

Gram-negative opportunistic microorganisms colonising the skin and gut of neonates and breast milk of their mothers

Ülle Parm¹⁴, Hiie Soeorg¹, Jelena Štšepetova¹, Tuuli Metsvaht¹², Mari-Liis Ilmoja^{3,} Irja Lutsar¹ Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia, ²University Clinics of Tartu, Estonia, ³Tallinn Children's Hospital, Estonia, ⁴Tartu Health Care College, Estonia

Background

Breast milk (BM) does not normally contain Gram-negative (GN) microorganisms but if it does it could be a source of infection in premature neonates.

Aim

To describe the prevalence of GNs, their antibiotic resistance (AR) and genetic relatedness (GR) between strains colonising BM of mothers and skin and gut of healthy term and hospitalised preterm neonates.

Material and Methods

January 2014 and December 2015 Study conducting Preterm neonates (mean GA 28.3 w; n=49) Included neonates hispitalised in neonatal intensive care unit if BMand mothers feeding was initiated within 7 days of life; term neonates (mean GA 39.6 w; n=20); and their mothers Gut and skin samples from neonates and BM Sampling from mothers once a week Cultured onto MacConkey agar Isolation of GN MALDI-TOF MS Identification to the species level \checkmark Microbes used in this All GN-s isolated from skin and BM and the same species isolated from gut samples study \checkmark PFGE E-tests AR and GR of gut, vhen the same species was ir skin and BM isolates different locations

GRAM-NEGATIVES ON SKIN AND GUT OF NEONATES AND IN BM OF MOTHERS

In 16 neonate-mother pairs the phenotypically same GN microbe in different sites (BM, skin and gut) were observed. In 2 childs's in skin and 3 mother's in BM swabs two different GNs were Colonisation by GN-s occurred at similar frequency in term and preterm neonates in studied locations, and we detected. In two child-BM pairs the phenotypically same microbe were isolated in all three sites. Genotypically similar (results of PFGE) Enterobacteriaceae were detected in 5/9 preterm neonates did not find non-fermentative microbes in gut (Table 1). in BM-gut; in 9/11 in skin-gut, and in 1/1 skin/BM (A21) swabs pairs but no between-site similarity

was observed among non-fermentative organisms (Table 2). Altogether 93 strains (75 Enterobacteriacae and 18 nonfermentatives) were isolated. The most frequently There was one case of neonatal sepsis in which genetically similar K. oxytoca (B06) was found in isolated organism was E. cloacae (35.5%) and E. coli BM and blood. (9.7%).

ANTIBIOTIC-RESISTANCE

While all microbes were susceptible to meropenem and ciprofloxacin the AR enterobacterial species were isolated from hospitalised preterm and from two healthy term neonates with no differences in prevalence between isolation sites.

Table 1. Frequency of colonisation and resistance to relevant antibiotics of colonising strains in term- and preterm neonates

	Pret	erm neor	Term neona N = 20									
		N = 49										
	BM	Skin	Gut	BM	Skin							
	Number (%) colonised patients											
Enterobactriaceae	9 (18)	13 (27)	13 (27)	I (5)	3 (15)							
Non-fermentative organisms	8 (16)	I (2)	0	2 (10)	3 (15)							
		Number (%	Number (%) of isolates									
Enterobactriaceae	10 (20)	12 (25)	13 (27)	I (5)	3 (15)							
Non-fermentative organisms	7 (14)	I (2)	0	2 (10)	3 (15)							
CTX-AR Enterobacteriaceae	2 (7)	2 (10)	4 (13)	0	0							
GEN-AR Enterobacteriaceae	3 (11)	2 (10)	3 (10)	0	0							
CXM-AR Enterobacteriaceae	I (4)	4 (20)	4 (10)	0	0							
AMC-AR Enterobaceriaceae	10 (37)	10 (50)	13 (42)	l (33)	0							
GEN-AR nonfermentative	I (4)	0.0	0.0	0	0							

CTX – cefotaxime; GEN – gentamicin; CXM – cefuroxime; AMC - amoxicillin/clavulanic acid

Results

GENOTYPICAL SIMILARITY IN NEONATE-MOTHER MICROORGANISM PAIRS

Table 2. Genotypical similarity of GN-s in neonate-mother gut-BM (A) and neonate gut-skin (B) swab pairs

(D) Swab pairs.							В							
BM - breast milk; S – skin; G – gut							ID	Gut			Skin			
The intensity of	Α	1						Kox						
different colours	ID		Gut		B	Μ	AI9	Ecoli	Ecoli	Ecoli		Ecoli		
present different	A21	Ecoli	Ecoli		Ecoli	Ecoli	A21	Ecoli	Ecoli			Ecoli		
genotypes in one	B03	Ecl			Ecl	Ecl	A23	Ecl				Ecl		
neonate-mother	B06	Kpn	Kpn		Kpn	Kpn	B08	Ecl	Ecl	Ecl		Ecl	Ecl	
pair;	BI4	Ent	Кох		Ent	Kox	B16	Ent	Ent	Ent	Ecl	Ent	Ecl	Ecl
* - the same	B22	Kox	Кох	Kox	Kox*		B19	Ecl	Ecl	Ecl	Ecl	Ecl		
genotype in different neonate-mother	B23	Kox	Kox *		Kox*		C10	Ecl				Ecl		
pair;	C10	Ecl			Ecl		DI4	Ecl	Ecl			Ecl		
ID "D" presents term	D23	Kox			Kox		D23	Kox				Кох		

Ecl: Enterobacter cloacae; Ent: Entetrobacter asburiae; Ecoli: Escherichia coli; Kox - Klebsiella oxytoca; Kpn - Klebsiella pneumoniae

Conclusions

In neonates BM is not a source of colonisation with nonfermentative microbes. However, Enterobacteriacae colonising BM may sometimes end up in neonatal gut and eventually cause infection in neonates. Colonisation of BM and gut/skin with AR strains is exclusively observed in hospitalised preterm neonates and is not site specific.

ates

2 (10)

0

2 (10)

0

0 0

0.0

2 (67)

0

neonates