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Abstract:		

	

Longitudinal	data	from	wireless	networks	provides	a	novel	opportunity	to	

characterize	places	according	to	their	network	usage	patterns.	In	a	week’s	course,	

individual	communication	antennas	have	a	unique	bandwidth	consumption	and	

user	count,	which	illustrate	the	daily	activity	patterns	of	their	surrounding	areas.	By	

grouping	areas	with	similar	network	usage	together,	we	find	that	similarities	in	

network	usage	correspond	to	similarities	in	land	use	and	population	density.	This	

suggests	that	the	gross	functional	and	demographic	indicators	of	urban	areas	could	

be	approximated	from	the	mere	consumption	statistics	of	wireless	networks.	We	

present	findings	on	two	different	networks:	a	wireless	Internet	network	on	the	MIT	

campus	and	a	cellular	phone	network	in	the	city	of	Rome.	Using	eigenvector	and	

cluster	analysis	on	week-long	datasets,	we	compare	usage	traces	from	wireless	

antennas	with	empirical	descriptions	of	cell-areas	and	show	a	strong	correlation,	as	

well	as	differences	between	the	two.		

	



Introduction 

 

 Recent developments in wireless communication have rendered mobile 

phones and WiFi enabled laptops increasingly popular worldwide. In some countries 

there are now more mobile phones than people1 and several major cities have attempted 

to build citywide WiFi networks. Though the latter remain controversial2, private WiFi 

networks are ubiquitous in many cities. As of the end of 2007, there were over 67,000 

public hotspots available in the U.S. (JWire, 2007), roughly doubling every year. 

However, most Wifi networks remain private, with some larger institutions (e.g. 

universities, large corporate firms) employing thousands of access points.  

The ubiquitous adoption of wireless communication networks has also introduced 

new research directions for spatial analysis. The vast popularity of communication 

networks makes them attractive for aggregate analysis of people’s daily activity patterns. 

However, limited research is available on this subject, possibly due to the recent 

emergence of the data and the  difficulties associated with obtaining it for academic 

study. Eagle and Pentland studied the longitudinal behavior of a small group of cell 

phone users, and proposed an interesting methodology coined “eigenbehaviors” for 

identifying structure in routinely repeating events. Reades, Calabrese & Ratti used a 

similar technique on individual cell-phone antennas in Rome to compare signal patterns 

at characteristic locations of the city with the presence of businesses in their 

corresponding areas (Reades, Calabrese & Ratti 2007). Their approach suggested that 

urban neighborhoods could be characterized by the typical weekly network usage 

patterns, but little evidence was found. This paper expands their approach using larger 

areas of analysis, and both business and residential distributions as comparisons. Mathew 

Jull did an analogous analysis of the WiFI network at MIT (Jull, Ratti forthcoming), by 

comparing WiFi consumption with building types. The present paper takes a very similar 

methodological approach, deriving eigenvectors from longitudinal data and using cluster 

analysis to differentiate urban areas with distinctly different network usage patterns. We 

first focus on the WiFi network at MIT and show how clustering of network usage 

                                                 
1 CIA World Factbook 2005. 
2 Reality Bites, American cities' plans for ubiquitous Internet access are running into trouble. The 
Economist, Aug 30th 2007 



patterns clearly distinguish between academic, residential and service buildings on 

campus. We then turn to a city-wide mobile phone network in Rome and find that areas 

that are similar in network usage are also highly correlated with areas that are similar in 

demographic as well as business composition. Our findings suggest that the gross 

functional and demographic indicators of urban areas could be approximated from their 

consumption statistics of wireless networks. 

 

 

802.11 WiFi network at MIT 

 

The MIT campus in Cambridge, Massachusetts covers 168 acres, a considerable 

portion of the city of Cambridge, MA. It consists of more than 190 buildings and houses 

10,320 students and 9,414 employees. Since October 2005, full WiFi coverage is 

available in all academic and residential buildings, as well as most service buildings, 

employing over 3,000 active wireless access points.  

As of 2005, the MIT wireless network infrastructure used the IEEE 802.11 

protocol exclusively. The network currently uses three different types of access points 

with a signal radius from 130 to 350 feet indoors. This allows each antennas to serve one 

or part of a room, as well as neighboring rooms. Using wireless Internet is vastly popular 

in the MIT community. On a typical day, approximately 250 000 connections occur on 

the network (many users are no doubt counted several times in the same space because of 

their long connections). According to a study by Dal Fiore, Goldman, and Hwang in 

2006, 73% of students bring their laptops either every day or some days of the week to 

campus.  



 
Figure 1 - WiFi access points at their locations on the MIT campus 

 

In the data that was made available to us by Information Services & Technology 

(IS&T), we observed wireless traffic in 3053 unique access points in 134 buildings on the 

campus. Data about some access points were not available to us, as they belong to 

networks operated privately by individual departments. Two large independent networks 

whose data we lacked belong to the MIT Media Laboratory and the Computer Science 

and Artificial Intelligence Laboratory (CSAIL). Others we are not able to map, because 

the GIS data we have about the campus does not yet include some recently constructed 

buildings. Each of the 3053 unique access points that were available to us were queried at 

a fifteen minute interval during 14 weeks of the 2006 spring semester, from Monday 

February 6th (first day of classes) to Monday May 22 (last day of classes). Each 

measurement showed the current number of WiFi users at each access point, the access 

points’ identifier, and a Unix timestamp indicating the time of the query.  

From this 14-week dataset we then obtained the average weekly activity log for 

each antenna. In order to avoid the activities of any particular week dominating, we 

determined a pattern for a typical Monday, Tuesday, Wednesday etc.  Our final dataset 

thus showed the number of WiFi users on each access point in a seven day period at 15 



minute intervals (672 counts per each antenna). Figure 2 below shows the average weekly 

user counts across campus. 

 

 
Figure 2: Average weekly WiFi user counts on access points across MIT. 

 

 

 Using principal component analysis on the 672 discrete measurements, we found 

that the dominant weekly trends in WiFi usage could be captured by the first three 

eigenvectors, presented in Figure 3 below (a detailed explanation of eigen-decomposition 

can be found in Reades, Calabrese & Ratti 2007). The first eigenvector captures the 

prevailing weekly trend with the highest variance across all the access points. Curiously 

enough it shows flat activity peaks right before midnight, which might be explained by 

most wireless activity occurring outside of classroom time, during late evening hours. 

The second eigenvector, uncorrelated with the first one, illustrates a typical daytime 

usage pattern. The third eigenvector shows more distributed daytime activity with equal 

popularity on weekdays and weekends.  



 
Figure 3: The first three eigenvectors of average weekly connections at MIT. 

 

 Using the three first eigenvectors, we performed an average distance cluster 

analysis on all 3053 access points to determine which groups of antennas had similar 

usage patterns over a week. The clustering fit analysis suggested that the most coherent 

structure was formed using 23 clusters. Many of the clusters in this solutions contained 

only one or a few antennas, which was expected since cluster analysis is known for 

efficiently distinguishing outliers. We selected the three largest clusters and compared 

them against the official MIT building type designations (academic, residential, service) 

in order to see whether similarities in WiFi signal correspond to similarities in building 

type. We expected the largest cluster to correspond to the most numerous building type 

on campus- the academic buildings (57 buildings). The second largest antenna cluster 

was expected to correspond to the second largest building group-residential (51 

buildings), and the third largest to service edifices (26 buildings).  

 



 
 

Figure 4: Left, functional designation of MIT buildings. Right, three largest clusters of the weekly WiFi usage. 

  

As figure 4 suggests, a strong correlation exists between WiFi clusters and MIT 

building types. We found that 67.76% of WiFi cluster designations corresponded to 

building types they were located in (academic/residential/service). This confirmed that 

activity on the MIT WiFi network distinctly differs between building types and suggested 

that activity patterns observed on the WiFi network could be used as proxies to identify 

the buildings that the antennas are housed in.  

Figure 5 shows the average weekly WiFi signal in clusters one, two and three. As 

expected, the average signal for the largest cluster (1) is dominated by daytime usage. 

The highest consumption of WiFi on weekdays typically occurs around 1 pm, whereas 

activity declines steeply after 4pm. Such a pattern seems characteristic to academic 

working spaces. The typical usage pattern for antennas in cluster two is quite different, 

more stable throughout the day showing minor peaks around 9am in the morning and 

11pm in the evening. Unlike in the previous cluster, weekend usage is quite similar to 

weekday usage, which well matches our assumption of its residential nature. Lastly, 

cluster three presents some unexpected results. Rather than showing peak activity 

occurring during working hours, as we would expect with service buildings, peaks occur 

instead around 10am and more sharply right before midnight. This suggests that the third 

cluster might not in fact characterize service spaces, but instead activity spaces that 

resemble more to residential areas but have higher average usage rates. These could be 

for instance social working spaces or extracurricular activity spaces. The difference 

between the third cluster and service spaces also showed up in our correlations: whereas 



clusters one and two matched well with academic and residential buildings, cluster three 

did not match well with service building designations. 

 

 
Figure 5: Average weekly trends in clusters 1, 2 and 3. 

 

A closer look at Figure 4 shows that based on the observed WiFi activity, the use 

of space in the MIT buildings is in fact much more complicated and mixed than the 

official classification system of building-types designates. We can see from the figure, for 

instance, that many individual rooms inside academic buildings belong to non-academic 

clusters since their WiFi activity resembles more to residential or service spaces, than to 

academic spaces. Similar differences are found in almost all buildings throughout the 

campus, which implies that a WiFi based categorization of rooms leads to a time-of-use 

based categorization of MIT spaces, which differs from the traditional academic, 

residential and service designation of spaces.  

The findings are thus twofold. On the one hand, a clear correspondence exists 

between WiFi usage and traditional building designations for academic and residential 

types. On the other hand, service buildings did not clearly match, which suggests that a 

use-based classification of spaces can depart from the static designations. Categorizing 

spaces by network usage reveals a much finer and more complex picture of MIT room 

types and opens new, interesting research opportunities. For instance, a time-of-use based 

classification of university spaces could lead greater efficiency in space usage and allow 

for more optimal classroom scheduling. 

 

 

 

 

 



GSM wireless network in Rome 

 

Paralleling the analysis of the WiFi network at MIT, we conducted a similar study 

on a different wireless network on a much larger urban territory in Rome, Italy. Our goal 

was to test whether a meaningful clustering of weekly network usage, which we saw at 

MIT, could also be found in a city-wide cellular phone network.  

 We obtained data for this study from Telecom Italia Mobile (TIM), the largest 

service provider in the country. Besides TIM, there are three other large service providers 

in Rome: Omnitel Vodafone, Wind and Blue. TIM is currently market leader in the city, 

supplying about 40.3% of the share. This constitutes approximately one million users in 

Rome, less than half of the city’s population. However, similarly as the Wifi counts at 

MIT only showed how many users were actively connected to the network at a specific 

access point, TIM’s data used in this study did not describe the activity of all the 

registered users in Rome, but only those who were actively engaged in phone calls during 

the measurement periods in Rome. Alike MIT, we extracted a longitudinal data on 398 

antennas within the ring road of Rome over 10 weeks and derived a “typical” weekly 

usage pattern for each antenna by averaging specific week’s values.  

Unfortunately the precise number of connections at each antenna over every 

15minute measurement period was not available to us. We chose instead to use Erlang 

measurements, which are commonly used in mobile networks for assessing aggregate 

traffic in particular cells. An Erlang measure is essentially a use multiplier per unit time. 

The use of one mobile phone for one hour in a particular cell constitutes one Erlang, 

whereas the use of two phones for half an hour each also constitutes one Erlang. Since 

Erlang values are affected by both the amount of calls and each call’s duration, then they 

do not tell us exactly how many users were connected to the network through a particular 

cell. Instead, the Erlang measurements present the bandwidth consumption at each cell. 

 Whereas at MIT, our reference category to WiFi clusters were individual building 

types, a similar approach in Rome was impossible since each cellular antenna had a much 

larger coverage area, encompassing many different building types and land uses. Figure 6 

below shows the coverage area of the 398 mobile cells that we analyzed.  

 



 
 

Figure 6: The 398 analyzed network cells in Rome. 

 

Seeking to maintain a similarity with the MIT study despite the scale difference, we made 

three comparative assumptions in Rome: i) we hypothesized that a city-wide counterpart 

to the residential buildings of a university campus could be the city’s residential density 

according to census tracts, ii) that the counterpart to service buildings could be the 

business distribution in the city and iii) a corresponding measure to academic work 

buildings could be the employment distribution. Our aim was to find out if areas of Rome 

that resemble to each other in cellular network usage, also resemble in residential 

distribution, employment distribution and business distribution. Unfortunately we were 

yet unable to find data for the employment distribution in Rome and reverted to only 

using residential and business distributions as reference categories. The business 

distribution was obtained from Yellow Pages in Rome, it therefore does not include all 

businesses in the city, but only those that were listed. The residential distribution 



reflected the year 2000 census. Both reference categories were further broken down into 

specific demographic and business characteristics, as shown in Table 1 below.  

# people aged 0-9

# people aged 10-19
# people aged 20-65
# people aged >65
Government Services
Clothing & Accessories
Recreation & Hobbies
Transportation
Household Goods
Travel
Hotels & Accommodation
Food
Health Services
Other Personal Services & Goods
High-end Retail
Financial Services
Bars & Restaurants
Beauty
Entertainment & Culture
Churches & Religious Buildings
Business Services
Daily Retail & ServicesB

u

 
Table 1: Demographic and business distributions used for clustering cell areas. 

 

 Based on these indicators in each network cell, we conducted a principal 

component analysis and used the first three eigenvectors to cluster cells with similar 

demographic and business distributions together. The fit test showed the most coherent 

solution was found with 16 clusters, from which only three contained more that 5 cells 

each. We thus used these three largest clusters as a reference for the comparison with the 

three largest Erlang clusters.  

 
Figure 8: Left: Residential population density. Right: Distribution of firms listed on Yellow Pages. 

 



 Table 2 describes the typical census and business characteristics of the three 

different clusters. The average number of people in clusters 1,2 and 3 is 3632.81, 9760.74 

and 2969.4 respectively, and the number of businesses, 76.20; 227.61 and 292.55 

respectively. Cells in cluster one have the least amount of businesses but more residents 

than cluster three. These seem to be the relatively lower density residential areas of 

Rome. Cells in cluster 2, have more residents than the other two clusters, less overall 

businesses than cluster 3, but more transportation, food, health, beauty and daily retail 

establishments. Cluster 2 thus seems to represent typical dense residential areas, as shown 

in the residential distribution map in Figure 8.  Cells in cluster three have the highest 

amount of businesses, most notably hotels, restaurants, business services, government 

services and specialized retail, but the least amount of residents. This suggests that cluster 

3 characterizes dense CBD neighborhoods where few people live. 

Cluster 1 Cluster 2 Cluster 3
# people aged 0-9 301.75 757.71 203.15
# people aged 10-19 319.26 738.91 205.32
# people aged 20-65 2316.03 6065.22 1943.77
# people aged >65 695.77 2198.90 617.15
Government Services 2.70 5.19 8.91
Clothing & Accessories 6.14 19.18 36.18
Recreation & Hobbies 2.99 9.33 9.73
Transportation 8.98 25.36 13.64
Household Goods 7.80 26.71 23.36
Travel 2.34 6.47 8.09
Hotels & Accommodation 2.90 3.17 18.73
Food 4.72 17.57 14.82
Health Services 7.57 28.13 18.55
Other Personal Services & Goods 1.66 6.15 6.45
High-end Retail 3.27 10.03 29.73
Financial Services 3.24 8.68 10.45
Bars & Restaurants 8.58 22.19 49.36
Beauty 5.56 20.85 16.73
Entertainment & Culture 0.98 2.06 7.73
Churches & Religious Buildings 3.31 5.22 8.64
Business Services 1.96 5.67 6.36
Daily Retail & Services 1.51 5.65 5.09B

u

 

 
Table 2: Average demographic and business indicators of clusters 1,2 and 3. 

 

 Secondly, we also clustered the weekly Erlang patterns of network cells based on 

the three first eigenvectors and extracted the three largest clusters for comparison. Figure 

9 illustrates the average weekly Erlang values in these three clusters. Network usage in 

the three clusters differs mostly in intensity, rather than time-of-day variations (Figure 9). 



The weekday calling activity in all three clusters occurs predominantly during working 

hours, with typical peaks spiking at noon (lunch time) and between 6 and 7PM (end of 

workday). On the weekends there is over all less calling activity and the Sunday peaks 

occur earlier, around 10am (church time) and later around 8PM. While all the clusters 

have basically similar peak periods, they differ significantly in intensity: cluster one has 

the lowest Erlang values and cluster three the highest. These similarities and amplitude 

differences between the clusters suggest that Erlang clustering picks up more on density 

differences between urban areas than time-of-day activity differences.  

 

 
Figure 9: Average Erlang signatures for clusters 1,2 and 3. 

 

 A comparison between the Erlang and business/demographic clusters is compelling. 

Areas with a similar demographic and business distribution correspond to areas with a 

similar network usage. As shown in Figure 10, 63.14% of the cells that belong to the 

same Erlang cluster also belong to a similar demographic and business cluster. 

Comparing demographics and businesses separately with Erlang clusters, we found, 

however, that Erlang clusters match better with the business distribution (60.05%) than 

with the population distribution (51.29%). In the absence of employment data it is hard to 

conclude which socio-economic area characteristics are most clearly related to Erlang 

clusters. As noted above, we observed from the average signals of the three Erlang 

clusters that they mainly differed in amplitude rather than cycle. Lower amplitudes were 

associated with low-density residential neighborhoods, the medium amplitudes with high-

density residential neighborhoods, and the highest amplitudes with areas that have a very 

dense business distribution, but few residents. However, we think that a more accurate 

neighborhood description could be found if employment data were also available. 

 

 



 

 

 

 
Figure 10: Comparison of business/demographic data clustering (left) VS Erlang data clustering (right). 

 

Conclusion 

 

Using longitudinal data from two different types of wireless communication networks, 

we have shown a correspondence between antenna usage patterns and the demographic 

and functional characteristics of location. Despite a generally good match, the 

correspondence between traditional land categorizations and wireless activity patterns is 

not exact, and should not be. The traditional categories of space usage typically describe 

the permanent aspects of places- their land use, the number of businesses, jobs or 

residents. The wireless network usage, on the other hand, reflects people’s temporary 

presence and communications behavior in these spaces. We have found a clear 

relationship between the permanent attributes of place and its network usage but also 

demonstrated that the two differ in several regards.  

 Analyzing the WiFi network at MIT we clustered access points with similar use 

patterns into three basic clusters and found that 67% of them matched with the MIT 

building types. Academic and residential buildings had a very clear network use pattern, 

but contrary to or initial hopes, the third largest cluster’s activity pattern did not match its 

expected “service” building type. Instead it seemed to characterize usage outside of 



business hours, and we proposed a new hypothesis for its interpretation.  

 Secondly, analyzing the GSM mobile phone network in Rome we also found a 

strong correlation between areas that resemble in network usage and areas that resemble 

in their demographic and business composition (63%). The main distinguishing element 

in network clusters was in amplitude rather than cycle differences. The presence of a 

wide range of businesses that do not only cater to a local neighborhood, but a citywide 

population, typically relates to higher network use intensity. Residential density is 

slightly less determinant of high Erlang amplitudes, but also constitutes and important 

factor. We think that adding employment data to the comparison could offer more 

detailed area characteristics to distinguish locations with larger or smaller Erlang 

amplitudes that constitute difference network clusters.  
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