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iNTROduCTiON

This report presents a technical overview of urban 
form and land-use measures that can be used 
to describe large-scale expansion and change 
in the built environments of metropolitan areas. 
The metrics that we discuss have been studied in 
conjunction with the World Bank’s work on quan-
tifying urban expansion and transformation in the 
East-Asia and Pacific regions, but similar mea-
sures can be adopted for tracking spatial change 
in metropolitan areas around the world. Quanti-
tative measures of urban form are meant to be 
useful for the World Bank staff as decision aids 
for evaluating large-scale urban development 
trends and detecting spatial effects from previ-
ously implemented policies as basic background 
assessments for large-scale infrastructure invest-
ments that the bank engages in. The metrics are 
also meant to provide a cohesive methodology 
that allows stakeholders from the metropolitan 
and regional governments to keep track of the 
spatial changes taking place in their respective 
environments, to compare these with other cit-
ies in the region, and to explore the relationship 
between urban policy and the observed develop-
ment patterns.

Urban expansion is key to explaining the rapid 
economic growth, accelerating resource con-
sumption, and social transformations that are 
taking places in Asian cities today. The United 
Nations projects that between 1.6 and 2.1 billion 
people will be added to cities around the world 
by 2030 (UN-HABITAT 2006; UNFPA 2007). 
China alone is projected to accommodate an ad-
ditional 318 million inhabitants in cities by 2030 
(UNFPA 2007). In conjunction, China’s GDP is 

expected to pass that of the US in 2050 (“Dat-
ing Game” 2011). China has already become the 
largest consumer of concrete, steel and coal – key 
ingredients that fuel city growth. But the spatial 
configurations that Chinese cities are taking has 
also led the nation to become the largest buyer of 
new automobiles and the most rapidly increasing 
energy consumer among the OECD countries. A 
great deal of social, economic and environmental 
changes taking place in cities are physically mani-
fested in their spatial patterns or the patterns of 
their metropolitan regions. Having commonly un-
derstood metrics for describing these built envi-
ronments and capturing their change over time is 
therefore critical for gaining broader insights into 
the social and economic transformations taking 
place therein. Moreover, existing spatial develop-
ment patterns can also reveal critical constraints 
to growth and potential development opportuni-
ties, an efficient operation of land markets, and an 
effective and equitable spatial resource distribu-
tion. 

Our work builds upon numerous previous research 
initiatives that have studied important qualities of 
metropolitan form (Geddes 1915; Mumford 1961; 
Webber 1963, 1964; Lynch 1991). The literature on 
metrics or methods of capturing these qualities 
is scarcer. Still, most of the measures we present 
are derived from previous applied studies. We 
also propose a few new metrics that have not 
been widely operationalized in comparative stud-
ies of metropolitan growth patterns in the past. 
Our aim has been to evaluate these measures 
and to propose improvements that would allow 
them to capture more nuanced and more use-
ful aspects of metropolitan form. Shlomo Angel’s 
study on urban expansion with the World Bank 
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has operationalized variants of a number of these 
measures: the buildable perimeter, the contiguity 
index, and the compactness index among others 
(Angel 2005; Parent, Civco et al. 2009). Alan Be-
traud’s work on comparative population density 
gradients has implemented a novel dispersion 
measure and a categorization method to de-
scribe the regulatory systems in various countries 
(Bertraud and Malpezzi 2003). We also borrow 
from Wheeler’s and Burchfield’s research on the 
determinants of urban form in the United States 
(Wheeler 2008; Burchfield, Overman et al. 2006) 
and Hall’s and Pain’s work on the polycentricity 
and polycentric city regions in Europe (Hall and 
Pain 2006). We connect some of these measures 
with more recent GIS-based spatial analysis and 
network analysis methods (Sevtsuk 2012). Finally, 
we also refer to some of the more recent research 
on capturing scaling and repetition in urban met-
ropolitan patterns explored either through fractal 
analysis or scaling laws (Batty 2006, 2008; Bet-
tencourt, Lobo et al. 2007; Changizi and Desta-
fano 2009).

SCOpE OF ThE wORK

The measures discussed below focus primarily 
on capturing the spatial characteristics of urban 
form and land-use distribution – qualities of met-
ropolitan areas that can be detected from rather 
basic remote sensing imagery and that can be 
readily operationalized in a large number of cit-
ies. Measures of metropolitan form are most use-
ful, however, if they can be coupled with other 
types of data about each city – their economic 
indicators, social and demographics indicators, 

transportation surveys, and environmental per-
formance metrics. We do not discuss these latter 
kinds of data at the metropolitan scale in depth, 
but emphasize in the latter part of the report how 
form and land-use characteristics might relate to 
some of these factors.  

We do not attempt to develop an extensive list 
of all available metrics, but focus on a few, which 
capture unique and complimentary qualities of 
metropolitan form. These metrics aim to describe 
the primary properties of city form that allow us 
to differentiate development patterns within and 
between cities. In doing so, it is important to dis-
tinguish spatial features that are revealing and 
consequential from those that are superficial and 
uninformative. It is less informative, for instance, 
to capture the details of a unique city block than 
the overall density of the urban area. In some 
ways, the challenge of distinguishing the forms of 
metropolitan areas is analogous to the challenge 
of distinguishing the physical features of people 
– both need a concise set of metrics to capture 
their unique characteristics. Unlike families of 
plants or animals, cities do not yet have vastly dif-
ferent evolutionary groupings. Their differences 
are more nuanced and harder to classify. The 
metrics that describe them therefore need not 
focus as much on classifying distinct groupings 
as they do on distinguishing critical differences in 
individual forms.

iNpuT dATA TypES

In structuring the metrics that describe the physi-
cal patterns of urban form, we need to keep in 
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mind that the available data can vary significant-
ly between cities. In a number of cities, the only 
available data source may be a satellite image 
with a resolution of 5-10m per pixel. In others, the 
resolution may be sharper, or the color spectrum 
wider. In others yet, the input data may come as 
Geographic Information Systems (GIS) shape 
files. The indices that follow have kept each of 
these possibilities in mind. Across all data types 
we assume, however, that the inputs describe 
aerial units – they are two-dimensional units that 
have an area property. Further, we must assume 
that these areal units are large enough to capture 
a set of roads and buildings, that is, smaller or 
larger pieces of the urban development pattern. 
Keeping this in mind, the input data can come in 
both raster and vector formats and all the metrics 
can be computed with both types of data.

Much of the socio-economic data on cities does 
not depend on the geometry of input data, but 
rather describes the whole city or part of a city 
abstractly. The population of a city, its job pool, 
how much energy it uses, its GDP and other 
functional indicators therefore do not necessar-
ily come as either raster or polygon data, but as 
tabular information that can be linked by a com-
mon ID to geometric objects.

STRuCTuRE OF ThE REpORT

The report is structured as follows: We first pres-
ent a series of indices that characterize metro-
politan form, first discussing their previous ap-
plications and then illustrating the adjustments 
and new specifications we propose. The second 

part focuses on the question of how a sequence 
of the metrics captured at different snapshots in 
time can be used to describe growth and change 
in each metropolitan region. Third, we briefly dis-
cuss how the urban form and land use metrics 
might relate to the potential determinants of met-
ropolitan form – the social, economic and envi-
ronmental indicators of each respective city. We 
believe that the formal patterns of cities are im-
portant to study only if we have an understand-
ing or a set of hypotheses about the forces that 
might explain them. Finally, we end by touching 
on some policy implications and future work di-
rections that result from this work.
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iNTROduCTiON

Metrics of metropolitan form can describe a num-
ber of important qualities of a city. Polycentricity, 
for instance, can describe the degree to which a 
city’s employment is concentrated in its sub-cen-
ters – how many significant job centers there are, 
what their size distribution is and what share of all 
employment is located in them. Knowing this can 
help us understand the demands on transporta-
tion infrastructure, predict its commuting flows, 
and analyze the impact of potential spatial invest-
ments or policy changes. 

Metropolitan form metrics depict quantitative 
relationships found in geographic data describ-
ing a city. All metropolitan form metrics thus first 
require a collection of geographic data as inputs. 
Figure 1 lists some useful types of geographic 
data that are commonly used to describe metro-
politan areas. The figure also illustrates how these 
data can be combined to form metrics. 

We can broadly distinguish between two types 
of geographic input data – geometric and non-
geometric. Geometric data refer to geographic 
information that measures the spatial properties 
of an urbanized area – its area or perimeter, the 
number of discontinuous built-up areas within its 
administrative borders, etc. This data is compiled 
from geometric measurements of the underlying 
built environment and can typically be estimated 
from satellite photos, geometric shape objects in 
Computer Aided Design (CAD) software or GIS. 
Non-geometric data, on the other hand, refers to 
additional information about the environment un-
der study that are not obtained from the quanti-
fication of its geometry – a city’s energy bill, total 

vehicle miles traveled or regulatory climate. These 
data typically come from multiple sources that 
vary from city to city and cannot be estimated 
purely spatially by examining its satellite image or 
two-dimensional pattern. Some non-geometric 
data, such as a city’s population size, or economic 
output, are closely monitored and therefore read-
ily available in most cities around the world. These 
basic indicators constitute the more critical non-
geometric inputs for the city’s metrics. Others, 
such as the Gini coefficient, vehicle ownership 
or land prices, are typically not used as inputs for 
metropolitan form metrics, but can instead be uti-
lized as either dependent or control variables in 
statistical estimations of the spatial metrics. These 
types of non-geometric indicators of a city can 
be correlated or even causally related to the city’s 
geometry. We call these data the potential ‘deter-
minants’ of form and discuss them further in Sec-
tion 4 of this report.

Metropolitan form metrics, too, can be concep-
tually organized into two categories. First, and 
certainly the most popular, we have metrics that 
can be directly derived from input data through 
simple arithmetic, without any need for further 
spatial analysis. Such metrics include Density 
and Coverage, both can be found as simple ra-
tios from input data like Administrative Area, Built 
Area, and Total Population.  Second, we have a 
series of interesting metropolitan pattern metrics, 
whose calculation requires some additional spa-
tial analysis and computation. In this group one 
finds indices such as Polycentricity, Compact-
ness, Expandability, etc. We have made a careful 
effort to keep these pattern metrics as distinct 
from each other as possible, so that a combina-
tion of them can be jointly used as predictors in 
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a regression model without cancelling each other 
out. 

A specific sub-group of these metrics is wholly 
focused on the shape properties of a city’s out-
line – its Roughness, Depth, or Perimeter Index 
for example. As the reader may already antici-
pate, there can be a great degree of correlation 
between some of these shape metrics. The fol-
lowing individual specifications of metrics will pri-
marily focus on the pattern metrics and simple, 
directly derived metrics. The shape metrics have 
already been described in depth by Parent, Civco 
and Angel (2009).

What unites both these pattern and shape met-
rics is that each of their calculation requires addi-
tional spatial analysis in GIS or other spatial com-
puting environments. 



GEOGRAPHIC DATA

Total Built Area

Total Built Premieter

Administrative Area(s)

Total Built Volume

Total Built Floor Area

Total Buildable Area (Convex Hull - Unbuildable)

Total nr. of Continuous Built Areas

Total nr. of Sizable Built Areas (Area > +1 std)

Available Expansion Area (within a 30% area increase bu�er)

Convex Hull Area

Total Area per Land-Use Type (buildings, roads, commercial, etc.)
(within Convex Hull)

DEMOGRAPHIC

Total Population

Avg. HH Size

Population by Group (Ethnic, Race, Age, etc.)

ECONOMIC

Total Jobs, Firms, Establishments, etc.

GDP/Capita

Car Ownership

Avg. HH Income

Observed Land Prices

Gini Coe�cient

Cost of Living

‘Big Mac’ Index

ENERGY

Avg. HH Enegry Consumption

Material Energy Expenditure

Vehicle Miles Traveled

POLITICAL

Socialist [0-1]

Regulatory Climate [0-n]

Political Stability [0-n]

Corruption [0-n]

CLIMATIC

Temperatures

Sunlight

Flora/Fauna

Aquafers

Size

Density

Coverage

PATTERN

Polycentricity

Compactness

Expandability

Contiguity

Land-Use Mix

SHAPE

Roughness

Depth

Spin Index

Cohesion Index

Girth Index

Perimeter Index

Detour Index

Traversal Index

NON-GEOMETRIC

GEOMETRIC

METROPOLITAN FORM METRICS

DIRECTLY DERIVED

COMPUTED WITH EXTRA SPATIAL ANALYSIS
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Figure 1. Input data and metropolitan form metrics.



Image source: http://joshuatwood.com/wp-content/uploads/2012/04/los-angeles-skyline.jpg



SiZE
The land covered by urban use, or its subcat-
egories (e.g. residential, industrial etc.), is prob-
ably the primary aspect of a metropolitan area 
that should be mapped and measured, as major 
trends of change could be apprehended directly 
by looking at the snapshots of urban land-uses 
and their growth and change over time. 
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SiZE

The land covered by urban use, or its subcatego-
ries (e.g. residential, industrial etc.), is probably the 
primary aspect of a metropolitan area that should 
be mapped and measured, as major trends of 
change could be apprehended directly by look-
ing at the snapshots of urban land-uses and their 
growth and change over time. The size of a met-
ropolitan area also provides a crucial basis for 
other derived spatial metrics, such as density. 

Distinguishing the extent of a city – the border 
between urban and non-urban land – or the ex-
tent of a particular land use is, however, not a 
trivial task. In many cities, the urban land-cover 
starts from very compact centers that cover siz-
able areas and gradually dissolve into peripheral 
agricultural lands without leaving behind a clear 
border. This is an important question for analysts 
who work directly with raw satellite imagery. If 
the input data comes as pre-categorized Land-
sat remote-sensing-based land use maps, then 
the question has already been addressed by the 
company that composed the maps and the con-
ventions used should be made available along 
with the data. 

CuRRENT MEASuRES OF LANd uSE EX-
TENT

The World Bank’s Platform for Urban Manage-
ment and Analysis (PUMA) currently keeps tracks 
of the following metrics:

- The area of urban extent.

- The area of urban extent in each administra-
tive boundary.

- The area of total urban extent in all admin-
istrative boundaries that constitute the urban 
use.

- The area of each land use (either urban or 
non-urban).

- The area of each land use in each adminis-
trative boundary.

- The area of each land use in all administra-
tive boundaries that constitute the urban use.

 

iMpROViNg uRBAN EXTENT MEASuRES

In addition to the metrics outlined in the PUMA 
list above, we propose two additional size metrics 
to be included in the platform:

1. The area of the Convex Hull around all devel-
oped polygons. The Convex Hull is defined as 
the smallest flat polygon that has no concavity in 
its perimeter and that fully contains all individual 
polygons of the urban extent of a city (Figure 2).

The Convex Hull can be computed in GIS (Tool-
box > Cartography > Masking > Feature Outline 
Masks) and in other software platforms. It offers a 
very useful method of defining the joint built and 
un-built areas of a city in a consistent methodol-
ogy across cases.

2. The unbuildable area within the Convex Hull. 
We suggest that the definition of “unbuildable” 

Figure 2. The Convex Hull is defined as the smallest flat 
polygon that has no concavity in its perimeter and that 
fully contains all individual polygons of the urban ex-
tent of a city.
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Figure 3. The unbuildable area with the Convex Hull.

should capture areas that are not buildable only 
due to natural obstacles, such as water-bodies, 
steep slopes or other natural limitations (Figure 
3). The definition of “unbuildable” should not cap-
ture currently un-built areas that stem from policy 
choices (e.g. Central Park in Manhattan). Such a 
definition will allow for a more reliable and consis-
tent assessment of Density (see Section 2.3).

 



Photo by Raul Kalvo



dENSiTy
Urban Density is one of the most commonly used 
measures of urban form. It is widely used across 
numerous disciplines. Its appeal and popular-
ity are in part explained by the ease with which 
it can be derived from any raw non-geometric 
data (e.g. population of a city) divided by the 
area of the city.
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dENSiTy

Urban density is one of the most commonly used 
measures of urban form. It is widely used across 
numerous disciplines. Its appeal and popularity 
are in part explained by the ease with which it 
can be derived from any raw non-geometric data 
(e.g. population of a city) divided by the area of 
the city.

Although widely used, there are multiple ways of 
measuring density, which diff er in important ways.  
Population density – the number of residents per 
unit area of land – can be similar in Mumbai and 
Hong Kong, but in terms of built form, the cities 
are far from alike. Hong Kong is characterized by 
high-rise towers whereas Mumbai is largely low-
rise but extremely dense in ground coverage and 
its average number of residents per dwelling unit 
is signifi cantly higher. Likewise, cities or districts 
that have similar built form can have notably dif-
ferent population densities. The Marais district in 
central Paris, and the area around the Arc St. De-
nis in the 10th arrondissement both have a similar 
built density (approximately FAR 2.2), but the lat-
ter has twice the residential density of the former 
– 20,000 residents per square kilometer in the 
Marais and 40,000 residents per square kilome-
ter in the 10th arrondissement. This diff erence is 
explained by more crowding in the apartments 
around Arc St. Denis compared to the relatively 
sparsely populated living quarters in the wealthier 
Marais. A meaningful comparative interpretation 
of urban density metrics thus depends on “… what 
is included and what is excluded to make density 
fi gures truly comparable” (Forsyth, 2003).

Density measurements are also aff ected by the 

areal units at which the measurements are cap-
tured. This issue, which has become known as the 
Modifi able Areal Unit Problem or MAUP in the lit-
erature (Openshaw 1984), is defi ned as “a prob-
lem arising from the imposition of artifi cial units 
of spatial reporting on continuous geographical 
phenomenon resulting in the generation of arti-
fi cial spatial patterns” (Heywood 1998). A com-
parison of density fi gures can be misleading if the 
areal units that are compared are not analogous – 
the density of a block should not be compared to 
the density of a neighborhood, 1 because the type 
and amount of open space aff ecting the metrics 
diff ers across the two scales. The area of a neigh-
borhood includes road surfaces, sidewalks, and 
probably open spaces: it is therefore more likely 
to yield lower outcomes than density measures 
performed at a block scale.

EXiSTiNg SpECiFiCATiONS

Density measures are usually given in the form of 
a ratio2, where the numerator shows the amount 
of resources and denominator the land area un-
der consideration. The list of possible density 
specifi cations can be long as the numerator can 
include a wide range of resources, such as resi-

1  For proper comparison, Tunney Lee
and his colleagues have categorized the cases of their 
Density Atlas into block, neighborhood and district 
scales.

 
2 Density may be measured in diff erent forms; e.g. the 
average set-back of buildings, or the average back-to-
back distance of buildings in a block, which are not rel-
evant to the scale of our work.

Figure 5. FAR captures gross built fl oor area per unit 
area of land.

Figure 6. Unit density captures the number of dwellings 
per unit area of land.

Figure 4. Population density captures the number of 
inhabitants per unit area of land.
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dential population, the number of dwelling units, 
or the gross built floor area. Likewise, the base 
land area shown in the denominator can be cal-
culated in various ways – by excluding or includ-
ing certain land-use types. 

Common specifications of density measures in-
clude:

- Residential density: the number of residents per 
unit area of land (Figure 4).

- Floor area ratio (FAR): the total built floor area 
per area of base land (Figure 5).

- Unit density: the number of dwellings per unit 
area of land (Figure 6).

- Employment density: the number of jobs per 
unit area of land.

A simultaneous examination of residential density, 
unit density, floor area ratio, and ground coverage 
can be used to capture typological differences in 
urban form (see the Density Atlas developed by 
Tunney Lee et al. at MIT).3 Mapping employment 
density, on the other hand, helps us understand 
the economic structure and probably commut-
ing patterns in a city. 

gross and Net densities

As discussed above, the types of land-uses that 
are included in the base area can change the 
meaning of a density measure and yield either 
gross or net densities. The base area in gross den-

3  http://densityatlas.org

sity includes land-use types that are not directly 
relevant to the quantity in the numerator. Gross 
residential density, for instance, includes roads, 
parking lots, parks, etc. These competing uses 
are typically excluded from estimations of net 
residential density. Some scholars (e.g. Bertaud 
2004) have used a scalar cut-off threshold to de-
termine whether an open space should be includ-
ed in a net density measure our not – they include 
an open (green) space in the base area calcula-
tion if it is smaller than a given size threshold.  

Reverse density

Reverse density measures invert the calculation 
ratio and show how much land is available per 
person, per dwelling unit or per job. Whereas nor-
mal density measures draw our attention to how 
crowded an area is, reverse density measures em-
phasize the opposite – the amount of space avail-
able to an average person.

intra-urban density Analysis

Intra-urban density is often measured based on 
the area of a census tract. Weighted density mea-
sures illustrate how densities are distributed be-
tween different census tracts (or other areal units) 
at an intra-urban level, where tracts are weighted 
based on their share of the total population. 

An important hazard in using census tracts for in-
tra-urban density analysis lies in the fact that cen-
sus tracts are often drawn at inconsistent scales. 
Since census tracts typically aim to capture a 
comparable number of residents, they tend to 
be larger in low-density areas and smaller in high-
density areas of a city. 



Image source: http://thecityfix.com/files/2011/09/dharavi.jpg



COVERAgE
Coverage illustrates how large a share of the 
total urban extent, or a sub-area of the city, is 
covered by a given land use type. It is a form 
of Density measure, whose numerator captures 
only the ground area of diff erent uses. It is most 
commonly estimated for building footprints – 
the percentage of the urban area that is covered 
by buildings. 
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COVERAgE

Coverage illustrates how large a share of the to-
tal urban extent, or a sub-area of the city, is cov-
ered by a given land use type. It is a form of den-
sity measure, whose numerator captures only the 
ground area of different uses. Most commonly 
estimated for building footprints – the percent-
age of the urban area that is covered by build-
ings, coverage can also be estimated for other 
land-use types – residential or commercial land, 
green spaces, etc. 

Two cities with similar population density and 
FAR can have vastly different urban forms. Parts 
of Singapore and Manila, for instance, both have 
high population densities and district-wide FAR, 
but the former is largely made up of high-rise 
buildings and the latter of high-density low-rise 
urban fabric. How both types of configurations 
can yield a similar population density and FAR 
is largely explained by their differences in build-
ing coverage. In Singapore, building coverage is 
generally low, and ample green space permeates 
between tall residential slabs. In low-rise settle-
ments of Manila, buildings and circulation paths 
between them cover almost all ground.

EXiSTiNg SpECiFiCATiONS 

The coverage Cn of land-use type n (LUn), within 
an area A, is defined as follows: 

The extent of the area A, at which coverage is 

estimated, can vary depending on our research 
question and the land-use type in the numerator. 
For building footprints, the reference area is often 
the corresponding area of a city block. If the ref-
erence area is enlarged to a whole census tract 
or district, then the resulting coverage metric will 
expectedly decrease as roads, parks and other 
open spaces are added to the denominator. De-
pending on the question, however, coverage can 
be estimated for an entire urban extent.

iMpROViNg ThE BuiLT-up COVERAgE 
MEASuRE

Estimating coverage for the urban extent of an 
entire metropolitan area requires a consistent ap-
proach to defining the area. One approach would 
be to use the administrative area as the denomi-
nator of the index. But the size of administrative 
boundaries in different cities can range widely 
and may occasionally constitute an area many 
times as large as the current urban extent. We 
thus propose to estimate coverage not in the ad-
ministrative areas, but within the convex hull1 of 
all developed polygons (Figure 7) minus the un-
buildable areas within the convex hull (see SIzE 
metric explanation). 

Estimating coverage within the convex hull minus 
unbuildable areas offers a consistent way of mea-
suring how much land is urbanized in each city. 
The exact shape of the hull and the extent of the 

1   The Convex Hull is defined as the smallest flat poly-
gon that has no concavity in its perimeter and that fully 
contains all individual polygons of the urban extent of 
a city.
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unbuildable area is relative to each city, but the 
estimation remains consistent and comparable 
since remaining vacant land within the hull can be 
said to be vacant by choice.

If the area of the convex hull around the devel-
oped polygons is ACVX, the unbuildable area of the 
convex hull is AUNB, and the total area of all built-
up polygons is ABLT, then the built-up coverage 
CBLT is estimated as follows:

Alternatively, coverage at the metro scale can 
also be estimated for particular land uses within 
the observed built-up area ABLT. Remote sensing 
data offer an opportunity to measure built cov-
erage consistently and comparably across cities, 
especially as building footprint data is unavailable 
for many cities. 

The ratio between a given land use area ALU and 
the total built-up area ABLT captures what share 
the particular land use – buildings, roads, parking 
lots, etc. – constitutes of the entire built-up urban 
area:

Figure 7 . Convex hull of the urban extent and the un-
buildable area with the convex hull.



Image source: http://fmjdata.com/wf/News/25C40E65D1A20BDD6607FEBCB7544FA4/Olympics_aerial_view_credit_London_2-12_fmj_jan12.jpg



pOLyCENTRiCiTy
Every city has its centers, some larger, some 
smaller. For centuries, planners, economist and 
geographers have debated why and how cen-
ters arise. Most scholars agree that urban cen-
ters emerge from transportation cost savings 
rendered by proximity, from economies of scale 
in production and service activities, and from 
spatial externalities between space users. 
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pOLyCENTRiCiTy

Every city has its centers, some larger some small-
er. For centuries, planners, economist and geog-
raphers have debated why and how centers arise. 
Most scholars agree that urban centers emerge 
from transportation cost savings rendered by 
proximity, from economies of scale in production 
and service activities, and from spatial externali-
ties between different space users in a city.  

Despite the continued dominance of the mono-
centric urban model (Alonso 1964, Muth 1969 and 
Edwin 1967), its primary assumption that jobs are 
clustered in a single dominant location is inconsis-
tent with the spatial distribution of employment in 
many contemporary cities. A large body of litera-
ture has shown how increases in traffic conges-
tion, land prices and rents, commuting costs and 
air pollution can jointly shift economies of scale to 
diseconomies of scale and lead to the emergence 
of multiple sub-centers. Empirical evidence sug-
gests that even the most monocentric cities, such 
as Las vegas or Baltimore, have smaller sub-cen-
ters outside the central business district (CBD).

Given the fundamental economic role of a city’s 
centers, changes in their structure and rank or-
der can be telling about the growth and change 
of the city as a whole. Impacts of job clustering 
on transportation, energy consumption, or eco-
nomic inequalities cannot be explained without a 
reliable metric that captures the characteristic of 
these clustered landscapes – their polycentricity. 

Quantifying polycentricity is challenging since de-
fining a center is far from obvious and the num-
ber of centers is not necessarily the only yardstick 

for polycentricity. There is no universal definition 
for urban centers; centers can have blurry bound-
aries and polycentricity can be relative to the size 
of a city as well as the resolution of the lens with 
which we examine an urban landscape. 

EXiSTiNg SpECiFiCATiONS

Polycentricity has been described at both the 
intra-urban level (polycentric cities), and inter-
urban level (polycentric urban regions). Although 
our focus is on quantifying the geographical as-
pect of intra-urban polycentricity, previous litera-
ture on polycentric urban regions provides inspi-
ration to our work. There are two main types of 
polycentricity measures at the regional scale that 
capture the interaction between centers. The 
Entropy Index (e.g. Limtanakool et al. 2009), for 
instance, examines how uniformly flows are dis-
tributed among centers. It is defined as: 

where EI is the entropy index, Zi the ratio of the 
number of trips from i to the total number of trips 
within the region, and L is the number of cities.  EI 
is constrained between 0 and 1. It is 0 if all trips 
involve only one city, and 1 if trips are equally dis-
tributed among all cities.  

Another group of metrics captures the symme-
try of incoming and outgoing trips at each center, 
or the symmetry of trips between a pair of cit-
ies. Limtanakool et al. (2009) have defined Node 
Symmetry Index (NSI) as follows:
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, where Ii is the number of trips to city i and Oi the 
number trips originating from i. 

Given the complexity of trips at the intra-urban 
level1 and the difficulty of obtaining similar trip 
data as the regional level, these inter-urban poly-
centricity metrics are not ideally suited for use 
at the intra-urban scale. However, the concept 
of spatial interaction between centers has in-
spired the polycentricity metric we propose be-
low, which uses a weight to describe centers (the 
percentage of resources in a center) analogous 
to the number of trips to them. In our metric, we 
use the number of centers, the weights of cen-
ters, and their relative size distribution to capture 
structure, strength, and symmetry.

A key challenge in quantifying polycentricity is 
the identification of centers. At the inter-urban 
level, centers are simply cities, but at the city-
scale it can be challenging to distinguish centers 
from non-centers. An area can be a center locally, 
but not large enough to qualify as a center at the 
scale of the city or in comparison to other cities. 
According to Masip (2011) there are two types of 
methods for identifying urban centers: methods 
based on analysis of density and those based 
on analysis of functional relations. The latter, as 
we discussed above, are typically applied at the 
regional scale. At the city scale, however, Masip 
further categorizes density analysis methods into 
four groups:

1  It can be challenging to distinguish between trips that 
end at a center and trips through a center to another 
destination.

a) A sub-center is defined as the second 
peak beyond CBD, the census tract that has 
higher employment density than its neigh-
boring tracts.  An example of these, McDon-
ald’s method (1987), fails to recognize, how-
ever, the fact that several contiguous tracts 
can jointly form a local peak. 

b) The second group uses a lower cut-off 
criterion to identify sub-centers. Some have 
defined sub-centers by an absolute lower 
cut-off. Giuliano & Small (1991) defined sub-
centers as census tracts with a density of 
more than 10 employees per acre and at least 
10,000 jobs. Others used relative cut-off cri-
teria. García-López (2007, 2008) and Muñiz 
& García-López (2009) defined sub-centers 
as “zones with a density higher than the met-
ropolitan average and at least 1% of metro-
politan employment.” 

c) The third group of methods uses the stan-
dard monocentric model to identify sub-
centers. For instance, McDonald & Prather 
(1994) defined sub-centers as areas with 
positive residuals that are significant at a 95% 
confidence level: i.e. areas with densities sig-
nificantly higher than expected density in the 
mono-centric model, based on the distance 
from the CBD. The main disadvantage of this 
method is that it presumes the existence and 
location of a CBD.

d) The last set of methods for identifying sub-
centers in Masip’s (2011) classification is con-
ceptually similar to the previous method (c), 
but uses a weighted regression for smoothing 
the natural logarithm of employment density, 
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and allows for local variation in the fl attening 
rate of the gradient.

Most intra-city indices in the literature measure 
polycentricity as the number of centers that fi t 
the proposed defi nitions. Central shortcomings 
of these indices are that 1) the overall share of jobs 
that are in centers combined does not aff ect the 
outcome; and 2) the relative size balance between 
centers, too, does not aff ect the outcome. A city 
where only 10% of jobs are located in centers (the 
rest are dispersed) would thus be considered as 
polycentric as a city where 90% of the jobs are in 
centers. Likewise, a city with one large center and 
three small centers would be considered as poly-
centric as a city with four equally large centers. 
We have tried to address these shortcomings in 
the proposed metric for polycentricity below.

pROpOSEd pOLyCENTRiCiTy METRiC

Determining the polycentricity of a city requires 
two stages of analysis. First, we need to deter-
mine the total number of centers and the size of 
each of the centers. Second, given this informa-
tion, we need to determine how polycentric the 
city is. Figure 8 illustrates a raster dataset of den-
sity measures in a hypothetical polycentric city.

detecting Centers

In order to fi rst distinguish urban centers in the 
data, we implement the following three steps:

1) Job density at urban centers has to be 
higher than the mean density in the entire 
city (Figure 9a). This threshold is relative to 
each city and not universally defi ned. We 
compute the average job density across all 
polygons and only retain those whose values 
exceed the average.

2) If several adjacent polygons pass the pre-
vious average cut-off  threshold, then these 
neighboring polygons are grouped together 
to form joint centers (Figure 9b).

3) A center must contain n % or more of all 
jobs in a city (Figure 10). While many places 
in a city can have a high number of jobs clus-
tered on a small area of land, an area should 
not be considered a center if it does not con-
tain an adequate percentage of total jobs 
in the city. Note that n should not be fi xed 
for all city sizes; the minimum cluster size 
threshold should vary along with the size of 
the city. We have experimentally determined 
that “n=10/√population” yields suitable values 
that adjust intuitively to city size. In a city of 
100,000 jobs, it yields a cutoff  at 3.16% (3,162 
jobs), in a city of 1,000,000 jobs n becomes 
1% (10,000 jobs) and in a city of 10,000,000 
jobs n is 0.32% (31,622 jobs).

The third step thus counts the total number of 
jobs found in each cluster and eliminates the clus-
ters that do not pass the appropriate minimum 
percentage test, adjusted to city size. The proce-
dure of detecting centers is concluded by assign-
ing an ID to each center that is found, determin-
ing the geographic coordinates of the centroid of 

Figure 8. A raster dataset of density measures in a hy-
pothetical polycentric city.

Figure 9a. Job density at urban centers has to be higher 
than the mean density in the entire city. 
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each center, and summing the total number of 
jobs in each center.

ESTiMATiNg pOLyCENTRiCiTy

Having defi ned the centers, we propose a poly-
centricity metric that simultaneously satisfi es the 
following criteria:

1) A city with more centers is more polycen-
tric than a city with fewer centers.

2) A city is more polycentric if a greater share 
of its total job pool is located in its centers.

3) Polycentricity, by defi nition, implies a shift 
from the dominance of one center to a state 
where several centers exist in a balanced 
competition. We therefore assume that the 
less any one center dominates, and the more 
equally balanced the sizes of diff erent sub-
centers are, the more polycentric a city is.

4) If a new center emerges, while the total 
number of jobs, the total number of existing 
centers, and the sizes of existing centers re-
main constant, then polycentricity of the city 
increases. 

With these criteria in mind, we arrive at an intui-
tive measure of polycentricity that is based on the 
number of centers, the sizes of centers, and the 
size balance between the centers:

PC=HIxNxRc

where PC is the polycentricity index, HI the ho-
mogeneity index, N the number of centers, and 
Rc the ratio of the total amount of jobs found in 
all centers to the total amount of jobs in the city. 
HI measures the degree to which the sizes of cen-
ters are homogenous. We defi ne HI by using Lim-
tanakool’s (2009) Entropy Index EI (see Existing 
Specifi cations above):

 

, where Zi is the ratio of the number of jobs at cen-
ter i to the total number of jobs in the city, and L 
the number of centers in the city. EI is constrained 
between 0 and 1; it is 0 if all jobs are in a single 
center and 1 if jobs are equally distributed among 
all centers.  

If a new center emerges, while the total number 
of resources (jobs) and the sizes of existing cen-
ters remain constant, N and Rc increase. However, 
HI may change in any direction or stay constant 
depending on the relative size of the new center 
compared to the size of the pre-existing centers. 

The value of our polycentricity metric PC thus de-
pends simultaneously on the three factors we set 
out to integrate: the number of centers, the sizes 
of the centers, and the relative size distribution 
between centers that are found in a city.

Center id Total Jobs X-coord. y-coord.

1 552,895 1.3667° N 103.7500° E

2 289,637 2.8667° N 101.6100° E

n n n n

Total: 1,689,254

Figure 10. A center must contain n % or more of all jobs 
in a city, where n = 10/√population. In a city of 100,000 
jobs, it yields a cut-off  at 3.16% (3,162 jobs), in a city of 
1,000,000 jobs, n becomes 1% (10,000 jobs), and in a 
city of 10,000,000 jobs, n is 0.32% (31,622 jobs).

Figure 9b. If several adjacent polygons pass the previ-
ous average cut-off  threshold, these neighboring poly-
gons are grouped together to form joint centers.



Image source: http://openwalls.com/image/19004/ho_chi_minh_city_1600x1200.jpg



COMpACTNESS
Compactness, and its inverse quality – Disper-
sion – measure the degree to which the resourc-
es of a city – people, buildings, jobs – are spa-
tially spread out; the closer they are located to 
each other, the more compact the city is.  



Figure 11. The internal distribution of a city’s resources 
can vary considerably, which remain  invisible to a den-
sity measure.
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COMpACTNESS

Compactness, and its inverse quality – dispersion1 
– measure the degree to which the resources of 
a city – people, buildings, jobs etc. – are spatially 
spread out; the closer they are located to each 
other, the more compact the city is. 

Understanding how compactness of metropoli-
tan areas affects the social, economic and envi-
ronmental performance of cities on the one hand, 
and detecting the forces that lead to compact-
ness on the other, constitute major research areas 
in city and regional planning. A clear understand-
ing of how compactness can impact urban en-
ergy consumption, economic inequality, car own-
ership, greenhouse gas emissions and economic 
efficiency can not be achieved without first cap-
turing the compactness of a city in a quantifiable 
measure.

EXiSTiNg SpECiFiCATiONS

One of the most commonly used measures for 
capturing the compactness of a city is areal den-
sity – the quantity of resources per unit area of 
land (see section on the DENSITY metric).  Ar-
eal density assumes, however, that resources are 
uniformly distributed throughout the study area 
– it does not distinguish internally homogenous 
or heterogeneous distributions, contiguous or 
discontiguous developments, nor the effects that 

1 Dispersion has also been used to characterize urban 
sprawl. The concept of sprawl, however, involves a num-
ber of factors beyond spatial form and remains poorly 
defined in literature. 

the shape of development can have on its disper-
sion (Figure 11).

Another way of capturing the compactness of a 
city’s development is achieved by measuring the 
availability of open space around each piece of 
developed land. Burchfield, Overnman and their 
colleagues (2006), for instance, have defined dis-
persion as the average percentage of open space 
in the immediate square kilometer around each 
residential development. As openness, too, is ba-
sically a density measures it comes with the same 
shortcomings in capturing Compactness men-
tioned above.

If all else equal, spatial distributions are most com-
pact if their aggregate collection forms a circular 
shape. Circular distributions, as widely witnessed 
in nature, have the smallest perimeter-to-area 
ratio of any two-dimensional geometric shape. 
Capitalizing on this property of circular shapes, 
a number of researchers have described the ob-
served dispersion of urban resources (people, 
development, buildings) in comparison to a per-
fectly circular distribution of the same amount of 
resources. 

Bertaud and Malpezzi (2003) define dispersion 
as the ratio of average distance from the cen-
troids of population tracts to the CBD to the av-
erage distance of the same population from the 
centroid of a hypothetical circular city of the same 
size2. In their measurements of 48 cities they as-
sume the CBD to be at the geometrical centroid 
of all population tracts. 

2 The average distance of a uniformly distributed popu-
lation from the center of a disk is equal to two third of 
the radius of the disk.
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The main shortcoming of this measure is that it 
only captures the relationship of spatial resourc-
es (e.g. people) to the city center and overlooks 
their spatial location with respect to each other. 
This may be problematic in cities where the CBD 
is lacking or unimportant (e.g. Randstadt in Hol-
land) or where the CBD is not at the geometric 
centroid of the tracts (e.g. Singapore). The model 
is more appropriate for a monocentric city, but ig-
nores the relationships between multiple smaller 
centers within the city.  Second, while this mea-
sure weighs distances to the center by popula-
tion, it is not aff ected by the absolute changes of 
density in the city – if the relative size balance in 
tracts is kept constant, but the population in each 
tract is increased at the same rate, the dispersion 
index would remain constant3. 

Angel et al. (2005) have defi ned compactness 
(the opposite of dispersion) in a similar vein, but 
instead of comparing the observed develop-
ment to a hypothetical circle, they compare it to 
the actual availability of developable land in that 
city. Whereas Bertrauds’s index relies on distance 
measurements in defi ning dispersion, Angel’s 
measure relies on area measurements. Angel et 
al. account for geographical constrains in the ob-
served area, arguing that “compactness should 
be restricted to buildable areas, in the sense that a 
city located on a coast, on a mesa cut up by steep 
gorges, or in a valley surrounded by steep cliff s 
can be very compact even if it does not resemble 
a full disk” (p. 68, Ibid). Their compactness mea-

3 However, since the distance from census tracts to the 
CBD is weighted by population, then keeping the total 
population constant, but changing the arrangements of 
density between census tracts does aff ect the outcome.

sure is thus defi ned as the ratio of the observed 
built-up area to the observed buildable area within 
“the circle of minimum radius encompassing the 
consolidated built-up area of the city.” The circle, 
which is used only for the purposes of restricting 
the geographical extent that is compared, can be 
defi ned either as “the minimum radius encom-
passing the consolidated built-up area of the city”  
– called the outer circle – or restricted to the main 
built up area of the city – which we might call the 
inner circle (Fig. 12). 

A key challenge to the index is that if the outer 
circle is used, a small and consolidated built-up 
area located far from the main built-up area can 
signifi cantly impact the minimal radius of the 
circle. If the calculation of the index is restricted 
to only the largest continuous built-up area — as 
performed by Angel’s team — then the index may 
return unreasonably high compactness values in 
cities with satellite towns that have signifi cant 
developments outside of the main built-up area 
(e.g. Paris, Singapore, Seoul). A second impor-
tant challenge is that the relationship between 
the built-up area and the buildable administra-
tive area can vary widely between cities.  In some, 
the administrative boundary is cast far and wide, 
leaving ample room for growth. In others, the 
administrative boundary remains unchanged for 
decades allowing the city to hit and leapfrog over 
its edges. 

Figure 12. The circle of minimum radius encompassing 
the consolidated built-up area of the city. Source: Angel 
et al. (2005).

Figure 13. The proposed compactness metric is based 
on distance measurements between the centroids of 
built-up areas.
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pROpOSEd MEAuRE OF COMpACTNESS

As mentioned earlier, a compactness index 
should capture the degree to which the resourc-
es of a city (e.g. people, buildings, jobs, etc.) are 
spread out. Put alternatively, the metric should 
capture how closely different parts of the city are 
accessible to each other (Figure 13). There is an 
analogous measure in transportation research, 
called “Gravity” (Hansen 1959). The gravity index 
of a location is proportional to the total amount of 
resources available to that location and inversely 
proportional to the travel cost of reaching them:

, where Gi is the gravity index for location i, W[j] 
the size or attractiveness of the destination j, and 
d[i,j] the distance between locations i and j, and 
beta is the exponent that controls the effect of 
distance decay between i and j. Distance d[i,j] can 
be measured from the centroid of polygon i to 
the centroid of polygon j.

Computing the gravity index for each built-up 
polygon in the metropolitan area and taking the 
mean result across all polygons can thus capture 
how compactly these resources are situated with 
respect to each other. If weighted by the size of 
the resources, then the spatial relationships be-
tween larger destinations have a proportionately 
stronger effect on the index than smaller destina-
tions.

However, the weighted average gravity is obvi-

ously impacted by the total amount of the re-
sources in the city. It would not make sense to get 
a higher average gravity in a larger city that has 
more people than in a smaller city that has less 
people, even if the latter is more compactly dis-
tributed. The mean gravity measure above, there-
fore cannot be used to compare compactness 
across cities of different size unless it is reason-
ably normalized. We propose three reasonable 
ways to proceed with the normalization:

Normalization by a Reference Case

The reference city is defined as a circular city with 
its number of resources (population, jobs, or built-
up pixels) similar to the actual city, where the re-
sources are uniformly distributed. Different from 
the cylindrical city defined by Alain Bertaud et al. 
the area of our reference city is not necessarily 
equal to the total area of the real case study city.
As discussed above, using the city’s own in the 
normalization will cancel density from the pic-
ture. Therefore, we propose to introduce a fixed 
density rho to the reference city  — for example 
rho=1000 unit per square kilometer. As rho is a 
constant, the area can be derived from the given 
population in every city. Note that the same rho 
value should be used in all cities. If the weighted 
average gravity in the reference case is G0, then 
the compactness index, C, would be:

Figure 14. Normalization by a reference case. The area 
of the larger circle – reference case defined by Bertaud 
et al – is equal to the total built-up area.  The area of 
our proposed reference disk, the smaller disk, is deter-
mined by the total population, and a reference density, 
rho, which is treated as a constant.

Figure 15. Normalization by a reference case, account-
ing for geographic constraints. The dashed circle is the 
reference case without accounting for the geographic 
constraints, and its area is equal to the area of the ref-
erence case polygon that accounts for the geographic 
constraints.
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Normalization by a Reference Case, ac-
counting for geographic Constraints

As discussed by Angel and his colleagues, we are 
often interested in knowing how compact a city 
is within its own geographic constraints. This can 
be achieved by super-imposing the geographic 
constraints on the reference case. The reference 
city, in this case, is a polygon with a uniform den-
sity rho, derived by subtracting the unbuildable 
land from the circle C. The reference circle shares 
the same geometric center as the observed city, 
such that the remaining area is equal to the area 
of the reference case calculated by the method in 
(a) (Figure 14).  

Calculating the weighted average gravity for the 
reference case in which we account for geograph-
ic constraints is not feasible with a formula since 
the reference polygons have variable regions of 
unbuildable geometry. In order to be consistent 
in both types of reference cases introduced here, 
we suggest calculating the weighted average 
Gravity by applying a grid of 30x30 meters on 
the reference case and assigning an equal weight 
(w) to each pixel (Figure 16). The w of each pix-
el is the total amount of resources (population) 
divided by the number of cells in the reference 
case. The gravity for each pixel is then measured 
between the centroids of all pixels using the same 
Gravity index as above.

Normalization by Total Resources.

The mean gravity index across all observed poly-
gons can also be normalized by the total amount 
of resources (i.e. population) in the city.  This can 
be defined as follows: 

, where Wtotal is the total amount of resources in 
the city (e.g. population). The compactness index 
C is then given as the weighted average of the 
normalized gravity indices of all polygons i:

Figure 16. The 30x30m grid on top of the reference 
case.



Image source: http://low-tax-asia.com/wp-content/uploads/2012/05/Hong_Kong_China_02.jpg



EXpANdiBiLiTy
The Expandability metric aims to capture con-
straints to a city’s growth by quantifying the 
availability of buildable land beyond the urban 
extent, within a defined peripheral area. Quanti-
fying Expandability is fundamental to explaining 
sprawl, segregation, density and land prices.
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EXpANdABiLTy

A key determinant of a city’s growth is the avail-
ability of buildable land in its vicinity. The availabil-
ity of space to grow not only aff ects the rate of 
possible growth but also its character. Cities that 
are constrained by geographic features, such as 
water bodies or steeply sloped land, grow very dif-
ferently from those with no barriers around them. 
The former, for instance, leave no room for leap-
frog development and set serious physical limits 
on sprawl; the latter allow for spatially spread-out 
and fragmented growth. The Expandability met-
ric aims to capture these constraints by quantify-
ing the availability of buildable land beyond the 
urban extent within the non-urban realm. Quan-
tifying expandability is fundamental to explaining 
sprawl, segregation, density and land prices. 

EXiSTiNg SpECiFiCATiONS

The key challenge in quantifying the expandabil-
ity of a city is to defi ne a reasonable zone for the 
measurement of the buildable area around exist-
ing urban clusters, which could be analyzed con-
sistently for expansion across cities. 

City authorities are interested in knowing how 
much developable land is available in their admin-
istrative area, so they naturally look at the avail-
able land within the administrative boundaries of 
their city. Actual growth may occur, however, well 
beyond the existing administrative boundaries. 
The size of administrative boundaries in diff er-
ent cities can range widely and may occasionally 
constitute an area many times as large as the cur-

rent urban extent. Studies of land supply and land 
demand management (e.g. Hopkins and Knaap 
2000) have used the urban growth boundary as 
a limit for land supply. Growth boundaries, howev-
er, are inadequate for our purpose since few cities 
have legally implemented urban growth bound-
aries. Furthermore, the defi nition and regulation 
of growth boundaries varies widely across cities. 

Albert Saiz’s (2010) Geographic Determinants of 
Housing Supply is one of the rare studies on mea-
suring developable lands that has disregarded 
administrative boundaries. Saiz’s search area con-
stitutes a 50-kilometer radius from the centroid 
of the city. But as Wendell Cox (2011) has rightly 
pointed out, an invariant search radius makes re-
sults incomparable in cities of diff erent size. While 
in larger cities a 50-kilometer radius may barely 
cover the built-up area, for smaller towns it may 
contain several times their existing urban extent.

 

pROpOSEd EXpANdABiLiTy METRiC

In order to specify a measure that captures the 
availability of buildable land in a consistent way 
across cities of diff erent size, we propose an ex-
pandability metric that satisfi es the following 
conditions:

a) The search radius should be measured 
from the edges of urban extent rather than 
its centroid. 

b) The search radius should be relative to city 
size.

Figure 17. Existing built-up area Ab and unbuildable area 
Au.

Figure 18. The Idealzied expansion, A0; The area of A0 is 
twice the existing built-up area Ab. 
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Let us fi rst represent the existing built-up area as 
Ab , and the unbuildable area that contains natu-
ral obstacles like mountains or lakes as Au (see 
Figure 17). Second, we can generate an idealized 
expansion of the existing built area by off setting 
the boundaries of all polygons in Ab so far that the 
total built-up area of each polygon doubles1, and 
then merging the polygons together into an over-
all doubled area that we call Ao (Figure 18). The 
off set radius at which we precisely double the 
area of Ab cannot be mathematically pre-deter-
mined, but it can be found in a simple automated 
iteration of off sets that check the expanded area 
against the original area until the right radius is 
found. While the area increase should be mod-
eled consistently across cities, the off set radius 
will vary from city to city.

In the third step, we subtract all the unbuildable 
areas (Au) from the off set area Ao to fi nd the area 
Ae that is actually available for expansion beyond 
mountains and water (Figure 19). Finally, we com-
pute our expandability index as the ratio between 
the expansion area Ae and the existing built area 
Ab (Figure 20): 

Expandability = Ae / Ab

The index tells us how many times the current 
built-up area can expand within a 100% buff er 
from its current edges. The Expandability Index is 
constrained between 0 and 1; if all the land within 

1 The particular choice of 100% expansion roughly 
matches the average 20-year growth that was observed 
across 66 cities in Angel’s study (2005). The radius can 
be adjusted as needed by the analyst to refl ect typical 
annual growth, 5-year growth or other growth of exist-
ing built area. 

the specifi ed off set buff er is buildable, the index 
is 1, and if none of the land in the specifi ed off set 
buff er is buildable, the index is 0.

When we consider areas that are unbuildable, we 
can categorize such land into two groups: 

1) Land that is unbuildable due to natural ob-
stacles, such as mountains or water.

2)  Land that is unbuildable due to human pol-
icy choices, such as parks, protected areas or 
urban growth boundaries.

The two types of unbuildable land can have a dif-
ferent eff ect on a city’s growth. Those areas that 
are put aside as unbuildable due to conscious hu-
man regulation could have a higher risk of being 
re-zoned than natural obstacles. But even natural 
obstacles are not set in stone – Singapore has ex-
panded its shorelines by 20% in 40 years, and a 
number of cities have historically leveled moun-
tains to make way for urbanization. These risks 
can be integrated into our Expandability index by 
considering the fi nancial and technological ca-
pacity of the city and allowing a small fraction of 
the obstacles to be overturned each year. 

Figure 19. The expansion area Ae is found by subtracting 
all the unbuildable areas Au from the oidealized ff set 
area Ao.

Figure 20. The fi nal expandability metric is computed 
as the ratio between the expansion area Ae and the ex-
isting built area Ab.



Image source: http://www.vad1.com/photo/stock/a84-30-5.jpg



diSCONTiguiTy
In order to gain a deeper quantitative descrip-
tion of the Discontiguity of metropolitan form, 
we need to look at the rank order and relative 
size difference between discontinuous urban 
clusters.
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diSCONTiguiTy

While the number of urban clusters and their size 
provide a general description of the discontiguity 
of an metropolitan area (see Figure 1), they do not 
tell us much about the structure of the city’s frag-
mentation. In order to gain a deeper quantitative 
description of the discontiguity of metropolitan 
form, we need to look at the rank order and rela-
tive size diff erence between discontinuous urban 
clusters.

EXiSTiNg SpECiFiCATiON

Eff orts to quantify the contiguity of urban form or 
its reverse quality – discontiguity – have been rare. 
The most popular description of contiguity, de-
veloped by Angel and his colleagues (2005), de-
scribes contiguity as the ratio between the main 
(largest) built-up area of the city and the sum 
total built-up area of the city. The more built-up 
area is concentrated into the single largest cluster, 
the more contiguous the city is. This measure is 
easy to compute and is useful as long as the main 
built-up area constitutes a large portion of the to-
tal built extent of the city. But the metric is not 
well suited to distinguish forms of discontiguity 
when a city is made of multiple larger or smaller 
built-up clusters, with a large portion of the to-
tal built-up area located outside of the biggest 
cluster. The metric does not account for rank-size 
relationships between individual discontinuous 
areas beyond the largest cluster. 

pROpOSEd diSCONTiguiTy MEASuRE

Similar to Angel et al. (2005), we assume that the 
fewer the total number of discontinuous develop-
ments, the more contiguous a metropolitan area 
is (Figure 21). 

Although our proposed description is a measure 
of discontiguity rather than contiguity, it is in es-
sence similar to the measure developed by Angel 
and his colleagues (2005). While based on the 
relative size of urbanized clusters, the metric ad-
ditionally accounts for the areas of all clusters that 
are smaller than the largest cluster (Figure 22). 
We defi ne discontiguity as follows:

where DC is the discontiguity of the built-up area, 
N the number of urbanized clusters, An the area 
of cluster n, and Atotal the joint area of the urban 
extent. Note that An≥ An+1, so that the denomina-
tor in the fi rst part of the index always compares 
other areas to the largest continuous area.

The key improvement of the proposed index is 
that it accounts for the size relationships between 
all the clusters in the city by calculating the same 
ratio – the area of each cluster that is smaller than 
the largest cluster to the area of the largest cluster 
– and summing up these ratios, weighted by their 
share of the total area.

Figure 21. Continuous urban extent (top) and discon-
tinuous urban extent (bottom)
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Figure 22. Interpretation of the discontiguity metric. 
The top left configuration has the lowest discontinuity 
results, the bottom right one the highest. The numbers 
indicate the actual computed results for selected con-
figurations.



Image source: http://www.gaudetfamily.org/Photos/BangkokLG.jpg



LANd-uSE MiX
Land-use Mix constitutes an important charac-
teristic of the built environment whose impacts 
on traffi  c congestion, energy consumption, real 
estate values and crime are extensively dis-
cussed in planning literature. While mixed-use 
developments are widely promoted by planners, 
supporting quantitative evidence of their eff ects 
is underdeveloped and even contradictory. 



48  

LANd-uSE MiX

Land-use Mix constitutes another important char-
acteristic of the built environment whose impacts 
on traffic congestion, transportation energy con-
sumption, real estate values and crime rates are 
extensively discussed in planning literature. While 
mixed-use developments are widely promoted 
by planners, supporting quantitative evidence of 
their effects is underdeveloped and even contra-
dictory. This is partly attributable to a lack of in-
tuitive and commonly accepted metrics that can 
capture how mixed or segregated the land-uses 
of an urban area are. Perhaps more importantly, 
there has been little discussion on what levels and 
configurations of mixing are actually desirable. 

EXiSTiNg MEASuRES OF LANd-uSE MiX  

There are two popular types of metrics that cap-
ture land-use mixing. The first focuses on the 
number of different uses that are found in a given 
area, allowing comparative areas to be ranked 
according to the number of land-use types (1-n) 
they accommodate. The second focuses on the 
relative balance between uses; it tells us how het-
erogeneous or homogenous the land-use pattern 
of an area is based on how equally the area is oc-
cupied by different uses.

The former may not be meaningful if different 
uses occupy notably different amounts of land. 
This shortcoming is addressed in the latter, but 
heterogeneity indices, too, have important short-
comings. Most of such indices weigh all uses 
equally and assume that an equal distribution of 

each type of use is the benchmark to compare an 
observed pattern against. Cities do not have an 
equal share of all land-uses – a much larger share 
of land is typically used for residential purposes 
than commercial purposes. Industrial and trans-
portation lands often top commercial land, as the 
former tend to accommodate rather land-inten-
sive activities. Second, not all types of land-uses 
tend to mix with each other at equal likelihoods 
(Hess et al. 2001). A mixture between commerce 
and housing is far more likely to be seen in most 
cities than a mixture between industry and hous-
ing. Military land and agricultural land tend to stay 
apart from other land uses for logistical, secu-
rity, and economic reasons. Instead of an equal 
weighting and mixing benchmark, a land-use mix 
metric could use a statistically “expected weight-
ing” that is based on the observed citywide bal-
ance of land-use types, and an “expected mixing” 
ratio that is based on desirable examples.

pROpOSEd MEASuRE OF LANd-uSE MiX

A meaningful implementation of a land-use mix 
metric requires that the metric be estimated at 
the scale of small intra-urban subdivisions, not 
the whole city together.1 Land-use mixing can be 
estimated with most accuracy if the input data 
is given as pixels or raster cells, where each pixel 
contains information about the land uses it ac-
commodates. 

For each raster cell, we propose a land-use mix 

1   At the whole city level, land uses always appear mixed, 
even if they are completely segregated at a finer scale.
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metric that illustrates how closely the distribution 
of observed uses in a given neighborhood around 
that cell correspond to an expected distribution. 
There is no consensus on how large the evalua-
tion neighborhood ought to be, but we propose 
to use a standard of one square kilometer (1 km2) 
that is large enough to detect use mixing and 
convenient to derive in many cities (Burchfield 
2006).

Let us define the square kilometer neighborhood 
of a given cell as i and a particular land use of 
interest n as LUn. Since there is often more than 
one land use in the square kilometer around the 
cell, we can give a weight w to each of these land 
uses, based on how much area of the neighbor-
hood they occupy. w[LUn:i] thus denotes the 
weight of land use n within the square kilometer 
neighborhood of cell i. We can now specify Sn:i as 
the share of LUn among all land uses of interest 
with the area i:

Sn:i is given as a ratio between the weight of land 
use n within i and all other land uses of interest 
(including n itself) within i. Sn:i thus ranges be-
tween 0 and 1.

Knowing Sn:i  – how big a share of i is covered by 
land use n among all uses of interest – allows us 
to estimate how closely this observed coverage 
matches an expected coverage of that same land 
use n within the area of i. For that we need to first 
specify the expected share of the same land use 
in i as ESn:i. ESn:i can be determined in a number of 
ways depending on the intentions of the analyst; 

we propose to base its specification on the fol-
lowing criteria:

1) The expected distribution ESn:i of land use n 
in area i should depend on the city-wide total 
balance of all land-uses of interest. Given the 
presence of land use n in the whole area of 
the city, we can determine the statistical likeli-
hood of its presence in any smaller sub-area 
of the city.

2) The expected distribution should also 
depend on the likelihood of co-location be-
tween any pair of land uses. A mixture be-
tween commerce and housing is more likely 
in most cities than industry and housing. The 
“expected mixing” ratio should, however, not 
reflect the city-wide average, but instead a 
desirable scenario based on exemplary loca-
tions.

Having set the benchmark for each area i, we 
can now estimate a “matching index” ratio Mn:i 

that shows how closely the observed coverage 
of land use n matches the expected distribution 
of that same land use n within the area of i. The 
“matching index” ratio Mn:i is determined by first 
finding the difference between the observed 
share of land use n in i from the expected share of 
the same land use n in i, and then subtracting the 
absolute value of this difference from one:

 
The absolute value alone would tell us how much 
the observed value deviates from the expected 
value, and subtracting this deviation from one 
tells us how closely, in terms of percentage, each 
observed land use matches its expected target. 

Figure 23. The expected land-use mix should be based 
on the city-wide distribution. Different cities include 
different types and balances of land-uses.
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If residential use, for instance, constitutes 20% of 
the observed land cover (Sn:i) in the square kilo-
meter around i, and the expected cover (ESn:i) is  
60%, then the matching index Mn:i for this particu-
lar land use around location i is: 1 - |0.2 – 0.6| = 0.6.t

Finally, we need one more ingredient before find-
ing the total land use mix index around i  – the 
total observed share of all land uses of interest 
around i, which we call Si. Using Si allows us to 
focus our analysis on only a selected set of land 
uses and ignoring others without compromising 
the validity of the index. If we are only interested 
in the mixing between commercial and residential 
land, then we specify Si to only include these two 
uses. It is found as follows:

 

, where Si is the observed share of all land uses of 
interest around i, the sum in the numerator de-
notes the total observed area of the land uses of 
interest around i, and wi is the absolute total of 
all land uses around i, including not only the ones 
that interest us, but all land uses. If the weights 
are measured in land area (e.g. in square kilome-
ters), which is commonly the case, and our cho-
sen neighborhood area around i is 1 km2, then wi 
is always 1. However, we indicate this total as wi 
instead of simply one for scenarios in which the 
weights might be measured in other units, such 
as total floor areas of buildings, etc.

The final land use mix index MXi around location 
i is given by multiplying the observed share of all 
land uses of interest around i (Si) with the product 
of all individual matching indices Mn:i around i:

 
This land use metric tells us how closely the dis-
tribution of all land uses of interest around loca-
tion i correspond to their expected distribution  
(Figure 23). MXi always ranges between 0 and 1. 
MXi  is at its maximum value when the land uses 
in the immediate square kilometer around i per-
fectly match the expected distribution. MXi is zero 
when none of the expected uses are found in the 
area of i. 

In order to obtain a combined index for the entire 
city, we can simply take the average of all indi-
vidual MXi indices:

The combined city-wide land-use mix metric MX 
tells us how closely the average distribution of 
land uses across all analysis areas in the city cor-
responds to their expected distribution. 

The key advantage of this proposed land-use mix 
metric lies in its flexibility in working with different 
combinations of uses, as well as the fact that it 
can be calibrated for different expected distribu-
tions. It can be used to evaluate land use mixing 
for only a narrow set of uses or all uses found in a 
city. A similar metric can also be used for evaluat-
ing other types of spatial mixing or segregation, 
such as the spatial mixing of different demo-
graphic, income, or racial groups.

Figure 24. Land-use Mix around location i. LU1 and LU2 
are the target land uses. w[LU1:i ] , the share of LU1  with-
in the immediate one square-kilometer around i, is 0.15 
Likewise, w[LU2:i ] is 0.45. Si, the total share of  LU1 and 
LU2 is 0.6 (0.15+0.45). S1:i  is 0.15/0.6, (0.25) and S2:i  is 
0.75. If SD1 , the expected share of LU1 is 0.3 and SD2  is 
0.7, then both M1:i  and M2:i will be 0.95 and finally land-
use mix index of i, MXi , is 0.6x0.95x0.95= 0.54
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SuMMARy TABLE

Metric Name Description Example Specifications Basic Data Required Optional Data Required Computational Requirements Related Indicators

SIZE Estimates the area of a land-
use category.

Size of urban extent 
(built-up area)

Total built-up area Convex hull polygon around 
the built-up area; Area of 
unbuildable lands within the 
convex hull polygons; Area of 
land-use categories 
(observed/remotely sensed).

Simple arithmetic. Regulatory climate, car ownership, transit 
ridership, land prices, crime rate, 
transport energy consumption, 
corruption, vehicle miles traveled, GDP,  
avg. HH income, Gini coefficient, cost of 
living, water resources, temperature, total 
population, water resources, total nbr. of 
jobs/firms/establishments, 

COVERAGE Estimates the ground cover 
of a land-use type within a 
total area.

Coverage of built-up area 
within the convex hull.

Total built-up area,  
convex hull polygon  
around built-up area, 
area of unbuildable 
lands within the 
convex hull.

Area of buildings footprints 
(aggregated), Area of any  
land-use category 
(observed/remotely sensed).

Simple arithmetic. Land price, total nbr. of 
jobs/establishments, crime rate, transport 
energy consumption, vehicle miles 
traveled, regulatory climate, temperature, 
water resources.

DISCONTIGUITY Quantifies the degree to 
which a city is fragmented 
into discontinous built-up 
areas. The metric jointly 
increases by the number of 
dicsontinuous 
developments and the size 
inbalance between the 
developments.

Areas of all individual 
built-up polygons.

Iterative  arithmetic. Climate, water resources, crime rate, share 
of aging population, regulatory climate, 
car ownership, transit ridership, land 
prices, transport energy consumption, 
vehicle miles traveled.

COMPACTNESS  Indicates the average  
spatial accessibility 
between separate built up 
areas – the higher these 
accessibilities, the more 
compact a city is.  

Compactness of 
population, compactness 
of built-up pixels, 
compactness of building 
footprints.

Geometric built-up  
polygons with 
population data.

Census tracts with data on 
population/jobs/establishment
s/etc. Remotely sensed built-
up pixels, building footprints, 
building volumes. 

Calculating X,Y coordinates of 
the centroid (of 
pixels/polygons), distance 
measurement, iterative  
arithmetic.

GDP, regulatory climate, car ownership, 
avg. HH income, transit ridership, land 
prices, transport energy consumption, 
vehicle miles traveled, crime rate, 
temperature, total nbr. of 
jobs/firms/establishments 
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Metric Name Description Example Specifications Basic Data Required Optional Data Required Computational Requirements Related Indicators

POLYCENTRICITY Estimates the degree to 
which a city's employment 
(or other activity) is 
concentrated in centers. 
Polycentricity depends 
simultaneously on three 
factors: a) the number of 
centers; b) the size-balance 
between centers and c) the  
share of total employment 
that is located in centers.

Employment 
polycentricity,  
polycentricity of the built-
up area, population 
polycentricity.

Geometric census 
tracts with 
employment data.

Raster employment density 
map, census tracts with 
population density, remotely 
sensed built-up pixels.

Boolean functions (merge), 
simple arithmetic,  iterative 
kernel density measurement 
(for optional data).

Transport energy consumption, GDP, 
regulatory climate, car ownership, avg. HH 
income, Gini coefficient, total nbr. 
jobs/firms/establishments.

EXPANDABILITY Illustrates how much space 
is available for development 
beyond the city's current 
borders in a given distance 
threshold.

Geometric built-up 
areas, unbuildable 
polygons (water 
bodies, steep slopes).

Boolean functions (subtract), 
area calculation, offset, 
iterative arithmetic.

Land price, water resources, cost of living, 
Gini coefficient, total nbr. Of 
jobs/firms/establishments.

LAND-USE MIX Captures the degree to 
which the observed 
distribution of land uses 
corresponds to an expected 
distribution.

Mix of residential, 
transportation, 
commercial and green 
land-use categories in a 
city.

Geometric polygons of 
land-use categories.

High-resolution land-use 
categories.

Clip, area calculation, iterative 
arithmetic.

Regulatory climate, share of aging 
population, car ownership, transit 
ridership, land prices, crime rate, 
transport energy consumption, 
corruption, vehicle miles traveled.
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gROwTh3.
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gROwTh 

The metrics defined in the previous section of-
fer snapshots of built environments at particular 
points in time. The metrics alone, however, do not 
tell us much about growth or change that takes 
place in cities over time. Cross-sectional measures 
of metropolitan form offer the basis for under-
standing trends in growth and change of urban 
development patterns, but to detect the chang-
es, the metrics need to be captured at multiple 
time points and additional tools are required. In 
this section, we present a brief overview of map-
ping, visualizing, and measuring tools that can be 
potentially used to capture changes in the urban 
forms and land-use metrics over time. 
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metrics.

Through simple Boolean functions, for example, 
leapfrog developments can be distinguished 
from extensions that are contiguous to existing 
built-up areas. Finer scale building data can be 
used to distinguishing infill from extension and so 
on. 

Map overlays also allow us to capture transfor-
mations of land-use patterns over time. An old 
industrial site, whose location has gradually be-
come more central, may be recycled as new resi-
dential land, or an informal settlement may trans-
form into a consolidated middle-class area. This 
process of land recycling can be understood by 
merely looking at the change in the overlaid land-
use map. 

REgRESSiON MOdELS OF ChANgE

A trend diagram visualizes the bivariate relation-
ship between a metric and time, but does not 
control for other potentially important variables 
that can impact a metric of interest. A longi-
tudinal regression model, or growth model, is a 
regression model in which one of the indepen-
dent variables is time. The model can be used to 
capture the relationship between an urban form 
metric and time, while keeping other important 
covariates (Willett, Singer 2003). 

TRENd ANALySiS

The most popular way of capturing change is to 
measure the differences in the absolute value of 
a metric at different points in time.  Thus a com-
parison of two measurements over a given time 
period can tell us whether a city is growing dens-
er or sparser, bigger or smaller, more polycentric 
or monocentric. In order to construct a trend, at 
least three data points over time are needed (e.g. 
1990, 2000, 2010). Plotting the trend-line on a 
graph, with time on the x-axis, can help us visual-
ize the rate of change of over time.

ShiFT-ShARE ANALySiS

Another tool for visualizing change is offered in 
a “shift-share” graph. A shift-share graph depicts 
how big a share of a total amount a subset cat-
egory consumes over time. It can be used, for in-
stance, to depict the balance of a city’s land uses 
over time, where the total always adds up to 100%, 
but the share of each land-use may vary across 
time. A shift-share graph allows us to both track 
individual share trends as well as the combined 
share balance across all categories over time. 

MAp OVERLAy

A superimposition of maps from different times is 
not only an intuitive way of visualizing growth, but 
also a powerful method for capturing changes in 
unexpected qualities of spatial environments that 
may not be directly available in the urban form 

Figure 25. Trend analysis models a dependent variable 
on the y-axis and time on the x-axis.

Figure 26. Shift-share analysis illustrates proportional 
changes in quantitites over time. The total quantity 
adds up to 100% at any given point in time.
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MuLTiLEVEL MOdELS

Multilevel models, also known as hierarchical linear 
models, or nested models, are statistical models 
of parameters that vary at more than one level. In 
the context of studying metropolitan form, multi-
level models can be used to study relationships 
between the question variable and independent 
variables at multiple scales – what portion of 
variation in the dependent variable is explained 
by variations in the independent variables within 
cities or between cities. The choice of levels could 
distinguish variables that are captured for a city 
as a whole – total urban energy expenditure – or 
in intra-urban tracts – what is the economic out-
put in each census tract. Multilevel models offer 
a powerful way to move urban expansion analy-
sis beyond the comparison of multiple cities to a 
two-level comparison of differences between cit-
ies and within cities (Snijders and Bosker 1999).

Figure 28. Map overlay analysis of fine-grain land-use 
change.

Figure 27. Map overlay analysis of land-use growth.



58  

dETERMiNANTS4.
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tervention becomes part of the environment for 
the subsequent interventions.

Though the causal chain of factors that lead to 
a particular metropolitan form poses a fascinat-
ing theoretical paradox, its full resolution might 
not be so important from a practical point of 
view. What matters more in the practice of urban 
planning and management is that we have some 
understanding of the implications of our own in-
terventions in the built environment. 

Given that a city is planning to cut its transporta-
tion energy expenditures by half for instance, we 
might desire to know how such a change would 
affect the existing development pattern of the 
city. Or given that a new job center is planned, 
one might like to assess its potential impact on 
the existing employment districts or traffic pat-
terns in the city. In situations where interventions 
are planned in a pre-existing urban context, the 
chain of causality thus shrinks to a manageable 
set of variables, which spatial and non-spatial 
indicators of the built environment can begin to 
inform.

dETERMiNANTS 

Metrics of metropolitan form illustrate certain 
physical properties of the cities’ development pat-
terns. A longitudinal analysis of these metrics over 
time may tell us how these patterns are changing  
– is a city growing more compact or sprawling, 
are its centers consolidating around particular lo-
cations or is employment becoming more scat-
tered? An examination of metrics that this report 
has presented may help us answer questions of 
how much, where and how the formal patterns of 
cities are changing. But the analysis of metropoli-
tan form alone does not offer deep insights into 
why we observe these patterns or what explains 
a certain change in the data. 

In order to understand why urban spatial patterns 
take particular forms or follow certain develop-
ment trajectories, we need to test hypotheses 
that relate metropolitan form metrics to other 
non-geometric data, which we call the determi-
nants of form. In reality, cause and effect between 
spatial forms and social processes are very dif-
ficult to untangle. It is unlikely, for instance, that 
growing economic output is clearly the egg and 
urban expansion around it the chicken. Rather, 
an existing urban environment with its reputa-
tion and history, probably also affects where eco-
nomic development happens and how effective-
ly economies operate or expand. Businesses are 
more likely to locate in places with advantageous 
spatial capital, but spatial capital is also more like-
ly to develop at a higher rate around economies 
that do well. Where might this chain of circular 
causality begin? Each environmental intervention 
is likely to be influenced by pre-existing environ-
mental conditions, but once implemented, the in-



60  

Overall, the relationship between metropolitan 
form and different social, economic and environ-
mental factors is poorly understood. Much more 
work is needed in this area. In Figure 28 we simply 
present a basic overview of some relationships 
between geometric form and non-geometric in-
dicators that have been proposed in the literature 
on the subject. Developing a better understand-
ing of these relationships can help us:

a) Provide a measurable basis for under-
standing not only what the current urban 
expansion trends are, but where they came 
from and where they might be headed. 

b) Inform us of what policies and planning 
interventions might possibly achieve certain 
effects of development patterns. 

c) Provide a basis for evaluating the conse-
quences of already implemented policies and 
design or planning interventions.
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Figure 29. “Determinants” of metropolitan form.
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pOLiCy iMpLiCATiONS5.
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ening of development patterns, and spatial seg-
regation of social classes. Studying these global 
patterns may suggest policies that are similar in 
their direction, but different in detail. 

pOLiCy iMpLiCATiONS

The significant advancements in GIS-based com-
putational spatial analysis tools and methods of 
collecting geo-referenced data have profoundly 
changed our understanding of urban processes.  
It seems that our more dynamic understanding 
of city growth and change have brought the idea 
of a static utopia — an ideal urban form— to an 
end. Rather than seeking a unique global “best 
answer”, which should be imposed on the built 
environment, future policies, based on a deep un-
derstanding of existing trends in the city, should 
aim to achieve maximum profit through minimal 
interventions and investments. This requires a dy-
namic monitoring of urban processes both at in-
ter-urban and intra-urban levels through measur-
able evidence, which has been the main focus of 
our work, and independent of the vehicles of poli-
cies, can be applicable to: a) directly regulating 
the built environment — such as zoning, growth 
boundaries, and building codes— b) incentives or 
c) public investment in the public realm and infra-
structure.  

The more measurable evidence for local socio-
economic, environmental, and spatial perfor-
mance of cities becomes available through ef-
forts of spatial analysis, the more localized policies 
can be. The tradition of evidence based planning 
is still new and much work remains to be done 
not only in analysis methods, but also in adapta-
tion institutionalization and up-keep on behalf of 
stakeholders. Yet, there are also global patterns in 
the processes of urbanization: phenomena that 
are similar across numerous cities, despite differ-
ing local characteristics. They include phenomena 
like the rapid rate of urban expansion, the spars-
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