
OAuth 2.0 meets Blockchain for Authorization in
Constrained IoT Environments

Vasilios A. Siris, Dimitrios Dimopoulos, Nikos Fotiou, Spyros Voulgaris, George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences & Technology

Athens University of Economics and Business, Greece

Abstract—We present models for utilizing blockchain and
smart contract technology with the widely used OAuth 2.0 open
authorization framework to provide delegated authorization for
constrained IoT devices. The models involve different trade-
offs in terms of privacy, delay, and cost, while exploiting key
advantages of blockchains and smart contracts. These include
linking payments to authorization grants, immutably recording
authorization information and policies in smart contracts, and
offering resilience through the execution of smart contract code
on all blockchain nodes.

Index Terms—delegated authorization, smart contracts, hash
time-locked payments

I. INTRODUCTION

The goal of the paper is to propose and discuss models
for combining the OAuth 2.0 open authorization framework
with blockchain and smart contract technology to provide
delegated authorization for constrained IoT devices, which
have intermittent or no connectivity to the Internet. The
motivation for considering the OAuth 2.0 delegated autho-
rization framework is that it is a widely used IETF standard
that is currently being investigated for authorization in IoT
environments by IETF’s Authentication and Authorization for
Constrained Environments (ACE) Working Group [1], [2]. An
important feature of OAuth 2.0 is that it provides authorization
for different levels of access, termed scopes. Nevertheless,
we note that OAuth 2.0 mainly defines the format of the
authorization message exchange and the models presented in
this paper are applicable for exploiting blockchain and smart
contract technology in the general context of authorization in
constrained IoT environments.

The rest of the paper is structured as follows: In Section II
we present some background on authorization in constrained
environments using the OAuth 2.0 framework. In Section III
we present two models for utilizing blockchains and smart
contract technology with OAuth 2.0 that involve a different
level of integration, and in Section IV we present an evaluation
of the two models. Finally, in Section V we present related
work and in Section VI present ongoing research extending
the models presented in the paper.

II. AUTHORIZATION IN CONSTRAINED ENVIRONMENTS

OAuth 2.0 is a framework for delegated authorization to
access a protected resource [3]. It enables a third party appli-
cation (client) to obtain access with specific permissions to a

protected resource, with the consent of the resource owner. Ac-
cess to the resource is achieved through access tokens, created
by an authorization server. The specific format of the access
tokens, which will be discussed in more detail later, is opaque
to the clients and to OAuth 2.0. The authorization consent by
the resource owner is provided after the owner is authenticated;
however, the authentication procedure is not part of OAuth 2.0.
Authorization is provided for different levels of access, such
as read and write/modify, which are termed scopes, and for a
specific time interval. The OAuth 2.0 authorization flows can
involve intermediate messages exchanged before the access
token is provided by the authorization server. The details of
the authorization flow does not impact the general approach of
the proposed models, hence in our discussion we only consider
the initial client request and the authorization server’s response
containing the access token.

One type of access tokens are bearer tokens. Bearer to-
kens allow the holder (bearer) of the token, independently
of its identity, to access the protected resource. OAuth 2.0
assumes secure communication between the different entities.
Moreover, it assumes that the protected resource is always
connected to the Internet, hence can communicate with the
authorization server to check the validity and scope of the
access tokens presented by clients requesting resource access.
Both of the above two requirements are not always possible
in constrained environments [1].

JSON Web Token (JWT) is an open standard that defines a
compact format to transmit claims between parties as a JSON
object [4]. JWTs can use the JSON Web Signature (JWS)
structure to allow claims to be digitally signed or integrity
protected with a Message Authentication Code (MAC) [5].
Hence, unlike simple bearer tokens, JWT/JWS tokens are
self-contained, i.e., they include all the necessary information
for the protected resource to verify their integrity without
communicating with the authorization server. Of course, this
requires that during its initialization or configuration phase
the protected resource is cryptographically bound with the
authorization server.

In constrained environments, in addition to intermittent or
no connectivity, the communication between the client and
the protected resource is not secure, hence transmitting bearer
tokens or even self-contained JWTs over such insecure links
can allow other parties to obtain them through eavesdrop-



ping. For this reason in constrained environments Proof-of-
Possession (PoP) tokens are used [2]. PoP tokens include a
normal access token, such as a JWT/JWS, and a PoP key [6]:
access to the protected resource is not possible solely with
the access token; the PoP key is necessary. Hence, the PoP
key must be kept secret and not transmitted in cleartext over
insecure links. Finally, more efficient encoding of JWTs based
on CBOR (Concise Binary Object Representation) is proposed
to reduce the amount of data transferred [2].

III. COMBINING OAUTH 2.0 WITH BLOCKCHAINS

The advantages from combining OAuth 2.0 with
blockchains and smart contracts are the following:

• OAuth 2.0 typically requires the resource owner to be
online. Combining OAuth 2.0 with blockchains allows
authorizations to be linked to payments on the blockchain,
without requiring the online interaction with the resource
owner to provide consent.

• Blockchains can immutably record hashes of the informa-
tion exchanged during the OAuth 2.0 message flow and
cryptographically link authorization grants to payments,
providing indisputable receipts in the case of conflicts.

• Smart contracts can encode policies in an immutable and
transparent manner. Policies can depend on payments as
well as other IoT events recorded on the blockchain.

• Smart contracts run on a distributed platform and typi-
cally involve an invocation cost, hence handling access
requests by smart contracts can protect against DoS
attacks that involve a very high request rate.

Asynchronous authorization, where authorization requests are
accepted by the authorization server according to resource
owner defined policies, without requiring synchronous inter-
action with the resource owner, is supported with ACE-OAuth
[2] and User-Managed Access (UMA) [16].

We present two models which involve a different level of
integration with blockchains and smart contracts, and have
different tradeoffs in terms of privacy, delay, and cost:

• Linking authorization grants to blockchain payments and
recording authorization information on the blockchain.

• Smart contract for handling authorization requests and
encoding authorization policies.

A hash lock is a cryptographic lock that can be unlocked by
revealing a secret whose hash is equal to the lock’s value
h. Unlocking a hash lock can be one of the conditions for
performing a transaction or for executing a smart contract
function. On a single blockchain, a hash lock can be linked to
an off-chain capability, e.g., message decryption, if the hash
lock secret is the secret key that can decrypt the message.

Time locks are locks on a blockchain that automatically
unlock after an interval has elapsed. The time interval can be
measured in absolute time or can be measured in the number
of blocks mined after a specific block. One usage of time locks
are refunds: a user (payer) can transfer an amount of currency
to a smart contract address, in the form of a deposit. The smart
contract can have a function for a second user to transfer the

deposit to another account (the payee’s account). However, if
the second user never calls this function, then the first user’s
deposit could be locked indefinitely in the smart contract’s
account. To avoid such indefinite locking of funds, the smart
contract can also include a refund function, that allows the first
user to transfer the amount deposited from the smart contract
account back to the user’s account; however, this function can
be called only after some time interval, which is the interval
in which the second user must transfer the deposit from the
smart contract account to the payees account. Both hash and
time-locks are used in the models presented below.

Contracts that include both hash and time locks are referred
to as hash time-locked contracts (HTLCs) [7]. Hash time-
locks can be implemented in blockchains with simple scripting
capabilities, such as the Bitcoin blockchain, without requiring
elaborate programming capabilities, such as those provided by
smart contracts. Hash time-locked contracts have been used
for atomic cross-chain trading (atomic swaps) [8], [9] and for
performing off-chain transactions between two parties that do
not trust each other [10].

A problem that is not addressed in this paper is how to
verify that the IoT device is legitimate or to verify that the
IoT device and the authorization server share a common secret;
these problems are addressed in [11].

In the models presented below, the client sends a resource
access request to the URL of the authorization server (first
model) or to the ABI (Application Binary Interface) of the
smart contract that is responsible for handling access to the IoT
device (second model). The URL or ABI can be obtained by
having the client send a query to the IoT device or using some
discovery mechanism. Finally, in both models we assume that
the client, the resource owner, and the authorization servers
have an account (public/private key pair) on the blockchain.

A. Linking authorization grants to blockchain payments and
recording hashes of authorization information

With this model the initial communication between the
client and the authorization server (AS) occurs as in the
normal OAuth 2.0 framework, Figure 1. However, instead
of the AS providing the client with authorization credentials
after consent is given by the resource owner, the authorization
credentials are disclosed after the payment for resource access
is recorded on the blockchain. Hence, the resource owner does
not need to be online to provide consent, as in the case of the
normal OAuth 2.0 procedure.

Specifically, in step 1 the client requests resource access
from the AS over a secure channel. The AS generates a
random PoP (Proof-of-Possession) key which it sends to the
client together with its encryption with the secret key1 Thing,
shared by the Thing and the AS; the client can use this
PoP key to establish a secure communication link with the
Thing (IoT device). Also, the AS sends to the client the
access token encrypted with a secret s, Es(token), the hash

1The secret key that the Thing and AS share is established during the
configuration phase, when the Thing is bound to the AS.



Client deposit

Client AS

Request

Submitted transaction metadata: Hash(token) and
Hash(EΤhing(PoP), PoP, Es(token))
Hash time-locked payment: client deposits amount that 
is transferred to resource owner with pre-image s

s
After step 5, payment is 
transferred to resource 
owner account

EΤhing(PoP), PoP, Es(token), h, price

BlockchainThing

Get s

EPoP(Request, token), EThing(PoP)

Decrypt Es(token)
to get token

OAuth2/ACE exchange 
with Es(token) instead 
of token

1.

2.

4.
5.

6.

3.

No modifications to 
OAuth2/ACE, token format

h=Hash(s)

Fig. 1. Model 1: Authorization grants are linked to blockchain payments and
hash of information communicated using OAuth is immutably recorded on
the blockchain.

h = Hash(s) of the secret s, and the price for the level
of resource access that is requested. The secret s is a one-
time secret randomly generated by the AS for each individual
request, and is required for the client to decrypt Es(token)
and obtain the access token; the AS will reveal the secret
s once it confirms that the payment for resource access is
performed on the blockchain. The difference with normal
OAuth 2.0, in addition to the AS responding immediately to
the resource access request without obtaining consent from
the resource owner, is that the AS sends the encrypted access
token Es(token) instead of the access token unencrypted.
Also, the AS sends the hash h and the price for resource
access. Communicating the price from the AS to the client
allows different levels of resource access, which are encoded
in the access token, to correspond to different prices.

In step 3, two hashes are submitted to the blockchain: the
first one is the hash of the token that the AS will reveal once
payment has been confirmed. The second one is the hash of
three items: the PoP key encrypted with the secret key the AS
shares with the Thing EThing(PoP ), the PoP key, and the
encrypted token Es(token); the second hash serves as proof
of the information that is communicated using OAuth between
the AS and the client. The two hashes immutably record
on the blockchain the information that has been exchanged
exchanged, which can be validated in the case of disputes;
however, they do not ensure that the access token the client
obtains from the AS indeed allows access to the Thing.

Additionally, in step 3 a hash time-locked payment contract
is created on the blockchain, which allows the client to deposit
an amount equal to the requested price (step 4). This amount
will be transferred to the resource owner’s account if the secret
s (hash lock) is submitted to the contract by the AS (step 5)
within some time interval. If the time interval is exceeded,
then the client can request a refund of the amount it deposited.
Once the secret s is revealed, the client can obtain s from the
blockchain (step 6) and decrypt Es(token), thus obtaining
the access token. At this point, the client has all the necessary
information to request access from the Thing, using normal
OAuth 2.0 with the modifications from the ACE framework.

Request

EΤhing(PoP), EPKclient (PoP), 

Es(token), h

Client deposit

Hash time-locked payment enabled: client 

deposits amount which is transferred to 

resource owner account with pre-image s

s

After step 6, payment is 

transferred to resource 

owner account

EPoP(Request, token), EThing(PoP)

1.

3.

5.
6.

4.

Get s to decrypt Es(token) and 

get EΤhing(PoP), EPKclient (PoP) 

h=Hash(s)

7.

Resource 

owner SC
2.

BlockchainThing Client AS

No modifications to 

OAuth2/ACE, token format

Fig. 2. Model 2: Smart contract handling authorization requests and encoding
authorization policies.

B. Smart contracts for handling authorization requests and
encoding authorization policies

In the second model a smart contract is used to transparently
record prices and other authorization policies defined by the
resource owner, which is also the owner of the smart contract.
Examples of such policies include permitting resource access
to specific clients, determined by their public/private key pairs
on the blockchain, and dependence of access authorization on
IoT events that are recorded on the blockchain.

Whereas in the previous model the client and the AS
interacted directly, in this model the interaction is through
the smart contract, Figure 2. The smart contract code is
executed by all blockchain nodes, providing a secure and
reliable execution environment; this provides higher protection
against DoS attacks, compared to the model in Section III-A
where resource access requests are sent directly to the AS. An
additional advantage achieved by allowing a smart contract
to handle resource authorization requests is that the smart
contract can securely bind the protected resource with the AS
responsible for handling authorization requests.

As in the model of Section III-A, a hash time-locked
payment is enabled, allowing the client to deposit an amount
corresponding to the resource access price. The amount is
transferred to the resource owner’s account if the secret s
that unlocks the hash lock is revealed. Once revealed, the
client can obtain the secret s, together with the other necessary
authorization information to access the protected resource. If
the blockchain is public, then s can be read by anyone, hence
everyone can obtain the access token. However, the access
token cannot be used alone, since the PoP key is also required
for accessing the Thing. Nevertheless, privacy concerns might
require that the token is not be revealed; this can be achieved
by encoding the token with the client’s public key.

In this scenario, the AS sends to the smart contract the PoP
key encrypted both with the Thing’s key, EThing(PoP ), and
with the client’s public key, EPKclient(PoP ). Hence, only
the Thing and the client can obtain the PoP key. On the other
hand, in the model of Section III-A, the PoP key was sent



TABLE I
GAS FOR THE TWO OAUTH 2.0 - BLOCKCHAIN MODELS

Gas
Model 1: payments and 112089

recording of hashes
Model 2: smart contract 355439
handling access requests

from the AS to the client over a secure communication link,
hence encryption with the client’s key was not necessary.

IV. EVALUATION

For the evaluation we have deployed a local Ethereum
node running the Go-Ethereum distribution2 connected to the
Rinkeby public Ethereum testnet3. The local node runs on a
computer with an 4 core CPU at 3.40 GHz, 16 GB RAM,
and 64 bit Ubuntu. Smart contracts were written in Solidity
with the Remix server4. The authorization server was based
on the OAuth 2.0 server software5, which is written in Php.
The client was written in Web3.js, which is a part of Node.js.

Table I shows that the second model requires more than
three times the amount of gas, hence more than three times the
amount of EVM (Ethereum Virtual Machine) resources, com-
pared to the first model; this quantifies the tradeoff between the
advantages of the second model, as discussed in Section III-B,
and its higher cost. Regarding the delay, Figures 1 and 2 show
that the second model has four transactions, while the second
model has three. Since the total delay is expected to depend
mainly on the block mining time, the second model is expected
to have a 33% higher delay for responding to authorization
requests.

V. RELATED WORK

The work in [12] presents a blockchain-based authorization
system where authorization proofs can be efficiently verified.
The work in [13] presents a blockchain-based decentralized
access control system where IoT devices interact directly with
the blockchain and are always connected, while [14] presents a
system where policies and access control are directly recorded
on Bitcoin’s blockchain. [15] presents a smart contract-based
system for providing access control to IoT devices while
satisfying access policies in terms of the minimum time
interval between consecutive accesses. The above works all
assume that the IoT device can directly access the blockchain,
which is not possible in constrained IoT environments.

The work in [17] presents a system based on OAuth 2.0
where a smart contract generates authorization tokens, which
a key server obtains in order to provide private keys that
allow clients to access a protected resource. The work of
[18] contains a high level description on using smart contracts
with OAuth 2.0 to allow users to freely select the server
that provides authorization to their protected resource. The
difference of this paper is that we present two different

2https://geth.ethereum.org/
3https://www.rinkeby.io/
4https://remix.ethereum.org/
5https://github.com/bshaffer/oauth2-server-php

models, with different tradeoffs, for integrating OAuth 2.0 with
blockchains, utilizing hash and time lock mechanisms.

VI. CONCLUSIONS AND FUTURE WORK

We have presented two models for utilizing blockchain and
smart contract technology with the OAuth 2.0 authorization
framework, which have different tradeoffs in terms of privacy,
delay, and cost. Ongoing work is investigating using different
ledgers for authorizations and payments, and providing decen-
tralized authorization using multiple ASes.

ACKNOWLEDGEMENTS

This research has been undertaken in the context of project
SOFIE (Secure Open Federation for Internet Everywhere),
which has received funding from EU’s Horizon 2020 pro-
gramme, under grant agreement No. 779984.

REFERENCES

[1] L. Seitz et al., “Use Cases for Authentication and Authorization in
Constrained Environments,” RFC 7744, IETF, January 29, 2016.

[2] ——, “Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework (ACE-OAuth),” IETF Draft,
October 2, 2018.

[3] D. Hardt and et al., “The OAuth 2.0 Authorization Framework,” RFC
6749, Standards Track, IETF, October 2012.

[4] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC
7519, Standards Track, IETF, May 2015.

[5] ——, “JSON Web Signature (JWS),” RFC 7515, Standards Track, IETF,
May 2015.

[6] M. Jones, J. Bradley, and H. Tschofenig, “Proof-of-Possession Key
Semantics for JSON Web Tokens (JWTs),” RFC 7800, Standards Track,
IETF, April 2016.

[7] Bitcoin Wiki, “Hash Time-Lock Contracts (HTLC),”
https://en.bitcoin.it/wiki/Hashed Timelock Contracts, last accessed
02/05/2018.

[8] ——, “Atomic cross-chain trading,”
https://en.bitcoin.it/wiki/Atomic cross-chain trading, last accessed
02/05/2018.

[9] V. Buterin, “Chain Interoperability,” R3 Report, September 2016.
[10] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable

o-chain instant payments,” https://lightning.network/lightning-network-
paper.pdf, January 14, 2016, last accessed 02/05/2018.

[11] N. Fotiou, V. A. Siris, and G. C. Polyzos, “Interacting with the Internet
of Things using Smart Contracts and Blockchain Technologies,” in Proc.
of 7th Int’l Symp. on Security & Privacy on Internet of Things, in
conjunction with SpaCCS, 2018.

[12] M. P. Andersen et al., “WAVE: A Decentralized Authorization System
for IoT via Blockchain Smart Contracts,” University of California at
Berkeley, Tech. Rep., December 2017.

[13] R. Xu et al., “BlendCAC: A BLockchain-ENabled Decentralized
Capability-based Access Control for IoTs,” arXiv:1804.09267v1, April
2018.

[14] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access control,”
in Proc. of 17th IFIP Distributed Applications and Interoperable Systems
(DAIS), 2017.

[15] Y. Zhang et al., “Smart Contract-Based Access Control for the Internet
of Things,” arXiv:1802.04410, February 2018.

[16] E. Maler et al., “User-Managed Access (UMA) 2.0
Grant for OAuth 2.0 Authorization,” Kantara initiative.
https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-05.html,
May 25, 2017, last accessed 23/11/2018.

[17] O. Alphand, M. Amoretti, T. Claeys, S. Dall’Asta, A. Duda, G. Ferrari,
F. Rousseau, B. Tourancheau, L. Veltri, and F. Zanichelli, “IoTChain: A
blockchain security architecture for the Internet of Things,” in Proc. of
IEEE Wireless Communications and Networking Conference (WCNC),
2018.

[18] T. Hardjono, “Decentralized Service Architecture for OAuth2.0,” IETF
draft. https://tools.ietf.org/html/draft-hardjono-oauth-decentralized-02,
March 25, 2018, last accessed 15/10/2018.


