Acoustic panel ceiling

SIN TE.

- 32 Acoustic panel ceiling
- 33 Panels for mounting with screws
- 45 General instructions
- 49 Panels for suspension in T-type profile frame ceilings

tion in

55 Ceiling solutions

1

Acoustic panel ceiling

The acoustic panels are a convenient and functional material offering numerous applications for ceiling and wall finishing. Various types of panel fastening are possible: CD profiles, lathing as well as T profiles or fastening onto a wall with glue.

The use of acoustic panels in the decoration of ceilings and walls improves acoustic microclimate of rooms, ensures noise absorption, thereby creating a comfortable working and living environment. Owing to the excellent acoustic, aesthetic and mechanical properties, the panels are particularly well-suited for public buildings – offices, educational establishments, as well as premises with higher humidity – spas, fitness gyms, swimming pools, production and residential premises. They are widely used for finishing in professional sound processing studios, cinemas, concert halls and recreation centres, where limiting sound distribution and permeability is particularly important.

The ceiling structure is formed of a steel tin profile frame or wooden lath, T-type profile grid elements elements, which are fastened with special suspension elements to the load-bearing structures. The type of suspension elements depends on the load-bearing ceiling structure, as well as on the mineral wool used for increasing sound absorption.

Acoustic panel ceiling

-

Panels for mounting with screws

- 34 Fastening on CD metal sections
- 37 Fastening on wood laths
- 40 Impact resistance guidelines
- 42 Acoustic panel mounting with CEWOOD clips
- 45 General instructions
- 45 Screwing instructions
- 47 Acoustic panel screw

Fastening on CD metal sections

The frame is made of perpendicularly arranged CD type metal profiles 60/27/0,6 mm. CD profile placement, fastening onto load-bearing structures and connections between elements are implemented according to CD type profile manufacturer guidelines. Placements of suspension elements and frame bearing capacities are stated in the table below.

Maximum mounting distances of frame elements

Load-bearing profile CD 60/27/0,6 mm	Assembly profile CD 60/27/0,6 mm	A - distanc eler Lo	Double ceilings					
Distance C - mm	Distance B - mm	Up to 0,15	Up to 0,65					
600	600	1150	900	750	700			
900	600	1000	800					
1000	600	950	750					
1200	600	900						
Must use suspensions w	Must use suspensions with load-bearing capacity ≥ 0.40 kN							

CD profile frame perimeter fastening sections and explanation

Node 1.

Node 3.

*In drawings used nonius suspension with bearing capacity 0,40 kN

Explanation of numbering

1. Load-bearing structure

- 2. Quick suspension with anchor fixation
- 3. U-type clamp
- 4. Cross connector for CD profile
- 5. Conical anchor \geq M6
- 6. CD assembly profile 60x27x0,6 mm
- 7. CD load-bearing profile 60x27x0,6 mm
- 8. CEWOOD Acoustic panels
- 9. CEWOOD screws 4,65x45 mm or galvanized woodscrews with head $\emptyset \ge 9$ mm
- 10. UD perimeter profile 28x27
- 11. Existing wall structure
- 15. Nonius suspension with bearing capacity 0,40 kN

Fastening types of CD profiles on to load-bearing structure

Assembly profile is attached to a load-bearing profile using corss conector for CD profiles. A CD profile frame is fastened onto load-bearing sturcture using quick suspension, U-type clamp or nonius type fastening. See detailed explanations below.

Quick suspension with anchor fastening element

Load-bearing capacity 0,15 kN

Joint between longitudinal edges

U-type clamp for direct fastening

Load-bearing capacity 0,4 kN

Joint between longitudinal edges

Nonius type suspension with adjustable height

Load-bearing capacity 0,4 kN

Joint between short edges

Fastening on wood laths

The frame is made of perpendicularly arranged wooden laths. Placements of suspension elements and frame-bearing capacities are stated in the table below.

Maximum mounting distances of frame elements

Load-bearing lath, min. cross section 60/30 mm	Assembly lath, min. cross section 80/30 mm	A - distance between suspension elements/fastenings Load class kN/m ²				
Distance C - mm	Distance B - mm	up to 0.15	up to 0.30	up to 0.50		
600	600	1150	900	750		
900	600	1000	800			
1000	600	950				
1200	600	900				
Must use suspensions with load resistance of 0.40 kN Assume minimal load-bearing lath cross section of 60x30 mm						

Wooden lath frame fastening sections and explanation

Node 2. Joint between longitudinal edges

Node 3.

8

*The drawings show U-type clamp suspension with bearing capacity 0,40 kN

Explanation of numbering

- 1. Load-bearing structure
- 3. U-type clamp
- 5. Conical anchor \geq M6
- 6. Assembly lath min. 80x30(h) mm
- 7. Load-bearing lath min 60x30(h) mm
- 8. CEWOOD Acoustic panels
- 9. CEWOOD screws 4,65x45 mm or galvanized woodscrews with head $\emptyset \ge 9$ mm
- 11. Existing wall structure
- 16. Perimeter wooden lath 30x50(h) mm

Fastening types of wooden laths onto a load-bearing structure

Assembly laths are attached to a load-bearing laths using wood screws. A wooden lath frame is fastened on to load-bearing sturcture using quick suspension, U-type clamp or with anchors directly to load-bearing structure. Detalized explanations see below.

Quick suspension with anchor fastening element

Load-bearing capacity 0,15 kN

Joint between longitudinal edges (alternating fastening)

U-type clamp for direct fastening

Load-bearing capacity 0,4 kN

Joint between longitudinal edges

Double-layer frame direct fastening with anchor

Anchor type must be applied onto a load-bearing structure type

Single-layer frame direct fastening with anchor

(!) Assebly laths are fixed directly onto a load-bearning structure Fastening type usable if ceiling leveling is not required

Joint between short edges, load-bearing lath min. 60x30(h) mm

Joint between short edges

Impact resistance guidelines

CEWOOD ceiling structures have passed the ball impact tests, so they can be safely installed in various sports facilities. All provided ceiling types have been tested and can be used only with a maximum substructure step of a **300 mm** between profiles/laths.

Construction	Description	Substructure type	Distance A	Distance B	Distance C	Screws	Impact resistance class
	According DI	N18032-PART3	and EN 136	94/ANNEX	D		
	CEWOOD A2 25 mm panel 1200x600 mm, 600x600 mm	Metal profile frame	≤900 mm	<u>≤</u> 300 mm	≤900 mm	15 pcs/panel	1A
	A	According DIN18	3032-PART	3			
	CEWOOD 35 mm panel 1200x600 mm, 600x600 mm	Metal profile frame	≤900 mm	<u>≺</u> 300 mm	≤600 mm	15 pcs/panel	1A
	CEWOOD 35 mm panel 1200x600 mm, 600x600 mm	Wooden lath frame	≤900 mm	<u>≺</u> 300 mm	≤600 mm	15 pcs/panel	1A
	A	ccording EN 136	94/ANNEX	D			
	CEWOOD 25 mm panel 1200x600 mm, 600x600 mm	Metal profile frame	≤900 mm	<u>≺</u> 300 mm	≤900 mm	15 pcs/panel	2A

Visualisation

Metal profile frame

Descriptions of constructions

Wooden lath frame

CEWOOD Acoustic panel mounting with **CEWOOD** clips

The substructure frame can be made of CD type metal profiles or wooden laths. The frame can be attached to load-bearing structures with a U-type suspension, wire or quick suspension, as well as a nonius type clamp. For more detailed information about frame assembly see pages 34-39.

Maximum mounting distances of frame elements

Load-bearing	Assembly	A - distances between suspension elements/fastenings Load class kN/m ²						
profiles/laths	profiles/laths							
Distance C - mm	Distance B - mm	Up to 0,15	Up to 0,30					
600	600	1150	900					
900	600	1000	800					
1000	600	950	750					
1200	600	900						
Must use suspensions v	Must use suspensions with load-bearing capacity > 0.40 kN							

CEWOOD clip assembly guidelines on metal CD and wooden lath frame

Each CEWOOD panel 25 mm or 35 mm with dimensions 1200x600 mm is supported with 6 clips, 600x600 mm panels are supported with 4 clips. CEWOOD panels on long edge has profile P5H, but short edge - P5.

Explanation of numbering

- 1. CEWOOD Acoustic panels
- 2. Suspension element
- 3. CEWOOD clip
- 4. Fastening screw 4,0x25 mm
- 5. Conical anchor > M6
- 6. Metal CD or wooden lath assembly profile
- 7. Metal CD or wooden lath load-bearing profile
- 8. Cross connector for CD profiles
- 9. Wall L profile L35/35 mm
- E Spring type support

assembly profiles/laths

CEWOOD clip fastening on different substructure

CEWOOD clip fastening on CD profile

wooden lath min. 60x30(h) (4)35

CEWOOD clip direct fastening to load-bearing structure

Ceiling perimeter fastening when ceilings fastened with CEWOOD clips

Fastening on perimeter metal profile

Supporting perimeter with wall L profile L35x35 mm

Fastening on perimeter wooden lath

General instructions

Screwing instructions

The frame assembly element step must be 600 mm or less, which has to correspond to the width of the CEWOOD panels. Start mounting the panels from the middle of the room, gradually moving to the edges. Screw fastening step must be less than 600 mm. The distance from the edge of the panel to the the screw must not exceed 25 mm. A standard 1200x600 mm panel requires 6 screws, a 600x600 mm panel requires 4 screws.

Special CEWOOD screws with a larger head are recommended for fastening the panels.

Self-drilling for metal constructions or wood screws for wooden constructions are recomended, if CEWOOD screws are not used. The screw head should be with head diameter D>9 mm.

() Do not submerge the screws into the CEWOOD panels! The head of the screw must be left the same level as the visible surface of the board.

Minimal screw dimensions depending on frame structure and panel thickness

Minimal screw dimensions						
Frame structure/CEWOOD panel thickness	25 mm	35 mm				
CD metal profile frame – self-drilling screws	4.5x45 mm	4.5x50 mm				
Wooden lath frame – wood screws	4.5x50 mm	4.5x60 mm				

CEWOOD panel edge profile types

Aproximate screw consumption

Panel pattern/dimensions	Screw consumption, pcs/m ²			
	600/600 mm	600/1200 mm		
Standard screw pattern scheme. Panel thickness 25 mm, 35 mm.	12	9		

Ρ5

cewood.com

Standard screw pattern for CEWOOD Acoustic panels

Fastening of 25 mm and 35 mm thick CEWOOD Acoustic panels with screws onto metal CD assembly profiles or wooden assembly laths.

Panel 600x600 mm with 4 screws

Screw locations

The connection seam between panels must always be formed under the frame assembly element.

Explanation of numbering

- 1. Load-bearing structure
- 6. Frame assembly element (CD profile or wooden lath)
- 8. CEWOOD Acoustic panels

9. CEWOOD screws 4,65x45 mm or galvanized woodscrews with head $\emptyset \ge 9$ mm

Acoustic panel screw

Product data

Technical data	Technical data					
Head:	Ø13.8 mm flat head with TX20 recess					
Diameter:	Ø4.65 mm					
Shaft:	12 mm					
Drill point:	#1S					
Drill capacity:	0.5 - 1.5 mm (Steel S280GD)					
Material:	Hardened steel					
Surface treatment:	ZYTEC™ GX					
Corrosivity category:	C3 (high) according to EN ISO 12944-2					

المامر المامر أمرام أمرام

Product range

Art.no.	ltem name	Thread [mm]	Length L [mm]	Shaft [mm]	Drill point	Drill cap. [mm]	Head [mm]	Unit
17770	TRABO FH 4.65 X 45 #1S TX20	Ø4.65	45/64	12	#1S	0.5 - 1.5	Ø13.5 TX20	250

Advantages

- Suitable for fastening of acoustic panels to steel or wood
- Large head for better load distribution
- Specially designed pattern on the head for better concealing
- Surface treated with ZYTEC™ GX for optimal corrosion protection
- Available in more than 500 colours (Qualicoat certified facade quality powder)

WOOD WOOL PANELS

Design resistance

The design resistance of the screw is determined in accordance with EN 1993-1-3:2006 + AC:2009 and EN 1995-1-1:2004 + AC:2006 + A1:2008 + A2:2014.

The resistance when loaded in tension, N_{Rd} , appears from the table on the right and is the minimum value of the pull-out resistance of the supporting object and the tension resistance of the screw. Thus, the pull-through resistance of the fixed object is not taken into account.

The theoretical values must be considered indicatively since the conditions of the construction site may vary. Practical tests of the specific application are recommended for verification of the listed values.

Assumptions:

Fixed object: Steel S280GD - EN 10346 Supporting object: Steel S280GD - EN 10346 Supporting object: Structural wood, C24 Density, $\rho_k = 350 \text{ kg/m}^3$ Withdrawal parameter, $f_{ax,k} = 11 \text{ N/mm}^2$

- L = Length of the screw [mm]
- t₁ = Thickness of the fixed object [mm]
- t_{μ} = Thickness of the supporting object [mm]

All resistances are stated in kN (1 kN \approx 100 kg) Safety factor: $\gamma_{\rm M}$ = 1.35, $k_{\rm mod}$ = 0.90

Design resistance when loaded in tension, N _{Rd} [kN] - Steel support		Design res N _F	sistance when loaded in tension, _{Id} [kN] - Wooden support
t, L	45	t, L	45
0.50	0.28	5	1.00
0.63	0.35	10	1.00
0.75	0.42	15	0.91
0.88	0.49	20	0.74
1.00	0.56	25	0.57
1.25	0.70		
1.50	0.84		

Acoustic panel ceiling

Panels for suspension in T-type profile frame ceilings

50 T-type profile frame assembly52 CEWOOD Acoustic panels on hidden T-type profile frame

ANT TOTAL BEAR

T-type profile frame assembly

The procedure and methods of assembling the ceiling frame are determined by the manufacturer of structures. This informative material shows some examples of mounting solutions to create safe structures for CEWOOD panel suspension. The T-type profile step is defined depending on the structural load provided the permissible flexure of 1/500 length. The step between the load-bearing profiles for CEWOOD Acoustic panel ceilings – 1200 or 600 mm, distance between mounting profiles – 600 mm. Permissible distances for suspension elements are provided in the table below.

T-type ceiling frame elements:

2 - Suspensions; 6 - Cross profile; 7 - Load-bearing profile; 8 - CEWOOD Acoustic panels; 9 - Perimeter profile

Maximum mounting distances between frame elements

Frame load capacity kN/m ²	0.12	0.	15	0.20		0.25	
Step between load-bearing profiles Sn , mm	1200	1200	600	600	600	600	
Step between suspensions Sk , mm	≤ 1000	≤ 900	≤1100	≤1000	≤1000	≤1000	
Distance from suspension to wall Sw , mm	≤ 250	≤ 250	≤250	≤200	≤200	≤200	
Step between cross profiles Sm , mm	600	600	600	600	1200	600	
The dimensions of Sb and Sp shall be determined depending on the room size. Max. distance from wall must not exceed 600 mm. With higher loads, the step between suspensions must be accordingly reduced.							

T-type profile frame elements and placement options

Profile placement for 595x595 mm panel assembly a) Distance between load-bearing profiles Sn = 600 mm

Profile placement for 1195x595 mm panel assembly

a) Distance between load-bearing profiles Sn = 600 mm

T-type profile element connection and explanation

(!) Gradual perimeter angle profile is applicable to POG; P5G edge profiles, see profile guidelines on pages 16-18.

cewood.com

b) Distance between load-bearing profiles Sn = 1200 mm

b) Distance between load-bearing profiles Sn = 1200 mm

2 - Suspensions; 6 - Cross profile; 7 - load-bearing profile; 9 - Perimeter profile

Hidden T-type profile frame elements and placement options

Profile placement for 595x595 mm panels

a) Distance between load-bearing profiles Sn = 600 mm.

T-type profile element connection and explanation

T-type profile frame fastening sections

Direction with panel edge profiles P5S

CEWOOD Acoustic panels on hidden T-type profile frame

CEWOOD panels on hidden T-type profile frame allows creating a continuous ceiling plane without visible panel fastening elements. To assemble these ceilings, P5S edge profile panels must be used. The ceiling construction is easy to open and dismantle. The ceiling panels rests on T-type T35/38 mm profiles. Similar profiles of other manufacturers with appropriate load-bearing capacity can also be used. To access the interceiling space, the liftable end of the panel must be found and lifted. In order to create larger access openings, separate distance profiles B must also be dismantled.

Maximal panel size available 600x600 mm. Minimal panel thickness 35 mm. $(\underline{)}$

Maximum mounting distances between frame elements

Frame load capacity kN/m ²	0.15	0.2	0.25	0.3
Step between load-bearing profiles Sn , mm	600	600	600	600
Step between suspensions Sk , mm	≤1100	≤1000	≤1000	≤800
Distance from suspension to wall Sw , mm	≤ 250	≤200	≤200	≤200
CEWOOD panel maximum size Sm , mm	600	600	600	600
CEWOOD panel minimum thickness, mm	35	35	35	35

The dimensions of **Sb** and **Sp** are determined depending on the room size. Max. distance from wall must not exceed 600 mm. With higher loads, the step between suspensions must be accordingly reduced.

Profile placement for 1195x595 mm panels a) Distance between load-bearing profiles Sn = 600 mm.

2 - Suspensions; 6 - Cross profile; 7 - Load-bearing profile T35/38; 9 - Perimeter profile; B - Distance profile; E - Spring type support

Direction with panel edge profiles P5

Fastening types of T-type profiles onto a load-bearing structure

Hook with non-adjustable height

Joint between the edges

Quick suspension with adjustable height

Joint between the edges

Suspension type parameters

Suspension type	CEWOOD panel thickness, mm	Suspension height H, mm	Suspension load-bearing capacity, kN	
Quick suspension	15	180		
	25	200	0.15	
	35	220		
Nonius type suspension	15, 25, 35	200	0.15	
Hook with non-adjustable height	15, 25, 35	50, 80, 100	0.45	
Hook with adjustable height	15, 25, 35	82-113	0.15	

Acoustic panel ceiling

Ceiling solutions

- 56 CEWOOD Acoustic panel placement patterns
- 57 Installation of lights, speakers and similar devices into CEWOOD Acoustic panels
- 59 CEWOOD Acoustic panels with inspection hatches
- 60 CEWOOD panels with an extra mineral wool layer for the highest sound absorption

CEWOOD Acoustic panel placement patterns

Panels staggered by half of panel length

CEWOOD Acoustic panel dimensions 1200x600 mm

CEWOOD Acoustic panel dimensions 600x600 mm

Panels staggered by third of panel length

CEWOOD Acoustic panel dimensions 1200x600 mm

CEWOOD Acoustic panel dimensions 600x600 mm

Panels aligned

CEWOOD Acoustic panel dimensions 1200x600 mm

CEWOOD Acoustic panel dimensions 600x600 mm

Installation of lights, speakers and similar devices into CEWOOD Acoustic panels

The placement and type of ceiling lights, speakers and similar devices in CEWOOD panels are determined by the construction project. Devices which are intended for installation in the suspended ceiling must be used. The device must be assembled according to the device manufacturer's assembly instructions. The assembly instructions must indicate the device's dimensions, weight and dimensions of the required mounting openings and they must not exceed the limits stated below.

Ceiling frames are designed for a total calculated load of up to 0.1 kN (~10kg) per frame element running meter.

Permissible openings made into CEWOOD Acoustic p

CEWOOD Acoustic panel thickness, mm	Permissible weight of the built-in device, kg	Permissible dimensions of an opening		Fastener load-bearing capacity, N (~KG)	
		Diameter, mm	Edge length, mm	Self-drilling dowel with wood screw Ø 4.5 mm	Wood screw Ø 4.5 mm
15	1.2	150	120	10 (~ 1.0)	10 (~ 1.0)
25	3.5	200	175	30 (~ 3.0)	20 (~ 2.0)
35	6	300	275	40 (~ 4.0)	25 (~ 2.5)

Heavier devices can be attached directly to the load-bearing structure or an additional support structure can be created. An opening for inserting the device can be cut with a jigsaw or circular hole saw. The edges of an opening must be smoothed and painted. Holes or cut-outs should be placed in the center of the panel.

Self drilling dowel

anels and	load-bearing	capacity of	fasteners
-----------	--------------	-------------	-----------

Wood screw

Recessed lights installed into the ceiling

CEWOOD

CEWOOD Acoustic panels with inspection hatches

CEWOOD manufactured inspection hatches are available in various sizes. They are built-in elements into the ceiling panels without any additional frame. Hatches are designed for access to any kind of comunications, that are located behind the ceilings. Panels with inspection hatches are mounted according to the same guidelines as the standard acoustic ceiling panels. A hatch door is fully removable and reinsertable as needed. Visually, the hatches merge with the ceilings and form a smooth ceiling surface.

Maximum opening dimensions for hatches in CEWOOD Acoustic panels

() Hatches can be made into 25 and 35 mm CEWOOD Acoustic or barcode panels and fastened with screws in metal, wood substructure or suspended in T-profile frame. Panels with hatches must be fastened with the standard screw pattern.

Light metal inspection hatches can also be made. CEWOOD Acoustic ceiling panels can be incorporated into the frame. These types of hatches should be used if very frequent use is expected or ceilings must fulfil requirements of impact resistance.

58 Acoustic panel ceiling

CEWOOD panels with an extra mineral wool layer for the highest sound absorption

If CEWOOD Acoustic panels are fastened with extra mineral wool onto the outer building construction elements, a vapor barrier film must be laid under CEWOOD panels.

- Type and thickness of mineral wool shall be determined in the building project, in lie with the CEWOOD sound absorption test results. See pages 24-29.
- Ceiling frame element and suspension element distances must be reduced according to the ceiling load applied.

Metal CD profile frame

Explanation of numbering

1. CEWOOD Acoustic panel 2. Mineral wool

