

SYLLABUS

I. GENERAL DATA ON SUBJECT COURSE		
CODE AND TITLE OF SUBJECT COURSE (in Estonian and English)	NC.A.025 GNSS for Civil Aviation Sateliitnavigatsiooni süsteem tsiviillennunduses	
ACADEMIC YEAR, TERM, FORM OF STUDIES	2019 spring term, daytime e-learning	
CURRICULUM, SPECIALITY AND MODULE WHERE THE SUBJECT BELONGS TO	Module of 2019 ER, e-course Students from all aviation specialities	
VOLUME OF SUBJECT (ECTS)	3.0 ECTS	
FORM OF CONTROL	Non-differentiated assessment	
WORKLOAD AND FORMAT OF COURSE	Independent work 78 hrs	
LANGUAGE OF INSTRUCTION	English	
ADDITIONAL INFORMATION (prerequisites for enrolment for course, restrictions on participating in the course, etc)	Knowledge of English at upper-intermediate level (CEF B2).	
LECTURER	Valeri Kravets, MEng	

II. THE GOAL, LEARNING OUTCOMES AND		
ABSTRACT OF SUBJECT COURSE		
GOAL OF SUBJECT COURSE	This course gives the fundamentals of understanding the GNSS and its specifics for meeting the CA demands for its usage in aviation.	
	Clarifies the GNSS augmentation systems like SBAS (WAAS, EGNOS) and GBAS, and the way they provide integrity monitoring.	
	Gives an overview of contemporary RNAV architecture, approaches and CA requirements related to GNSS based navigation.	
LEARNING OUTCOMES	The student having passed the course:	
	1. Can understand the foundation of GNSS for civil aviation applications accompanied by civil aviation requirement.	
	2. Has the knowledge of the architecture of the GNSS basic constellation and its operational principles and usage.	
	3. Has the knowledge of signal processing methods in GNSS.	
	4. Has the knowledge of GNSS augmentation systems in aviation, like SBAS (WAAS, EGNOS) and GBAS.	

	5. Has the knowledge of contemporary GNSS based RNAV system, procedures and approaches and near future trends.
ABSTRACT OF SUBJECT COURSE	GPS, GLONASS, Galileo, BeiDou. Segments. Signals and modulation. GNSS receiver. GNSS accuracy and errors. Augmentation systems. RNAV. PBN. RNP.

III. GRADING SYSTEM AND CRITERIA		
PREREQUISITES TO BE ALLOWED TO TAKE EXAMINATION /PRELIMINARY EXAMINATION	During the term each student will have to follow the study principles given below in the next box.	
FORMATION OF EXAMINATION /PRELIMINARY EXAM MARK	Course architecture and studying principles. The course consists of sectioned topics (chapters) which should be studied step by step. Time for a single topic (chapter) is not strictly limited but is about one week. At the bottom of the topics (chapter) windows there is a test to be taken after the learning process has completed. At the end of the course there is going to be a final test covering the whole course with multiple choice questions to answer. The final score is an average of test results (50% is an average of chapter tests and 50% is the final test).	
OPPORTUNITIES FOR SETTLING ARREARS	Students with specific problems can have extra assistance as required.	

IV. TIMETABLE AND LIST OF TOPICS		
WEEK OF YEAR	WORK FORMAT	TOPICS
Week 8	Lecture 2h	Introduction and warming up for course. Prologue.
Week 9	Independent work 11h	GNSS Introduction. Basic concept of GNSS, role in civil aviation. History.
Week 10-11	Independent work 10h	GNSS segments. Segments of different GNSS systems – GPS, GLONASS, Galileo, BeiDou. Basic structure of GNSS receiver.
Week 12	Independent work 10h	GNSS signals from space. Spread spectrum, modulation, BOC. Legacy and new signals. Navigation data.
Week13-14	Independent work 10h	Receiving GNSS signals and navigation processing. Receiver overall architecture. Signal acquisition and tracking. Navigation processing.

Week 15	Independent work 10h	GNSS accuracy and errors. Error components, horisontal and vertical accuracy. Integrity, continuity.
Week 16-17	Independent work 10h	GNSS augmentation systems. Satellite Augmentation System, there typical architecture and implementation. Space based Augmentation System. Ground based Augmentation System. Task - SBAS message decoding.
Week 18	Independent work 10h	GNSS navigation and RNAV. Area Navigation. Required navigation performance. Performance Based Navigation. RNP Approach.
Week 20	Test 2h	Final Test.

V. STUDY MATERIALS

- 1. Moodle course: https://moodle.eava.ee/enrol/index.php?id=47
- 2. Applied Satellite Navigation, R.Prasad, M. Ruggieri, Artech House 2005
- 3. GPS & WAAS, Max Trescott, Glass Cockpit Publishing 2009
- 4. GNSS applications and methods, Gleason, Scott, Artech House 2009
- 5. A-GPS: Assisted GPS, GNSS &SBAS, Frank vad Diggelen, Artech House 2009
- 6. Lots of www links on learning site and supplementary e-learning materials