Skin and gut colonisation with *Staphylococcus haemolyticus* in term and preterm neonates

Hanna Kadri Metsvaht¹, Tuuli Metsvaht², Imbi Eelmäe³, Mirjam Merila³, Mari-Liis Ilmoja³, Irja Lutsar¹, Hiie Soeorg¹

¹Department of Microbiology, University of Tartu, Tartu, Estonia; ²Pediatric Intensive Care Unit, Tartu University Hospital, Tartu, Estonia; ³Department of Neonatology, Children’s Clinic, Tartu University Hospital, Tartu, Estonia; ⁴Pediatric Intensive Care Unit, Tallinn Children’s Hospital, Tallinn, Estonia

Background

- Among coagulase-negative staphylococci *Staphylococcus haemolyticus* (SH) is the second commonest cause of late-onset sepsis (LOS) in preterm neonates. Clones spread in NICUs has been described.
- SH colonisation is poorly described. Understanding the mechanisms of SH colonisation may hold potential to develop strategies for prevention of invasive infection.

Aim

To compare SH colonisation of healthy term and hospitalized preterm neonates in terms of:
- the prevalence and multilocus variable-number tandem-repeats analysis (MLVA) type distribution
- the prevalence of virulence factors

Material and Methods

- **Included neonates**
 - Preterm neonates in NICU who started BM feeding with own mother’s BM within the 1st week of life (n=49).
 - Healthy term exclusively BM fed neonates (n=20).
- **Sampling**
 - Skin swabs and stool samples from neonates and BM from mothers collected once a week.
- **Isolation of staphylococci**
 - Cultured onto mannitol salt agar incubated at 37°C for 48h.
 - 5 colonies picked.
- **Identification to the species level**
 - MALDI-TOF MS
- **Typing of *S. haemolyticus***
 - MLVA
- **Characterization of *S. haemolyticus***
 - mecA; IS256; icaA

Results

- **SH colonisation**
 - of preterm neonates was predominated by a few MLVA-types. These MLVA types also caused LOS.
 - of term neonates was more diverse with almost no overlap with NICU admitted preterm neonates

- **Median (range) gestational age and birthweight of included term and preterm neonates was 40 (39-40) and 28 (25-30) wks; 3651 (3324-3970) g**
- **Colonisation with SH was**
 - more likely in preterm than term neonates (45/49 vs 11/20; OR 9.2; 95%CI 2.4-35.5)
 - equally likely in gut and on skin (55/69 vs 51/69; OR 1.4; CI 0.6-3.1).
- **In unit A 15/19 and in unit B all neonates were colonised with SH (p=0.018294)**
- **621 isolates represented 41 MLVA-types, 32 present in preterm and 12 in term neonates, with only 3 colonising both term and preterm.**

- **MLVA-types colonising preterm compared with term neonates carried more likely virulence genes**
 - mecA (153/185 vs 1/27; OR 124.3; 95%CI 16-950)
 - IS256 (95/185 vs 0/27; OR 58; 95% CI 3-966)
 - None of tested isolates were icaA positive.
 - Five MLVA-types (Figure 1)
 - Colonised 69% (34/49) of preterm, but none of term neonates
 - Caused 7 episodes of LOS in 6 preterm neonates. (Table)

Table: LOS cases.

<table>
<thead>
<tr>
<th>Patient</th>
<th>MLVA-type</th>
<th>Age during first isolation from blood (days)</th>
<th>Isolated from skin before LOS (days)</th>
<th>Isolated from gut before LOS (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10</td>
<td>14</td>
<td>7</td>
<td>=</td>
<td>*</td>
</tr>
<tr>
<td>B16</td>
<td>19</td>
<td>17</td>
<td>*</td>
<td>3</td>
</tr>
<tr>
<td>B20</td>
<td>13</td>
<td>10</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>B21</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>B22</td>
<td>19</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C07</td>
<td>19</td>
<td>15</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Each MLVA-type is presented in a different color. If MLVA-types colonised gut or skin prior to or at the same time as blood, it is colored accordingly.
= isolated on the same day as LOS
* isolated later than from blood or not fount on this site

Conclusion

- NICU environment may be responsible for higher colonisation with more virulent SH strains in preterm.
- Control of virulent NICU clones may hold potential to reduce the burden of invasive infections.

Figure: MLVA-types colonising term and preterm neonates. Each node represents a distinct MLVA-type and the size of the node is proportional to the number of isolates of the MLVA-type. Numbers in nodes represent 5 most common MLVA-types. MLVA-types yielding multiple bands in loci Sh1 and Sh2 (n=7) were excluded.

SH – *Staphylococcus haemolyticus*

BM – breast milk

LOS – late-onset sepsis

NICU – neonatal intensive care unit

The study was supported by the Target Financing of Estonian Ministry of Education and Research (IUT34-24), European Regional Development Fund (project SFOS WP1-NeuroAIDS) and Archimedes Foundation (Project No. 3.2.1001.11-0032). This presentation was supported by University of Tartu Foundation through 2017. Ruth Käbin scholarship.