

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779984.

SOFIE - Secure Open Federation for Internet
Everywhere

779984

DELIVERABLE D3.4

Business Platforms, final release

Project title SOFIE – Secure Open Federation for Internet Everywhere

Contract Number H2020-IOT-2017-3 – 779984

Duration 1.1.2018 – 31.12.2020

Date of preparation 22.12.2020

Author(s) Mikael Jaatinen (LMF), Antonio Antonino (LMF),
Filippo Vimini (LMF), Santeri Paavolainen (LMF),
Ahsan Manzoor (Rovio)

Responsible person Mikael Jaatinen (LMF), mikael.jaatinen@ericsson.com

Target Dissemination Level Public

Status of the Document Completed

Version 1.0

Project web-site https://www.sofie-iot.eu/

mailto:mikael.jaatinen@ericsson.com
https://www.sofie-iot.eu/

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 2(21)

Table of Contents

1 Introduction .. 3

2 Release Information ... 4

2.1 Release identifier .. 4

2.2 Release scope .. 4

2.3 Purpose and target users ... 4

3 Release Contents ... 5

3.1 Components ... 5

3.2 CI/CD pipeline .. 7

3.3 CI and CD Infrastructure .. 8

3.4 CI architecture .. 8
3.4.1 Overview ... 8
3.4.2 Jenkins .. 10

3.4.3 Build pipelines ... 10
3.4.4 Build nodes ... 10

3.4.5 Partner access .. 10
3.4.6 Logging ... 10

3.5 CD architecture .. 10

3.5.1 Overview ... 10

3.5.2 Deployment nodes .. 13
3.5.3 Kubernetes ... 13

3.6 SMAUG .. 13

3.7 Other CI/CD environments ... 13

3.7.1 Rovio ... 13

4 Related Deployments .. 15

4.1 Testbed and emulation environment .. 15

4.2 Pilot deployments ... 15

5 Changes since previous release ... 16

6 Lessons learned and recommendations for future development .. 17

7 References ... 18

8 Appendix I: Onboarding Maturity Levels ... 20

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 3(21)

1 Introduction

SOFIE is a three-year EU Horizon 2020 research and innovation project with the goal to enable
diversified applications from various application areas to utilise heterogeneous IoT platforms
and autonomous things across technological, organisational and administrative borders in an
open and secure manner, making reuse of existing infrastructure and data easy.

IoT business platforms are created in SOFIE based on the federation framework defined in
Federation Architecture & Framework work package. For this, an IoT framework repository,
consisting of various components, adapters for well-known IoT platforms and security
mechanisms is developed. These components can be used to create business platforms,
including those for the four SOFIE real-world pilot use cases.

During 2018-2020, SOFIE has delivered three business platform main releases as defined by
deliverable “D3.1 - Integration Plan” [Jaa2019]. Within every main release, new functionality
was added through Continuous Integration (CI) and Continuous Deployments (CD), using the
CI/CD environment developed in this work package.

The first Lab Prototype Release was made available in November 2018 as described by
deliverable “D3.2 - Business Platform, Lab Prototype Release” [Jaa2018]. This release
demonstrated the use of an initial version of the CI/CD environment, with tools and methodology
that supported the integration of a limited interledger demo. At the time, a testbed and Emulation
environment, as described by deliverable “D4.2 - Testbed and Emulation Environment Design
and Setup” [Lag2019] was also made available to support integration testing. Agile methodology
with monthly sprints was introduced to allow continuous functional growth between main
releases.

The second Pilot Release was made available in September 2019 as described by deliverable
“D3.3 - Business Platform, Pilot Release” [Jaa2019b]. This release builds further on top of “D3.1
- Integration Plan” [Jaa2019] and “D3.2 - Business Platform, Lab Prototype Release” [Jaa2018]
by providing a fully developed CI environment, with tools and methodology for integrating WP2
SOFIE Framework components available in public SOFIE repositories and specified by “D2.5 -
SOFIE Framework, 2nd version” [Kor2019] as well as the integration of WP5 pilot-specific
components in private repositories. The scope of the pilots at the time is explained by
deliverables “D5.1 - Baseline System and Measurements” [Oik2018] and “D5.2 - Initial Platform
Validation” [Oik2019].

In April 2020 and September 2020, interim code releases have been published by SOFIE. Agile
methodology with monthly sprints and quality controls have enabled a smooth integration of the
results from both releases in the WP3 CI/CD pipelines for validation and pilot use.

The Final Release, discussed by this deliverable, was made available in December 2020. As
the release name suggests, this is the final release in the SOFIE project and it includes all
results that were produced during the project.

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 4(21)

2 Release Information

2.1 Release identifier

Release name: SOFIE Business Platform Final Release

Release date: 17.12.2020

2.2 Release scope

The Business Platform Final Release is based on the final SOFIE Deliverables and is integrated
in accordance with deliverable “D3.1 - Integration Plan” [Jaa2019].

The SOFIE final release consists of:

● Integrated WP2 Framework components with CI onboarding level (see Appendix I)
● Integrated WP5 Pilot components with CD onboarding level (see Appendix I)
● CI/CD process, environment and architecture
● Related deployments (SMAUG, Pilots, Testbed and emulation environment)
● Learnings and recommendations for future development

2.3 Purpose and target users

The purpose of the Business Platform Final release is to:

● Integrate WP2 framework components for evaluation in WP4 in accordance with “D2.7
- Federation Framework, final version” [Kor2020] and “D4.5 - Final Architecture,
System and Evaluation Report” [Sir2020]

● Integrate WP2 framework components for validation in accordance with “D2.7 -
Federation Framework, final version” [Kor2020] and “D5.4 - Final Validation &
Replication Guidelines” [Oik2020b]

● Integrate WP2 framework components in public repositories and WP5 pilot-specific
components in private repositories for WP5 pilot field trial usage in accordance with
“D2.7 - Federation Framework, final version” [Kor2020], “D3.5 - Final Business
Platform Integration Report” [Vim2020], “D5.1 – Baseline system and measurements”
and “D5.3 - End-to-end Platform Validation” [Oik2018, Oik2020]

● Integrate WP2 framework components in public repositories for the SMAUG reference
implementation in accordance with “D2.7 - Federation Framework, final version”
[Kor2020] and “D3.5 - Final Business Platform Integration Report” [Vim2020]

● Provide quality control mechanisms for the WP2 Framework components that are
available in public software repositories

● Deliver a functioning CI/CD environment in the Amazon Web Services (AWS) public
cloud with support for multiple parallel CI/CD pipelines as well as needed instructions
for use

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 5(21)

3 Release Contents

3.1 Components

One of the reasons for providing CI-as-a-Service to the developers of different pilot software
components and framework components is to increase the overall quality of the software
components produced. By owning and managing the CI environment, LMF Ericsson is able to
take advantage of its expertise in the field and offer a set of additional services that might not
be available to the pilots in their testing environments, thus increasing the overall quality of the
components code, e.g. by reducing the number of bugs that might affect the functionalities of
the component, once made publicly available to its users.

In the same fashion, by hosting the entire CD runtime, LMF offers a Platform-as-a-Service
environment by deploying all the frameworks and pilot components on the infrastructure it owns
and manages.

WP3 has defined a systematic way of onboarding users on the CI/CD environment with seven
onboarding levels, see Appendix I. For every level, a well-defined process has been defined
and executed in collaboration between WP3 and the onboarded user repositories that can be
either public or private.

All the components that have been released by the project, along with their current status in the
CI automation, are described in Table 1 below. Each component is detailed with regard to the
following fields:

● Origin: the SOFIE partner leading the development of the component.
● Component Users: the pilots that have planned to use the component by integrating it

into their codebase.
● Integration level: the level of maturity of the component with regard to the CI pipeline

(levels 0 to 3). Appendix I describes the meaning of each maturity level and the actions
that must be taken by the component developers to take the component to each
maturity level.

● Public: whether the source code of the component is publicly accessible or not.
● Description: the URL of the README file of the component source code repository for

publicly available components.

The different pilots and projects also use the CD environment to perform overall integration
testing across multiple components1, as described in Table 2 below. Each pilot and project is
described with the following information:

● Origin: the SOFIE partner leading the pilot or project.
● Integration level: the level of maturity of the pilot or project with regards to the CD

pipeline (levels 4 to 7). See Appendix I for detailed description of the levels.
● Reference: location of the detailed description of the pilot or project.

The tables below reflect the components as of the release date of this deliverable. A link to the
README file is provided for public SOFIE project source code repositories. The users of the
components are Food Supply Chain (FSC), Decentralized Energy Data Exchange (DEDE),
Decentralized Energy Flexibility Marketplace (DEFM) and Context-Aware Mobile Gaming
Pilot (CAMG). The highest integration level for individual components is level 3.

1 Details on which and how the components are integrated is described in deliverable D3.5.

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 6(21)

Table 1. The SOFIE project software components.

Component Origin Component Users Integration
level

Public Description

Discovery and Provisioning ROVIO CAMG, SMAUG 12 yes README

DSO dashboard ENG DEFM 3 no -

DSO backend ENG DEFM 3 no -

Identity, Authentication and
Authorization

AUEB DEDE, FSC, SMAUG 3 yes README

Interledger Asset Transfer AALTO DEDE, DEMF, FSC,
CAMG, SMAUG

3 yes README

Interledger demo AALTO - 3 no -

Offer Marketplace AALTO DEFM, CAMG,
SMAUG

3 yes README

Privacy and Data
Sovereignty

AUEB DEDE, FSC, SMAUG 3 yes README

Semantic Representation AALTO DEFM, FSC, CAMG,
SMAUG

3 yes README

SOFIE Adapter Application GT DEDE 3 no -

FSC consortium smart
contracts

SYN FSC 3 yes README

FSC adapter smart contract SYN FSC 3 yes README

FSC public smart contract SYN FSC 3 yes README

FSC transportation
federation adapter

SYN FSC 3 yes README

FSC supervisor SYN FSC 3 no -

Table 2: CD integration levels of different pilots and prototypes for the CI/CD environment.

Project Abbreviation Origin Integration
level

Reference

Food Supply Chain FSC SYN 5 D5.3 Section 3

Decentralized Energy Data Exchange DEDE GT 5 D5.3 Section 4

Decentralized Energy Flexibility
Marketplace

DEFM ENG 5 D5.3 Section 5

Context-Aware Mobile Gaming CAMG ROVIO 33 D5.3 Section 6

2 Discovery and provisioning has been integrated in Rovio’s internal CI/CD environment.
3 The Context-Aware Mobile Gaming pilot has been integrated in Rovio’s internal CI/CD environment.

https://github.com/SOFIE-project/Discovery-and-Provisioning/blob/master/README.md
https://github.com/SOFIE-project/IAA
https://github.com/SOFIE-project/interledger-asset-transfer/blob/master/README.md
https://github.com/SOFIE-project/offer-marketplace/blob/master/README.md
https://github.com/SOFIE-project/Privacy-and-Data-Sovereignty/blob/master/README.md
https://github.com/SOFIE-project/Semantic-Representation/blob/master/README.md
https://github.com/SOFIE-project/fsc-consortium-smart-contracts/blob/master/README.md
https://github.com/SOFIE-project/fsc-public-adapter-contract/blob/master/README.md
https://github.com/SOFIE-project/fsc-public-contract/blob/master/README.md
https://github.com/SOFIE-project/fsc-transportation-federation-adapter/blob/master/README.md

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 7(21)

Secure Marketplace for Access to
Ubiquitous Goods

SMAUG LMF 5 D5.3 Section 7

3.2 CI/CD pipeline

On-boarding a component onto the CI/CD pipeline requires cooperation between LMF and the
developer of the component. Clear instructions have been provided by LMF about how to
prepare a component to be on-boarded and how to properly write documentation for it in the
integration documentation template file.

At any given time, a component can be in one of the seven maturity levels shown in Appendix
I. Levels 0-3 are relative to the CI maturity, while levels 4-7 indicate the maturity of the
component with regard to the CD environment. The target level of any component depends on
the requirements of the creator of the component, and may vary from component to another. In
general, Level 3 is considered a desirable goal for all components, and level 5 for any
component needing integration testing. Levels 6 and 7 are considered to be feasible, but only if
desirable from a component development viewpoint.

Any component must meet the full CI maturity level (level 3) before proceeding to CD integration
(level 4 onwards).

Specifically for the CI maturity levels, component developers are responsible for:

1. Giving the CI agent read-only access to the component repository either via SSH-based
(preferred) or HTTPS-based authentication.

2. Configuring webhooks to trigger new builds in the CI environment whenever new
commits are pushed on a branch specified in the integration documentation. The
completion of steps 1 and 2 promotes the component to maturity level 1.

3. Defining the component build process in a way that produces Docker images as final
artifacts that are parametrized with regard to potential hard-coded IP addresses and port
numbers. The tagging details of the Docker images must be specified in the integration
documentation.

4. For those artifacts, writing unit tests that are collected in JUnit format in a path that must
be specified in the integration documentation. Fulfilment of steps 3 and 4 promote the
component to maturity level 2. Nevertheless, in case of failure of either the build process
or the unit tests, the component cannot be taken to step 3, since the artifacts will not be
pushed onto the remote artifact repository.

Taking a component from level 2 to level 3 is entirely the responsibility of LMF, which will create
the required ECRs, or Elastic Container Registries, on AWS. The registries have the proper
permissions so that only the LMF staff is able to access them in read-write mode and the
component developers in read-only mode. Once the required ECRs are created, the CI build
process pushes the artifacts there so that the CD pipeline can be triggered and can pull the new
artifacts.

Moving from level 3 to level 4 requires co-operation between the component developer and
LMF, as knowledge of the proper deployment and configuration has to be encoded into the CD
pipeline. Furthermore, moving from level 4 to level 5 requires definition of integration tests that
are suitable for the chosen deployment model and validation goals. This process is iterative and
requires close collaboration from multiple parties.

Level 4 and 5 deployments are temporary and used only for automated integration testing. A
level 6 deployment is a persistent deployment that is automatically created when a level 5
integration test passes all its tests successfully. Furthermore, level 7 deployment is similar to
level 6 deployment, but triggered manually (so-called manual promotion deployment). The
necessity of level 6 & 7 deployments has to be evaluated on a per-component basis, requiring

https://bitbucket.org/sofie-lmf/ci_integration_documentation_template/src/master/README.md

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 8(21)

consideration of security and safety aspects, visibility of the deployment to external parties etc.
It is expected that above level 5 deployments are used only when a sufficient benefit can be
demonstrated above the increased complexity and other considerations (such as security,
GDPR etc.). During the SOFIE project, no clear need for persistent deployments hosted in WP3
CI/CD have been identified - it has been more practical to host the pilot deployments fully
(including physical components and commercial/SP components) in the pilot specific
environment. On the other hand, persistent deployments hosted in the WP3 CD environment
would come at a substantially increased cost. For these reasons, the onboarding step to CD
level 6 or 7 will remain as a potential future item to address.

3.3 CI and CD Infrastructure

The core capabilities the environment provides are:

1. Perform continuous integration tasks when triggered by changes in watched
repositories of SOFIE WP2 and WP5 material. Continuous integration supports multiple
repositories and in the build pipelines.

2. Perform continuous delivery tasks, including automated integration tests, and
deployment to staging and production environments. Continuous delivery supports
multiple pipelines, e.g. for each pilot separately.

3. Support per-pilot integration needs by being able to provide servers for pilots to
configure any necessary gateways etc. used during integration testing, staging and
production deployments.

4. Enough flexibility in CI/CD and environment to make it reasonably feasible to automate
various evaluation tasks, and/or manual validation and evaluation tasks.

The underlying infrastructure where the integration and evaluation environment is being
deployed as part of WP3 is the Amazon Web Services (AWS) cloud environment. A German
AWS datacenter is used for production deployment of the CI/CD environment.

Figure 1 shows the interactions between LMF, the pilot components, and the CI/CD pipeline.
Changes to the integrated repository trigger a CI task that builds the repository and performs
unit tests. On successful completion of the CI task, a CD task is triggered, which will perform
integration tests. If integration tests are successful, a promotion to a persistent deployment may
be performed if required.

Integrated pilot or
SOFIE open source

CI

Trigger CI on
changes to
integrated
repository

CD

Trigger CD
stage on

build and
unit test
success (Optional)

deployment

(Optional)
promotion

on
integration
test success

Figure 1. Overview of how WP2 and WP5 components are integrated and deployed using the
CI/CD pipeline built by LMF.

3.4 CI architecture

3.4.1 Overview

Figure 2 shows an overview of the infrastructure environment components and their major
relationships. The “infrastructure as code” approach for the environment setup allows easy and

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 9(21)

repeatable deployments of the complex multi-node integration environment. The Terraform tool
is suitable for this purpose as it supports incremental deployments and parameterization of the
deployments, including integration of externally managed resources into the deployment
templates. In this model, the integration environment itself is described in the Terraform
template language and stored in a version-controlled source code repository.

The CI/CD requirements in SOFIE have not justified the additional investment to design and
deploy a redundant CI environment, although it has been highly reliable in practice. The
underlying assumption is that while CI and CD processes are important, a failure due to the loss
of a virtual machine, database etc. is an unlikely event, and, in the worst case, manual recovery
through rebuilding of failed components will last only a week at most.

Figure 2. Overview of the CI architecture. The environment is run in an isolated network
accessible only via the bastion host for authenticated Jenkins users and administrative staff.
The deployment includes automated scheduled backups, centralized logging and monitoring,
and dynamically scaled build fleet for CI and CD tasks.

https://registry.terraform.io/providers/hashicorp/aws/latest/docs

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 10(21)

3.4.2 Jenkins

The heart of the CI/CD system is a virtual machine running the Jenkins software.

Jenkins is currently the most popular open source CI/CD tool. The tool is used to build and test
software continuously, meaning that developers can continuously integrate changes into a build
repository. The same Jenkins system is used for both CI and CD functionality, although the per-
component and per-project build pipeline definitions differ. Most of the Jenkins configuration is
part of the persistent networked file system to ensure loss of the Jenkins virtual machine has
no effect on information on pipeline definitions, job logs, access control configuration etc. The
Jenkins instance is also configured to send email and Slack notifications upon successfully or
failed CI/CD jobs.

The Jenkins virtual machine is configured to access external network resources via a NAT
gateway which is fixed to a persistent external IP address, facilitating, if necessary, firewalling
on the fixed external IP address.

3.4.3 Build pipelines

The detailed build instructions for each component and project are managed in a separate
version-controlled repository. These per-component and per-project pipeline definitions specify
where the build job is to fetch source code (such as SOFIE project public repository, or a
partner’s private source code repository), what build environment to use, and what commands
to issue to build the code and run unit tests. The build environment is specified as a docker
container. The build may result in docker images being built, which are then automatically
tagged with the build identifier and sent to the container registry.

3.4.4 Build nodes

The individual build nodes are, for cost-efficiency purposes, provisioned from a dynamic pricing
pool (“spot fleet”). Although it is possible to lose a build node due to pricing fluctuations, a
replacement is automatically launched and configured for use. The build nodes are remotely
controlled by the Jenkins system, which will send commands for them to run the per-component
and per-project pipelines as either manually or automatically triggered.

3.4.5 Partner access

The Jenkins system is exposed to both WP3 administrators and partners via a web interface. A
level of isolation is provided by running a proxy on a separate bastion host, isolating the Jenkins
system itself from direct access from the Internet.

Staff and partners are authenticated using an external authentication service provider (auth0),
which allows partners to use flexible authentication options, providing username/password and
Google platform authentication options. Access control is mediated within the Jenkins system
based on profile assignments, allowing, if necessary, different partners only the visibility to their
own build jobs.

3.4.6 Logging

The CI/CD environment uses a centralized logging and monitoring system. The integrated AWS
monitoring system provides basic monitoring of different resources, including virtual machines,
storage space, network usage etc. The different virtual machines are configured to additionally
ship logs to the AWS monitoring system’s log storage, allowing logs to be stored separately
from the (potentially non-persistent) virtual machines as well as viewed and searched efficiently.

3.5 CD architecture

3.5.1 Overview

Figure 3 shows the major components of the deployment environment. The deployment
environment is separated from other infrastructure services (different subnets). The deployment
process is driven by the Jenkins CD node fleet and uses general Kubernetes deployment

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 11(21)

functions provided by AWS Elastic Kubernetes Service (EKS). In the CI/CD environment access
to the EKS subnets is limited to the CD nodes only.

Deployed services are run in Docker containers orchestrated by AWS EKS. The EKS consists
of a separate master cluster (EKS control plane) and a cluster of worker nodes. The master
cluster orchestrates the cluster and provides the Kubernetes API endpoint while the worker
nodes run the containers. The EKS control plane is managed by AWS to provide automatic
healing creating a fully production ready platform. The worker nodes are an EC2 auto scaling
group, which enables automated scaling for the cluster.

In addition to Docker containers, deployments, if necessary, are supplanted by other temporary
or persistent services (database, cache, pilot backend gateways, etc.). Ethereum and Indy
testbed nodes are deployed in AWS.

Figure 3 illustrates the CD environment for testing, staging and production deployments. The
testing and persistent deployments are done on a Kubernetes cluster on separate namespaces
for logical and network isolation. The deployment and integration testing process is controlled
from the Jenkins master indirectly via the CD builder node. Services maintained outside the
Kubernetes environment (such as Ethereum and Indy testbed nodes) are accessible to
deployments.

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 12(21)

Figure 3. CD environment for testing, staging and production deployments.

Note that the CD environment is controlled from the same Jenkins system that controls also the
CI functionality. For this reason, we only describe the main unique characteristics of the CD
environment below.

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 13(21)

3.5.2 Deployment nodes

The nodes used to run deployment and integration test tasks are separated from build tasks.
This is to provide a layer of isolation. The build artifacts are always mediated between CI and
CD via the container registry, a good practice to prevent accidental uses of resources not
formally defined as build artifacts. Additionally, the build nodes do not have access to the
Kubernetes cluster management interface; this is restricted to deployment nodes only.

The Jenkins system runs CD pipeline jobs on deployment nodes specifically. These run further
commands to properly deploy the system under test. The details of the deployment vary from
project to project, but in general include creation of an unique Kubernetes namespace
(deployment isolation), configuring and deploying different containers and services related to
the project either in a single step or sequentially in multiple steps, identifying service endpoints
and passing them to integration tests, running of the integration tests, and finally collecting test
results.

3.5.3 Kubernetes

The deployments from integration level 4 to level 7 occur in a containerized and isolated
Kubernetes environment. Access to the deployed environment is normally limited to the
deployment nodes alone, but for level 6 to 7 deployments can be configured to allow also public
(Internet) access. The CD environment uses the AWS-provided Kubernetes control plane, and
runs multiple Kubernetes cluster nodes in a redundant and cost-effective dynamic pricing basis.
The deployments pull containers either from the CI/CD container registry, or from public
registries if a generic container (such as a Postgres database) is used within the integration
deployment.

3.6 SMAUG

The Secure Marketplace for Access to Ubiquitous Goods, or SMAUG, is a decentralised
and open marketplace where smart locker owners can put their smart lockers for rent, and
potential smart locker renters can place bids, for those smart lockers to get the authorisation to
use them. Smart locker owners publish smart lockers on the marketplace by creating a request,
i.e., a request for offers. The bids that smart locker renters place for those requests are called
offers. SMAUG places itself as a reference implementation, to show how all the different SOFIE
components can be used together to develop a system that benefits from all the properties that
the SOFIE framework provides. Furthermore, SMAUG is being developed by LMF as a WP3
leader, and this means that an important target for SMAUG is to provide high-quality feedback
to SOFIE component developers about the set of features the components offer, their level of
reusability and extensibility, and their quality relating to how easily they can be integrated into
systems other than the four pilots under development. This is achieved by following a “learn by
doing” approach and testing the components via direct integration into a system developed from
scratch during the last year of the project. For a detailed description of the SMAUG use case,
as well as its architecture and how the SOFIE components have been integrated, see
deliverable “D3.5 - Final Business Platform Integration Report” [Vim2020].

3.7 Other CI/CD environments

3.7.1 Rovio

Rovio uses its internal pipeline for continuous integration and development for the SOFIE
context-aware mobile gaming pilot. The pilot is divided into two parts: the first includes mobile
clients developed in Unity game engine and the second includes the backend and ledger
developed and deployed on AWS. After the code is committed into a version control system,
i.e. GitHub, by the developer, it goes through the build phase where it is compiled. Once the
compilation is completed, the code goes through various kinds of tests written by the developer
to check the functionality of the code. After testing, it goes to the deployment phase, where the

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 14(21)

code is deployed in the staging environment and is published for usage. As for the mobile game
clients, after the clients have been remotely built by the pipeline, the installation packages file
becomes available for the users through Rovio internal platform. The backend and the ledger
are deployed on AWS. As the Fabric ledger is managed by AWS, it cannot be updated
automatically. New code is manually deployed every time changes occur. SOFIE mobile gaming
pilot stands at Level 3 of the SOFIE corresponding CI/CD onboarding maturity level.

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 15(21)

4 Related Deployments

4.1 Testbed and emulation environment

A SOFIE testbed and emulation environment is available as described in deliverable “D4.2 -
Testbed and Emulation Environment Design and Setup” [Lag2019].

The testbed spans multiple project partners (AALTO, AUEB, LMF Ericsson) and allows testing
various distributed ledger technologies and their interaction with IoT devices on a wider scale.
Testbed elements include private Ethereum, Hyperledger Fabric, Hyperledger Indy and access
to Guardtime KSI blockchain.

IoT Sensors,
Actuators,

etc.

Gateways

DLT Node

IoT
Gateway

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

User

DLT Node
Partner 1

LMF Ericsson

Partner 2

Users,
Gateways,
IoT Devices

Users,
Gateways,
IoT Devices

Users,
Gateways,
IoT Devices

Partner 3

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

SOFIE Testbed Node

Ethereum

Hyperledger Fabric

….

Figure 4. Overview of the SOFIE testbed setup.

The SOFIE emulation environment emulates certain aspects of SOFIE pilots and related, more
general, use-cases, thus allowing realistic testing of various solutions without deploying them
yet in pilot environments.

The testbed and emulation environment is used as an additional means to validate the correct
behavior of integrated business platforms, with a close feedback loop between WP3 and WP4.
The local testbed at LMF Ericsson is hosted in the same Amazon Web Services account as the
CI/CD environment, making it easy to use testbed components as part of CI and CD activities.
The Indy testbed has been also used by other projects than SOFIE.

4.2 Pilot deployments

Before field deployment, a proof of concept prototype has been implemented and demonstrated
in the lab environment for every SOFIE pilot, as described by deliverable “D5.2 - Initial Platform
Validation” [Oik2019]. The validation of pilots’ use cases occur primarily within the context of
the field pilots. The CI/CD environment is used for programmatic validation of individual
components and technical functionality of pilots. The extent of the CI/CD validation is decided
by pilots as documented in “D5.4 - Final Validation & Replication Guidelines” [Oik2020b].

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 16(21)

5 Changes since previous release

The main changes since previous release:

● Feature enrichment and code quality improvements for WP2 framework components
● Enriched CI/CD environment with demonstrated onboarding of components up to CD

level 5 as described in Appendix I and readiness to onboard up to CD level 7
● Onboarding of WP2 framework components as described in 3.1 Components, Table 1
● Onboarding of WP5 pilots and SMAUG as described in 3.1 Components, Table 2

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 17(21)

6 Lessons learned and recommendations for future
development

In general, running a CI/CD environment in a public cloud was in many ways easier than running
it in a corporate datacenter. The entire environment is, by default, isolated from other
environments, and since it is under the account owner’s control, any changes such as network
topology modifications are faster to implement. In contrast, it must be noted that the skills and
knowledge required for properly setting up a fully configurable infrastructure environment may
not be readily available for all projects.

It must be also noted, that for a full open source project, it might be easier to use readily-
available CI/CD commercial solutions. For SOFIE, it was expected (and has actually occurred)
that some of the integrated software would not be under open source license, and for security
concerns a CI/CD environment fully under the project member control was viewed as more
appropriate. If this is not, however, the case for other projects, we would recommend to take a
thorough look at hosted CI/CD solutions.

The decision to use the infrastructure-as-a-code approach (using the Terraform tool), while
causing an initial setup effort cost, turned out to be hugely beneficial in the end. Changes to the
infrastructure could be peer-reviewed before being put into production in otherwise identical per-
administrator environments. Additionally, there was no need to set up a separate static
development or staging environment, as each person on the team could on-demand deploy a
copy of the CI/CD environment, fully isolated from the production environment, as needed, and
tear it down once finished with developing changes and testing.

The operating costs of the environment varied over time, as we added further functionality and
capabilities to the system, as well as due to increased artifact and log storage as more CI/CD
jobs were added and run. On the other hand, we did expand over time cost-saving methods
such as the increased use of dynamically priced virtual machines (spot instances). The final
per-month cost settled to around 500€, substantially less than originally budgeted. The cost
includes the CI/CD environment with 6 virtual machines, persistent network disk and storage,
persistent external IP address allocation, private DNS, Kubernetes setup, load balancers and a
separate testbed setup.

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 18(21)

7 References

[Jaa2018] M. Jaatinen et al.,“SOFIE Deliverable D3.2 - Business Platform, Lab Prototype
Release”, November 2018. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.2-
Business_Platform_Lab_Prototype_Release.pdf

[Jaa2019] M. Jaatinen et al., “SOFIE Deliverable D3.1 - Integration Plan”, April 2019.
Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D3.1-
Integration_Plan.pdf

[Jaa2019b] M. Jaatinen et at., “SOFIE Deliverable D3.3 - Business Platform, Pilot Release”,
September 2019. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.3-
Business_Platforms_Pilot_Release-v1.00.pdf

[Lag2019] D. Lagutin et al., “SOFIE Deliverable D4.2 - Testbed and Emulation Environment
Design and Setup”, February 2019. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.2-
Testbed_and_Emulation_Environment_Design_and_Setup-v1.00.pdf

[Kor2019] Y. Kortesniemi et al., “SOFIE Deliverable D2.5, Federation Framework, 2nd
Version”, August 2019. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.5-
Federation_Framework%2C_2nd_version.pdf

[Kor2020] Y. Kortesniemi et al., “SOFIE Deliverable D2.7, Federation Framework, Final
Version”, November 2020. Available at: https://www.sofie-iot.eu/results/project-
deliverables

[Oik2018] I. Oikonomidis et al., “SOFIE Deliverable D5.1 - Baseline System and
Measurements”, June 2018. Available at:
http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-
Baseline_System_and_Measurements.pdf

[Oik2019] I. Oikonomidis et al., “SOFIE Deliverable D5.2 - Initial Platform Validation”, July
2019. Available at: https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-
Initial_Platform_Validation.pdf

[Oik2020] I. Oikonomidis et al., “SOFIE Deliverable D5.3 - End-to-end Platform Validation”,
July 2020. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.3_End-to-
end_Platform_Validation_v1.00-2.pdf

[Oik2020b] I. Oikonomidis et al., “SOFIE Deliverable D5.4 - Final Validation & Replication
Guidelines”, December 2020. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.4-
Final_Validation_Replication_Guidelines.pdf

[Sir2018] V.A. Siris et al., “SOFIE Deliverable D4.1 - Validation and Evaluation Plan”,
October 2018. Available at:
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.1-
Validation_and_Evaluation_Plan-v1.00.pdf

[Sir2020] V.A. Siris et al., “SOFIE Deliverable D4.5 - Final Architecture, System, and Pilots
Evaluation Report”. December 2020. Available at: https://www.sofie-
iot.eu/results/project-deliverables

https://media.voog.com/0000/0042/0957/files/SOFIE_D3.2-Business_Platform_Lab_Prototype_Release.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.2-Business_Platform_Lab_Prototype_Release.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.1-Integration_Plan.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.1-Integration_Plan.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.3-Business_Platforms_Pilot_Release-v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D3.3-Business_Platforms_Pilot_Release-v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.2-Testbed_and_Emulation_Environment_Design_and_Setup-v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.2-Testbed_and_Emulation_Environment_Design_and_Setup-v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.5-Federation_Framework%2C_2nd_version.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D2.5-Federation_Framework%2C_2nd_version.pdf
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables
http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf
http://media.voog.com/0000/0042/0957/files/SOFIE_D5.1-Baseline_System_and_Measurements.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-Initial_Platform_Validation.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.2-Initial_Platform_Validation.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.3_End-to-end_Platform_Validation_v1.00-2.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.3_End-to-end_Platform_Validation_v1.00-2.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.4-Final_Validation_Replication_Guidelines.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D5.4-Final_Validation_Replication_Guidelines.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.1-Validation_and_Evaluation_Plan-v1.00.pdf
https://media.voog.com/0000/0042/0957/files/SOFIE_D4.1-Validation_and_Evaluation_Plan-v1.00.pdf
https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 19(21)

[Vim2020] F. Vimini et al.,“SOFIE Deliverable D3.5 - Final Business Platform Integration
Report”, December 2020. Available at: https://www.sofie-iot.eu/results/project-
deliverables

https://www.sofie-iot.eu/results/project-deliverables
https://www.sofie-iot.eu/results/project-deliverables

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 20(21)

8 Appendix I: Onboarding Maturity Levels

Level criteria Requirements for component developers

Level 0 No integration to CI/CD -

Level 1 CI is triggered on new commits, pull
repository (fetch source code)

1. Give read-only access to the repository to
Jenkins (possibly SSH-based)

2. Configure a webhook for push events to
the component-specific URL

Level 2
CI Build and unit tests pass, unit
test results are collected correctly

1. Build produces properly parametrized and
properly documented Docker images

2. At least one unit test is implemented and
must complete with no errors. Test results
are collected in JUnit format.

Level 3

CI Build artifacts are pushed to
artifact storage (ECR, artifactory,
others) and can be used by
developers (e.g. pulled locally)

1. Identification of Docker images to be
pushed (usually accomplished in Level 2
already)

Level 4
CD test environment, that uses the
artifacts, can be deployed, and
does not enter a crash-restart loop

1. Definition of integration deployment
schema (with WP3)

2. Definition of proper configuration for the
deployment to meet integration testing
needs (with WP3)

3. Responses and fixed related to problems
identified during deployment

Level 5
CD Some integration tests exist,
and they pass on the CD test
deployment

1. Definition of an initial automated
integration test (WP3 will implement this
test, verifying that the deployment is
testable)

2. Development of further automated
integration tests (WP3 assists and
validates tests)

Level 6 and 7 deployment levels are specified, but expected to be used only if there is a good
cost-benefit rationale for using them, as deploying any public-facing service requires in addition
to continuously increased maintenance and monitoring needs, also an initial security review to
ensure a minimally secure deployment.

Level 6

CD Staging deployment can be
deployed after successful
integration test build (e.g. semi-
persistent deployment)

1. Providing rationale for the necessity of
Level 6 deployment including a cost-
benefit analysis for increased hosting
costs

2. Identifying any additional deployment
resources needed

3. Identifying configuration differences
between Level 6 deployment and
integration testing deployment

Level 7
CD Promotion process and
deployment for "production"
deployment

1. Providing rationale for the necessity of
Level 7 deployment including a cost-
benefit analysis for increased hosting

Document H2020-IOT-2017-3-779984-SOFIE/
D3.4 – Business Platforms, final release

Security Public Date 22.12.2020 Status Completed Version 1.0

SOFIE 21(21)

costs
2. Identifying any persistence requirements
3. Identifying additional deployment and

configuration change necessary
4. Implementing any migration functionality

in the application, if needed

