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1 Introduction

1.1 Sound change in phonological analysis

• diachronic variation (change in real time)

• diachronic variation (change in apparent time)

• cross-dialectal variation caused by social, political and/or geographical fac-
tors

• intra-dialectal inter-speaker variation pointing to change in progress

• intra-speaker variation pointing to change in progress

Labov (1972, 1990) points to the influence of external factors on even a single
grammar of a dialect user.

Recent approaches to variation include arguments for incorporating it into the
theory of grammar instead of just relegating it to the phonetic implementation
component or late phonology (e.g. Coetzee 2009, 2016).
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1.2 Grammar-external factors in phonological analysis

• speech rate (Coetzee 2017)

• register (van Oostendorp 1997)

• style (Boersma & Hayes 2001)

• lexical frequency (Bybee 2000, 2001; Coetzee & Kawahara 2013)

• morphological status (Coetzee 2009)

• lexical idiosyncrasy (Goeman 1999, Coetzee 2009)

• social setting

All factors that contribute to grammatical structure should be included in
formal representation (without detriment to purely phonological computation /
grammar dominance).

1.3 Purpose of the study

• Take different stages of sound change presented by the same speakers

• Moderate vs. more radical weakening depending on the situational
context and the associated speech ‘modality’

• Domain of application effects and between-modality systematicity

1.4 Speech modalities and generalisations

Language/variety: Spanish from Gran Canaria

Speakers: 6 natives recorded on 2 occasions

Data 1: read and repeated speech

Data 2: spontaneous speech
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2 Data

2.1 3 interacting weakening processes

Modality 1

/s/ -> [h/H] /_V prensa[h]idráulicas ‘hydraulic presses’
/s/ -> [h] /_k chocolate[h]con ‘chocolates with’
/s/ -> [∅] /_d pane[∅]de ‘breads from’

/b d g/ -> [b d g] /V(C)_ pane(s)[d]e ‘breads from’
/b d g/ -> [B D G] /V_ cinco[D]ulces ‘five sweets’
/p t k/ -> [b d g] /V_ cinco[b]anes ‘five breads’

• s debuccalisation before voiceless consonants and vowels

• s deletion before voiced consonants (and pauses)

• b d g spirantisation after vowels, blocked in derived vocalic environments

• p t k voicing after vowels

Modality 2

/s/ -> [h/H]/_V prensa[H]idráulicas ‘hydraulic press’
/s/ -> [∅] /_C chocolate[∅]con ‘chocolates with’

/b d g/ -> [B D G] /V(C)_ pane(s)[D]e ‘breads from’
/b d g/ -> [B D G] /V_ cinco[D]ulces ‘five sweets’
/p t k/ -> [b d g] /V_ cinco[b]anes ‘five breads’

/p t k/ -> [p t k] /V(C)_ chocolate(s)[k]on ‘chocolates with’

• s debuccalisation before voiceless consonants and vowels

• s deletion before all consonants

• b d g spirantisation in all vocalic environments (including derived)

• p t k voicing after vowels, blocked in derived vocalic environments

2.2 Processes and domains of application

1. Coda weakening (debuccalisation, voicing, elision). In spontaneous speech
it also includes other consonants: /d/, /r/, /l/ (variation: optional).
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2. Voiced stop weakening also applies (variably) after a non-deleted
sonorant, and always after a non-deleted /s/ in spontaneous speech.
Intervocalically very strong, incl. deletion. => Domain extension

3. Voiceless stop weakening applies both inside words and across word
boundaries, but strictly after a vowel. It can be accompanied by
approximantisation and occasionally occurs after deletion.

2.3 Spectrograms

Controlled speech.

• Left: chocolates con ‘chocolate with’ presents no /s/ deletion before a
voiceless stop and no voicing.

• Right: croquetas de ‘croquettes with’ presents deletion before a voiced
segment but no spirantisation.

Spontaneous speech.

• Left: los chiquillos ‘the guys’ presents deletion before a voiceless sound
and no voicing.

• Right: problemas de la ‘problems with/about’ presents deletion before a
voiced sound and spirantisation.
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2.4 Frequency of occurrence – distribution graphs

Deletion rates before voiced segments the same across modalities.
Occasional spirantisation in controlled speech, with gender differences.
Twofold rise in spirantisation across speakers.
Number of tokens uneven (rate expected to rise with more tokens).

The data are for Modality 2.
In Modality 1, the pre-/ptk/ deletion rate is 0% hence no voicing.
Rates of deletion before voiceless sounds include all consonants.

3 Theoretical framework

3.1 Theoretical assumptions and formal account

The data require a variationist approach:

• speaker productions are highly dependent on speech modality

• competition between two co-phonologies

• variation is a reflection of a change in progress: transition from one
system to another

The lifecycle of phonological processes:
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• the domains of application are gradually extended

• spirantisation inside words is now phonologised, across a word boundary
the transition is not complete

• new rules alongside old rules

• the same trajectory applies to post-vocalic voicing, a much younger
process at a different advancement stage

3.2 Problems

1. Different weakening stages

Positional and general markedness constraints : *ptk, *V_ptk, *bdg, *V_bdg

2. Turbidity for selective blocking

Deleted segments leave a trace/block processes.
Positional markedness constraints are not violated as the segment is not erased
from the phonological representation.

/paneh+de/ *h *V_bdg Max(C) Ident(cont)
a. paneh.de *!

+ b. pane(h).de *
c. pane(h).De * *!

3. Cross-modality variation

Coetzee’s (2009, 2016) model incorporating external factors in computation

Stochastic approach:
Noisy Harmonic Grammar (Coetzee & Pater 2011)

Constraints:
h, *H, Max(C), *s]Coda, AgreeCC voice, Ident(cont), Ident(voice),
Ident(Place)
First model: non-noisy Harmonic Grammar (weights instead of rankings)

4 HG analysis

4.1 Grammar 1 (Modality 1)
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(4.0) *V ptk > (3.0) Max(C), *s]Coda >

(2.0) AgreeCC voice, *H, *V bdg, Ident(cont) >

(1.0) *h, Ident(voice), Ident(Place), *bdg, *ptk

• Deletion is banned unless other important constraints are violated

• Positional markedness outranks general markedness

Evaluation of the phrase panes de ‘breads of’ WITH deletion but NO
spirantisation

Evaluation of the phrase panes con ‘breads with’ with NO deletion and NO
voicing

Evaluation of the phrase cena de ‘dinner of’ with post-vocalic spirantisation
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Evaluation of the phrase cena con ‘dinner with’ with post-vocalic voicing

It is enough to change the weight of one constraint for the ranking to flip in
favour of the other candidate

I assume that if voicing were present exactly 50% of the time, the weighted
total of each candidate should be the same.

4.2 Grammar 2 (Modality 2)

(3.0) *V ptk > (2.0) *s]Coda, *bdg, *ptk >

(1.0) AgreeCC voice, *H, Max(C), *h, *V bdg,

Ident(voice), Ident(cont), Ident(Place)

• Max(C) is demoted to allow deletion more freely across the
voiced/voiceless environments

• General markedness constraints ascend; *bdg is ranked above *V bdg to
allow across-the-board spirantisation (domain of applicaton extended)

Evaluation of the phrase panes de ‘breads of’ WITH deletion AND
spirantisation
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Evaluation of the phrase panes con ‘breads with’ WITH deletion and NO
voicing

5 GLA for variation modelling

5.1 Is it therefore possible to model variation based on predefined input
parameters?

Let’s submit this grammar to the HG-GLA (Praat) with noise set at the
default 2.0

The addition of noise allows for random variation in the grammar

The addition of predefined pattern frequencies helps the algorithm find the
best fit as per the observed data

5.2 Stochastic parameters for the GLA

pre-b d g deletion: 92%
pre-p t k deletion: 24%
general deletion: 58%

post-deletion spirantisation: 44%
post-vocalic spirantisation: 100%

general spirantisation: 72%

post-deletion voicing: 5%
post-vocalic voicing: 64%

general voicing: 34%
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Input weights calculated following the chain rule of probability.

Deletion and voicing/spirantisation patterns are in a dependency
relation.

panes = x, de = y:

x1y1 = [panehde] 8% ∗ 100%

x2y1 = [panede] 92% ∗ 56%

x1y2 = [panehDe] 8% ∗ 0%

x2y2 = [paneDe] 92% ∗ 44%

Pair Distributions

pairs [1]:
string1 = "/Vs#d/"
string2 = "[V(s)#d]"
weight = 52
pairs [2]:
string1 = "/Vs#d/"
string2 = "[V(s)#D]"
weight = 40
pairs [3]:
string1 = "/Vs#d/"
string2 = "[Vh#d]"
weight = 8
pairs [4]:
string1 = "/Vs#k/"
string2 = "[Vh#k]"
weight = 76
pairs [5]:
string1 = "/Vs#k/"
string2 = "[V(s)#k]"
weight = 23

pairs [6]:
string1 = "/Vs#k/"
string2 = "[V(s)#g]"
weight = 1
pairs [7]:
string1 = "/V#k/"
string2 = "[V#g]"
weight = 64
pairs [8]:
string1 = "/V#k/"
string2 = "[V#k]"
weight = 36
pairs [9]:
string1 = "/V#g/"
string2 = "[V#G]"
weight = 100
pairs [10]:
string1 = "/V#g/"
string2 = "[V#g]"
weight = 0
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5.3 Procedure

A grammar file with input/output pairs and their distributions averaged
between the two modalities

Noise and plasticity set to defaults

LinearOT parameter chosen to model Noisy HG

Initial constraint weights set at 100.00

Given the noise factor, the simulation was repeated 10 times

‘To output distributions’ function used each time

Constraint weights and output distributions averaged to give a final
estimate

What are the learned constraint weights?

Constraint Weight
Max(C) 139.696

ptk 137.259
V ptk 104.209
s]Coda 100.000
V bdg 95.791

AgreeCC-voice 83.633
Ident(cont) 81.7226

bdg 81.017
Ident(Place) 76.669
Ident(voice) 62.740

h 60.303

Does the learned grammar correctly predict variation?
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Deletion Spirantisation Voicing Observed Predicted
! – 52 53.02
! ! 40 38.32
– – 8 8.65
– – 76 77.71
! – 23 21,15
! ! 1 1.12

! 64 66,46
– 36 33,54

! 100 100
– 0 0

How are the different options modelled?

How are the different options modelled?
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6 Weight scaling

6.1 Random vs. parameter-based variation

Fitting the model to the data

• The baseline model accounting for average variation across modalities
can be generated

• But Noisy HG-GLA assumes random noise added at each evaluation,
whereas the actual data present a clear pattern

• What is the exact role/contribution of the ‘modality’ factor to the output
distributions?

• As the setting or communication situation is external to grammar, it does
not influence grammar-internal relations

• Following Coetzee and Kawahara’s (2013) model, I use my Noisy HG
grammar as baseline and apply weight scaling – a simpler grammar (6
pairs, 8 constraints)

• The task is difficult: mutliple interdependent processes and constraints

Fitting the model: Generated weights comparison

Con Gen. distrib. Mod. 1 Diff. Mod. 2 Diff.
Max-C 139.656 143.621 3.965 139.397 -0.259
*ptk 137.219 100.000 -37.219 138.156 0.937

AGREE-CC 83.609 92.184 8.575 82.169 -1.440
Ident(cont) 81.616 100.996 19.380 80.654 -0.962

*bdg 81.165 99.004 17.839 81.190 0.025
Ident(Place) 76.735 64.195 -12.540 78.434 1.699
Ident(voice) 62.781 100.000 37.219 61.844 -0.937

*h 60.344 56.379 -3.965 60.603 0.259

General 52 40 8 76 23 1
Mod.1 69 23 7 100 0 0
Mod. 2 35 55 10 52 43 5
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Fitting the model: Modality 1

Pattern Baseline Fit 1 Fit 2 Fit 3 Fit 4 Desired fit
V(s)d 50.4 58.6 69 71.8 69.1 69
V(s)D 41.7 26.3 20 20.4 23.3 23
Vhd 7.9 15.1 11 7.8 7.6 7
Vhk 76.7 77 82.6 82.7 82.7 100
V(s)k 22.3 22.6 17 17 17 0
V(s)g 1 0.4 0.4 0.3 0.3 0

Fit 1: Add 1.0 weight to all faithfulness contraints

Fit 2: Add 1.7 to Max and Ident(cont), and 1.5 to AGREE

Fit 3: Add 1.7 to Max and Ident(cont), and 2.2 to AGREE

Fit 4: Add 1.7 to Max, 1.4 to Ident(cont) and 2.2 to AGREE

Fitting the model: Modality 1

Pattern Baseline Fit 1 Fit 2 Fit 3 Desired fit
V(s)d 50.4 66.8 62 39.5 69
V(s)D 41.7 23.2 22.2 16.9 23
Vhd 7.9 9.9 15.7 43.6 7
Vhk 76.7 86.4 91.4 98.7 100
V(s)k 22.3 13.3 8.3 1.2 0
V(s)g 1 0.3 0.2 0.04 0

Fit 1: Add 2.2 to Max, 1.4 to Ident(cont) and 2.2 to AGREE

Fit 2: Add 3.2 to Max, 1.4 to Ident(cont) and 2.2 to AGREE

Fit 3: Add 5.2 to Max, 1.4 to Ident(cont) and 2.2 to AGREE

Fitting the model: Modality 2
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Pattern Baseline Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Desired
V(s)d 51.8 38.9 41.9 36.4 34.9 34.4 35
V(s)D 40.8 54.7 56.2 53.1 56.3 55.9 55
Vhd 7.4 6.3 1.9 10.5 8.8 9.6 10
Vhk 76.7 76.1 55.7 55.7 51.7 52.2 52
V(s)k 22.2 21.1 41.1 41.2 44 43.5 43
V(s)g 1 1.9 3.1 3.1 4.3 4.3 5

Fit 1: Subtract 1.0 from Ident(cont) and Ident(voice)

Fit 2: Additionally, subtract 2.0 from MAX(C) – more deletions

Fit 3: Additionally, subtract 3.0 from Agree to balance Vhd cases

Fit 4: Additionally, subtract 0.2 from Ident(cont) and 0.3 from MAX(C) to
better match voicing cases

Fit 5: Additionally, subtract 0.2 from Agree to rebalance Vhd cases

Fitting the model: comparison

Con Gen. distrib. Modality 2 Scaled Diff.
Max-C 139.621 139.397 137.321 -2.076
*ptk 137.248 138.156 137.248 -0.908

AGREE-CC 83.601 82.169 80.401 -1.768
Ident(cont) 81.642 80.654 80.442 -0.212

*bdg 81.111 81.190 81.111 -0.079
Ident(Place) 76.678 78.434 76.678 -1.756
Ident(voice) 62.752 61.844 61.252 -0.592

*h 60.379 60.603 60.379 -0.224

7 Conclusions

• Individual speaker choices can be systematic across different social
settings

• Intra-speaker variation can be a reflection of sound change in progress
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• Variation should be modelled by incorporating external factors into the
grammar but assuming grammar-dominance

• Noisy HG can correctly predict/learn variation based on input data

• The treatment of external factors as independent variables added in the
form of single scaling factors may be insufficient

• Boersma & Hayes (2001) model should be revisited vis a vis Coetzee &
Kawahara’s (2013) proposal

Thank you!
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