind the offers. Here we omit steps required for blinding and unblinding of offers (see below
for separate discussion on that), and instead focus on the case where the offer selection is
performed by the backend. In the figure below, the manager is making the request to finalize
the request, although in reality this would be more likely to occur automatically via a
scheduling system (on behalf of the manager, essentially).

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 14(36)

Figure 4: Finalization of a request, validating state of offers and making a selection.

Here an important consideration is that in the case of Ethereum, the smart contract cannot
reliably enforce the time window nor that all participating parties would have seen all
transactions that may have been submitted, thus requiring some form of barrier
synchronization between the two (it can be achieved also by waiting for blocks with later
timestamp). If the selection was done entirely in the smart contract, then instead of “record
selections” an operation such as “make and record selections” would be invoked.

4.2.4 Making offers

Similar to initiating a request, the creation of an offer can be a multi-step process where the
offer-maker first sends out the offer to the backend (in case the offer data is too large to be
stored on the DLT, or contains information that is not to be disclosed publicly). This may also
require the request to be authenticated or otherwise identified.

Figure 5: Making an offer against a request.

The details of the cryptographic protocols need to be considered of course further, the above
is only a rough outline of the operations during an offer. The goal is to ensure that all steps are
non-repudiable, e.g. if an offer has been made, the participant can show that it was
successfully received (receipt) and likewise the marketplace can confirm the data that was
correctly submitted and associated with a specific offer on the DLT.

While not necessarily recommended, if the offer needs to be kept confidential from the DLT
users in general, but is small enough that it is economical to be sent directly to the smart
contract, it would be possible for the offer-maker to digitally encrypt the offer with the
marketplace’s public key. Since the corresponding decryption key cannot be stored in the
smart contract this would necessitate the use of the backend for request finalization.

4.2.5 Offer blinding

Some markets may require either single or double blinding12:

● In single blinding, all offers are kept hidden from the marketplace until the round is
closed, and then all offers are “opened” (decrypted or revealed).

12 Please note that the concern of offers being public on the DLT is a separate issue — offers can be either stored
in the backend with only a reference (receipt) being part of the actual offer on DLT, or sometimes the offer itself can
be encrypted with the marketplace’s public key. In either case the offer is still visible to the marketplace itself (at
backend).

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 15(36)

● In double blinding, all offers are kept hidden, but also the identities of the selected
offers only become known after they have been selected, e.g. during the selection
process the identity is not available to the entity making the selection.

In all situations there is a need for time-locked encryption. In practice this occurs via some
mechanism where the offer makers will either give out the decryption key (if offer is
encrypted), or the original offer (if offer is in the form of a hash). In all of these cases it is
important to consider the case of a no-show participant — there should be either an
enforcement mechanism or other disincentive for participants from failing to unblind their offer
at request finalization time. The protocol essentially operates within the request finalization
process, where the request is first closed and then the marketplace waits for participants
making offers to provide either the decryption key or the hash preimage. The situation of not
providing a valid decryption key, a valid preimage or withholding them must be considered.

In double-blinded offers the identity of the offer-maker is not revealed until the offers have
been unblinded and evaluated. Since this is not likely to be required (at least in the short
term), the details of this process and its (various) associated challenges are not discussed
further here.

4.2.6 Escrow

If marketplace participants are pre-approved (with a potentially externally enforceable contract
in place) then things usually can just proceed without further assurances. However, if there is
less enforcement capability available then some other mechanism to penalize badly behaving
marketplace players needs to be in place. In these cases an escrow payment might be a
suitable approach — offers require an escrow of cryptocurrency to be placed, which is
automatically released for non-selected offers, and for selected offers kept in time-lock escrow
(so that the request maker can open a dispute).

4.3 Protocols

There are some specific interactions that contain at least a sets of information that can listed,
and also those parts that are extensible and may contain marketplace-specific information.
These are outlined below (different implementations may choose different encoding and
naming conventions, so these are conceptual).

Note! These are very much work in progress and will co-evolve with framework and
reference platform implementations.

4.3.1 Service description

At backend:

- Service type: sofie-bp-offer-marketplace-1, with subtype identifier for the particular
marketplace specification (+ versioning!)

- Smart contract address: DLT type, and address, e.g. ethereum and SC address
- Round length: fixed, dynamic or variable (dynamic = anything goes, variable = definite

minimum and maximum, but unknown statically)
- Pre-approval required: yes / no
- Pre-approval information URL: location of a web page, or API endpoint for pre-

approval registration
- … (TBD)
- … API endpoint descriptions ...

At smart contract:

- Service type: sofie-bp-offer-marketplace-1, with subtype identifier for the particular
marketplace specification

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 16(36)

- Backend: URL of the backend (for API discovery)
- Round length: …

(essentially all static parameters should be 1:1 between backend and SC description fields)

4.3.2 Marketplace request

The marketplace request format may be either fully contained, or partial, where partial refers
to the actual contract at an external URL. Some of the fields are required to be present even
in the partial request format; the list below marks fields that required with an asterisk (*):

- Identifier*: Unique identifier for the request (an integer counter is a possibility)
- Information URL*: URL that will provide the request, including the full version if only a

partial request is provided at SC
- Full request signature / hash*: Signature or hash of the full request, sans hashed fields

(see specification elsewhere XXX)
- This request signature / hash*: Like previous, but only applies to this request — by

necessity if this request is full, this and previous are identical, otherwise for partial this
signs only the partial request

- Round open interval: time period during which bids are accepted
- Decision interval: the time interval when a decision is to be made (earliest to latest)
- (TBD: can marketplaces mix open / closed offers — if yes, then need to specify how

offers are made here too)

Note that the request can contain any other fields that are specific to the marketplace. Some
possible scenarios are, for some theoretical examples:

- Selling (or buying) flowers: Type of the flower, and quantity, potentially a minimum or
maximum price required for offers

- Car rental (request for cars): Geographical area of pick-up and drop-off, type of car,
rental period, potential extra requirements (child seat, hitch, …)

4.3.3 Marketplace offer

Similar to the marketplace request, the marketplace offer needs specific fields to be present
even in partial offer (in DLT), with the full request having to be at minimum in the backend.

- Request identifier*: The request identifier for which this is an offer
- Offer identifier*: per-participant identifier, so that <request id, participant, offer id> are

unique
- Participant*: Participant identity identifier — depending on the requirements on the

marketplace, this may be an DLT public key hash, pre-approval identifier etc.

Rest of the information present on an offer are dependent on the particular marketplace —
considering the examples from requests we could have:

- Selling flowers: Price
- Car rental: Exact pick-up and drop-off addresses (geolocations), detailed information

on the car on offer, price for the rental

4.3.4 Decision result

The decision needs to be communicated. At minimum this needs to contain the following
information:

- Request identifier*: The request that this decision is for
- Decision time*: When the decision was made, this may include also the DLT state

(block number etc.) that was the last one that included valid offers

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 17(36)

- Selected offer(s): Participant and offer identifier of the offer (this may be available only
for the selected offer or offers) — note that a selection can cover multiple offers

The specific marketplace may also include other information, with for example considering
again the cases above (this information might be only available to authenticated participant
with offers that were chosen):

- Selling flowers: Token for lot pickup, pickup details
- Car rental: Identity of the person picking up and dropping off the car, proof of rental

payment in escrow

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 18(36)

5. Provenance chain for trackable assets

5.1 Overview

The problem this BP is modeling is that there exist assets that are tracked, which may be
repackaged or refined during their transport from the original raw material producer (farm, for
example), and whose provenance needs to be tracked for the purposes of 1) providing
consumers with guarantees on the quality and proper handling of any goods they purchase, 2)
enabling more efficient operations for companies along the logistics chain through increased
transparency, integrity and availability of the digitalised services.

While the description below does not specifically require any particular mechanism of
implementation, for descriptive purposes we’ll show a logistics chain that is formed around a
consortium blockchain where different entities in the system in turn use blockchains for their
claim generation.

Figure 6: Overview of the system components and different parties involved.

This example shows three different companies handling books from printing to the consumer.
The printer would store information about the book in its systems, then incorporate this
information as claims on the asset (book shipment) when it is defined and transferred to the
transporter. The transporter updates information and provides claims on its state during the
transport, and finally, the store can include additional information relevant to the provenance

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 19(36)

of the product for consumers. Finally, the consumer can scan a QR code at the shop and
query detailed information about the product’s path to the store. The system and all
interactions in it is designed to guarantee provenance of the information that is provided, e.g.
that it has not been tampered with or post-hoc edited.

5.2 Terminology

The system has the goal of tracking the provenance of assets that are being transported
within the system. Assets are the units that are handed off between different entities in the
system, which may be transformed into new assets while in the system. Thus, an asset is a
mutable entity. The entities in the system which handle assets are nodes in the asset flow.
Assets are transported and stored in containers. An asset may change its container during its
lifetime many times. Containers may also be re-used, while assets are unique. When an entity
is in possession of a container, they may define claims regarding the state of the container
and/or the asset. Claims are tagged by their purpose — a purpose may for example be that
the information associated with the claim is meant for consumers, or that it describes the
asset’s general properties etc. Depending on the purpose of the claim, its visibility may
change during the lifecycle of the asset. Claims are made about specific information being
present at the claimant, thus claims themselves are not the information, but statements of fact,
such that the claimant can provide the information associated with the claim if necessary.
Overall the combination of the claims and the information associated with them create the
provenance chain for the asset.

Sometimes an asset may be also a container: packaged goods can have RFID tags. If a
packaged good was transported in a larger container, then for transport purposes it would
reside in the outermost container. However, if it was individually repackaged, then it could be
tracked by its own RFID tag (an asset would be its own container). In most cases, logistic
partners and stores would keep track of each package separately, but for transiting purposes
this level of detail might not end up in the system (e.g. only a larger container unit would be
used).

The traceability of provenance stems from the requirement that any transformation of an asset
(repackaging, refining) has to link to another asset (in control of the transforming entity). This
linkage provide a chain of provenance that goes back to the original producer of the
underlying goods (raw material production).

5.3 Assets and entities

5.3.1 Asset lifecycle

Assets are created either through registration (at a source), or through transformation
(refining, repackaging). The default state for an asset is in transit, meaning that it is ready to
flow or flowing through the system. An in transit asset may be either released, in which case it
is considered to be “out of the system”. A typical case for this could be spoilage, causing the
asset to be entirely thrown out (not just reduced in amount). Another possibility is for an asset
to be finalized, which means it has reached a sink. At this step the asset provenance
information is made available to consumers. Finally, in transit assets may be transformed. The
transformation process may take some time — a large shipment may be gradually repackaged
into smaller shipments, until it has been “consumed”. When an asset is considered
“exhausted” (no physical division or further sale of the asset is possible, for example, the asset
unit of 10 kg of grapes have all been either sold, or tossed away as spoilage), then it is
“released”. This means the asset is “out of the system” from the viewpoint of control and
transport, and no further changes are possible to occur for the asset within the system (it can
of course be used by the consumer in any way they wish). Note that transformation and
finalization are sticky attributes, thus release after transformation and finalization reflect

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 20(36)

different states than direct release from transit. (Finalized, but released assets might be
queryable by a consumer even when the asset has been out of sale for weeks — the
customer may be checking the provenance of something they bought earlier.)

Figure 7: Lifecycle of assets.

The final step to a terminal state is a bit questionable in this kind of system, and might be
something that occurs “never.” (“Never” would in practice mean the extent of any potential
legal liability, so while definitely finite, it could be still tens of years, a practical eternity from
computing point of view.)

Provenance lifecycle is tied to the asset lifecycle, and containers are separately managed,
and exist only transiently within the system (while an asset is assigned to them).

5.3.2 Nodes and the flow of assets and containers

Assets are created, transited, transformed and finally released from the system to consumer
use. These assets may be transported via multiple different entities and end up in different
stores, even when originating from the same producer. The diagram below shows a simple
asset flow network, where the farmers are sources of assets that then are transported (flow)
via the network to stores (sinks).

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 21(36)

Figure 8: Simple flow of unprocessed produce from farmers to stores.

Sources, sinks, middle and transformer nodes define how asset lifecycle states can change.
The table below lists which node types (roles) are allowed to initiate a state change.

Table 4: Types of nodes being able to initiate asset lifecycle changes.

 From state

Non-existent In transit Finalized Released13

To
state

Non-existent - - - -

In transit Source
Transformer14

- - -

Finalized - Sink -

Released - Any Sink -

A transformer node may create assets in the system in a limited way (transforming) to cover
two use cases: refining and repackaging. See below for a figure of an example of how
transformation (refining) would work for a coffee shop’s supply chain. The initial inputs to the
system are coffee beans and raw milk. The roastery transforms the raw beans into roasted
beans, and the dairy produces cream and milk from the raw milk.

13 “Released” column includes all variants of released state.
14 Only under certain conditions, see below.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 22(36)

Figure 9: Example of an asset flow that transforms its goods (refining in this case).

These refined products are shipped to the coffee shop, which performs its own transformation
and repackaging step. If the original raw coffee bean shipment was 1 ton per unit (large
sacks), the roasted beans may be shipped to the coffee shop in 20kg sacks. The beans are
ground and brewed at the coffee shop. A single cup does not consume all the 20kg from a
single sack. The coffee shop has both transformed (roasted, brewed, foamed milk and
combined all together) and repackaged (used only part of the shipped asset of roasted beans
and milk from a carton). Here the transformed and repackaged asset has not been transferred
between entities — the last steps are internal to the coffee shop.

Finally, one must keep in mind that assets are different from the containers they travel in.
Containers may be re-used, whereas each asset in the system has an unique identifier. The
figure below shows this process where the warehouse repackages the original asset ABCD
packed at farmer into container 1234 into two smaller containers 986 and 987 which are given
asset identifiers DCEB and BCDE. What is important is that the new assets are linked back to
the original asset (shown with dotted arrows).

Figure 10: The containers assets are transported in may change arbitrarily, in this case due to
repackaging of original container into smaller containers sent to different stores.

Thus, while transformers may create new assets, these must be linked to existing assets (that
they are currently in possession of). In the above example, once DCEB and BCDE are
finalized, the customer may query their information. If DCEB was queried, then any

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 23(36)

information from N, L, I, G, E, D, C, B, and A would be available for the consumer. Any data
specific to the other repackaged asset (F, H, K, and M) would not be available to a consumer
querying asset DCEB, however.

5.3.3 System entities

The figure below tries to represent the different main entities in the system (see below for
those not in the figure, black and gray differentiate between different use cases described in
examples).

Figure 11: Entities and their relationships in the system. The difference between black and
gray portions depends on the scope of the system (see examples later).

Note that the complete/disjoint/overlapping/set inheritance modifiers mean that a member can
be simultaneously both a transformer and a sink, or just a member (such as a warehouse).
These can be thought as roles that a member assumes as needed. Similarly, the modifiers for
an asset’s inheritance mean that an asset is either a raw asset, or a transformed asset, and
also simultaneously one of transit, finalized or released asset types.

Raw assets are always created by a specific source, and transformed assets have to originate
from one or more other assets (not necessarily raw assets!), which have been transformed by
a transformer.

It is important to note that entities within this system are essentially companies and not
individuals. While the asset is being manipulated during picking, transit or in store by a specific

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 24(36)

individual, tracking this information is the responsibility of a particular entity (if they wish to do
so).

5.4 Claims, information, purposes and the provenance chain

5.4.1 Overview

While the sections above describe how assets flow within a network of nodes, this flow needs
to be augmented by information that relates to the assets and their handling. First, we have to
define more specifically what is “information”, “purpose” and “claim” in this context.

5.4.2 Purposes of information use

In the logistics chain, there is a lot of information that may be necessary to be disclosed at
some point, but usually not immediately, and often ano audit trail of access also needs to
be defined, in addition to the specific purpose of information access. Consider the following
example:

Grapes are picked and stored in a smart container at the field. The information associated with
the grapes consists of: their type and variety (grapes), picking time, growth condition history,
identity of the growing farm, identity of the picker(s). While the container is in transit, the
information associated with the truck and transit operation includes temperature of the truck
cargo area, driver identities, truck identity etc. When the container of grapes is at a
warehouse, the location of the container in the warehouse and temperature profile of the
storage area may be recorded. Also, all hand-offs of the grapes between different parties have
information on the persons doing the hand-off, potentially location data, time and date etc.

Now, some portion of this information is either confidential or under GDPR or both. The
identities of the pickers, truck drivers, people doing hand-offs and warehouse employees are
most definitely under GDPR, and should not be normally exposed to other parties and not to
the consumer. Yet, this information may be needed during disputes or audits.

Some of the information would have to be visible to active parties (current holder, or recipient
of a hand-off process), such as the asset information itself, and information of the container.
The recipient at the warehouse needs to be able to check that 1) the container contains what
is claimed that it contains (grapes vs. apples) and 2) the container contains what the
warehouse or store actually ordered from the farmer (comparing against internal ledger).

Some of this information is relevant to consumers, but should be visible only when the asset is
in the “finalized” state (being sold off out from the visibility of tracking) to avoid other parties
from “scraping” information unnecessarily.

Thus, all claims need to include the “purpose” of their use. Some of these purposes may be
such that the underlying information is not accessible at all normally — the claimant is making
a statement about its internal state for audit purposes (or even as a proof of its flawless
operations for potential criminal investigations) where the underlying information is exposed
through manual (verified) processes.

While there may be many purposes, the table below identifies some purposes that have been
identified as (potentially) necessary:

Table 5: Description of identified claim purposes.

Purpose name Scope Description

consumer Accessible only if the asset is
finalized

Information that is relevant for the
consumer, including the asset type, but
any relevant handling and processing

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 25(36)

information (the actual data is very much
specific to the type of asset and the
logistics chain, and what information
they wish to provide to increase
consumer trust in the product)

asset Historically or currently active
nodes

Basic asset information that helps to
identify it during transit

internal Internal for the node For information that the entity wants to
make a public claim (attestation) of, but
is not made publicly available

handoff During handoff, visible to the
recipient or sender (depending
on which side makes the
claim), and if transfer
accepted, also visible later

Any information pertaining to the handoff
in particular (such as the name of person
whose identity needs to be confirmed, if
needed for security purposes)

Some of these claims make only sense at specific points of time. A description of the asset
itself can only be made when it is created in the system (raw asset or transformed asset).

A mechanism needs to be in place to have scopes for purpose identifiers so that entities
within the system are able to create purposes without the risk of conflict within a single
logistics chain, or between different logistics chains. These scoped purposes could be used
for example between a warehouse and a trusted transporter to allow them to (securely and
auditably) share more information than with other parties.

5.4.3 Claims and information

Claims in their core are about irrefutable statements that the claimant has specific information
that, if later revealed, can be confirmed to have been the information referred in the claim. In
more concrete terms, the claim must include a hash of the information, or some other
undeniable and unforgeable mechanism to do so.

In general, the claim is a structure of <claim body, signature>, where the author and signature
may be implicit in the case of blockchains (the claim body being a signed transaction), or
explicit for other forms of claims. The author would identify the entity making the claim.

The claim body then consists of <asset, author, timestamp, purpose, validator type, validator
data> and the validator is described in the table below.

Table 6: Description of different claim validator formats.

Validator type Scope Validator data Information
storage format

Description

ethereum-json Information
stored in
Ethereum
blockchain

<block hash,
transaction
hash>

JSON-encoded
string in the
transaction data
field

The claim’s information is
stored as a (dummy)
transaction as part of the
entity’s private blockchain

ethereum-
contract

Information
stored in a
smart contract
state in the
Ethereum

<block hash,
contract
address, view
call
parameters>

Returns a list in
the form of
(key1, value1,
key2,
value2, …)

The claim’s information is
stored as part of the given
smart contract’s state
which can be retrieved with
the given call parameters

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 26(36)

blockchain (view method)

sha512-json SHA512 hash
of a JSON
string

<id, hash> JSON that can
be generated
from the entity’s
own internal
data identifier
<id>

The underlying storage
may be anything (such as a
database row) as long as it
can be reliably identified by
the given id and always
serialized to the same
JSON string (stable
serialization requirement)

Note that in general, an entity may only make a claim of an asset when:

● It is in possession of (through holding the container that the asset is stored in)
● It is in the process of receiving an asset (container)
● It is the owner of a container (smart containers with their own sensing are often not

owned by those who are handling them)
● It creates it through transforming an existing asset (refining or repackaging)

5.5 The “System”

While all the above does not mention a centralized “system” entity, in practice one is needed
to coordinate interactions between different members. While theoretically members could do
all interactions bilaterally, this leads both to usability problems (discovery, trust, etc.) and also
to loss of visibility of the asset provenance data in situations where a member refuses to
release the preimage of claims they have made during asset transit. Thus, it is likely that (at
least for some cases) a centralized “system” is deployed.

How does this work if the goal is to have a decentralized system? The way is to let the
centralized system operate in a transparent and verifiable manner. Thus the goal of
centralization is to increase the performance of the system, but make its actions verifiable by
all entities interacting with the centralized portion.

5.6 Interactions

5.6.1 Overview

Note that having a ledger and smart contract here will include additional steps when the
interactions need to be recorded there. The interactions below are focused on “user visible”
actions. The detailed ledger-related operations (micro-operations) are described later.

5.6.2 Hand-off of assets

The sequence diagram below shows a possible sequence of events. The farmer (source)
registers a shipment of pomegranates, and a truck (transport) picks it up. The truck driver
checks the shipment and checks (theoretically at least) the shipment against what is specified
in the hand-off claim made by the source (as part of the transfer initiation). After acceptance,
the asset is marked to be in possession of the transporter. The transporter may update the
claims (their claims) during transport, recording, for example, temperature data and such.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 27(36)

Figure 12: Asset handoff sequence diagram.

Finally the shipment arrives at the warehouse. The warehouse employee checks the
shipment, compares its contents, the provenance information for the claims made against the
asset by the source, and notices that the original order was for grapes and not pomegranates.
The employee refuses to accept the shipment, rejecting the transfer initiated by the transport.
The rejection may include information (claims) about the reason for rejection.

What is not shown in the diagram, but is likely to follow, is that the transport company would
negotiate with the source about the fate of the pomegranates, and either the transport
company would dump them (“release” operation), take them to another retailer or warehouse,
or take them back to the farm (transfer). If the truck driver tries to be enterprising and shift the
surplus pomegranates themselves, and the farmer realizes they have not been paid for, the
farmer can see from the ledger that they were rejected, and are still in the possession of the
transport company (which would then do some internal auditing on the dispute).

5.6.3 Asset creation

This is a very straightforward operation for sources — they will just define the asset claims,
and submit those with the asset creation. The originator may update other claims, and update
the container of the asset before it is handed off to the next entity. Regardless, the original
asset claim itself should remain immutable thereafter.

For transformed assets, this is a bit more complicated. The source assets (there may be more
than one) must be identified. The source assets must be useful (not finalized or released) and
in possession of the transforming entity. The asset claim itself is provided by the transformer.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 28(36)

5.6.4 Asset release

There may be a need to release assets (as in “released to outside the system’s traceability”)
without finalizing them. This may be due to spoilage, sale of the asset to an entity outside the
system scope etc.

The asset must be in control of the releasing entity.

5.6.5 Asset finalization

Finalization of an asset changes its state. After finalization any customer claims of the asset or
its source assets (and so on) can now be accessed publicly. To access any of the customer
claims a proof of finalization is required (part of the finalization process).

5.6.6 Containers and container-specific claims

Containers are handled a little differently from assets. While an asset is unique over its
lifetime, e.g. asset identifiers are not reused, a container can be used to ship different assets
over its lifetime. While a container is typically the unit of reference during hand-offs (e.g.
“transfer container XYZ and its assets to the other party”), normally claims are made against
the asset by whoever is in possession of the container. Containers may also be located within
other containers (grapes in a smart box stacked in a cage pushed into a cargo container).

However, a container itself is not necessarily owned by any party in the logistics chain. The
container may also be a “smart box”, that is able to actively monitor its own environment and
send this information to its owner. Thus, a container may be owned by a defined entity, and
the container owner is able to create claims that relate to the container’s state at a specific
time. This ties these claims to the particular asset.

5.6.7 Consumer interaction

The consumer is a special type of anonymous entity in the system that is allowed to access
provenance data for “consumer” labeled claims, but only after the asset has been finalized.
This requires a few things:

1. Asset finalization is irrevocable
2. Asset finalization results in a proof (or a claim, or similar) of the fact that can be passed

to members as an access token (after possible mutual authentication) to retrieve
provenance data

3. Provenance retrieval itself gives non-repudiable proof of the request

These are similar requirements for other state operations in the system, but worth reiterating
here.

The diagram below shows a sequence of operations where the store initially finalizes an asset
(that they are in possession of). The consumer interaction pattern may differ depending on
whether the consumer accesses the system’s web page to retrieve the information (or in
JSON format for a mobile application), or whether this functionality is provided by the store
itself (through a customer loyalty app, for example).

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 29(36)

Figure 13: Asset finalization and customer fetching detailed information about a product.

In addition, it is possible to have different encodings and information on the QR code (or other
URL), also at varying levels of auditability (although one must realize that on average, a
customer is satisfied with a web page with the information, trusting the provider implicitly for its
correctness). (The ID listed is not necessarily the asset id, but a “finalization id” created at
finalization time.)

Table 7: Potential data embedded in an URL/QR code.

 Embedded information

Scenario ID only ID and
customer
information

ID, customer
information,
claims

ID, customer
information,
claims and claim
verification

No application
No network

No information
shown

No information
shown

No information
shown

No information
shown

No application
SPA cached
locally
No network

No information
shown

Can show
embedded
customer
information

Can show
embedded
customer
information

Can show
embedded
customer
information and

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 30(36)

validate claims
locally

No application
Network
available

Can show all
information

Can show
embedded
information,
show updates
from network
and potentially
additional
information

Can show
embedded
information,
show updates
from network
and potentially
additional
information, can
request
verification data
for claims

As left, plus can
perform claim
validation

Application
No network

No information
shown

Can show
embedded
customer
information

Can show
embedded
customer
information

Can show
embedded
customer
information and
validate claims
locally

Application
Network
available

Can show all
information

Can show
embedded
information,
show updates
from network
and potentially
additional
information

Can show
embedded
information,
show updates
from network
and potentially
additional
information, can
request
verification data
for claims

As left, plus can
perform claim
validation

The embedded data should be signed by whoever is providing them (store or system) to
prevent the data from being altered or misused. A misuse scenario, for example, is another
store copying another store’s QR code. Since the data cannot be altered, the asset would be
shown as being finalized in the original store, allowing the customer to be alerted to the
misuse.

5.6.8 Dispute resolution

While not described in detail, the system should allow entities in the system to open disputes.
These would be logged in the system. An open dispute gives the disputer potential to fetch
additional claims not normally available. The system may enforce limits on this process,
although these are more of a management and consortium governance setup than a technical
protocol issue.

Generally, a dispute could be handled by one of the following scenarios (for this example, the
dispute creator is a store, although it could be any entity in the logistic chain):

1. Store opens a dispute, analyzes the information behind the claim and decides
internally not to pursue the dispute, and closes it. (It is likely that a store opening a high

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 31(36)

number of internally resolved disputes would be subject to some governance oversight
later…)

2. Store opens a dispute, analyzes the information, and discusses directly with another
entity which agrees to a resolution. The dispute resolution is proposed to include the
other entity, which then accedes to the resolution. (They may have agreed on a
compensation over mishandled shipment, for example.)

3. Store opens a dispute, analyzes the information, and escalates it. At this point the
store needs to provide its case to the governing body (“system”) at which point the
resolution rights are restricted to the governing body, who thereafter handles the
dispute and its resolution.

Finally, it is of course possible for a store to handle a dispute out-system, directly with the
warehouse or a transport company. In fact, this is the most likely outcome, with the formal and
technological dispute mechanism used only for more serious situations.

5.7 Quality control

While out of scope of this BP, it should be noted that some auditing operations in the system
can be automated and thus made more cost-efficient. While, by default, the information
behind a claim is not shared, it would be possible to have a third auditing party with special
access rights (with all accesses logged, of course)

5.8 Request traceability

During hand-off, the originator of the requestor needs to include all claims it has made in the
transfer request (if they are tracked by the system, this can be implicit). This is required to
allow the asset flow to be reconstructable even in the situation that the “system” component
would fail to comply. Here, if the store has recorded (internally) the transfer from a transporter,
it can go back and look for the claims made by the transport company. These in turn should
contain information linking to the warehouse and so on until asset sources.

5.9 Examples

The above BP description attempts to encompass a large amount of variability and
configurability. Such a system may not be feasible to build in a single step, thus a description
of a subset of such system that still retains the essential features of the BP is described below.

In particular, let’s imagine a system where:

● Only a single type of container is used throughout the flow of an asset
● Containers cannot contain other containers
● The asset does not change its container during its lifecycle (from field to store shelf in

the same container)
● Asset lifecycle always ends up in a finalization step (no release)
● No asset transformations occur, e.g. all assets are “raw” assets (generated at source)

This system can be seen in the earlier entity diagram where it is defined by the black diagram
part only with the gray portions omitted.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 32(36)

6. IoT resource access

6.1 Overview

The BP for IoT resource access provides clients the authorization to access a Thing
(resource) after they have paid or otherwise compensated15 the resource owner for the
requested access. Such a service can be, for example, part of the Mobile Gaming Pilot
scenarios where games involve interaction with IoT devices [SOFIE D5.1]. Although we
assume that the client requesting resource access is the entity that pays the resource owner,
this can be adapted, if needed, by the specific use case. For example, in the Mobile Gaming
scenario the game developer, rather than the player, can be responsible for handling
payments to the IoT device owners. Resource access can involve reading or writing data, as
well as actuation. Also, access can be authorized for different time intervals.

The generic model of the BP has the following properties:

● Things are constrained, hence they cannot perform complex cryptographic functions or
directly interact with the blockchain

● Things are not connected to the Internet
● The communication channel between the Client and the Thing is not secured
● Existing authorization and authentication standards are utilized
● Smart contracts can verify that authentication servers and Things share a secret key

(hence there is a trust relationship between them)
● Information stored on the blockchain, which is immutable and non-disputable, can be

used for accounting, auditing, and in the case of disputes
● Low complexity
● Client privacy protection

A discussion of constraints in IoT environments is contained in [RFC7228]. Various use cases
for IoT constrained environments are discussed in [RFC7744].

6.2 Process flows

6.2.1 Configuration and smart contract creation

During this phase the resource owner interacts with the backend (authorization server) and
the Thing to configure the latter with a secret key that is shared with the Thing and the
backend; this is necessary because, after its configuration, the Thing can be disconnected.
The backend is responsible for handling authorization requests, and in particular will perform
actions that require secret keys or involve private information which cannot be published on
the blockchain. Next, the resource owner creates a smart contract with information that binds
the backend and the Thing (resource server), and can include the price for different types of
resource access.

The specific steps are the following:

● The resource owner registers the Thing with the backend and receives a secret key
● The resource owner configures the Thing with the secret key
● The resource owner creates a smart contract and updates it with information that

includes the following:
○ Backend public key
○ Resource server (Thing) URI

15 From here on, we refer as “payment” any compensation method that may be used, including ones where the
compensation takes place in completely non-monetary means.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 33(36)

○ Resource access price. There can be a different price for different levels of
access (e.g. read or write) and/or access intervals

Note that the first two steps above do not involve interaction with the blockchain, and can
follow an appropriate configuration protocol. Also, the resource owner may need to be
authenticated.

As part of the smart contract management, the resource owner can terminate the contract and
the provision of the authorization services by the backend. Also, the owner can change the
backend that provides authorization services to its resource, by binding the Thing to the new
backend and updating the corresponding information in the smart contract.

6.2.2 Setup

Figure 14: Resource access configuration and smart contract creation.

6.2.3 Resource access

Resource access can be based on authorization protocols, such as OAuth2 and User-
Managed Access (UMA2), through which the client obtains an access token that it can use to
access the Thing. The addition of a blockchain serves to associate access authorization with
the appropriate payment. Moreover, smart contracts can be used to encode different
authorization policies, such as prices for different types and time intervals of resource access.
Even more interesting is the case where authorization policies include dependence on various
IoT events (or transactions) that are recorded either on the same DLT that is used for
payments or on different DLTs; in the latter case, the dependence across different DLTs can
be achieved using inter-ledger mechanisms, such as hash and time-locks. Such more
elaborate smart contracts are currently being investigated and will be described in the next
versions of the SOFIE Framework.

The client can initiate resource access by sending a request to the Thing, e.g. to obtain the
address or ABI (Application Binary Interface) of the smart contract that is responsible for
handling access to the Thing. Other alternatives are also possible, e.g. the client can send the
request to the backend; this alternative assumes the client knows the backend or can find the
backend utilizing a registry service, e.g. the Ethereum registry services. Moreover, the request
sent by the client can include a challenge, to which the Thing can provide a response that can
be used for authenticating the Thing but also for verifying the integrity of the Thing’s internal
state (attestation). The actual verification of the Thing’s response can be performed by the
backend, which can obtain the Thing’s response to the challenge through the smart contract.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 34(36)

In the next step, the client interacts with the smart contract, which can involve depositing the
amount of money that corresponds to the type and duration of access that is requested, in
addition to sending the Thing’s response to a challenge, as mentioned above. Once the
deposit is performed, a request to the backend is made to create the access token and key.
These can be encrypted and sent by the backend to the client through the smart contract (as
shown in the figure) or alternatively from the backend directly to the client. The latter case can
support off-chain payments, where the client and backend exchange directly payment
transactions, without requiring them to be published on the blockchain, thus avoiding the
corresponding costs.

Figure 15: Resource access payment and authorization

When transmitted from the backend to the client, the access token and key can be encrypted.
These alternatives correspond to a different privacy, and tradeoff between privacy and
transparency. Note that all policy related actions can be implemented in the smart contract,
except actions that require private keys, such signing or encrypting messages with a private
key, which need to be performed off-chain (in the backend).

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 35(36)

7. Conclusions

This deliverable presented the first version of the SOFIE federation framework. It describes
framework’s components along with three business platforms (offer marketplace, provenance
chain for trackable assets, and IoT resource access). The updated versions of this deliverable
will be released in 2019 and 2020.

Document H2020-IOT-2017-3-779984-SOFIE/D2.3 – Federation Framework, 1st

version

Security Public Date 31.10.2018 Status Completed Version 1.00

SOFIE 36(36)

References

[RFC7228] C. Bormann, M. Ersue, A. Keranen, “Terminology for Constrained-Node
Networks,’’ RFC 7228, IETF, May 2014.

[RFC7744] L. Seitz et al. “Use Cases for Authentication and Authorization in Constrained
Environments,” RFC 7744, IETF, January 2016.

[SOFIE D5.1] I. Oikonomidis et al. “Baseline System and Measurements”, SOFIE Deliverable
D5.1, June 2018. Available at: http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-
Baseline_System_and_Measurements.pdf .

http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf
http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf

