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Patronage of urban commercial clusters: a network-based extension of the Huff 

model for balancing location and size. 

Abstract 

We propose a modification to the widely popular Huff retail expenditure model and apply 
it in a new plugin for the Rhinoceros 3D software environment, which analyzes facility 
patronage along spatial networks in dense urban environments. The tool has two 
purposes. First, it allows one to study how size and location changes in existing 
commercial clusters could affect patronage at all centres within a system. The graphic 
user interface of the model allows a planner to flexibly test different size and placement 
scenarios with instantaneous feedback on the estimated patronage to different centres. 
Second, the tool also includes a simulation environment that allows the user to 
automatically test numerous combinations of centre sizes at given locations in order to 
maximize collective patronage across all clusters in the system. The latter functionality 
can help planners determine the size combination of retail clusters that maximizes overall 
shopper utility, leading to greatest patronage of commercial clusters in the system as a 
whole. Both functions of the tool can be integrated with existing, unchangeable retail 
developments.  Outcomes in shopping behavior can also be tested against changes in 
network geometry – e.g walking routes leading to centres – or changes in demand 
locations. 
 
A survey of residents’ shopping behavior, implemented in 2014 in Singapore’s HDB 
towns, is used to calibrate the model coefficients for patronage of commercial clusters. 
The model is then applied in the Punggol new town – presently only about half built – to 
compare the estimated patronage of commercial centres when all currently planned 
facilities will be completed against an alternative scenario, where centre locations and 
sizes have been refined with the simulation model.  
 
We present two important findings. First, we demonstrate how commercial patronage in 
the town can be improved by optimizing retail locations around public transit stations, 
where people can access stores with lower transportation costs than on designated trips 
from homes. Second, departing from traditional space allocation quotas between town, 
neighborhood and precinct centers in HDB towns, we find that retail access and 
patronage could be improved, if the medium-scale neighborhood centers were more 
numerous and prominent in HDB towns. We suggest that an analogous model can be 
used for right-sizing retail developments in future planned towns in Singapore and 
beyond. 
 
The model could also be applied in existing retail systems to assess how the expansion of 
a given cluster could impact patronage at the named, as well as competing clusters 
around it. This could inform policy makers on deciding where zoning alterations and 
policy incentives are best placed. 
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Introduction 

Commercial amenities form an essential part of vibrant urban neighborhoods.  Having 

shops, restaurants and personal service establishments near places of residence or 

employment not only increases people’s choices for consumption, but also encourages 

walking (Forsyth, Hearst et al. 2008, Rundle et al. 2007; Hoehner, Ramirez, and Elliott 

2005), reduces urban energy usage (Newman and Kenworthy 1999; Zegras 2004; Frank 

and Pivo 1994; Krizek 2003), fosters social cohesion (Jacobs 1961) and generates local 

jobs. Many city planning departments have adopted policies to encourage pedestrian-

oriented retail clusters. But influencing the retail location pattern of a city requires 

complex policies, since retail clusters are interdependent and work as a system. The 

patronage of one cluster depends not only on its own characteristics – its size, choice of 

goods, location – but also on the characteristics of competing clusters around it. In order 

to understand how changes in one cluster are likely to affect others or how a district-wide 

system of retail centres could be improved as a whole, accessible tools and models are 

needed for planners. 

  

This paper introduces an extension to the Huff (1963) model of retail interdependencies, 

where the patronage of each facility or cluster is proportional to its size and inversely 

proportional to its accessibility to potential patrons. We propose an additional distance 

decay term in the model that relates the overall frequency of retail visits with patrons’ 

accessibility to retail centers. Whereas the traditional Huff model assumes that the pattern 

of stores does not affect the overall number of retail trips that customers make, we show 

that households with better access to retail centers visit the centers more frequently.  
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Our main focus lies on exploring how the spatial arrangement of stores with respect to a 

fixed pattern of customers can increase the patronage of retail centers.  While according 

to this dependent variable it might seem that a more efficient location and size allocation 

of retail center would benefit stores, maximizing retail patronage is not a zero-sum game 

where the gains on behalf of stores come at the cost of customers. Every household is 

assigned a probability to visit each one of the retail centres around their house depending 

on two factors — the attractiveness of the center (we use size as a proxy) and the spatial 

accessibility of the center. Keeping the overall retail area constant, patrons’ visits to retail 

centers vary according to their sensitivity to both center size and travel distance. This 

means that placing numerous small stores closer to customers does not necessarily 

increase customer visits, which depend jointly on access and store size. Similarly, a 

single large center might not be preferable if customers are sensitive to travel costs. The 

location and size pattern of centers that maximizes store visits therefore benefits both 

store revenues and improves customer welfare. 

 

Departing from the traditional application of the Huff model, which measures trip 

distances and accessibilities along simplified straight-line connections, we apply the 

model on spatial networks, where spatial relationships between customers and retail 

destinations are captured along actual circulations routes. This makes the model more 

precise and opens up interesting applications of the Huff model in dense and complex 

urban environments. 
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The model is implemented as part of the Rhinoceros 3D urban Network Analysis 

Toolbox plugin, which freely available for download. Implementation of the tool as part 

of the Rhino platform shortens the lengthy feedback cycle between design and analysis, 

where drawings from one software need to be exported to GIS or other analytic platforms 

for evaluation, and results eventually returned to design software for new placement 

iterations. Having the tools in Rhino allows a planner to evaluate a specific plan or 

development proposal within seconds, incorporating patronage analytics into a fast and 

iterative process, where proposals can be altered, evaluated and redesigned in seamless 

cycles to rapidly improve the outcome. The tool offers a simple interface that allows 

users to receive immediate graphic feedback about patronage changes in each retail 

centre that can result from changes in any of the centres’ size or position. Outcomes in 

retail patronage can also be tested against changes in circulation networks – e.g. changes 

in the walking routes that lead to centres or changes in demand locations.  

 

The tool also includes a simulation environment that allows the user to automatically test 

numerous combinations of centre sizes at given locations in order to maximize collective 

patronage across all clusters in the system. The latter functionality can help planners to 

“right-size” planned retail clusters so as to maximize overall shopper utility. Both one-off 

estimations and automated simulations can be integrated with existing retail 

developments, whose sizes and locations remain unaltered.  The tool can therefore be 

used to analyze incremental changes to well-established and distributed shopping 

environments, such as found in Cambridge MA, as well as newly and centrally planned 

shopping clusters in upcoming urban developments. 
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The paper is structured as follows. First, the literature review introduces the Huff model 

and some its variations. Second, we introduce the proposed extension of the Huff model 

and demonstrate its fit with empirical data from Singapore. Third, the practical value of 

the proposed model is demonstrated in the case-study of the Punggol New Town in 

Singapore. 

 

 

Literature 

The most widely-utilized retail patronage model was introduced by Huff (1963). The 

Huff model assumes that the probability of a consumer to make purchases at a given 

commercial destination is a function of the distance to that destination, its attractiveness, 

and the distance and attractiveness of competing sites around it. Since each consumer 

allocates a certain proportion of trips to each retail centre, an interaction ensues between 

all consumers and all centres. For each consumer, a Hansen accessibility ratio is 

computed to each retail destination (Hansen, 1959). This accessibility is proportional to 

the attractiveness of a particular destination divided by the travel cost of getting there. 

The same procedure is then applied to all available retail destinations around the 

consumer. The probability for the consumer to visit any particular centre is found as a 

ratio between the accessibility to that centre, divided by the sum of accessibilities to all 

centres, including the one under question. The Huff model is formulated as follows: 
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𝑃!" =

𝑊!

𝐷!"
!

𝑊!

𝐷!"
!

!
!!!

 

Equation 1 

, where: 

𝑃!"  is the probability of a consumer i to shop at centre j, 

𝑊!  is a measure of the attractiveness of each centre j, 

𝐷!" is the distance from consumer i to centre j, and 

𝛽 is an exponent applied to distance to achieve an exponential decay for more distant 

sites. 

 

More attractive destinations and closer destinations obtain relatively higher probabilities. 

But as long as each destination has non-zero attractiveness, no centre is left with a zero 

probability. Even the most remote and poorly attractive stores get some customers.  

 

The distance decay exponent should be empirically based from observing the shopping 

habits of patrons from different distances. The attractiveness attribute of each destination 

centre (W) can describe any kind of feature that has a positive effect on consumer 

patronage. In practice, the size of destinations or Net Leasable Areas (NLA) is often used 

as a proxy for the choice of merchandize at the destination, which is known to have a 

positive effect on patronage. But destination attractiveness could also capture variations 
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in retail prices, parking spaces, street frontage, advertising expenditure and so on, all of 

which are typically combined into a single index. 

 

Individual consumers are aggregated to groups, typically at the census tract or block-

group level, where demographic information is available. The probability of each 

polygon can be multiplied by its characteristics – number of households, residents, or 

dollars spent on retail goods. This works well for large market areas, such as shopping 

malls, but it makes it difficult to apply the model at a district or neighborhood scale, 

where multiple retail streets compete within a complex built environment. At the 

neighborhood scale, using centroids of census polygon as demand origins can 

substantially distort the actual distribution of retail demand.  

 

Most applications of the Huff model also utilize straight-line distances between consumer 

polygons and retail destinations. This simplifies the calculation, but it can misrepresent 

the true distances required to get to destinations over spatial circulation networks, 

especially at the finer-grain neighborhood scale. 

 

Even though the Huff model was formulated several decades ago, only fairly recently 

have its application reached a wide audience with software and data applications.  

ESRI’s ArcGIS Business Analyst1 package first started offering a Huff market area tool 

in 2003. This was upgraded to an advanced Huff model in 2008. The model uses straight-

line distances and population zones to estimate retail patronage or sales. Another free 

ArcGIS toolbox for calculating Huff probabilities for stores was published as a plugin by 
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Flater in 2012, which applies the traditional Huff model with straight-line distances 

between origin and destination locations.2 

 

Lakshmanan and Hansen (1965) have developed a version of the model, which estimates 

the total sales at each of the centre based on the Huff probabilities for consumers to visit 

each of the centres. The total sales at centre j by consumers from zone i, is given as: 

𝑆!" = 𝐶! ∗

𝑊!
𝐷!"
!

𝑊!

𝐷!"
!

!
!!!

 

Equation 2 

, where: 

𝑆!"  is the sales at shopping at centre j by consumers from zone i, 

𝐶! is the total consumer retail expenditure of population in zone i,  

𝑊!  is the size of retail centre j, 

𝐷!" is the distance for consumers from zone i to centre j,  

𝐷!" is the distance for consumers from zone i to a competing centre k, and 

𝛽 is an exponent for an exponential decay in the effect of distance. 

 

There are two key differences from Equation 1. First, Lakshmanan and Hansen’s 

consumer probabilities on the right hand side are multiplied by the total consumer retail 

expenditure of population in each zone, which allows the model estimate sales rather than 

patronage. Second, the Lakshmanan and Hansen formulation only treats competing 
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centres on the denominator of the index, whereas the Huff formulation includes both 

competing centres and the centre in question in the denominator. Our application of the 

model uses the Huff formulation. 

 

Weisbrod and Parcells (1984) and Di Pasquale,Wheaton (1996) have developed an 

alternative discrete choice model of shopping centre patronage. Their models can use a 

more detailed list of attributes about each shopping centre, including tenant mix, parking 

availability, marketing expenses etc. An empirical coefficient is estimated for each of the 

attributes using regressions on surveyed data from actual centre visits. The model also 

allows the attractiveness coefficients to vary for households of different income ranges 

(Di Pasquale and Wheaton 1996). The calibration of such a regression-based model 

requires detailed attributes of each retail centre as well as empirical data on patronage to 

these very centres. The model we use is a simpler adaptation of the Huff model of market 

areas. 

 

The Huff model has so far been rarely used by urban designers and physical planners to 

predict facility patronage. It is most often used as a tool to predict the performance of a 

single new centre or store in a system of existing stores. The model is calibrated with an 

existing set of stores and a new centre is added with an appropriate attraction index to test 

how many customers or how much expenditure the new location could potentially obtain. 

But there is also ample unexplored potential in the Huff model for more complex 

predictive scenarios, where multiple new stores, or even a whole system of proposed 

centres is simultaneously analyzed. There is presently a lack of tools that would readily 
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allow planners and designers to spatially manipulate the locations of multiple centres and 

receive instantaneous feedback about how patronage is likely to be affected by each 

configuration. 

 

Further, the effects of the spatial circulation network – sidewalks, streets, local transit 

networks – are currently absent from available market potential models. Yet, we know 

that the way streets and access paths are configured can improve or hinder access to a 

store. This is especially important in newly planned areas, where the street network could 

potentially be planned with district centres and shopping streets in mind so as to foster 

access to commerce.  

 

Model 

We have modified the specification of the Huff model in four ways.  First, the model is 

applied on a spatial network so that all distances and trips are routed along the networks. 

Each demand point is assumed to access retail destinations along the shortest route in 

terms of distance.3 This makes the patronage estimates more precise to the actual context 

of each shopping destination. A straight-line distance can misrepresent distances even in 

the most connected gridiron street patterns, as shown in Figure 1. Network-based 

distances correctly account for uneven densities in the street network (e.g. small versus 

large blocks), discontinuities (e.g. cul de sacs) and barriers, such as highways or rivers. 

The application of the model in the Rhino UNA toolbox also allows networks to be three-

dimensional, including underpasses, overpasses or inside multi-story buildings. 
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Figure 1. Comparison of straight-line and network walking distances at a 
neighborhood scale. The outer circle is drawn with a radius of 600m from the 
centre. The actual walkshed along the street network in the same 600m radius is 
shown inside the circle. 
 

Second, our model does not rely on population zones but uses individual demand points 

(e.g. buildings or households). The travel distance and patronage probability for each 

shopping destination 𝑗 is calculated from each demand point 𝑖 separately, producing a 

more accurate, disaggregate estimation.4 The tool also allows an aggregated estimation of 

demand from zones (e.g. census tracts instead of individual houses) when desired.  

 

Third, similar to Eppli and Shilling (1996) and Ooi and Sim (2007), we allow the store 

attractiveness index 𝑊 to have an exponent 𝛼, which controls how patrons are expected 

to react to increasing destination attractiveness. If an exponent of one is used over gross 

floor area, for instance, then it is assumed that as NLA doubles, attractiveness also 

doubles in a linear manner. But if an exponent of ½ is instead applied, then attractiveness 

only grows as a square root of NLA. The exponent over the attractiveness parameter 
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allows a diminishing rate of utility, which has been observed with many destination 

characteristics and should be empirically specified for each context.  

 

And fourth, we add an additional distance decay parameter to each demand point, which 

reduces the allocation of demand weights between centres, depending on how far each 

customer has to travel. We shall come back to this parameter below, after describing the 

basic model. 

 

The model is calculated as follows. Gravity accessibility from each demand point 𝑖 to 

visit a destination 𝑗 is given as: 

𝐺!" =
𝑊!!

𝑒!!!"
 

Equation 3 

, where  

𝐺!" represents gravity access from 𝑖 to 𝑗,  

𝑊!is the attraction weight of centre j, 

α is an exponent that controls the effect of attractiveness or centre size, 

𝐷!" is the network distance from demand point 𝑖 to destination 𝑗 and 

𝛽 is an exponent for an exponential decay in the effect of distance. 

 

This is basically the traditional gravity index as defined by Hanesn (1959), but the 

transportation costs in the denominator are modeled as 𝑒 to the power of beta times 

network distance instead of a simple exponent. This alternative specification for distance 
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decay has been found to approximate pedestrian trips more precisely than the exponent 

used in the original Huff model (Handy 1997). 

 

The probability 𝑃 of a demand point 𝑖 to visit a particular centre 𝑗 is given as a ratio 

between accessibility to that particular centre and the sum of accessibilities to all 

available centres, including centre 𝑗: 

 

𝑃!" =  

𝑊!!

𝑒!!!"
𝑊!!

𝑒!!!"
!
!!!

 

Equation 4. 

 

 

Having assigned a visiting probability from each origin to each destination centre, the 

patronage of a particular centre is estimated by multiplying the visiting probability with 

the weight of each demand point and summing across all demand points: 

 

𝑆!" = 𝑊! ∙ 𝑃!"
!

!!!
 

Equation 5. 

, where 

 𝑆!" represents the patronage of centre 𝑗 within a demand search radius 𝑟, 

𝑊! is the weight of a demand point 𝑖, for instance the number of people in a building, and 

𝑃!" is the probability of the demand point 𝑖 to visit centre 𝑗 from Equation 4. 
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Each demand point can have a weight 𝑊 to model differences in household or building 

size or in their purchasing capacity. Only those demand points that are within a specified 

network radius 𝑟 from the destination affect the destination’s patronage; those that are 

further are assumed to be too far to visit that centre. 

 

In Equation 5 above, and in the Huff model generally, it is assumed that all patronage or 

purchasing power in the model is fully spent among available stores. If there are ten 

people on the demand side, then the sum of patronage across all stores is also ten. Under 

such conditions, the overall shopping frequency in the system is not affected by the 

spatial configuration of stores – all demand is always cleared and the overall patronage is 

identical with different store patterns. 

 

This is not necessarily the case in reality. When demand is not completely inelastic, 

people do not necessarily patronize stores with the same frequency when they face 

different transportation costs while going to stores. When we study the frequency of 

Starbucks coffee shop visits, for instance, patrons who live in a building right above a 

Starbucks may visit the coffee shop significantly more frequently than customers who 

come from a ten-minute walk. The former face almost zero transportation costs in getting 

their coffee while the latter spend $5 on each round trip on walking time5. For the latter 

customers, transportation costs can even exceed the cost of coffee itself. 

 

Survey data from a thousand households in Singapore’s HDB towns, shown in Figure 2, 

confirms that the frequency of visits to HDB retail centers declines when residents have 
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less access to the centers. Households were asked how many times a week they visit each 

type of retail center in their town. Accessibility to retail centers was captured based on 

each respondent’s home location and the location of the respective town, neighborhood 

and precinct centers they reported to typically patronize, using the gravity access measure 

shown in Equation 3, but keeping the enumerator as “1”, which makes the measure 

effectively based only just the proximity to the center and ignores center size.6 Pearson’s 

correlation suggests that accessibility to retail centers explains 42% of the variation in 

households’ total weekly visits. Households that face inferior access to retail centers tend 

to visit them less frequently – households above the top 90th percentile accessibility make 

10.6 visits a week, as opposed to households in the bottom 10th percentile accessibility, 

who make 6.8 visits per week on average. 
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Figure 2. Relationship between households’ reported weekly visits to retail centers 

in their town and their spatial accessibility to these centers. Pearson’s correlation = 

0.41. 

 

In order to account for the accessibility differences between customers, we add an 

optional third element to Equation 5, which discounts the patronage allocated to each 

store by the same inverse distance decay function as used in the Gravity model. Since the 

store attractiveness is already accounted for in finding patronage probabilities in Equation 

4, this decay effect only focuses on an inverse distance effect, with a “1” on the 

enumerator. Customer 𝑖’s patronage of a store 𝑗 is thus given as function of a) demand 

point’s weight, b) its probability of going to 𝑗 and c) its distance from 𝑗: 

 

𝑆!" = 𝑊! ∙ 𝑃!" ∙
1

𝑒!!!"
!

!!!
 

Equation 6 

Due the third element in the summation, demand points that are located at a distance from 

stores do not allocate all of their weights between stores. Using “1” on the enumerator 

and factoring in only proximity on the denominator ensures that the overall patronage 

across all stores is always less or equal to the the sum of demand weights 𝑊!. Only in a 

scenario where all demand points are located at the same location as stores, facing zero 

transportation costs, can the totality of demand weight be allocated to stores. 

 

As a result of the additional distance decay effect, the overall patronage of stores in the 

system depends on the spatial configuration of stores and patrons. Changing the location 
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of stores will affect overall store visits in the system. The probability of visiting a 

destination increases if the destination is more attractive or closer to the demand point, 

depending on what alpha and beta parameters are used to dampen the size and proximity 

effects. 

 

Determining alpha and beta coefficients 

 

For commercial centre visits in Singapore’s HDB towns, we determined values for alpha 

and beta coefficients empirically, using a survey of approximately one thousand 

households in nine HDB towns, administered in fall 2014.7  Households were asked 

which town, neighborhood and precinct centers they typically visit in their town and how 

many times per week. An analysis of these data showed that mean distances for visiting 

town, neighborhood and precinct centers were 936m, 228 and 146m respectively, with 

considerable deviations among households. When a couple of outlier responses were 

eliminated, then all trips were less than 3,000m long. We thus used 3,000m as the 

limiting radius in the analysis of retail catchment areas below.  

 

Each of the destination centers was matched up with a known net leasable floor area (in 

square meters) in GIS and accessibility to the said centers was calculated from each 

household’s location using the gravity metric from Equation 3 and walking distances 

along street networks.8 This enabled us to compare the actual and estimated number of 

trips from each home to town, neighborhood and precinct centers that respondents 
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visited. Based on Equation 6, the estimated number of trips from a home i to a center j 

was determined as: 

𝑇𝑟𝑖𝑝𝑠!" =𝑊! ∙ 𝑃!" ∙
1

𝑒!!!"
 

Equation 7 

 

, where Wi is the size of the household and Pij is estimated probability for each center 

from Equation 4. 

Solver in Microsoft Excel was used to find alpha and beta values that best matched the 

empirical response data. The best match was found using an alpha value of “0.37” and 

beta value of “0.001”, which explained 38% of actual trips to these centers. If the 

additional decay term ( !

!!!!"
) was dropped from the model, testing the traditional Huff 

model, then the correlation between estimated and actual trips dropped to 30%. Note that 

these trip estimates ignore most destination characteristics, such as the choice, age or 

quality of stores, yet still the destination size and proximity explain over a third of the 

total trips.  

 

The number of reported trips varied widely – while the average household makes 6.7 

trips to various retail centers in their town per week, some households make as few as 2 

and others as many as 17. This variation is not only explained by varying accessibility to 

retail destinations as discussed above, but also family-specific economic, cultural and 

habitual factors, which are not included in the Huff model. Due to the idiosyncratic 

variations in visit frequencies, we also compared the estimated and actual proportion of 

trips from each household to the same retail centers, instead of the raw number of trips. 
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The correlation between the estimated percentage of trips 𝑃!"  from Equation 7 and actual 

percentage of trips was 67%.  

 

Figure 3 illustrates the effect of the distance decay parameter beta “0.001”. For 

comparison, we also show a decay rate with a beta that is half this size and double this 

size. A larger coefficient implies a sharper decay in visitors as distance increases. This 

effect can vary by the extent of retail offerings in the city, climate and culture. In 

moderate climates or more walkable cities, people are likely to walk longer distances. But 

willingness to travel to commerce also depends on what people are used in a particular 

city – cities with dense retail patterns, such as London, make a longer commute unusual.  

 

Figure 3. Distance (metres) effect on patronage, with a coefficient beta = 0.001. 

 

A beta coefficient of “0.001” suggests that patrons who are within a hundred meters from 

a retail center are more than 90% likely to visit it, but for those that are 700m away, the 
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probability drops to about 50%. Probabilities also depend on centre size and the 

placement of competing centres. 

 

Plugging the best fitting alpha coefficient “0.37” value into Equation 3 and keeping the 

distance in the denominator constant, we see that as a destination’s size doubles, 

accessibility increases about 29%. In terms of patronage probability, a household that has 

two centers around it, both at the same distance but one center double the size of the 

other, will assign 44% of its trips to the smaller destinations and 56% to the larger 

destination. If the smaller center is 25% closer that the larger center then the visiting 

probabilities would be roughly equal between both centers.  

 

In contrast to Eppli and Shilling, who found that shopping center visits in the US are 

more strongly determined by center size than travel distance, we find that the location of 

retail centers is more critical for HDB residents in Singapore (Eppli and Shilling 1996). 

Unlike the US, where the majority of shopping trips take place in cars at relatively low 

travel costs, 65% of all trips in Singapore take place in public transit and most residents 

in HDB towns walk to retail destinations. In the presence of higher transportation costs, 

location plays an important role. 

 

 

Punggol New Town 
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In this section we use Punggol as a case-study to demonstrate the practical value of the 

model to planners and urban designers. Punggol is one of the newest HDB towns in 

Singapore, consisting of about 300,000 residents, when complete. At the time of the 

study in 2014, about half of the town was built. In addition to housing, the government of 

Singapore also provides public transit, commercial and recreational facilities for the 

residents. Figure 4 shows the town layout, including the street network, building 

locations as demand points, and the locations of existing, built-out commercial clusters, 

with their size indicated in square meters. Though building centroids in the figure are 

shown as uniform gray dots, each of them carries a different weight 𝑊, indicating the 

number of dwelling units. There are total of 96,112 dwelling units in the area. 
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Figure 4. Punggol town layout with its street network, building locations and 

existing commercial centres. Numbers indicate the Net Leasable Area of each 

existing commercial cluster. 

 

Figure 5 shows the predicted patronage of each of the centres according to the traditional 

Huff model (using Equation 5), calculated with a network radius of 3,000 meters, a 

distance decay beta value of 0.001 and an attraction parameter alpha of 0.37. A 

FindPatronage tool for this procedure is available in the UNA Rhino toolbox. 
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The individual destination results in Figure 5 suggest that patronage varies from 3,412 

households at the smallest centre to 15,935 at the largest. The overall patronage across all 

retail centres is 96,112 – the same number as the number of households – as the Huff 

model requires. 

 

Figure 5. Estimated store patronage with existing stores in Punggol. Beta = 0.001; 

Search radius = 3000m; Alpha =0.37. Total patronage in town = 96,112  households. 

 

In Figure 6, we estimate store patronage on the same configuration as in Figure 5, but 

applying the additional distance decay function from Equation 6. Relative number of 
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visits to each centre remains similar, but the overall patronage drops by 65%, reducing 

total patronage from 96,112 (the number of total households in the area) to 33,211 

household visits.  

 

 

Figure 6. Estimated store patronage with existing stores in Punggol using a distance 

decay effect introduced in Equation 6. Total patronage in town = 33,211 households. 

Beta = 0.001; Search radius = 3000m; Alpha =0.37. 
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Note that in both estimations shown in Figures 5 and 6, we assume that shoppers start 

their trips from home locations (residential buildings). But shopping from home does not 

necessarily reflect the dominant pattern of visits. In Singapore’s HDB towns, over 65% 

of residents use the Mass Rapid Transit (MRT) system for daily home-work-home trips.9 

Having shops that are located conveniently en route to MRT stops could enable residents 

to patronize retailers without incurring extra transportation costs that are involved in 

designated trips from homes. If residents could instead visit stores en route to or from 

MRT, they could do so at a lower cost. The distance decay element in Equation 6 

suggests that reducing transportation costs can increase overall shop patronage.  

  

In order to model retail demand that walks between homes and MRT stations, the 

demand weights found at home locations can be distributed along walkways leading to 

MRT stations at given distance intervals (e.g. 10m). If a building’s original demand point 

weight was “100 dwelling units”, for instance, it was located 1,000m from the nearest 

MRT station, and the distributed demand points are placed at 10m intervals along the 

walk, then we obtain 100 distributed demand point, each getting “1” as their demand 

weight. When multiple routes overlap on particular network segments, then the same 

distributed points are used and their values are summed. As a result, distributed points 

that are on highly trafficked segments, such as those near MRT and bus stations, 

accumulate higher demand weights. A DistributeWeights tool for automating this 

procedure is available in the UNA toolbox. Instead of only relying on shortest paths, the 

tool also allows the allocation to occur along all routes that are up to a given percentage 

longer than shortest paths, using an allowable DetourRatio variable. Based on a survey of 
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pedestrian activity in HDB towns, we used a 15% DetourRatio, allowing the weights to 

be re-distributed on all routes that are up to 15% longer than the shortest route from 

homer to MRT.10 As a result of re-distributing the original demand weights from 

buildings to MRT walking routes, the sum total of the weights does not change – it stays 

at 96,112, corresponding the number of original households in the area. 

 

Figure 7 describes the redistributed demand weights, which have been placed on the 

estimated walking routes from each dwelling unit location to the nearest MRT and bus 

station.11 On top of these, the figure also shows the new patronage estimates for the same 

set of existing stores as we saw in Figure 6. A change in the behavioral assumptions 

about shoppers can trigger a change in estimated shop patronage. Overall, patronage 

across all stores slightly increases from the previous 33,211 to 35,055 as a result of 

modeling demand from walks to MRT stops rather than homes (5.5% increase). A typical 

Punggol resident would find trips to existing stores closer on walks to or from MRT than 

from their home locations.  
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Figure 7. Estimated patronage of existing clusters with demand originating from 

MRT walk routes. Total patronage in town = 35,055 households. Beta = 0.001; 

Search radius = 3000m; Alpha =0.37. 

 

Simulating New Stores 

 

At the time of the study, Punggol was roughly half built, with less than half of the 

commercial spaces constructed. A town centre – the largest commercial cluster in the 

plan, located at the Punggol MRT junction – had not yet broken ground. A number of 

neighborhood centres were also in planning phase. A few precinct centres were complete. 
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The partially-built nature of the project offered an opportunity to explore how the 

remaining commercial space could be best positioned and sized so as to maximize retail 

access in the town.  

 

In the following we compare two planning scenarios, using the same distributed points on 

MRT walking routes shown in Figure 7 as demand locations. The first scenario reflects 

the current official plan for the distribution of future commercial centres in Punggol, 

including both those that are already built out as well as those that remain yet to be built. 

The second scenario illustrates a tabula rasa approach, where the same number of centres 

is positioned at new locations, which maximize access from MRT and bus stop walking 

routes. Across both scenarios, we explored how the positioning and sizing of stores could 

impact overall retail accessibility and patronage. 

 

In order to make the two scenarios comparable, we made sure that both contained one 

town centre (30,000m2), seven neighborhood centres (9,000 m2 each) and 29 precinct 

centres (1,500 m2 each). The use of such hierarchical centre types (TC, NC, PC) reflects a 

typical division of commercial centre typologies used by the HDB. At present, 

Singapore’s HDB towns have allocated 9% of retail space to town centres, 44% to 

neighborhood centres and 47% to precinct centres (MTI 2002). The overall quantum of 

retail space was kept at 136,500m2, corresponding to the amount foreseen for Punggol. 

 

Figure 8 illustrates the results for scenario one, where existing and future commercial 

clusters are located according to HDB’s current plans. Total patronage across all 
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commercial centres is estimated at 38, 243 households.  This result increases to 38,899 in 

scenario two (Figure 9), when the same number and size combination is shifted closer to 

the most trafficked MRT walkways.12 Thought the improvement resulting from slightly 

closer store locations is relatively small (1.7% increase), it can grow, when less stores are 

involved and bigger market areas are being served. 

 

Figure 8. Existing build-out patronage estimate for scenario one, where existing and 

future commercial clusters are located according to HDB’s current plans. Total 

quantum of commercial space is 136,500m2. Centre allocation: 1 town centre 

(30,000m2), 7 neighborhood centres (9,000m2 each), 29 precinct centres (1,500m2 
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each).  Total patronage in town: 38,243 households. Beta = 0.001; Search radius = 

3000m; Alpha =0.37. 

 

Figure 9. Patronage estimate for scenario two, where the same number and size of 

commercial centres is located deliberately closer to MRT walk routes. Total 

quantum of commercial space is 136,500m2. Estimated patronage across all clusters 

is 38,899 households. Beta = 0.001; Search radius = 3000m; Alpha =0.37. 
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Finally, another way to affect shopping patterns with a given set of locations is to vary 

destination sizes. In the example of Figure 9, we optimized retail destinations to be closer 

to MRT walking routes, but used a typical size allocation of HDB centres – 30,000m2 

NLA for a town centre, 9,000m2 for neighborhood centres and 1,500m2 for precinct 

centres. Could the overall patronage be increased with a different size allocation? 

 

The UNA Rhino toolbox includes a simulation tool called unaPatronageSim to test what 

size combination between centres achieves most estimated visits. Similar to above, inputs 

include demand point locations and destination locations. Additionally, a total retail area 

limit to be allocated between centres is required.  This area is then tested between all 

centre types at a chosen percent intervals – 1% at town centre and the rest between other 

types of centres, 2% at town centre and so on, until 100% has been tested at each centre 

type.13  Just like above, the attraction of each retail cluster depends on its size and 

network distance from potential customers and the highest result is obtained when 

accessibility to stores is maximized with respect to a given demand pattern. This 

accessibility, in turn, depends both on the proximity and size of destinations, and the 

alpha and beta coefficients used.  
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Figure 10. Patronage simulation results, where the total quantum of 136,500m2 was 

iteratively allocated to town, neighborhood and precinct types using allocation 5% 

steps. Maximum patronage is 41,254 households. Beta = 0.001; Search radius = 

3000m; Alpha =0.37.  

 

Figure 10 illustrates simulation results, where the total quantum of 136,500m2 of NLA 

was iterative allocated at 5% intervals to different centre types.14 The graph depicts the 

resulting patronage estimates on the vertical axis and the percent of total space given to 

the town centre on the horizontal axis. The sum total of retail NLA is kept constant at 

136,500m2 in each iteration, but areas are allocated differently between centre types. 

Within each zigzag hump, allocations move from 100% at the precinct centres on the left, 

to the reverse, 100% at neighborhood centres on the right. The overall pattern suggests 

that with every town centre proportion, patronage is highest when all of the remaining 
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retail space is only allocated to the medium size neighborhood centres and none at the 

smallest precinct centres. The maximum result of 41,254 is achieved when the town 

centre and seven neighborhood centers are all the same size– 17,065 m2. This result 

suggests that a network of bigger neighborhood centers could benefit both residents and 

businesses more than the current hierarchical size order with a single large town center, a 

few medium-size neighborhood centers and lots of small precinct centers.  

 

But the simulation results do not have a single sharp peak – there are multiple peaks with 

town centre sizes ranging from 5 to 55 %, where overall total patronage remains within 1 

% of the maximum. Even with a 75,500m2 NLA town centre (55% of total) and seven 

8,775m2 NLA neighborhood centres, patronage reaches 40,896 households. No one 

centre size configuration is clearly above others, but overall patronage is maximized 

when retail floor area is distributed among seven or eight (if counting the TC) 

neighborhood centres, each accommodating around 9,000-18,000m2 NLA.  

 

These particular town and neighborhood centre size combinations would maximize retail 

access with Punggol’s town layout, but a different combination may work in other towns, 

depending on their layouts and customer densities. However, the most important 

determinants of the optimal size configuration are the alpha and beta values, which are 

based survey data that was combined from nine HDB towns throughout Singapore. 

 

Overall, optimizing the sizes of retail cluster within the same locations as in scenario two 

(Figure 9), increased estimated retail patronage from 38,899 to 41,254 (6 %). Destination 
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size optimization thus had a bigger positive effect on patronage than our location 

adjustments above. But if we take both the location optimization that placed centers 

closer to MRT walking routes and the size optimization together, then the combined gain 

compared to the baseline HDB scenario is a 10.2% increase in estimated retail patronage.  

 

Discussion 

The model we have described enables planners and urban designers to better understand 

how spatial planning decisions could influence the feasibility and viability of retail 

developments. Successful planning of urban commerce requires that stores receive 

sufficient customers and revenue to break even. The siting of buildings, their densities 

and the layout of circulation networks play an important role in shaping the demand that 

sustains urban retailers. Not every street can be a main street and not every corner is fit 

for a store. The presented model can be used to assess the viability of individual stores, 

clusters or a system of clusters as a whole. 

 

At present, Singapore’s HDB towns have around 500 precinct centres, 123 neighborhood 

centres and 17 town centres.  Roughly 47% of HDB shops are located in small precinct 

clusters. Our simulation results suggest that a stronger emphasis on the medium scale 

neighborhood centre development may be warranted in future HDB developments. The 

current distribution of precinct centres aims to make convenience goods accessible near 

people’s place of residence. But precinct centres are typically small, ranging from 500m2 

to 3,000m2, accommodating 5-10 shops each. Our model suggests that a proliferation of 

precinct centers in Punggol does not benefit overall retail patronage as well as larger 
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neighborhood centres would. Precinct shops receive rent subsidies from the government 

and are meant to please residents with convenience. But since the patronage of stores 

depends on both the proximity and size of a center, a fewer set of larger clusters appears 

to be more beneficial for residents and shopkeepers alike. Similarly, too big of an 

emphasis on a large town centre could produce an adverse effect on patronage, since 

town centres are few and far from patrons. Across the simulations, largest estimated 

patronage was achieved when the bulk of a town’s retail space was placed in medium-

size (9,000 – 18,000m2) neighborhood centres. Combining both location and size 

optimization for planned centers, a 10% improvement in estimated patronage was 

achieved over the existing baseline scenario. 

 

This result can not be generalized to other towns at this point. Further research is needed 

to establish whether model coefficients and people’s travel behavior to commercial 

destinations might vary by town. Additional research is also needed to clarify the extent 

to which the results depend on the distribution of demand points, retail destinations and 

the circulation networks that connect them. Further experimentation is also needed to 

understand the robustness of the alpha and beta coefficients we found as well as the 

sensitivity of the model outcomes with different coefficient values.   

 

We have focused our attention on optimizing retail destination locations and sizes. But 

similar gains could be made by manipulating demand locations and access routes – 

housing layouts, residential and employment densities as well as transit locations. In 

planning new residential towns, it would make sense to coordinate the site plans of 
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residential and commercial areas, such that residents have easy access to stores while 

walking to and from MRT stations. If applied in an existing retail system in other cities, 

the model could be used to assess how an expansion of a given cluster could impact 

patronage at the named, as well as competing clusters around it. This could inform policy 

makers on deciding where zoning alterations and policy incentives are best placed. 

 

Among the shortcomings of the above analyses is the fact that we used a simplified proxy 

variable – destination NLA – as the only characteristic of destination attractiveness. In 

future studies, an attractiveness index could combine a series of known factors, such as 

store selection, brand availability, parking and age in a combined index. Similarly, 

accessibility estimates in the model could be improved if different travel modes were 

explicitly combined – access on foot, by bike, by car or transit.  

 

A similar model can be specified for different types of urban facilities, using appropriate 

coefficients and parameters for each. The planning of urban parks or playgrounds, for 

instance, could benefit from an analogous patronage model, where the overall layout aims 

to maximize the accessibility and patronage of such spaces in a district. The placement of 

electric car chargers and shared bicycle stations face similar issues. 

 

There are multiple other software tools available for computing Huff models. The model 

presented here is aimed for physical planning and urban design applications, where 

patronage estimates can be computed over networks in multiple design scenarios and the 

effects of different configurations compared with little effort in the Rhino design software 
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environment. The introduction of the additional decay element in the Huff equation 

makes the model unique for assessing the impacts of spatial layouts and site plans on 

overall store patronage. The simulation engine allows store sizes to be optimized through 

a high number of automated trials, which would be too labor intensive to undertake 

manually. Jointly, these features are meant to make computerized facility patronage 

estimation accessible to a wider audience of spatial planners and urban designers. 
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1	http://www.esri.com/software/businessanalyst	(accessed	Sept	10,	2016).	
2	
https://www.arcgis.com/home/item.html?id=f4769668fc3f486a992955ce55caca1
8	(accessed	August	25,	2016).	
	
3	No	time	based	estimates	were	available,	since	this	would	require	timing	each	wait	
at	a	traffic	light,	crossing	etc.	But	since	we	are	dealing	with	pedestrians,	where	
unlike	cars,	there	are	no	variable	speed	limits	on	segments,	we	are	confident	that	
network	distances	offer	a	fairly	accurate	representation	of	travel	costs.	
Furthermore,	a	sizable	portion	of	walks	in	HDB	towns	are	internal	to	blocks	what	
are	pedestrian	only,	with	no	crossings	slowing	pedestrians	down.	
4	This	requires	user	information	about	residential	densities	or	household	numbers	
at	each	building	or	parcel,	which	can	be	interpolated	from	census	blocks	or	obtained	
from	local	assessor’s	databases.	
	
5	Assuming	that	the	average	wage	of	$15/h	in	some	US	states.	
	
6	The	centers	that	were	used	as	part	of	the	destination	set	were	based	on	reported	
responses,	where	respondents	indicated	which	town,	neighborhood	and	precinct	
centers	they	typically	patronize.	
		
7	The	Survey	of	Residents’	Shopping	Experience	in	HDB	Towns	(n=1,088)	was	
commissioned	by	the	HDB	and	carried	out	by	Singapore	based	Nexus	Link	Pte	Ltd	as	
part	of	Savills’	and	City	Form	Lab’s	Research	on	Commercial	Facilities.	
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8	A	network	distance	from	each	HH	to	their	indicated	retail	destinations	was	
calculated	using	GIS	network	analyst.	Since	origins	and	destinations	can	be	at	a	
distance	from	the	street	network,	a	distance	from	the	surveyed	longitude/latitude	
points	of	both	homes	and	retail	centers	to	the	nearest	network	segment	was	added	
to	the	actual	route	distance	along	the	network	to	achieve	a	more	accurate	total	route	
length.	
9	Source:	Singapore	Land	Transport	Authority’s	HITS	travel	survey,	2012.	
	
10	The	survey	was	carried	out	as	part	of	a	class	experiment	with	students	at	the	
Singapore	University	of	Technology	and	Design,	where	respondents	at	at	HDB	retail	
centers,	and	MRT	stations	were	asked	how	they	walked	there.	Comparing	the	actual	
walks	with	shortest	paths	showed	that	the	average	deviation	was	15%	longer	than	
the	shortest	available	path	(in	terms	of	distance).		
	
11	The	DistributeWeights	tool	does	not	only	place	weights	on	the	shortest	paths	to	
the	destinations,	but	can	use	multiple	“plausible”	paths,	each	of	which	must	be	
shorter	than	a	given	detour	ratio	(e.g.	15%)	above	the	shortest	path.	The	details	can	
be	found	in	the	UNA	toolbox	help	documentation.	In	this	example,	all	routes	that	
were	up	to	15%	longer	than	the	shortest	available	route	from	a	building	to	an	MRT	
station	were	given	equal	likelihood.	Depending	on	station	availability	around	their	
house,	it	was	assumed	that	people	were	most	likely	to	walk	to	MRT,	then	Light	Rail	
(LRT)	and	finally	bus	stations.		If	an	MRT	statin	was	available	within	a	800m	
distance,	then	70%	of	the	demand	points’	weights	were	allocated	to	that	MRT,	20%	
to	LRT	and	10%	to	bus	stops.	The	allocation	changed,	when	only	LRT	and	Bus	or	just	
Bus	stops	were	present	around	a	building.			
	
12	The location optimization in Figure 8 was performed in ArcGIS, using the Location 
Allocation tool in the Network Analyst extension. First, the Town Centre was located 
alone. Then the resulting town centre location was taken as a “required” facility and 7 
additional Neighborhood centre locations were optimized. In the final step, both he 1 TC 
and 7 NCs were taken as “required” and 29 more precinct locations were identified. Since 
HDB plans PCs as small convenience clusters near homes, for the latter, demand was 
modeled from building locations, not MRT walkways. PCs were solved with a constraint 
that allowed no home to be more than 400m from a PC. This resulted in 29 PCs. 
	
13	With	a	step	size	of	“1”	percent,	this	required	5,151	simulated	iterations.	A	step	
reflects	the	percent	increment	in	integers,	whereas	step	size	needs	to	be	a	factor	of	
100	(e.g.	1,	2,	4,	5,	10,	20,	25,	50).	The	following	formula	can	be	used	to	find	the	
required	number	of	iterations	with	different	step	sizes:	
step	=	a	factor	of	100	chosen	by	the	user	
steps	=	100/step	
iterations	=	(steps*steps	+	3*steps	+	2)	/	2	
	
14	A	1%	allocation	produces	a	similar	result,	but	the	visual	graph	includes	a	100	
instead	of	20	humps,	which	visually	harder	to	read.	


