Gradient effects and contrast preservation in Spanish lenition

Karolina Broś, Marzena Żygis, Adam Sikorski, Jan Wołłejko University of Warsaw & ZAS Berlin

The Spanish of Gran Canaria

□ advanced weakening

- □ voicing, approximantisation and deletion of post-vocalic /p t k/
- □ approximantisation and deletion of post-vocalic /b d g/
- partial phonemic overlap
- phonological effects
 - □ syllable-final consonant deletion
 - derived vs. underlying contexts of lenition

The Spanish of Gran Canaria

UR	context	example	voiceless stop	voiced stop	approximant	Ø
/p/	word-medial	guapo 'pretty'	[ˈgwa.po]	[ˈgwa.bo]	[ˈgwa.β̞o]	[ˈgwa.o]
	word-initial	se parece 'is similar'	[se.pa.'re.se]	[se.ba.'re.se]	[se.βa.ˈre.se]	[se.a.'re.se]
	deletion	después 'afterwards'	[de.'pwe]	[de.'bwe]	[de.'βwe]	
/b/	word-medial	cabeza 'head'			[ka.ˈβesa]	[ka.'esa]
,~,	word-initial	<i>la vela</i> 'the candle'		[la.'be.la]	[la.'βela]	[la.'ela]
	deletion	las velas 'the candles'	[la.'pe.la]	[la.'be.la]	[la.'βela]	

Research questions

□ How systematic are the differences between surface sounds?

- □ Are underlying contrasts preserved?
- □ Which factors influence surface variation?
- □ Is harmonics-to-noise ratio a suitable parameter for analysing lenition?

The corpus

• 44 native speakers from the north of Gran

Canaria (18 females)

- □ aged 16-79
- semi-structured interviews
- Zoom H4N digital recorder + Shure SM10a
 headworn microphone, 44,100 Hz
- □ 4,481 sentences, 111,317 phones
- □ **16,454** post-vocalic /p t k b d g/
- □ 13,668 lenited segments and 2,786 deletions

Examples from the corpus

Examples from the corpus

Examples from the corpus

Measurements

☐ **intensity difference** (max intensity of the preceding vowel - min intensity of the target segment)

□ Martínez & Regueira (2008), Figueroa & Evans (2015)

relative sound duration (C/VC duration)

Dalcher (2008), modified version

harmonics-to-noise ratio (degree of acoustic periodicity of a sound, 20dB equals 99%)

of periodicity vs noise)

Bárkányi & Kiss (2010)

Expectations

□ smaller intensity difference => greater lenition

□ shorter relative duration => greater lenition

□ higher harmonics-to-noise ratio => greater lenition

Factors promoting lenition:

- □ underlying /bdg/
- no deletion contexts
- unstressed syllables
- □ function words

- word-internal position
- preceding low and mid vowels
- □ following vowel or liquid
- □ dorsals

Statistics

- Linear mixed models
- Dependent variables
 - □ intensity, HNR and duration
- **Galaxies** Selected fixed effects
 - □ Sound output groups (voiceless stops, voiced stops, approximants)
 - Underlying output groups (voiceless stops, voiced stops)
- **Random structure: participant, item and their random slopes**

voiceless stops vs. voiced stops: β = 5.09, t = 36.53, p < 0.001 voiced stops vs. approximants: β = 7.45, t = 51.11, p < 0.001

Fig.1: Intensity difference of surface sounds

voiceless stops vs. voiced stops: β =0.009, t = 1.951, p = 0.140 (n.s.) voiced stops vs. approximants: β = 0.019, t=3.583, p < 0.01

Fig.2: Relative duration of surface sounds

voiceless stops vs. voiced stops: β = -1.88, t = -18.70, p < 0.001; voiced stops vs. approximants: β = - 4.14, t = - 40.80, p < 0.001

Fig.3: HNR of surface sounds

Fig.5. Intensity difference in approximants derived from underlying /p t k/ and those derived from /b d g/

Fig.6. HNR in approximants derived from underlying /p t k/ and those derived from /b d g/

Fig.7. Duration of approximants derived from underlying /p t k/ and those derived from /b d g/

Discussion

Six groups of sounds depending on the UR and on the phonological context:

- **0:** [p t k] in post-deletion contexts
- **1:** [p t k] in underlyingly postvocalic contexts
- **2:** [b d g] in post-deletion context
- **3:** [b d g] (coming from /p t k/ or /b d g/ in underlyingly postvocalic contexts
- **4:** $[\beta \delta \gamma]$ (as allophones of /p t k/ in any position or allophones of /b d g/ post-deletion)
- **5:** $[\beta \delta \gamma]$ (as allophones of /b d g/ in underlyingly postvocalic contexts)

Six different variants depending on the UR and on the phonological context

Our propsal based on the acoustic results: feature [aperture]

Fig.8. Intensity, HNR and duration of six surface variants of underlying /p t k b d g/ identified in the study

Answers to research questions

□ How systematic are the differences between surface sounds?

There are significant differences in intensity, HNR and duration

□ Are underlying contrasts preserved?

There are six different variants depending on the UR and the

phonological context (consonant deletion): two types of [p t k], two

types of [b d g] and two types of $[\beta, \delta, \gamma]$.

Answers to research questions

- □ Which factors influence surface variation?
 - lexical stress (unstressed syllable), position (word-medial), word type
 - (function word), preceding vowel (/a/), UR (voiced stops), place of
 - articulation (velar)
- □ Is harmonics-to-noise ratio a suitable parameter for analysing lenition?
 - HNR can be successfully used to predict lenition degree.

Summary

Given systematic contrast preservation in the data despite gradient
 effects, traditional featural distinctions based on voicing and continuancy
 are insufficient to address weakening phonologically.

Our proposal: aperture

Thank you!!!

Slides available at <u>www.karolinabros.eu</u> For more details, see our publication:

Phonological contrasts and gradient effects in ongoing lenition in the Spanish of Gran Canaria (to appear in Phonology 38: 1-40)