

COMPARATIVE EVALUATION OF POPULATION PHARMACOKINETIC MODELS OF VANCOMYCIN IN NEONATES WITHIN DOSOPT FRAMEWORK

Tõnis Tasa^{a*,b,c}, <u>Riste Kalamees^{c,d}, Tuuli Metsvaht^{c,e}, Jaak Vilo^a, Irja Lutsar^c</u>

^a Institute of Computer Science, University of Tartu, Estonia;^b Estonian Genome Center, University of Tartu, Estonia; ^o Department of Microbiology, University of Tartu, Tartu, Estonia; ^d Children's Clinic of Tartu University Hospital, Tartu, Estonia; eClinic of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia

Background and aim

- Despite extensive investigation of vancomycin pharmacokinetics (PK), the transferability of different models remains an open question.
- aim was to externally evaluate Our performance of neonatal vancomycin PK models (NVM) in a Bayesian framework and assess the effect of including individual concentrations on forecasting accuracy.

Methods

Systematic literature search (Ovid Medline + reference lists) established 18 relevant

Neonatal Vancomycin PK models

1 (Allegaert et al. 2007)	10 (Kimura et al. 2004)
2 (De Cock et al. 2012)	11(Le et al. 2013)
3 (Anderson et al. 2007)	12(Lo et al. 2010)
4 (Bhongsatiern et al. 2015)	13(Marqués-Miñana et al. 2010)
5 (Capparelli et al. 2001)	14(Oudin et al. 2011)
6 (De Cock, Allegaert, Brussee, et al. 2014)	15(De Cock, Allegaert, Sherwin, et al. 2014)
7 (de Hoog et al. 2000)	16(Seay et al. 1994)
8 (Frymoyer et al. 2014)	17(Silva et al. 1998)
9 (Grimsley & Thomson 1999)	18(Zhao et al. 2013)

- External evaluation was carried out on retrospective dataset (312 concentrations from 121 neonates with mean PMA 31.7(24.6-53.1) weeks) using Bayesian-based framework DosOpt (http://biit.cs.ut.ee/DosOpt).
- Simulation based diagnostics such as
 - adjusted-R²
 - **MAPE-** mean absolute percentage error
 - **MPE-** mean percentage error
 - **NPDE** normalized prediction distribution errors were used to assess fit of models, forecasting accuracy and model goodness.

- **Predictive accuracy**: models described the data decently (global average adjusted-R²_0.7). Model fit: number of individual concentrations included in modeling converged values of adjusted-R^{2's} but did not change model fits (min p-value 0.38) (Fig.1)
- **Forecasting accuracy:** Inclusion of individual trough concentrations (C_{tr}) showed significant improvement of forecasting performance compared to population PK based model (p<1e-16) (Fig2)

Effect of adding concentrations: Prediction accuracy increases with increasing number of available concentration points (Ctr), likely improving also probability of target attainment. (Fig 3)

attainment (PTA) to achieve concentrations on range C_{tr} 5-20mg/L is shown for each model.

Results

The proportion of variance explained by the model and included concentrations

Figure 1: Boxplots of adjusted $-R^2$ on predicted vrs observed concentrations in condition of 1, 2 or 3 included C_{tr} measurements over all models

Conclusion

- Although all models descirbed the data decently, the predictive performance of various NVM differs significantly and need to be considered in the implementation of model-based individual dose prediction into clinical practice
- Adding at least one individual concentration measurement into model-based dose prediction increases significantly prediction accuracy.

European Unio European Regional Development Fund in your future