

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D2.2

Federation Architecture, 1st version

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 31.8.2018

Author(s) Santeri Paavolainen (AALTO), Tommi Elo (AALTO),
Mikael Jaatinen (LMF), Giuseppe Raveduto (ENG),
Vasilios Siris (AUEB-RC), Henri Lakk (GT), Dmitrij Lagutin
(AALTO), George C. Polyzos (AUEB-RC), George
Xylomenos (AUEB-RC), Nikos Fotiou (AUEB-RC)

Responsible person Santeri Paavolainen (AALTO),
santeri.paavolainen@aalto.fi

Target Dissemination Level Public

Status of the Document Completed

Version 1.00

Project web-site https://www.sofie-iot.eu/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

mailto:santeri.paavolainen@aalto.fi
https://www.sofie-iot.eu/

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 2(30)

Table of Contents

1. Introduction ... 4

1.1 Overview .. 4

1.2 Structure ... 5

1.3 Goals .. 6

1.4 Constraints ... 7

1.5 Role of distributed ledgers .. 7

1.5.1 Types of ledgers ... 7

1.5.2 Inter-ledger operations .. 8

2. Architecture ... 10

3. Entities, roles and components ... 12

3.1 Overview .. 12

3.2 Entities .. 13

3.3 Roles .. 14

3.4 Components ... 15

4. Orchestration and Governance .. 16

4.1 Overview .. 16

4.2 Sample scenario ... 17

4.3 Elementary operations ... 17

4.3.1 DISCOVER and DESCRIBE ... 18

4.3.2 ACCESS ... 19

4.3.3 IDENTIFY and AUTHENTICATE .. 19

4.3.4 AGREE and WITHDRAW ... 20

4.3.5 PAYMENT .. 21

5. Interfaces and protocols .. 22

5.1 Protocols and interoperability ... 22

5.2 Discovery and service metadata .. 22

5.3 Versioning and extensions ... 23

5.4 Data provenance and governance ... 23

5.5 Identification, authentication, access control and privacy 23

5.6 Interledger transactions .. 23

6. Deployment considerations ... 24

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 3(30)

6.1 Component categories ... 24

6.2 Extending existing systems .. 24

7. Conclusions .. 27

Annex I: Architecture KPIs ... 28

KPIs .. 28

System metric ... 29

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 4(30)

1. Introduction

This deliverable outlines the first version of the SOFIE federation architecture. This document
will be updated during the project, thus until late in the project it will remain in draft state.

1.1 Overview

Federation in information technology means the ability to connect two or more systems (of
some kind) together so it is possible to operate (in some way) across these multiple networks.
Federation implies the existence of some common standards and interoperability between the
different networks. In the case of IoT systems, the “networks” are organizational “silos”, and
the goal of federation is to enable operation across these silos. Also note that in federation the
different networks (or IoT silos) retain their internal control and are able to determine the
policies they enforce for federation with other systems.

When discussing “organizational silos”, they encompass all kinds of technologies, including
legacy mainframes, databases, enterprise message buses, customer databases etc. SOFIE’s
goal is not to enforce any change into the internal structure of these organizational silos. The
only relevant operations that SOFIE can address is what happens between different
organizations and entities, the purpose of those operations, and the mechanisms and
technologies those operations are based on.

For SOFIE, there are some relevant constraints:

● Internet of Things devices. While more or less any device can be connected to the
Internet, within the scope of SOFIE we are specifically interested in devices that
perform a function that is primarily something else than interacting with humans or
other systems (e.g. they perform a real-world function and/or interact directly with other
IoT devices).

● Distributed Ledger Technologies (DLTs). DLTs, including blockchains, offer a way to
define a neutral technological platform. The neutralness can allow new kinds of
business practices to take place, which previously have not been possible without
expensive setup costs (e.g. contracts).

While the IoT environment can be used in myriad ways, for SOFIE the focus is initially on a
few operations that are to be federated:

● Data transfers. The main problem is not how to transfer data (FTP, HTTP and other
protocols have existed for a long time), but the various other problems associated with
what happens before actual data transfer takes place:

○ Locating the data, e.g. discovery. The scope of the discovery may be also local
(local network, local geographic area), national or even global.

○ Identifying the data. Description of the data, formats, access methods etc.
○ Data governance and provenance.
○ Identification and authorization of the destination. Often the requestor needs to

be identified and have appropriate access privileges.
○ Contracts and payments. Setting up the data transfer may require the requestor

accepting legal terms, and performing a payment, or committing to a payment
done later, to a subscription model of payment, or to a pay-as-you-go billing.

● Remote actuation. New applications may require or permit the requestor to change
the state in an IoT system or device. The same problems as with data transfers apply
to this case, too.

The subtlety here is that actual transfer of data, or actual operation of remote actuation can be
performed easily, for example adopting HTTP, MQTT or CoAP - all existing solutions - using
GET and PUT primitives, but that there are various steps that need to occur before transfer or
actuation can take place such as establishing of trust, payment, or other similar prerequisites.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 5(30)

Thus, SOFIE’s focus is on defining these preceding steps, and identifying the mechanisms
that DLTs are applicable to. Very often, this leads to definitions of business platforms, e.g.
platforms that define certain business processes, logic, entry and exit conditions and so on.

One important goal is to have the setup and associated transaction costs to be low or
practically nonexistent. All of the operations described above are achievable today - albeit
often at a high cost due to the number of parties consulted and manual operations required.
This limits the possibility of inter-organizational IoT operations to high-value operations. The
goal of defining a federation architecture is to significantly lower these costs, and decrease
drastically the time for new inter-organisational interactions, to practically nil.

1.2 Structure

In this Introduction section, the next subsection below provides more concrete goals defined
for this document (e.g. what questions this document answers), followed by a description of
concrete constraints that apply. In this section also a short review of existing solutions in the
problem space is given.

The following sections proceed with more detailed description of the SOFIE federation
architecture and the various systems and components it is comprised of.

Please note that this architecture document does not mandate any specific technology. For
that, see the upcoming deliverable D2.3 - SOFIE Federation Framework: Part A: Interfaces
and Protocols document that details the set of specific technologies and deployment
configurations that follow this SOFIE Architecture specification. Also see the D2.3 - SOFIE
Federation Framework: Part B: Business Platforms document which has information on
specific business platforms that are within the SOFIE project scope (e.g. pilots) and how they
are designed and how they conform to the overall SOFIE architecture. Please see the figure
below for a visual description of the relationships between different SOFIE documents,
implementations, and pilots.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 6(30)

Figure 1: Relationships between different SOFIE architectural elements, documents,
implementations and pilots. Rectangles signify documents and ovals signify implementations.

It is important to realize that while the SOFIE project in itself can produce implementations for
specific needs, SOFIE is not a particular implementation or any specific deployed
environment. This document lays out requirements for SOFIE (the architecture) and the
framework document gives out specific protocols and interfaces that conform to these
requirements. These protocols and interfaces typically are either fully or partially implemented
by existing open source projects, but if they are specific to SOFIE, then a reference
implementation is provided as part of the SOFIE project results. The business platform model
templates represent generic implementations of a specific business platform. These represent
implementations of the requirements and specifications provided in this and the framework
document.

1.3 Goals

This document answers the following questions:

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 7(30)

1. What are the different entities and roles that can occur within the context of SOFIE-
federated systems?

2. What kinds of operations do SOFIE systems support? What are the roles and
responsibilities taken by different entities during these operations and what are their
sub-steps?

3. What types of interfaces are required for these operations and steps and are they part
of the SOFIE Framework specification scope?

4. How are the results from the above tied to a cohesive architectural framework?
5. What kinds of deployment / integration / implementation configurations are possible

and/or anticipated?

1.4 Constraints

The architecture itself is constrained by both what is feasible in the real world, and by the
overall project goals. Some of these constraints are listed below.

● No mandated central governing body for deployed environments -- if an organization
wants to deploy a “SOFIE system”, use a SOFIE component, or interact with another
organization’s “SOFIE-enabled” system, there is no centralized governing body that
has access or can mandate anything on the environment they have deployed. (The
only restriction should really be in licensing of the term of “SOFIE Compatible” etc. if
something like that ever comes along to uses of SOFIE interfaces that conform to the
specifications.)
This does not exclude different entities from establishing a governing body for the
environments they have chosen to deploy and integrate. The requirement applies only
to the deliverables of the SOFIE project, e.g. they do not form a control mechanism for
the use of, or access to, components defined, used, or distributed by or in the SOFIE
project.

● The state of distributed ledger research is moving rapidly forward, thus it is infeasible
to put down hard requirements on any particular technology (possibly to be
superseded in the near future) as well as setting specific goals on DLT capabilities
(potentially not reached in the near future).

● (This list will be elaborated in later versions based on concrete understanding from
pilot deployment and testing.)

1.5 Role of distributed ledgers

1.5.1 Types of ledgers

While the use of IoT devices, standard protocols etc. would probably be quite straightforward
for most technical people, perhaps a few words about the role of distributed ledgers within
SOFIE is warranted. Distributed ledgers encompass a wide variety of individual technologies,
ranging from public blockchains supporting cryptocurrencies such as Ethereum, to
permissioned DLTs such as Guardtime KSI Blockchain and Hyperledger Fabric, and even to
non-blockchain DLTs such as Hyperledger Indy (e.g. Sovrin). These offer also widely varying
types of service, levels of security and performance guarantees.

The use of DLTs in SOFIE is based on three tenets: 1) they offer a ledger (e.g. append-only
data structure) secure against tampering1, 2) they are decentralized and distributed, meaning
no single node in the DLT network has authority over others, and the data in the ledger is
distributed against single points of failure, and 3) they enable the deployment of distributed

1 Internal and external tampering can have different security requirements. For example, permissioned ledgers are
secure against external tampering provided the actual permissioned nodes remain secure, but may not be able to
provide non-tampering guarantees against an insider attack.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 8(30)

applications that are either directly evaluated by the DLT in deterministic manner, or evaluated
externally in a way that allows third parties to verify the correct behavior of different parties.
These allow distributed ledgers to be used for cases such as these:

● Public ledgers as a neutral platform for establishing agreements between distrusting
parties. Since the ledger is machine-readable, this could for example be a statement
for mutual access rights to specified IoT devices, claim about a state of an internal
system (a private ledger, for example, useful for potential dispute settlements).

● Public ledgers as publishing a permanent record, for example, of a description of an
internal state of a system.

● Public ledger as a globally reachable neutral platform.
● Consortium ledgers, where (potentially distrusting) consortium members operate a

permissioned ledger with consortium members operating their own nodes. This would
allow members to use the ledger, while having certain guarantees about its integrity.
The ledger could be open for access by everybody to allow the state to be inspected,
or access could be restricted so that data confidential within the consortium could be
stored.

● Various other combinations are also possible, where some functionality of the ledger
(such as adding transactions) are permissioned, while others may be permissionless
and open for anyone to join (such as verification).

Using a public ledger supporting smart contracts, for example, may allow an organization to
set up a marketplace for trading and creation of agreements --- a customer could perform a
payment using a cryptocurrency for IoT system access, or a third party could join the
marketplace. Note that when spanning the digital domain of a distributed ledger to the
physical domain of an IoT system, it is generally not possible to extend the integrity and
security guarantees of a DLT without placing a level of trust to the other participant (after all,
the IoT system provider can just take the payment and run, or provide a mock system
providing useless data values.)

1.5.2 Inter-ledger operations

A final piece in this puzzle is the concept of inter-ledger transactions. These may take
different forms depending on the situation, with the core commonality being that they form a
protocol that in one form or another links the state of two or more ledgers together:

● Private state (of a private or consortium ledger) is published in a public ledger, for the
purpose of establishing a fixed point of private system state (potentially useful in
dispute resolutions).

● Link IoT records on different blockchains, where an IoT record on one blockchain
depends on one or more IoT records on one or multiple other blockchains.

● Inter-ledger payments (see Interledger Protocol, for example), where a payment is
initiated in one ledger and results in the payment of funds in another ledger,
transgressing different real or virtual currencies.

Please note that in general, it is not possible to perform inter-ledger operations
“transactionally” in the ACID2 sense of “transactions” between non-cooperating ledgers.
Consider for example two smart-contract enabled ledgers, where a payment in one is
assumed to result in a state change in the second one. Since these ledgers would be self-
contained, performing a transaction from one ledger to another requires a third party that
confirms the payment in the first ledger, and then performs an operation in the second one.
This implies trust in the third party. If such trust mechanisms can be created (such as in ILP

2 Atomicity, Consistency, Isolation, Durability - these are a set of properties generally desirable for data
manipulation operations. Conventionally, databases are able to provide full ACID properties for transactions,
although often these constraints are relaxed for performance and availability reasons.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 9(30)

relying on peering contracts between connectors), then mechanisms such as two-phase
commit can be employed.

Future developments on cross-ledger interoperability may provide developments in this area,
however, for currently widely deployed permissionless ledgers in the general case, “ACID
transactionality” is not feasible in inter-ledger operations. Thus, with “transaction” we refer to
some form of inter-ledger operations that usually result in state changes that can be verified
later to have occurred correctly, but cannot be ensured to be atomic or isolated natively in the
current generation of distributed ledgers. While ledgers do not generally support native inter-
ledger operations, these are possible using other techniques that rely on external
communications (e.g. an approach a bit like using an external transaction monitor) such as
timed hashlocks that can be used to gain transactional atomicity under very general ledger
requirements and operating conditions. Inter-ledger operations are very much an area under
research and active development.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 10(30)

2. Architecture

This section provides an overview of the architecture of a SOFIE system. As described earlier,
this architecture is more of a descriptive than normative architecture. However, here we
provide an architectural framework that provides the structure and terminology that is used
later for describing concrete SOFIE systems with their own unique features and functionalities.
In general, the SOFIE architecture’s goal is to be modular, with clean separation of concerns
between different service features. Thus, while in an implementation many of these features
and components may be integrated into a single application, service or device, here they are
handled as if they were separate implementations (somewhat akin to microservice
architectures).

In the conceptual SOFIE model, we define a service to contain a set of features. If a
component does not conceptually contain all of these features, then we would define it as
either an external service (e.g. not fulfilling all of the features listed here), or a gateway, a
translator or an adapter component. The features that we would consider a (full SOFIE)
service are:

● Discovery
● Service description enabling and supporting features such as privacy and data

protection compliance, data provenance and governance, resource access endpoint
description and referencing of other federated resources

● Explicit definitions of technical API endpoints for resource access
This is shown in Figure 2 as a high-level view. It is important to realize that here we do not
define what a “service” is, how it is implemented (e.g. in a DLT, in conventional application
server or as a serverless service), or what functionality it implements.

Figure 2: High-level view of the SOFIE system architecture.

A more comprehensive description is shown in the figure below. Here we introduce the
concept of a service ecosystem that describes multiple different services (typically governed
by the same entity) that form an interconnected system. In the diagram for example, we have
a “catalogue” service which in itself does not implement access to resources (alternatively we
can view it as providing access to a “null” resource, defining no access methods), but provides
references to other services in the ecosystem. The different systems in the service ecosystem

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 11(30)

can implement features such as a gateway for IoT device access (when those devices cannot
be directly accessed), a service offering protocol translation, general resource access API
service, a notary service residing in a DLT and an authentication service. These services in
turn can refer to other service either within the ecosystem (authentication, for example) or
external services (such as third-party authentication).

Figure 3: A collection of different services, potentially under governance of a single entity, that
comprise together of a service ecosystem. Here “DD” refers to service discovery and

description mechanism.

This is a description of a meta-architecture: at this level it is not possible to specify
implementation architectures of these services, since under the assumption of retaining
organizational silos, it is not possible to mandate anything inside such a silo - only those parts
that operate between silos e.g. external interfaces and protocols. Consider the IoT device
gateway above, for example: the gateway may provide a limited set of actions for external
users, then map these actions into multi-step queries sent to individual IoT devices over a
local non-IP-protocol radio network. The gateway itself may internally be implemented on a
cluster of server applications running in a containerized environment sharing a peer-to-peer
data storage layer.

The sections below describe in more detail what kinds of entities we think are likely to operate
within a SOFIE system, the roles they can take, and various lower level components that are
relevant to further this understanding. Furthermore, a more detailed description of different
core operations that we envision is provided, with a more concrete list of requirements that we
see for different kinds of interfaces a SOFIE service, or a service ecosystem needs to
implement.

Note: This section is expected to be expanded when understanding of generic patterns used
in pilots and BPs is gained during the project lifetime.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 12(30)

3. Entities, roles and components

3.1 Overview

There are many different entities in a SOFIE system and several roles that different entities
can work under. The entities and roles discussed below cannot be an exhaustive list for any
practical deployment, which in turn requires the understanding of related business entities and
roles. First, a short introduction to different entities and roles is given, and then, later, these
are described in more detail.

On the highest level we are talking about organizations, organizations interacting with other
organizations and individual persons interacting with an organization.3 The interactions that
are interesting here occur primarily via either policy-driven software services, software
applications, or software agents. The software services may reside in IoT devices, IoT
service gateways, as smart contracts in distributed ledgers, or other service environments
(Cloud, serverless etc.), including mobile devices. Also, the difference between a human-
controlled application, or a software agent performing operations either fully or semi-
autonomously on behalf of a human and a software service operating under a policy should
be made. Also note that a “service” in our context may also include capabilities for payment
processing, identity validation etc.

Each of these different entities can take different roles such as user or client, service
provider, intermediary, payer or payee. These may have further classifications such as a
user of a service being either a customer, an administrator or a manager. In some cases a
single entity can assume the same role for multiple different purposes, or assume both roles of
a role-pair (such as both sending and receiving payments).

3 While person-to-person interaction related to IoT devices is a possibility, it is not in focus in SOFIE.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 13(30)

Figure 4: Example of different entities, roles and relationships in an organization’s service
ecosystem

3.2 Entities

The table below lists various entities that can be considered to be part of the SOFIE system in
one form or another.

Table 1: Entities and their description

Name Description

Person (Todo in a later version.)

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 14(30)

Organization (Todo in a later version.)

Service (Todo in a later version.)

Agent A software, service (or a person or organization) acting
independently on behalf of a person or organization within the
constraints defined by the originating entity.

Device (Todo in a later version.)

Gateway (Todo in a later version.)

Distributed ledger (Todo in a later version.)

Smart contract (Todo in a later version.)

Oracle Entity allowing smart contracts to interact with the Internet (e.g.
call APIs). An oracle can also be viewed as a highly specialized
form of an agent acting on behalf of a smart contract.

3.3 Roles

The table below lists different roles some of the different entities can take when interacting
with a SOFIE system.

Table 2: Roles and their description.

Name Description

User (Todo in a later version.)

Client (Todo in a later version.)

Provider (Todo in a later version.)

Intermediary (Todo in a later version.)

Payer (Todo in a later version.)

Payee (Todo in a later version.)

Payment processor Separate role; consider a smart contract as a payment processor
for example. A possible mechanism of use would be that 1) payer
receives a signed datum from gateway (non-DLT) and a smart
contract address, 2) payer sends a payment with the datum to the
smart contract (or via ILP, for example) and the smart contract
verifies the datum, and if valid, accepts the payment and logs the
payment as received, 3) the payer can now take the transaction
receipt back to the gateway which in turn can verify that the
payment occurred, and can for example, hand off 4) an access
token.
Of course, a payment processor can be PayPal or anything…
There are no universal standards though that these payment
processors would conform to. (Web payments someday?)

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 15(30)

Trusted third party Entity that is trusted by all parties in a transaction.

3.4 Components

The table below lists some components that may represent an entity (acting out with some
role) in this system. These are more like examples than normative descriptions.

Table 3: Some components in a SOFIE system and the entities and roles they represent.

Name Description

N/A (To be filled in later versions once more concrete understanding
of the components is gathered through pilots.)

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 16(30)

4. Orchestration and Governance

Note that this section is descriptive and not normative. It aims to provide rationale for specific
requirements that come in later sections.

4.1 Overview

As noted before, the process of reading an IoT device value, actuating an IoT device, or
performing some other intermediary operation often is a chain of distinct substeps.

First, one needs to locate the service. Often this is previously known either directly, or can be
discovered through a known intermediary service. Sometimes even this information is not
available, and a broadcast or multicast discovery operation must be performed. Regardless
whether the discovery step is implicit or explicit, simple or multi-phased, requiring user
interaction or not, it is the first step for federation.

Identifying the service and its capabilities is most often considered as part of discovery
process, but we’ll consider service identification as a potentially separate step. The rationale
for this is that sometimes the endpoint is well-known, but it can change its behavior (new
versions of the service etc.) that may change its capabilities while retaining old behavior in a
backward-compatible manner. To allow more intelligent clients to use newer functionality, a
mechanism to identify the service capabilities is needed. This may be explicit identification in
the form of open-ended service description (service metadata), or implicit through service
version numbering. Also while the service is identified, often the service itself needs to be
authenticated for establishing a trust relationship in some manner - if the service is discovered
through a trusted intermediary, this is implicit, but for broadcast type discovery, some form of
trust in the fact that the discovered service really is offering the service it claims needs to be
made. This could be accomplished through use of certificates of trusted service classification
entities, or based on feedback from other users etc.

Also note that accessing service description may be an iterative process tied to identification4
and access control - it is possible that the initial service identification will show only a
rudimentary set of services, and describe the access policy, allowing the user of the service to
bootstrap their access and then gain access to a more complete service description.

Apart from data accessible by open public, a form of user identification and authentication
is present either explicitly (OAuth2, SAML or other credentials) or implicitly (source address for
smart contract invocations). The actual access control is implemented by the organization
responsible for the data or device, and not really part of SOFIE, although the metadata for
describing the access and identification/authentication mechanisms could be. While external
identification and authentication has several applicable standards, the underlying access
control mechanism are usually highly specific to the business requirements of the controlling
organization, and cannot be expressed in general terms, or at the SOFIE architectural level.

For business purposes, mechanisms that act as gates that require either legally binding
contractual agreement, or some form of payment or payment escrow are critical. The
transaction costs and speed of payments are more likely to be relevant for B2C (or C2C) than
B2B. Agreements can be almost anything, but typically these would include EULAs or other
liability risk mechanisms (for businesses). Sometimes it may be possible to automate these
steps fully or partially, but often in the case of agreements, human interaction is expected and
required.

4 We use the term identification instead of authentication. Whether an organization requires a user to be
authenticated is a policy issue, but almost always we need to identify the accessor, even if they are otherwise
pseudonymous. In the later example the coffee dispenser would be interested in ensuring that all entities accessing
it have accepted the EULA, but the actual identity of the person who is accessing would be required only when a
dispute is handled.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 17(30)

4.2 Sample scenario

Let’s take a hypothetical (and quite unrealistic, actually) scenario that demonstrates these
steps:

A person has a “coffee dispenser application” in their mobile device. Wishing to get
a shot of caffeine, they fire the application up. The application performs a discovery
protocol on the local WiFi and 5G network neighbourhood, looking for services that
advertise “coffee dispenser profile.”

It finds some services directly, and a few intermediary services. The application
queries these services, using the defined minimum protocol version for further
information. The intermediary services require EULAs to be agreed to before they
provide further information. One intermediary has a standardized benign EULA that
the user has pre-approved - the application demonstrates the pre-approval for the
intermediary. The other has an agreement not yet confirmed and not on the pre-
approved list. The application queries the user on how she wants to proceed -
“Intermediary X wants consent before providing information - Ignore now / Decline
permanently / View agreement?” The user decides to decline that particular
intermediary, which the application will remember in the future.

Now the application can query both the direct dispensers and the intermediary, and
narrow down the dispenser selection to nearby geographical area. The user
selects a nearby coffee dispenser - directly, not via intermediary, so the application
will talk directly to the dispenser. The dispenser then asks for a payment. Since the
application supports the required payment method, after verifying with the user, the
application receives an electronic dispensing token.

The user starts walking towards the dispenser, with the application tracking user’s
location relative to the dispenser. Once user is nearby, the application - as per
user’s preferences - automatically starts coffee dispenser with the given token,
notifying the user of the time remaining until their brew is ready.

In this scenario, the service discovery occurs both directly (broadcast or multicast), but also
via intermediary (aggregator) services. Using an EULA requires identification - although in this
case, a pseudonym is likely to be sufficient. The whole coffee dispensing profile can be a de
facto standard, as well as the protocol used for dispensing. Please note that while the profile
and actual dispensing protocol are most definitely not part of SOFIE, the supporting
mechanisms potentially are. So, SOFIE is not interested in the actual wording of the EULA, for
example, but about the capability to classify and present them during IoT discovery and
agreement process.

One final step is often required - disputes. In real world, while everybody would be happy
without any disputes, in practice they occur. While this field is largely unautomated (no APIs),
it needs to be covered in some form. The minimal mechanism is to include an URL that a
human can use for initiating a dispute, or alternatively provide other information required (a
good business practice) to initiate a legal process. This generally applies to B2C situations,
where it would be necessary for the business to prove its identity during the interaction to the
consumer. The use of DLTs may offer improvement to current state of the art, as the
transmission of electronic tokens and corresponding payments can be immutably linked and
recorded on a DLT, and used if necessary for handling disputes.

4.3 Elementary operations

The core operations that would be required for the scenario listed above are:

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 18(30)

Table 4: List of elementary operations

Operation Description

DISCOVER How to discover that a service exists?

DESCRIBE What endpoints does the service
support, what are its requirements for
authentication etc.?

ACCESS Actually access the defined resource
endpoints, which can be data retrieval,
control operations, remote actuation, etc.
as semantically defined by the service
description

IDENTIFY Provide identification of the user or client
if required

AUTHENTICATE Perform authentication of the user or
client if required

PAYMENT Perform a required payment

AGREE Agree on a contractual term (EULA, etc.)
required for resource access

WITHDRAW Withdraw from a previous agreement

These are high-level operations that may be implemented in very different manner on different
service implementations - consider that on a web service, service discovery and description
occur over HTTPS, but on a DLT this may occur via calls to a smart contract.

In the subsections below, each of these elementary operations is described and discussed in
detail. Please note that this is a descriptive specification, and any protocols or
implementations mentioned are for illustrative purposes only. The actual specification of
protocols is done in the SOFIE Federation Framework document. Also keep in mind that the
operations described are categorical, e.g. there is not necessarily “a” REST API endpoint for
IDENTIFY behavior, depending on the details this might be implemented entirely on the client
side, or using other external services, or part of the service (or the related ecosystem) itself.

4.3.1 DISCOVER and DESCRIBE

The actual method of finding that a service even exists is a multi-faceted problem. Are you
trying to perform service discovery on the local subnet, or local administrative network? How
about services provided by the cellphone substation, or within a small geographic area? There
are also existing protocols that provide support on specific contexts - consider UPnP for
example, which is useful in a local network, but useless across network boundaries.

For DISCOVER, a SOFIE service needs to essentially “be discoverable”. What is relevant is
highly dependent on the problem, and can cover the following scenarios:

● Local network: Either broadcasting, or replying to service discovery requests on the
local network, if applicable. (For example, if one is creating an internet-facing service,
then local network discovery is useless since any access crosses network boundaries,
thus rendering local discovery useless.)

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 19(30)

● Known service endpoint: Discovery is often implicit in this, e.g. a service description
address is known beforehand, and if that is accessible and provides information, then
the discovery has implicitly happened.

● Known catalogue endpoint: A catalogue endpoint can be something such as a domain
name, in which case DNS service records or WebFinger would be appropriate.
Similarly some specific problem areas have known locator addresses (consider
registrar services in Ethereum blockchain, for example).

● Geographical area: … are there any mechanisms that actually support geographical
service discovery … ?

For DESCRIBE, it is important that the service describes the following information:

● Service API endpoints and their requirements, on contractual and technical
requirements such as the need of identification and authentication by entities
accessing the resource

● Any references to other services and external resources, either as part of API endpoint
requirements, or as a catalogue service

● Privacy and data compliance information, including things such as references to
privacy policies

● Data governance and provenance information (this can be part of the data that is
retrieved too, but potentially as part of the service description too)

Note that discovery and description can be a multi-step process. First, it may be required to
query whether the system supports a specific kind of discovery protocol at all - for example, in
Ethereum an ERC-165 compliant interface discovery process may be necessary, which
requires the client to perform multiple queries to confirm that the queried smart contract
conforms to a particular interface specification.Service metadata formats

4.3.2 ACCESS

The resource endpoints may support various actions as described with the DESCRIBE
operation. Some endpoint actions may require authentication, or may result in different results
depending on whether the client is anonymous, identified or authenticated. If identification or
authentication is required, the service should return information that allows the client to
perform the required action. The same applies for any other prerequisites such as contractual
agreements.

In general, any action returning data should provide also information on its governance and
provenance. If the actions or returned data are sensitive, then suitable protection methods
must be employed (encryption, signing etc.). Similarly, if the ACCESS action adds data to the
system, its provenance needs to be considered and kept up-to-date if necessary (e.g.
distinguishing between information vouched by the system versus information provided by
individual users of the system). Finally, an action may change the system state in a way that
causes effects on the external (non-digital, real) world and is defined as remote actuation to
distinguish from digital-only state-changing operations.

4.3.3 IDENTIFY and AUTHENTICATE

While the underlying mechanisms of IDENTIFY and AUTHENTICATE may be (in some cases)
identical with the only difference being parameterization of the resulting data (pseudonymous
vs. identity-encoding), they fulfill different requirements, and may sometimes be implicitly
provided in the underlying data transfer protocol.

The reason for having IDENTIFY as a separate operation is that in many cases it is sufficient
to be able to distinguish between users and clients without having the need to knowing the
underlying personally distinguishing identity. Consider the coffee vending scenario from above
- the coffee vending machine may be concerned only about the user accepting an EULA, and
paying for the coffee. Yet, for reasons of potential dispute it is necessary for the client to be

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 20(30)

able to provide a linkage of itself to a request, likewise for the vending machine to be able to
show a specific (otherwise unidentified) entity agreed to the EULA. Given former DPD and
current GDPR, it is often a sensible approach of not collecting personally identifiable
information at all if avoidable.

In some situations, the IDENTIFY operation can be implicit: in a local network, a MAC address
may provide sufficient distinguishing capability. In TLS, the use of self-signed certificates and
their (presumably unique) public key may suffice. In other situations, a client-generated
identifier (sufficiently large random string) may be acceptable, while in other situations a
sufficiently secure token5 generated by the service itself is necessary.

If the service requires an authenticated identity, e.g. a strong proof for the service that the
remote entity is associated with a particular identity vouched by some other, trusted party,
then AUTHENTICATE operation is required. In the simplest case authentication occurs with
the service (or linked service under the same governance) itself using username-password
pairs, in which case the service itself is providing the assurance of the identity to itself. In a
more complicated situation the authenticated identity is given by a third party such as national
registry or a commercial entity (think Google and Twitter). If TLS and the client-side
certificates are signed by a trusted party, then they may provide the necessary authenticated
identity information. Also, other protocols and services such as Sovrin may be applicable.

In all situations, the service should follow the best practice of minimizing security information
exposure, e.g. the fact of being authenticated is separated from the process of authentication
(this is the best practice of issuing secure access tokens in the authentication API, as in
OAuth2 for example). Similarly a client must be ready to re-authenticate at any step - the
service may provide short-lived tokens for less trusted entities, for example.

As a final note, remember that it is possible to have the client perform IDENTIFY operation
followed by AUTHENTICATE operation of the user - meaning that the service is able to
distinguish different clients (mobile devices, for example) while accessing the same underlying
resource as authorized by the authenticated user.

4.3.4 AGREE and WITHDRAW

While in many situations, a resource may not require any kind of agreement between the
service and the end user (just think of DNS). In other cases, the agreement may be implicitly
assumed based on earlier actions of the user (for example, in an earlier step by signing up for
the service via a web site, the service may assume the user has either explicitly or implicitly
consented).

In the minimal level, a service can provide in the DESCRIBE operation, or as part of the
metadata in ACCESS, information about the conditions and terms that apply to the service6. If
explicit consent is required, one must consider the following cases:

● If an agent can perform agreement on behalf of user or organization, the agreement
terms must be somehow standardized and uniquely classifiable by the agent. Consider
the coffee vending example above, if the EULA is classified as an instance of a
particular family of contracts (in some ontology), the agent may have been given
permission to automatically agree for those on behalf of the user. (This kind of
automatic agreement cannot really occur unless the user can beforehand understand
the kind of consent they are providing for the agent.)

● Is non-repudiability required? In many cases, “sufficient proof” may not require that. In
case of CC or OSS licenses, the default (of not agreeing) is more restrictive than the
one provided by the license.

5 Token that is generated and authenticated by the service so it cannot be forged by other parties.
6 Whether this kind of implicit consent is sufficient in a particular case is beyond this document.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 21(30)

● Agreement may be implicit in some other operation such as PAYMENT (when it occurs
through a web site providing user with the delivery terms, for example).

● Agreement may be implicitly provided in some operations, in ACCESS for example.
The service description may identify certain terms applying to the use of the ACCESS,
with the assumption that these apply to any client (and by implication, entity)
performing the operation.

AGREE implicitly requires either identification or authentication, as otherwise there is no
guarantees provided for the service.

At this point it may be difficult to provide concrete specification for these operations in the
framework documents, as it appears that many attempts in this area are dead in the water
(such as WS-Agreement). Thus this section is attempting to describe the problem even it may
need to be ignored in the SOFIE context.

4.3.5 PAYMENT

Payment is often required for access to a resource. Payments can take many forms, and while
currency-based payments are most common today, other forms such as exchange of non-
currency tokens or credits, CPU cycles or storage capacity etc. work as payments too.
Payment is most often an asynchronous activity where the delay between a payment request
to its fulfillment can be anything from seconds to days. Consider a situation where the
payment can be fulfilled via a cryptocurrency payment on a fast payment network - here, if the
agent is given permission by the user for automatic payments for certain services, the
fulfilment may occur within a few seconds of the payment request. Conversely, some payment
operations may require offline fulfilment and verification before being completed. In some
situations, it is the payee who needs to be polled for completion, sometimes the payer needs
to provide a proof of payment to the payee.

Regardless of the actual process involved, this is a very complicated field even within a single
jurisdiction, and even more complicated across countries and continents, where different tax
policies, currencies etc. may need to be addressed.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 22(30)

5. Interfaces and protocols

Within the SOFIE architecture, several different interfaces and protocols are identified as
necessary to meet the interoperability and federation goals. The actual protocols used for
these interfaces are defined in the SOFIE Framework document -- in here the discussion is on
what requirements are put on the interfaces themselves.

Overall the interfaces discussed here are categorized into the following overall categories:

● Overall protocol and interoperability requirements
● Service discovery and service description interfaces and requirements
● Interface and protocol versioning and resilience towards future updates
● Data provenance and governance
● Identification, authentication, access control and privacy issues

The requirements are following the standard MoSCoW pattern of MUST, SHOULD and
COULD classification.

5.1 Protocols and interoperability

Data transport and data encapsulation formats MUST follow specifications of reputable
entities such as IETF or W3C.

Any existing interface or protocol that is used MUST have a freely-available, royalty-free
specification available.

All protocols MUST use security mechanisms to protect the data in transit if personally
identifiable information is transported. All protocols SHOULD use security mechanisms for
data transport even in other situations.

Protocols and interfaces SHOULD support interoperability with older and/or newer versions of
the protocols, and minimally they MUST decline working with the client if version
incompatibility that cannot be resolved automatically is detected.

5.2 Discovery and service metadata

Services SHOULD support discovery and use discovery protocols that are applicable for the
service.

Service MUST be discoverable (and describable) if its endpoint is known by the client (prior
knowledge).

Services MUST provide service descriptions. The service description format MUST follow
existing standards if they are applicable.

Services MAY require identification or authentication for detailed service description. If
identification or authentication is required, then an unidentified or unauthenticated service
description request MUST be replied with information about the identification or authentication
requirement.

Services SHOULD include information that can be used by the client and its entity to contact
the service operator. (For example, an URL to the company web page.)

Services MUST include privacy policy, GDPR information, links to them etc. if they process
data under the provisions of relevant legislation.

Service description SHOULD support versioning of services and their access methods.

Service description SHOULD include information about any prerequisites for resource access
such as authentication, contractual agreements etc.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 23(30)

5.3 Versioning and extensions

Interfaces and data formats SHOULD support explicit versioning.

Interfaces and data formats MAY support extensions, e.g. situations where the clients and
services may be interoperable even if they do not support all of each other’s feature support of
the protocol. (Consider SMTP, IMAP, SSH, IKE and similar protocols where the parties may
implement only partially overlapping extensions, and are able to continue operating while
settling to use only the common subset of extensions.)

Interface and data format versioning SHOULD be explicit in client operations so that the
service is able to detect situations where it can not support the request format.

5.4 Data provenance and governance

Data governance information SHOULD be provided with the data returned by the service.

Data provenance information SHOULD be provided with the data returned by the service.

5.5 Identification, authentication, access control and privacy

Existing standards SHOULD be used for centralized identification (centralized and federated
authentication is a well-known problem area).

Identification and/or authentication, and access control SHOULD be separate steps if explicit
authentication tokens are used (e.g. passwords, or federated authentication across different
systems).

All identification and authentication based on shared secrets MUST be use secure transport
methods when communicating over the Internet. Any form of identification and authentication
MUST be secure against malicious third parties.

Note that on decentralized authentication mechanisms it is at this point to provide explicit
requirements (under research).

5.6 Interledger transactions

Interledger operations MUST be verifiable by external entities. Any failure of complying with
the interledger protocol MUST be attributable to a specific entity.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 24(30)

6. Deployment considerations

6.1 Component categories

While a specific deployment architecture cannot be mandated (deployment is within an
organization’s own control boundary), it is still possible to describe some typical deployment
scenarios, which will in turn help with discussions on concrete technologies and
implementation architectures.

There are essentially two different approaches to a deployment: 1) organizational silos
extended with SOFIE-compatible interfaces and 2) building a SOFIE-enabled system from
scratch.

Overall different components within the system can be described as:

● Adapters when they implement a SOFIE interface either as inbound (service) or
outbound (client) protocol, and they offer an open interface for the organization or
developer to integrate into. An example of this type would be a code library
implementing a SOFIE interface client code, and the business logic would use this
library to interface with a SOFIE-compliant system.

● Translators when they implement two different interfaces (a SOFIE one, and another
one) and contain both the client and server capability, and translate one protocol to the
another. An example of this would be a program that serves a SOFIE-compliant
interface for retrieving data from IoT devices, and forwards these requests to another
system.

● Gateway, while technically also a translator, would be a component that specifically
talks to a specific type of system, for example, an IoT gateway. [this is a bit of semantic
nibbling, but IoT gateways are a common term]

● Native, e.g. they implement a SOFIE-compliant interface directly.
It is important to realize that for most protocols, SOFIE specifies only protocols that are
already widely used and already defined by other organizations than SOFIE. For these it is
likely that widespread implementations for interfacing with them already exist. From SOFIE’s
point of view even if an organization uses these already existing implementations, they would
be categorized as native interfaces. “Adapters” and “translators” within SOFIE’s scope are
relevant only for protocols or combinations of protocols that are SOFIE-specific (see the
SOFIE Framework document). Note that this means that a set of protocols may be standard,
but there exists a SOFIE adapter implementation that combines different protocol
implementation to providing a specific, more narrowly defined functionality (such as a specific
business platform).

6.2 Extending existing systems

An important consideration for SOFIE architecture is how well it is suited for use in existing
(aka legacy) systems. It is unlikely that a new system will be developed entirely from scratch -
more likely it will be an adaptation of an existing system, or a new component that employs
existing systems and interfaces. For this purpose, Figure 5 below shows some potential
approaches that can be taken when the goal is to add SOFIE-compliant interfaces to an
existing system. Each of the approaches a-f is discussed below.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 25(30)

Figure 5: Different approaches to extending existing systems for SOFIE specification
compatibility.

Case A: A separate adapter service (or a translator, depending on the complexity of the task)
is developed that uses the existing service interfaces, and provides a new interface. It is
possible that some operations on the new interface do not have a corresponding primitive

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 26(30)

operation on the existing interface, requiring the adapter to be able to perform multiple
operations on the legacy system to provide support for the new interface.

Case B: Alternatively the new interface can be implemented directly on the existing service.

Case C: If the old interface needs to be supported, one possibility is to add a new interface
co-existing with the existing interface. This may require interlocking between the interfaces to
ensure consistency.

Case D: One option is always to completely rewrite the existing system from scratch. As noted
earlier, this is often not a realistic approach unless the service being replaced is lightweight.

Case E: Even if a rewrite is possible as in previous case, it may be necessary to support the
old interface for legacy clients.

Case F: If the legacy service is a front to existing services such as a network of IoT devices,
one option is to let the new interface access the backing resources directly while maintaining
the old interface for compatibility reasons.

Eventually the approach taken depends on particular cases and no specific approach can be
recommended or assumed.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 27(30)

7. Conclusions

This deliverable presented the first version of the SOFIE federation architecture. It outlines a
general SOFIE architecture, describing architectural components and elementary operations.
Furthermore, interfaces, deployment considerations, and KPIs are discussed. Based on this
work, "D2.3 - Federation Framework, 1st version" will be delivered in October 2018. The
architecture itself will continue to evolve, and the following two versions of this deliverable
(due in 2019 and 2020) will extend and refine various aspects of the architecture.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 28(30)

Annex I: Architecture KPIs

For project purposes, the SOFIE architecture and framework needs to have measurable
objectives (key performance indicators, KPIs). Specifically, this document is concerned only
about KPIs related to the SOFIE architecture and framework, as other aspects of the project
have their own KPIs as needed - for example, WP5 e.g. pilots will define relevant KPIs to
evaluate the results of the pilots.

A good KPI is unambiguous, measurable and attainable. If a KPI is gradual (not a yes / no
question), then “better” values of the metric should relate to improvement in the overall quality
and success of the underlying system. Also, KPIs should try to be orthogonal, e.g. avoid
duplicating the number of measures. Similarly, KPIs should not be conflicting, e.g.
improvement in a KPI metric should not cause another KPI to decrease.

This annex is simple in structure, focusing on listing and defining the architecture KPIs in the
next section.

KPIs

This section lists KPIs defined for the architecture. These partially overlap with project KPIs,
as some of the results of architectural decisions can only be evaluated in the overall project
scope including all outputs from WP2 (Federation Architecture & Framework), WP3 (Business
Platforms Integration) and WP5 (Pilots). Thus, below the term “implementation” refers
generally to any components from either WP2 (such as reference platform and business
platform templates) and/or WP5 (pilots). Some of the KPIs may be measured in a WP3
environment, while some others may be measured from demonstrators or lab models.

Also, all these KPIs are under discussion and will be updated in the future versions of the
architecture.

Table 1: Overview of the defined KPIs.

KPI Goal Description Metric Method of verification

1 IoT operability Prove operability of the
implementation with IoT
silos

Number of IoT silos Detection of data flow in
silos during
implementation use case

2 IoT
interoperability

Prove interoperability
across multiple IoT silos of
the reference architecture

Number of IoT silo
pairs

Implementation use case
accesses data or
actuates operations in
different IoT silos

3 Ledger use Validate SOFIE
implementation capability
with multiple ledgers

Number of distributed
ledgers7

Ledgers have detectable
data passing through
SOFIE implementations

4 Inter-ledger
use

Validate SOFIE
implementation operating
across multiple ledgers

Number of distributed
ledger pairs

Implementation use case
shown to result in
operations across
multiple ledgers

5 Ledger
independence

Demonstrate capability of
developing applications

Number of BP samples
classified into success

Demonstrate that a BP
sample can be deployed

7 Across significantly different ledger technologies, e.g. Ethereum and Ethereum Classic are not considered
different ledgers, as their differences are small enough to allow applications developed on Ethereum to be
deployed on Ethereum Classic with only minor changes.

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 29(30)

using ledgers, where a
sufficient abstraction can
be provided to applications
to allow them to be targeted
simultaneously to multiple
ledger technologies

or partial success on two ledgers with only
configuration changes,
and the BP sample users
are able to use either one
with only configuration
item changes

6 Privacy
designed in as
a fundamental
requirement

Demonstrate GDPR
compliance where relevant

Number of operational
GDPR features
referenced and
supported.8

Final specifications have
clear references to
features implementing
named GDPR
requirements. Relevant
pilot specifications also
refer to the needed
features

7 Device owner
payments
across ledgers

Ability of silo owners to
send and receive payments
or other value transfers

Number of ledger pairs
supporting value
transfer

Observation of value
transfer as part of a use
case in an
implementation

8 Data
sovereignty

Ability of data owners to
reject or allow access,
possibly for a specific time
interval, to their data

Each datum has an
accompanying
authorization list, which the
data owner can modify

Number of pilot use
cases utilizing data
owner data sovereignty
features, and data
owner is from a
different silo than the
storage silo

Count the number of use
cases

9 User
responsiveness

Apparent responsiveness
of system for end users

Number of seconds
user gets response for
an action initiated by
the user

Measuring from the onset
of user action until the
user gets a response by
the system (to the user
interface he or she is
using)

10 System
performance

Overall system
performance reflecting the
diverse needs and
requirements of different
use cases

Acceptable system
performance for users
and pilots

Qualitative evaluation of
system metrics (see
below)

System metric

For system performance evaluation, multiple measurable metrics are often required in
combination -- a system that precomputes all potential responses in advance may be very
responsive, but conversely it has huge storage requirements making it expensive and
infeasible to scale in practice. In some situations, the latency of response is critical (especially
for user-visible operations), while in some situations long-running asynchronous operations
are acceptable. Without specifying the particular use case in detail, it is not possible to provide
a specific set of metrics and goals for a “performant system.”

The approach for SOFIE is to perform a qualitative evaluation of the system, measuring the
system using metrics that are relevant for the use case, and evaluating the holistically in
combination. Note that some aspects of a system such as scalability or reliability, while

8 Number of GDPR articles which lead to operational goals is generally thought to be about 10. See e.g.
https://iapp.org/resources/article/top-10-operational-impacts-of-the-gdpr/

https://iapp.org/resources/article/top-10-operational-impacts-of-the-gdpr/

Document: H2020-IOT-2017-3-779984-SOFIE/D2.2 – Federation Architecture, 1st
version

Security: Public Date: 31.8.2018 Status: Completed Version: 1.00

SOFIE 30(30)

important overall, are not in the focus of this project, and are likely to be only evaluated based
on design arguments instead of measurements or tests.

The list below specifies some of the possible measurements and aspects that can be used in
a qualitative system evaluation:

● Response time

● Processing time

● Throughput

● Resource utilization (CPU, memory, network, etc.)

● Scalability

● Availability

