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Abstract—In past, several Certificate Authority (CA) compro-
mise and subsequent mis-issue of certificate raise the importance
of certificate transparency and dynamic trust management for
certificates. Certificate Transparency (CT) provides transparency
for issued certificates, thus enabling corrective measure for a mis-
issued certificate by a CA. However, CT and existing mechanisms
cannot convey the dynamic trust state for a certificate. To address
this weakness, we propose Smart Contract-assisted PKI (SCP) -
a smart contract based PKI extension - to manage dynamic trust
network for PKI. SCP enables distributed trust in PKI, provides
a protocol for managing dynamic trust, assures trust state of a
certificate, and provides a better trust experience for end-users.

Index Terms—PKI; Blockchain; Smart Contract; Policy; De-
centralized Trust

I. INTRODUCTION

Public Key Infrastructure (PKI) is a trusted third party that
binds the name and meta-data with the public key of an entity.
Web PKI (PKI and Web PKI are used interchangeably in
this paper) ecosystem consists of 1) Certificate authority -
responsible for issuing and managing certificates 2) Domain
owners - owner of a certificate 3) Validators - applications used
by end users to access a domain 4) End-users - interacts with
the domain. These four entities form the PKI trust ecosystem.
Additionally, auditors perfom scheduled audits to vouch the
trustworthiness of a CA. In PKI, the trust provided by a
certificate is one way and static i.e., validators and end-users
trust any certificate issued by a trusted CA (once believed!).

In the past, several trust non-conformance by public CAs
resulted in lack of trust in the PKI ecosystem. For example,
DigiNotar (Dutch CA) [1] was compromised by hackers
to issue several fake SSL certificates. The prevention and
response to such scenarios are harder as removing a trusted CA
certificate from the truststore of a validator results in breaking
trust for thousands of domains, even for the valid ones. On
another development, recently, we observe that application
providers such as browser vendors are playing a critical role
in managing trust in the PKI ecosystem. The recent dispute
between Google and Symantec [2] shows how application
providers are enforcing dynamic trust constraints for CAs and
their issued certificates. For this instance, a set of constraints
is placed in the truststore of Chrome browser to gradually de-
crease trust for Symantec CA certificates. This reveals several
weaknesses of the existing PKI ecosystem: 1) manual auditing
(CA/B audit) is not enough for discovering weaknesses of a

CA 2) trust reversal is harder, e.g, removal of a popular root
certificate from the trust store would break trust for many
existing domains 3) domain owner (aka. certificate owner) is
not aware of the trust level of an issued certificate i.e., what
this certificate is good for and 4) no defined protocol to manage
dynamic trust realtionship among application providers, CAs,
domain owners and End-users.

We propose smart contract-assisted Public Key Infrastruc-
ture (SCP) protocol for managing dynamic trust in the PKI
ecosystem. In SCP, application providers, domain owners,
and CAs manages trust policies using smart contracts. From
these trust policies, a certificate trust policy (CTP) contract
is formed before issuing a certificate. The CTP contract acts
as an autonomous agent for managing dynamic trust for a
certificate. In SCP, certificates are issued under a CTP contract.
This enables a domain owner to verify the current trust state
of a certificate from the binded CTP contract. This paper has
three main contributions.

1) Section III introduces SCP, a dynamic and transparent
trust management protocol to set trust state for a cer-
tificate and convey this information to all parties. The
smart contract approach enables transparent verification
of trust using the bottom up approach based on who
actually trust this certificate rather than the blind trust
towards a CA.

2) Section IV and V model the SCP protocol and propose
key characteristics of the system.

3) Section VI and VII evaluate the SCP from implementa-
tion and design perspective. An smart contract on top of
Ethereum [3] is implemented for prototype evaluation.

II. BACKGROUND

A. Trust in PKI

PKI provides a centralized and hierarchical trust chain from
the issuer i.e., CA to the issued certificates. Figure 1 shows
trust relationship in the Web PKI. According to Figure 1, A
CA is a trusted entity to provide a certificate for a domain
owner. The received certificate is used by the domain server to
prove the ownership of a domain. Browser vendors/application
providers set trusted CA certificates in a truststore based on
the report from the Auditor and using additional proprietary
ruleset. The truststore defines trust relationship between a CA



Fig. 1. CA Trust Relationship

and a validator. End-user trusts a domain based on the trust
representation of the domain certificate by the validiators e.g.,
browsers. Additionally, operations of the CA is audited by a
third-party auditor using a set of guidelines (e.g., CA/B forum
[4] guidelines). There is an assumed trust in the auditor’s
report by the application provider.

The trust relationship in Figure 1 works for a relatively static
environment. However, it fails when trust state changes in a
dynamic environment as shown using red color in Figure 1.

Certificate Transparency (CT): CT [5] logs issued certifi-
cates in a public log thus allowing scrutiny by domain owners,
CAs, and auditors. CT makes hard for a compromised CA
to issue forge certificate without being visible to the domain
owners. However, CT does not deliver trust state of a certificate
i.e., what this valid certificate is good for ?

B. Review of existing PKI trust improvement proposals

Perspective [6] uses a set of notary hosts observing the
public key of a certificate via multiple path to detect an attack.
However, Perspective fails to address dynamic trust state of a
certificate from the viewpoint of an application provider.

Several earlier decentralized PKI proposals address the
trusted third party weakness of a CA. BlockStack [7] binds
a key to a name using a global append only log. It decen-
tralizes the centralized domain name system. SCPKI [8] is
a smart contract based PKI in which certificate verification is
performed using web-of-trust approach. SCPKI smart contract
does not comply with the existing PKI protocols and similar
to PGP, bootstrapping trust for a new identity is hard. BIX-
Certificate [9] proposes an equivalent of X.509 certificate
implemented using a certificate public ledger. Similar to
SCPKI [8], BIX suffers from compatability with existing PKI
protocols.

Several earlier papers addresses dynamic trust management
aspect of PKI eco-system. IKP [10] proposes a competitive
and complementary solution for certificate transparency using
blockchain. IKP relies on a smart contract between the CA
and a Domain owner to manage dynamic trust. IKP has

several weaknesses: 1) It fails to take into account the trust
requirement of applications ( or application provider), 2) the
protocol is not suitable for trust delivery among multiple
parties. Certificate Limitation Policy [11] (CLP) delivers a
cryptographic protected trust policy for a certificate from the
application provider to the application. CLP addresses only the
format for a trust policy. Policert [12] allows domain owners
to set policies for their certificates, thus browsers can use
the certificate according to the defined domain policy during
a TLS handshake. Policert does not handle trust view from
application providers to others.

C. Truststore

A Truststore contains trusted CA certificates and policies
used by applications to trust a certificate issued by a CA.
For most cases, truststore management process is proprietary.
For example, Mozilla Trust Store requires a CA to pass
the WebTrust audit and additional criterias to include the
CA certificate. Additionally, the truststore policy defines the
purpose and usage of the CA certificate. For example, French
and Turkish national CAs are restricted to issue certificates
only for certain domains. This shows several weaknesses: 1)
trust information is not propagated in a standardized way
from the application truststore to other actors, e.g., to CA and
domain owners, 2) the rule set for truststore management is
proprietary, e.g., format and constraint rules.

D. Smart Contract and Blockchain

A smart contract is an agreement with automatable and
enforceable policies [13]. A smart contract has several prop-
erties: 1) the smart contract code should be successfully run
within a reasonable time, 2) the enforcement mechanism can
be traditional with dispute resolution methods such as binding
or non-binding arbitration logic in place, and 3) there can
be non-traditional enforcement without dispute resolution, for
example, to enforce actions of smart contract at the network
level. The popularity of the smart contract is driven by its
decentralized nature such as running on top of blockchain.
A blockchain provides transparency, trust, and reliability of
records over time [14] in a decentralized way.

III. PROBLEM DEFINITION AND OBJECTIVES

Table I states three most critical PKI weaknesses [15] that
are used as a problem definition for this paper. This paper
proposes a dynamic trust management protocol to mitigate
these weaknesses. The aims are:

1) A defined protocol for dynamic trust management
among CAs, domain owners, and application providers

2) Use of smart contract to define trust behavior and trust
agreement among parties

3) Enable trust verification of a certificate in a transparent
way



TABLE I
EXISTING PKI WEAKNESSES

Weakness Status
Blind trust
in CA and
Certifi-
cates

CA is assumed to be trusted but the question is by whom?
How do we define trust level of a CA or compare trust
level of a CA from one to another? In a dynamic trust
environment, existing slow auditing process to set trust
level of a CA fails to meet the security requirements
for browser vendors, domain owners, and end-users [2].
Domain owners and end users have the right and need to
know the current trust level of a CA as seen by other actors
in the PKI ecosystem.

Malicious
and non-
conformant
CA

When a trusted CA becomes malicious, validators revoke
the CA certificate from their truststore. This results in lack
of trust for already issued valid certificates. Often, trust
for a compromised CA certificate is reduced gradually in
a proprietary process by validators. Domain owners (which
have certificates issued by a malicious CA) remain dark
regarding this change of trust. Current mechanism lacks
transparency and automation for delivering trust state
information when a CA becomes malicious.

Non-
conformant
certificate

A valid certificate but not conforming to some validators
parameters (e.g., validity period, basic constraint) is a non-
conformant certificate. This results in a fragmented trust
experience for a domain by end users. PKI (including CT)
fails to deliver a validator’s trust constraint to a domain
owner or domain viewer.

IV. ARCHITECTURE AND PROTOCOL OVERVIEW

This section provides an architectural overview and protocol
modeling of SCP. For the architectural representation, first, we
introduce the components of SCP along with their functional-
ity. Figure 2 shows the architecture of SCP along with three
active participants. The three active participants are application
provider, domain owner, and certificate authority.

Application provider (A): An application provider man-
ages truststore in an application. In SCP, application provider
is responsible for managing the application trust policy, i.e., a
policy for certificates trusted by the application.

Domain Owner (D): A domain owner is the user and owner
of a domain certificate. In SCP, the domain owner defines trust
requirements for a domain certificate.

Certificate Authority (CA): A CA issues and manages life-
cycle of a certificate. In SCP, a CA is responsible for managing
the CA trust policy. A CA also contains a signing server. In
SCP, the CA signing server (Sig(cert)) binds address of a
certificate trust policy (CTP) with the issued certificate.

The core of SCP is two smart contracts. First, Policy
contract(Bp) for registerting and updating trust policies
of application providers, domain owners and CAs. Second,
Certificate Trust Contract (Bc) makes a CTP
for a certificate using the trust policy of CAs, application
providers and domain owners.

A. Security model

We provide a brief overview of the security model for SCP.
The assumptions are the following:

1) Contract transactions are transparent to all and contract
source code is published for verification. We assume
smart contract acts honestly.

Fig. 2. Architecture of SCP along with participating actors

2) Blockchain communication to the external world using
client, e.g., javascript client, and inter-communication
from one contract to another are authenticated. Only
owner and authorized parties can modify the storage of
the smart contract. All transactions and messages are
integrity protected without confidentiality.

3) We assume the data entered from the external world to
the smart contract can be trusted.

B. SCP Protocl

Figure 3 models the core functions of the SCP
protocol. The protocol is divided into two part. The first
part, RegisterTrustPolicies uses the Policy
contract(Bp) to register trust policies for CA,
Application provider, and domain owners. The second
part, MakeCertificateTrustPolicy uses both the
Policy contract(Bp) and the Certificate trust
contract(Bc) to form a certificate trust policy Idc for a
to be issued certificate.

1) RegisterTrustPolicies:

• Step 2: The Policy contract(Bp) accepts a request
from a CA to register a CA trust policy Idca. The request
includes a CA certificate R and the allowed usage of the
CA certificate U.

• Step 3: An application provider A reads the CA trust
policy Idca from the Bp contract.

• Step 4: The Bp contract accepts a request from an
application provider A to register an application trust
policy Ida which binds to one or more existing CA trust
policies Idca. At registration, an application trust policy
has no S[] certificate trust policy subscribers.

• Step 5: A domain owner D registers a domain trust
policy Idd using the Bp contract. The domain trust policy
includes the trust requirement and intended usage Td,
Ud of the domain.

2) MakeCertificateTrustPolicy:



Fig. 3. SCP Protocol
1: procedure REGISTERTRUSTPOLICIES
2: CA → Bp : Idca, Pca( TrustedCert R, Usage U)
3: Bp → A : Idca, Pca( TrustedCert R, Usage U)
4: A → Bp : Ida, Idca, Pa( Trust Ta ca, T rustedCert

R, Usage U), S[]
5: D → Bp : Idd, Pd( Trust required Td, Usage Ud)

6: procedure MAKECERTIFICATETRUSTPOLICY
7: D → CA : Idd, Pd(Trust required Td, Usage Ud)
8: CA → Bc : Idca, Idd, Pd(Td, Ud)
9: Bc → Bp : Idca

10: Bp → Bc : Ida, Pa(Trust Ta ca, T rustedCert
R, Usage U) when ∀(Ida) ∈ Bp such that Ida ∈
[Ida, Idca]

11: Bc : Idc, Idd, Ida, Pa(Trust Ta ca, T rustedCert R,
Usage U) when U == Ud, Ta ca == Td

12: Bc → Bp : Idc, (Ida, Pa)
13: Bp : Ida, S[Idc]
14: Bc → CA : Idc
15: CA → D : Idc

• Step 7: A domain owner requests a CA to make a
certificate trust policy against a published domain trust
policy Idd.

• Step 8: The CA selects an appropriate CA trust policy
Idca based on the received domain trust policy Idd at
Step 7. The certificate trust contract Bc accepts a request
from the CA with the CA trust policy Idca and domains
trust policy Idd.

• Step 9: The Bp contract accepts a request from the Bc

contract to find all existing application trust policies Ida
linked to the CA trust policy Idca. The linking occurs
during the application trust policy registration (step no 4)
described in procedure REGISTERTRUSTPOLICIES.

• Step 10: The Bp contract retuns all application trust
polices Ida previously linked to the CA trust policy Idca.

• Step 11: The Bc contract evaluates the trust requirement
of the domain owner Td against the application defined
trust Ta_ca for a CA trust policy Idca. It also evaluates the
certificate usage requirements from the domain against
approved usage by an application. If Ta_ca satisfies Td,
the Bc contract creates a certificate trust policy Idc by
linking Idca, Ida and idd.

• Step 12: The Bc contract sends the newly created certifi-
cate trust policy Idc and linked application trust policies
Ida to the Bp contract.

• Step 13: The Bp contract stores the certificate trust policy
Idc as a subscriber S[Idc] for all linked application trust
policies Ida. This enables the application trust policy Ida
to act as a publisher for the certificate trust policy Idc.

• Step 14: The Bc contract sends the address of the newly
created certificate trust policy Idc to the CA.

• Step 15: The retrun of certificate trust policy Idc to
the domain owner D from the CA indicates a successful

Fig. 4. Modify Application Trust Policy changes certificate trust policy
1: procedure TRIGGERPOLICYCHANGE
2: A → Bp : Ida, Idca, Pa1( Trust Ta1 ca, Pca)
3: Bp → Bc : Idc, Ida, Pa1( Trust Ta1 ca, Pca) when

∀Idc ∈ [Ida, S[Idc]]

establishment of a certificate trust policy.
3) Modify application trust policy by an Application

Provider: SCP supports dynamic trust state of a certificate
trust policy Idc by allowing an application provider to modify
their trust policy for a CA. Figure 4 shows modification of the
certificate trust policy by an application provider.

• Step 2: The Policy contract Bp accepts a modification
request of application trust policy (Ida, Idca, Pa1) from
the existing owner of the policy. Based on the request,
the Bp contract updates the application trust policy.

• Step 3: The Policy contract Bp sends the modifed ap-
plication trust policy Ida, Pa1 to all subscribers of Ida.
Upon reception of the published message, the Bc contract
updates the certificate trust policies Idc using the updated
application trust policy information.

C. Policies and Contracts

Trust policies are registered using the Policy contract and
are readable by any party and updatable by the owner of the
trust policy. A party registers a trust policy in the blockchain
by performing a transaction at the Policy contract. Below, we
provide a short description of each policy type with examples.

CA trust policy: A CA trust policy includes the CA
stated trust obligation for a CA certificate. The CA makes a
transaction at the SCP contract ( Step 2 in Figure 3) to register
a CA trust policy. The CA trust policy can include certificate
policy statement (CPS) ID for a CA certificate and optionally
other conditions such as the validity of the policy.

Application trust policy: An application provider reads
a CA trust policy from the SCP contract, evaluates the CA
trust policy, and request registering the application trust policy
against a CA trust policy (Step 3, and 4 in Figure 3).
An application trust policy includes trust decisions such as
validity, and level of trust placed for a CA trust policy by an
application provider.

Domain trust policy: A domain trust policy provides trust
requirements for a domain certificate (Step 5 in Figure 3).
For example, the domain certificate should be issued by CA1
and CA2, the issued certificate should be fully trusted by the
Chrome browser.

Certificate Trust Policy (CTP): The core of SCP is a
CTP contract formed by binding published application trust
policies and CA trust policies with a domain policy using
MakeCertificateTrustPolicy procedure of Figure 3.
The CTP uses publish/subscribe paradigm, in which the CTP
subscribes to application trust policies. This subscription en-
ables the CTP gets updated for changes in application trust
policies. The domain owner/auditor can monitor the current
state for a domain certificate by monitoring the CTP contract.



Fig. 5. Certificate Issuance
1: procedure ISSUECERTIFICATE
2: D → CA : Idd, CSR(Idc)
3: CA : Idc ∈ CSR
4: CA → Bc : Idc, Idd
5: Bc → CA : Idc when Idc ∈ Bc ∧ Idd ∈ Idc
6: CA → D : Cert(Idc)Sigca

V. EXTERNAL OPERATIONS

This section describes the usage aspect of the SCP protocol.

A. Request for certificate issuance under an existing Certifi-
cate trust policy

Similar to the existing certificate issuance process, a domain
owner generates a certificate signing request (CSR) as a pre-
requisite to obtain a certificate. The generated CSR includes an
existing certificate trust policy as an additional attribute [16]
of the CSR. The certificate issuance process follows steps in
Figure 5.

• Step 2: A CA accepts a CSR and a domain trust policy
Idd from the domain owner D.

• Step 3: The CA checks that the CSR includes a certificate
trust policy Idc and that the domain owner owns the
domain trust policy Idd.

• Step 4: The certificate trust contract Bc receives a request
from the CA with the certificate trust policy Idc and the
domain policy Idd.

• Step 5: The Bc contract checks the validity of the
certificate trust policy Idc and the domain’s relation with
the certificate trust policy, i.e., Idd belongs to Idc. A
successful validation results in the Bc contract sends a
success response to the CA.

• Step 6: The CA sigs a certificate including the certificate
trust policy Idc.

In SCP, the certificate issuance process is similar to the
existing process with a few exceptions. These exceptions
are: 1) The CSR includes a certificate trust policy con-
tract address as an additional attribute 2) Requires an extra
verification steps for the issuing CA during the certificate
issuance process. However, this has minimal performance
impact on the certificate issuance process because certificate
trust policy check is a READ operation in the blockchain, thus
no transaction delay and cost is associated with this step 3)
The issued certificate includes the URL of application binary
interface (ABI) defintion of the certificate trust contract, the
address of the certificate trust contract and the location of
the certificate trust policy. These attributes are included in
the certificatePolicies [17] field of the issued X.509
certificate.

B. Trust validation for a certificate issued under a Certificate
trust policy

In X.509 v3, a valid trust chain determines trust for a
certificate. The validation process also checks certificate con-
straints such as certificate policies [17]. In SCP, the validation

Fig. 6. Certificate Trust Validation
1: procedure VALIDATECERTIFICATE
2: V : Idc ∈ Cert(Idc)Sigca
3: V → Bc : Idc
4: Bc → V : Idc, Idd, Ida, Pa (Trust Ta ca, Usage U,

TrustedCert R)

process (V) uses the certificate trust policy location embedded
in the certificate to query the certificate trust contract Bc

for obtaining the current state of trust. Figure 6 describes
certificate trust validation steps using SCP.

C. Contract violation by a party

A valid certificate exists when a certificate trust policy is
invalid: An invalid certificate trust policy can be easily iden-
tified from the location of a certificate trust policy embedded
in the certificate. A domain owner, for example, can monitor
the certificate trust policy and request to revoke the certificate
when a violation is detected.

Policy trust rules are not followed by a policy owner: If
an auditor monitoring both the SCP contract and real-world
events finds that a valid certificate with a valid policy is not
honored by a policy owner, the auditor can notify this violation
to the certifcate trust contract. There can be potential penalty
and dispute resolution mechanism in place within the smart
contract. Currently, this paper does not address the auditor
and penalty aspects.

VI. PROTOTYPE IMPLEMENTATION

SCP prototype consists of smart contracts and a javascript
(JS) client for interacting with smart contracts. Smart contracts
are implemented using Solidity - a high-level language de-
signed to run on the Ethereum virtual machine. We have devel-
oped two smart contracts: Policy contract and Certificate trust
contract based on the design described in section IV. The first
contract consists of functions for registering trust policies of
applications, domains and CAs. The second contract includes
functions for registration and verification of a certificate trust
policy. These two contracts work in a publish/subscribe model
in which a certificate trust policy subscribes to published
application trust policies. The JS client provides an interface
for registering trust policies and creating a certificate trust
policy. The JS client can also perform validation of a certificate
trust policy and evaluate the current trust state of a certificate.

A. Certificate Trust Evaluation using the SCP prototype

An entity with a valid SCP enabled certificate or in posses-
sion of a certification trust policy location can evaluate the trust
level (i.e., trusted by others) from the SCP smart contract. Our
developed JS client takes as an input the certificate trust policy
location from the certificatePolicies extension field
of the issued certificate. The client uses this parameter to
derive trust state of a certificate from the SCP contract. A
sample trust evaluation output using the client is shown in
Table II.



TABLE II
TRUST EVALUATION OF A CERTIFICATE

CAPolicyId Chrome Mozilla IoS Android OS
1.3.6.1.4.1.
311.94.1.1 Full Full

Marginal
Until Jan 2019 Unknown

TABLE III
REQUIRED GAS AND COST IN USD FOR RUNNING SCP PROTOTYPE

Operation Gas Price in USD
Deploy Policy contract 1423841 2.37
Register policy 128430 0.21
Modify policy (no subscriber) 62665 0.1
Get policy status (called by other
contract)

2237 0.004

Deploy certificate Trust contract 957989 1.6
Make certificate trust policy 271657 0.452

For trust evaluation, we have borrowed the trust level name
from GNUPG [18]. Our definition for the trust level names
are: Full = CA trust policy is fully trusted by the application
trust policy; Marginal = CA trust policy is partially trusted by
the application trust policy; None = Not trusted; Unknown =
Application has no trust policy for this CA trust policy.

B. Prototype evaluation

The evaluation begins from the cost of running SCP pro-
totype. Proof-of-work consensus system such as Ethereum
uses economic incentive to make the system secure and DoS-
resistant. Each transaction in the Ethereum blockchain requires
a certain amount of Gas depending on the computational and
storage used by the transaction. The user need to pay the price
for each unit Gas usually measured in ”Gwei”. Table III states
Gas consumption for deployment and operations for the SCP.
Table III also shows cost in USD for each SCP operations
using 2 Gwei per Gas (safe minimum according to [19]) and
the current Ether price in 1 the market 2.

From Table III, deploying the Policy contract and Certificate
trust contract costs around 2.37 USD and 1.6 USD respec-
tively. The deployment is a one-time cost compared to the
transaction cost for operations such as Register policy, Mod-
ify policy, Get policy status, Make certificate trust policy .
According to Table III, the transaction cost for the functions
of SCP are relatively low. Thus, the cost of the transaction has
minimal economic impact for participating actors.

In a smart contract, cost can vary based on the size of the
input parameters, e.g., size of the trust policy. Figure 7 shows
Gas cost increases linearly with the increase in trust policy
size using the SCP prototype. This re-iterates the proof that
Ethereum is not suitable for large data storage [3]. We assume
a typical trust policy size is around 130 bytes which costs
only 239261 Gas. If policy size is larger than this, data can
be stored in an external storage such as InterPlenetary File
System (IPFS) [20]. For such cases, the link to the data and
the integrity hash are only stored in the blockchain.

1https://www.coingecko.com/en/price charts/ethereum/usd
2The calculation is based on 1 Gwei equals to 0,000000832 USD

Fig. 7. Cost increases linearly with
the increase of policy size

Fig. 8. Cost increases linearly with
the increase of subscribers

In the SCP protocol, a certificate trust policy subscribes
to one or more application policies. Any modification in
a published application trust policy triggers changes to all
subscribers of that application trust policy. This impacts on
the cost of running SCP for an application provider. Figure 8
shows that the increase in the number of subscribers linearly
increases the cost for the application provider to modify an
application trust policy. In an experiment with the prototype,
400+ subscribers hit the default3 maximum of 4.7 million Gas
limit for a single transaction in Ethereum. This raises three
concerns. First, fix a limit on the number of subscribers for
an application trust policy. This can be achieved by placing
a logic inside the smart contract to control the number of
subscribers. Second, the additional cost incurred by a publisher
to publish information to subscribers can be compensated by
assigning a subscription cost. Third, and most importantly,
the prototype needs design improvement to accomodate the
number of subscribers to match real world scenarios.

An important angle of measurement is the time to complete
an operation (transaction) in SCP. Transaction completion time
depends multiple factors including Gwei offered per Gas, the
block size, and the number of blocks added to the blockchain
per second. Typically, with 2 Gwei per Gas, it would take
22 minutes to complete the transaction in Ethereum chain.
We believe this completion time is tolerable as smart con-
tract transactions are performed during the contractual phase
before issuing the actual certificate. The existing certificate
registration process in Web PKI takes a couple of minutes for
issuing a domain validated (DV) certificate, around one day for
issuing an organizational validation (OV) certificate, and one
to five days for issuing extended validation (EV) certificate.
Thus, SCP does not increase the issuance time for OV and EV
certificates. For a strict transaction time critical systems, we
can opt for a permissioned chain such as Hyperledger [21] or
offer higher Gwei per Gas for each transaction.

VII. EVALUATION

A. Comparison with other PKI trust improvement proposals

This section evaluates SCP with other proposals for im-
proving trust in the PKI eco-system. We evaluate the SCP and
the existing proposals using the weakness matrix described in
Table I. Table IV provides a summary of our evaluation.

3Based on default configuration in existing clients



TABLE IV
EVALUATION OF SCP WITH OTHER PROPOSALS

Weaknesses CT [5] BlockStack [7] IKP [10] SCP
Blind trust in CA or
TTP (1)

limited No No No

Non-conformant CA
information (2)

No No limited Yes

Certificate non-
conformance
information (3)

No No limited Yes

Portability with exist-
ing PKI standards (4)

Yes No Yes Yes

Notes:
(1) Trust in the CA is based on a trusted third party. CT
brings transparency to this by publishing the name and key
binding in a public log. BlockStack is fully decentralized while
IKP tackles blind trust by monitoring domain contract using
auditors. SCP adds a new dimension to the certificate trust
evaluation, allowing application providers to define dynamic
trust state for a CA trust policy.
(2) Non-conformance of a CA occurs when trust in a CA is
lost conditionally from the viewpoint of a trusted actor. CT and
BlockStack have no defined mechanism to support this until
revocation occurs. IKP is limited to express non-conformant
CA information by an application provider. SCP delivers
notification for change of trust to the participating parties using
a certificate trust policy contract. This enables domain owners
to take an appropriate measure in trust breakout scenarios.
(3) In web browsing, lock or green bar typically act as a trust
symbol for a domain. Currently, the end-user cannot verify
the trust level of a certificate even when it fails to load in the
browser. For this weakenss, the limitations of CT, BlockStack,
and IKP are similar to the non-conformance of a CA. In
contrast, SCP offers the end-user or domain viewers the means
to validate the trust level for a certificate.
(4) SCP protocol is compatible with the existing X.509 pro-
tocols.

B. SCP design evaluation

The core of SCP is a trust contract among the application
provider which manages the truststore of an application, the
CA which manages certificates, and the domain owner which
uses a certificate as a trusted identity for the domain. This is
a case of multi-party system where trust is dynamic, e.g., a
browser vendor can decide to remove or constrain trust for a
CA certificate at any point of time. Smart contract based trust
system allows 1) a pre-defined and automated management of
trust for each actor and is 2) transparent to everyone. However,
blockchain based smart contract has several weaknesses. The
transaction time and incurring cost of a transaction act as de-
terrent factors. Additionally, maintaining a trusted data source
is challenging, e.g., if an application provider updates the
truststore without updating the application trust policy. This
issue can be addressed using Town Crier [22] protocol which
feeds data to the smart contract from an external trusted data
source. Another alternative is using auditors to monitor the

state between the external data source and the SCP contract.
This, however, brings the question of economic incentives for
the auditor role which requires further investigation.

We, now, focus on several design choices of SCP. First,
we look at the usage aspect of SCP. The certificate issuance
process uses the existing X.509 v3 protocol to embed SCP
related trust vector in the certificate. The certificate verifi-
cation process uses the embedded trust vector included in
the certificate to derive trust for the certificate. Both the
certificate issuance and verification process using SCP are
compatible with the existing X.509 v3 protocol as SCP only
adds additional checks on top of the existing issuance and
verification process. Next, from a protocol perspective, SCP
suffers from increased Gas cost and limitation on the number
of subscribers for an application trust policy due to the
publish/subscribe design pattern. An alternate design can use
event monitoring for change in an application trust policy
rather than subscribing to the application trust policy contract.
However, in this approach, certificate trust policy may get out
of sync with the current application trust state when multiple
notifications arrive at the same time. Thus, further analysis is
required before finalizing a design choice.

C. Relations with existings X.509 protocols

In X.509 v3, the trust anchor starts from an independent CA.
Each independent CA commits to a trust policy by including
certificate policies embedded in the certificate. Auditors audit
the trustworthiness of a CA against the published certificate
policy. Application software/Clients decide on the level of
trust for a certificate by relating it to a certificate policy. The
certificate policy [23] extension includes a set of one or more
policy identifiers indicating under which terms and conditions
a certificate is issued. Existing certificate policy extension or
any other extension fails to take into account, how trustworthy
a CA or a certificate is from the perspective of others. To
address this, SCP uses the existing certificate policy
field to include and deliver application provider stated trust
state for a certificate.

D. Security analysis

We follows STRIDE [24] methodology to derive a threat
model for the SCP protocol. The main actors in SCP are
1) Application Provider 2) Domain Owner 3) Certificate
Authority 4) End-user and 5) Smart Contract provider. These
entities interact with the following assets 1) Trust policies 2)
Certificate trust policy and 3) Certificate. Based on these assets
and actors, the identified major threats are discussed below. For
each threat, we describe the threat, its classification, effects and
possible remediation techniques:

An application provider’s identity is spoofed by some other
actors. This creates a false trust relationship between the CA
and the application provider. For example, the identity of
a browser vendor used for publishing a trust policy in the
SCP contract is spoofed by another entity. This allows the
rouge entity to publish an application trust policy in disguise.
To remedy this, the application provider’s identity should be



published in a well-known media (e.g., newspaper, company
web site). The same level of remediation is required for the
identity of CAs.

Application provider does not follow the trust commitment
recorded in the SCP contract. To remedy this, additional tools
(e.g., auditors) or protocols are required to validate that a
published application trust policy actually matches with the
truststore of the application. One possible remediation is an
improved smart contract to automatically validate the state of
an application truststore against the published trust policy.

Denial of service on the SCP contract. In SCP, the certificate
trust policy subscribes to multiple application trust policies to
receive notifications of change in the application trust policy.
The publisher requires Gas for publishing notification to each
subscriber. Thus, an attacker can use multiple subscription to
drain Gas from the publisher. By incorporating a subscription
fee for each subscriber, this attack can be mitigated.

Several blockchain related attacks are also applicable for
the SCP. For example, 51 percent miners node attack can be
mounted to de-stabilize the system [25], and loss of private
key means loss of controls for the account. These problems
are outside the scope of this paper.

VIII. CONCLUSION

The paper proposes a smart contract-based PKI (SCP) for
managing and delivering dynamic trust in the PKI eco-system.
This is achieved by using a trust policy contract among the
application provider, certificate authority and domain owner.
A trust policy contract enables each participating party to stay
up to date with the current state of trust for a certificate. The
trust state for a certificate is transparent in the blockchain and
is verifiable by all. The paper has three main contributions: 1)
A model for the SCP protocol, 2) Concretize the SCP protocol
with a prototype implementation, and 3) Evaluate SCP from
design and implementation perspective. We have evaluated
our proposal with certificate transparency (CT), BlockStack,
and IKP at which our solution mitigates the identified risks
compared to the existing one. Finally, SCP provides the
capability to validate trust in a certificate in a transparent
and an automated way, thus allowing faster detection of trust
misbehavior in the PKI eco-system.
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