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Abstract.  This paper introduces a method for creating double-curved grid 
structures made out of flat components, where fabrication is limited to only 2-
dimensional cutting, making complex architectural structures accessible to a wider 
audience at a lower cost. The focus of the paper is to identify the limitations and to 
map the geometric solution-space of the method for real world construction 
applications. A double-walled nature of the structure enables us to significantly 
reduce the geometric complexity of the grid structure‘s nodes – instead of needing 
to find a combined geometric intersection for all edges meeting at a node, our 
solution instead requires determining a pair of adjacent planes at a time, as many 
times as a node’s degree. But if any of these pairs of planes around a node is 
torsioned relative to the node‘s normal, then collisions might occur between 
different pairs of planes. This paper discusses the geometric solution-space under 
which such collisions are avoided, making the structural joints easy to build. As a 
proof of concept, we demonstrate the use of this method in a design-build pavilion 
that was realized at the Singapore University of Technology and Design in 2013. 

Introduction 

Grid structures are part of a larger family of thin-shell structures that have a 
long history of structural investigations [Mungan and Abel. 2012], [Schlaich 2002]. 
Along with funicular vaults, monoliths and membrane shells, their effective 
structural properties have made grid structures attractive for constructing bridges, 
hangars, domes, and pavilions that require uninterrupted covered space. Grid 
structures save material by using double-curved forms that follow the lines of 
structural thrust, thereby achieving economical, efficient and elegant structures. 
The geometric forms of membrane and funicular shell structures are dictated by the 
distribution of forces, where tensile structures work fully in tension and funicular 
shells fully in compression. Whereas tensile structures almost always form 
anticlastic surfaces [Pronk and Diminicus 2013], with exception of pneumatic 
shells, which are synclastic, funicular shells form dominantly synclastic surfaces. 



Grid structures and monolithic shells provide much more freedom since they can 
combine tension and compression into one surface. A double curved geometrical 
aspect can give grid structures more global stability and reduce material usage in 
comparison to structures that work predominantly in bending (e.g. wall-ceiling or 
column-beam structure). 

This paper discusses a method that allows grid structures to be constructed from 
a curved line network that may be regular or irregular using arbitrary n-gons while 
keeping all structural elements planar, allowing them to be fully fabricated on 2D 
cutting machines. The details of this method are discussed in [Sevtsuk and Kalvo 
2014]. The key benefit of the approach is that it offers great freedom in form and in 
the structural line-network design, while assuring that all joints and beams can be 
fabricated economically from two-dimensional sheet material. An additional 
benefit is that the structure can be entirely prefabricated and assembled in modular 
components on site without large space constraints and without high-precision 
work on site.  

The geometric construction of the discussed system requires two key 
conditions. First, the structure needs to be composed of two parallel walls around 
each network edge, and second, the adjoining non-parallel walls need to be 
extruded at particular angles, such that straight intersection lines are achieved on 
the interior planes of walls. Both conditions are necessary to guarantee 2D 
fabrication.  

  

Figure 1. Left: The proposed method is not feasible with single-walls on free-form line 
networks without creating gaps between neighboring elements or modifying the input line 
network. Middle and Right: A continuous grid structure is achieved through double-walls 
around each network edge, where the planes are extruded at such angles that straight 
intersection lines are achieved between all interior planes meeting around a node. 

Figure 1 shows in plan and axonometric how a continuous grid structure is 
achieved through double walls around each network edge, where the planes are 
extruded at such angles that straight intersection lines are achieved within all 
interior planes meeting around a node (Figure 2). In the case of a single-walled 
solution (left), the pairs of panels on the left and right of the node cannot move any 
closer to the node along their own axes without starting to intersect. The single-
walled solution therefore does not allow us to achieve straight intersection lines 
between all adjacent panels around a node, which in turn inhibits the possibility of 
flat-bed cutting. 



 

Figure 2. A typical node in a grid structures with double-walled edges.  

The joints can be connected along a linear intersection line between two 
neighboring planes of grid structure’s beams through a linear fastener (e.g. weld, 
fold, hinge etc.). These intersection lines are marked as loop-node vectors (υl,n) in 
Figure 3. The figure also introduces other notations used throughout the paper. The 
vertical depth of the walls becomes a structural variable that can be increased for 
stronger linear connections. Gaps can be formed between two parallel panels along 
each network edge using spacer blocks. The material thickness of the panels as well 
as these gaps can be useful for avoiding collisions between different panels around 
joints, as discussed below. The proposed solution allows a wide variety of curved 
line networks to be turned into a grid structures in an economical and highly 
flexible way. 

 

Figure 3. Geometrical notations used: Node (n), Node degree (dn), Node vector  (υn), Edge 
(e), Edge vector (υe), Loop (l), Loop-node vector (υl,n), Loop-edge frame (Fl,e). Panel height 
(h). Panel thickness (t) 

 

 



2 Solution space 

The proposed grid structures are composed of beams with double walls along 
edges and a series of nodes that act as joints between different beams. The solution 
space of our geometric framework is the universe of geometric parameters and 
material dimensions under which no panels of the grid structure collide around 
joints. The solution space is violated when panels around node start colliding with 
each other, making the joints impossible to assemble (Figure 2). Collisions can 
appear for a number of reasons when a complex shape of the grid structure 
produces complex edge conditions around nodes (Figure 4). It is thus important to 
investigating the solution space of the proposed method for two reason. First, it is 
useful to know what geometric factors are causing collisions between panels at 
joints? And second, how can geometric parameters and material dimensions be 
altered to avoid collisions from occurring?  

 

Figure 4. a. Node condition without collision. b. Node condition with collision, marked with 
a red line. Parameters 

To find a solution space for the whole network (mesh) we start by focusing on a 
single node, since nodes can be solved almost independently from one another in 
the larger structure. All nodes can be described mathematically with a handful of 
variables, which cover all possible geometrical conditions (Figure 5). 
 

 

Figure 5. a. Base case of a node with degree “4“, which means that 4 edges are connected to 
one node. In (a) none of the edges connected to the base case exhibit torsion, angle deviation 
or curvature. b. One of the edges contains torsion. c. One of the edge contains angular 
deviation. d. One of the edges contains curvature.  



These variables include: a ratio between panel thickness and height (a), torsion 
(b), angle deviation (c), and curvature (d). Since torsion, angle deviation and 
curvature depend on the node’s degree 𝑑𝑛 we can collect all of them into tuples 
[Schneider and Eberly 2003]. A node with a degree “three” has a torsion tuple 𝑡𝑛 
with components describing torsion 𝜏𝑒 for every edge:  

 
𝑡𝑛 =  (τ1,⋯τi,⋯τe) 

We can apply the same idea to an angle deviation tuple 𝑎𝑛 and its 
components 𝛼𝑒, and to the curvature tuple 𝑘𝑛 and its components 𝜅𝑒. We use 𝜑 to 
describe the ratio between panel thickness and height (Figure 7, Figure 3). As long 
as the thickness-to-height ratio is constant, we can ignore the individual height and 
thickness values when studying the geometry around a node.  

For nodes of any degree, there are three times as many variables as the node’s 
degree plus one for the thickness-to-height ratio 𝜑. In case of a node of degree “3” 
we have 10 variables, all of which can produce an effect on panel collisions. For 
higher degree nodes the number of variables increased exponentially and there are 
too many variables to test individually. But for practical purposes, heuristics can be 
used to eliminate configurations that do not occur in realistic construction 
dimensions. First, we may reduce the number of node degrees that need to be 
explored, since only a few degrees are commonly found in regular tessellations or 
mesh structures. There are three different regular tessellations – squares, regular 
hexagons and equilateral triangles – which respectively produce node degrees “3”, 
“4” and “6” [Wells 1991]. However, since pentagonal tessellations can also be 
found in architectural use, we complete the list by adding a node with degree “5”.  

The next heuristic simplification comes from the tuples:𝑡𝑛, 𝑎𝑛 , 𝑘𝑛.  An 
exploratory study showed that if we only changed components in one tuple at a 
time, keeping the others constant at the base case-case, then only the torsion 
components 𝑡𝑛 caused changes in the loop node vectors 𝜐𝑙,𝑛 (See Figures 3 and 6 ), 
which can potentially cause collisions.  

 

Figure 6. a. Changeing values in an do not change υl,n. b. Changeing values in cn do not 
change υl,n. c. Changeing values in tn change υl,n.  

Angle and curvature between panels are still important in combination with 
torsion, but we can start by investigating collisions caused by torsion in the 



members. First, we need to find some realistic values for the panel thickness-to-
height ratio φ, since the occurrence of collisions is linearly related to this value (as 
we shall demonstrate below). A base case value of  φ =   0.05 corresponds in 
physical reality to a 12 mm thick plywood panel with a height of 240 mm. The 
same φ also corresponds to a 5 mm thick composite aluminum panel with a height 
of 100mm or a 50mm concrete panel with a 1000mm height. Figure 7 illustrates 
different wall thicknesses. Larger panel thickness-to-height ratios (c) tend to avoid 
collisions and smaller ratios (a) are more prone to collisions.  
 

 

Figure 7.  Keeping tn = (6°,−6°, 6°,−6°) constant and changeing 𝜑 = (0.01, 0.05, 0.2) we 
see that smaller 𝜑 values produce collisions in configurations (a) and (b) (marked with red). 

The first important, albeit intuitive, finding is that the simplest way to avoid 
collisions is to increase the panel thickness. This can be achieved by either using a 
thicker building material (e.g. 16mm plywood instead of 12mm) or by placing a 
spacer-block between two edges. Note that each pair of panels that are joined 
around a node share an intersection line on the inside of the loop, facing away from 
the node, as shown in Figure 6. Each of the panels in a double-walled edge has a 
material thickness that can range from close to zero (e.g. a sheet of paper) to several 
centimeters (e.g. a concrete panel). Depending on the panel thickness, these 
intersection lines can start moving outward from the node, which reduces the 
hazard of collisions between different panels around the node. The outward offset 
is furter extended if gaps are formed between the parallel panels. Manipulating 
panel thickness and the thickness of the spacer blocks between parallel panels can 
allow many curvatures and patterns of grid structures to be achieved collision-free 
(Figure 8).  
 



 

Figure 8. A complex shape and pattern of a grid structure is achieved with no collisions 
between panels around nodes by taking advantage of panel thickness and spacer gaps 
between parallel panels.  

Having chosen a base value for φ and a node degree dn = 4, we are ready to 
explore the effects of torsion on panel collisions. To do so, we automated the 
generation of  𝑡𝑛 on a computer and tested a total 6,561 different combinations of 
torsion on panel collisions, using  

 
tn = (τ1, τ2, τ3, τ4), where τi ∈ (−8°,−6°,−4°,−2°, 0°, 2°, 4°, 6°, 8°) 
 
We recorded each test in a table, where the first column showed if collision 

occurred and the next four columns showed the combinations of torsion in the four 
panels. Each time a collision was observed, we recorded the maximum magnitude 
in torsion among all four edges as well as the directionality of the torsion in each 

edge. For example, a torsion combination (−8, 2,6,−2)
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯� −8 𝑜𝑟 (−6, 2,2,8)

𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯� 8 ). For each maximum torsion indicator, we determined the percentage of 
tests that resulted in a collision-free node out of the total 6,561 tests. These results 
are shown in Figure 9 (Left). Plotting these results revealed a few important 
observations.  

First, if  𝜏max is small enough (typically  −2 < 𝜏max < 2), then no collisions 
occur. This was  expected – small torsion values do not create collisions between 
panels. 

Second, for any given value of 𝜏max, there is no combination of |𝜏i| < |𝜏max|  
where  a collision occurs. That is, collisions are always predicted by the highest 



absolute torsion value among all edges around a node and we do not need to keep 
track of the remaining lower values to detect a collision. This is important since we 
can now reduce the search space significantly, testing only the 
𝑡𝑛 = �⋯±|𝜏max,i|⋯� values. In order to make sure there is no collision for a value 
|𝜏max| = x, we need to test 2𝑑𝑛 combinations for one 𝜑. For instance, for a node 
with degree “5”, we need to test 25 = 32 combinations. That said, it is possible to 
additionally use necklace combinatorics [Pólya 1937], which can reduce required 
combinations even further. In case of node degree “5”, only 8 unique combinations 
are required1.  

Third, if we limit combinations so that all components in tn are either positive 
or negative, then no collisions are found. Figure 10 shows different spiral 
configurations achieved through torsion around a node. Collisions are avoided 
regardless of particular τ values, as long as they are all either positive or negative. 
This seems visually logical. To confirm this, we also conducted a series of tests 
with    tn = (τ1, τ2, τ3, τ4), where τi ∈ (−30°,−25°,−20°, 20°, 25°, 30°). Taken 
by the maximum absolute torsion value alone, such large 𝜏 angles led to a lot of 
intersections (Figure 9 right side, black curve), though some positive results were 
also found. However, when including only combinations where all 𝜏 values have 
the same sign, no collisions could be found at all. 

 

Figure 9. Left: Collision simulation results for torsion. The horizontal axis denotes the 
maximum magnitude of torsion values among all four edges (positive and negative) and the 
vertical axis  shows the percentage of cases where no collisions where found under such 
conditions. Right: Lower graph shows the same test for larger torsion magnitudes. The upper 
green lines illustrate no-collision cases with large torsion angles where all edges are 
torsioned in the same direction  

                                                           
1 Necklace combinatorics examines combinations in a continuous loop. For instance, combinations 
[a,a,b], [a,b,a], [b,a,a] are considered the same, since viewed in a continuous loop, the set does not have 
a start or end point. 



   

 

Figure 10.  a. No sipiral. b. Constant spiral. c. Varibale spiral. 

We learned from the previous tests that there are some values of 𝜏max which 
determine whether a node with 𝑡𝑛 faces collisions or not. We also know that this 
value depends on the material width-to-height ratio 𝜑. Next, we explored the 
relationship between the maximum collision-free τ  for different node degrees and 
𝜑 ratios. In case of node degree 4, we determined the maximum 𝜏  for 𝜑 values 
from 0.01 to 0.23, with a test step size of 0.01 (Figure 12a). We stopped the tests 
around 𝜑 =0.23, since beyond this dimension, thickness-to-height ratios appear 
unrealistic for real-world construction – panels whose thicknesses forms a quarter 
of their height or more. The results are plotted in Figure 11, where different color 
graphs represent nodes of degree 4, 5 and 6 respectively and the different lines in 
the same graph illustrate the results for different combinations of τ. The lines 
named “[−τ, τ]" describe edge torsion combinations that contain both positive and 
negative torsion around a node, which is generally the most likely case for 
collisions to occur. We also conducted the same test for torsion combinations 
where the maximum negative value is half the maximum positive value – that is 
torsion combinations that also contain opposite directions, but less sever, illustrated 
with graph lines “[−τ/2, τ]”. The third range of tests was limited to cases where 
edge torsions range only between 0 and positive or 0 and negative numbers, 
illustrated by the "[0, τ]" curves. Recall that the remaining uniformly negative and 
uniformly positive torsion cases produced no collisions. 

These tests revealed that there is a linear relationship in the most collision-prone 
cases between 𝜑 and torsion combinations with opposite signs (positive-negative). 
The trajectory of this relationship is important because it tells us that if we keep all 
torsion values less than the corresponding maximum absolute torsion value on the 
y-axis, then we can guarantee that no collisions occur, even under positive-negative 
torsion combinations. We denote the torsion values along this curve with 𝜏𝑓,𝜑, 
whose magnitudes are always positive. The value of 𝜏𝑓,𝜑 changes with 𝜑. In other 
words, the collision-free maximum absolute torsion value depends on a material’s 
thickness-to-height ratio. For example, 𝜏𝑓,0.05 = 2.85°, 𝜏𝑓,0.01 = 0.55° , 𝜏𝑓,0.1 =
5.65° 𝑎𝑛𝑑 𝜏𝑓,0.2 = 11.1°.   

Another important constant for different material thickness-to-height ratios is 
 𝜏0,𝜑 (see the “[0, τ]” curves in Figure 11). If values for a particular material 



thickness-to-height ratio are higher than this curve, then torsion angles have to be 
either all positive or all negative in order to avoid collisions. There is also an 
operational range 𝜏𝑟,𝜑  which represents the overall limit to collision-free nodes. 
The proposed grid structure solution cannot handle edge torsion of 90° for instance. 
But in most common applications, the necessary edge torsion combinations remain 
well below 40° or 50°. At 50°, two adjacent edges can have a 100° difference in 
torsion.  

Figure 13 presents a general overview of the solutions space with respect to 
edge torsion. As long as all torsion angles fall within the green zone in the chart, 
there are no collision in the node caused by torsion. However, collisions can still 
occur when torsion is combined with non-zero edge angles (𝑎𝑛) or curvature (𝑘𝑛). 
The orange zone can contain collision-free combinations, but it is important to pay 
attentions to the directionality of different edges torsions there, as described below. 
For torsion values that fall into the gray zone, a collision is guaranteed. In order to 
illustrate this with an example, consider a node with four edges whose respective 
torsion values are tn = (2,0,0,−0.01) and the relationship between material 
thickness-to-height ratio and maximum edge torsion is 𝜏0,𝜑 = 1.9. Based on the 
𝜏0,𝜑 = 1.9 value, we know that this node will produce a collision, since its 
maximum torsion angle is above 1.9 and the node contains both positive and 
negative torsion (it falls in the gray zone in Figure 13). However, if the node’s 
torsion angles were adjusted to tn = (1.8,0,0,−0.01), then the node might or might 
not contain collisions (it would fall in the orange zone). Whether or not there 
actually are collisions in this case, depends on the directionality of the edge 
torsions, as explained below. We should also note that if torsion angles are 
combined with curvature, then the gray area of Figure 13 can also yield collision-
free solutions. 

We conducted the same type of calculations for node degrees 4, 5, 6 and found 
that 𝜏𝑓,𝜑 is very similar, practically the same, for different node degrees. The lowest 
lines in the middle and right side graphs in Figure 12b, which illustrate the cases for 
5 and 6 degree nodes respectively, demonstrate that node degree has no impact on 
torsion-based collisions with different material thickness-to-height ratios as long as 
the absolute values of torsion fall within the 𝜏𝑓,𝜑 range. That is, the same maximum 
torsion degree applies regardless of whether a node has 4, 5 or six edges. Note that 
we have left out collision tests for nodes with degree 3 – e.g. hexagonal 
tessellations where three edges meet at each node – since degree 3 nodes do not 
create any collisions anyhow.2  

                                                           
2 In order to see this, let us look at a node in a hexagonal tessellation as surrounded by three sectors or 
three loops. Since each sector shares an edge with the remaining two neighboring sectors via a double 
wall, no collisions are possible with the neighboring walls. At least four sectors are needed for panels to 
start colliding. 



 

Figure 11. Graphs a, b, c show the relationship between panel thickness-to-height ratios (x-
axis) and maximum torsion angle (y-axis) for different node degrees 4,5 and 6, which are 
marked as green (a), orange (b) and blue (c) respectively.  

 

Figure 12. Graph a. shows collision-free solution spaces between maximum torsion angles 
and material thickness-to-height ratios in a node degree 3. The three lines descirbe maximum 
torsion angles for different patterns of torsion in edges around a node. Data is sampled at 
every 0.01 thickness-to-height ratios.  Graph b shows that node degree do not have effect on 
𝜏𝑓,𝜑 

 

 



 

Figure 13. Horizontal axis shows the maximum value ( τmax  ) in tuple. Vertical axis shows 
the range [τi−, τi+] for other torsion values around a node, which are smaller than or equal to 
the maximum value. The green area shows the collision-free solution space. The orange area 
designates the solutions space, where the drectionality of the torsion angles is important to 
avoid collisions, and the gray area shows torsion combinations, which always cause collison. 
Constants (τf,φ, τ0,φ , τr,φ ) depend on (φ) and respectivly denote the (f) collision free zone, 
(0) boundary, where all torsion values have to have the same sign and (r) and operational 
limit for torsion combinations that can be achieved without collisions.  

We saw above that there is a certain solution space in the orange zones of 
Figure 13, where collisions may or may not occur, depending on the directionality 
of torsion in diffferent edges around a node. We shall now look closer at the 
relationship between these torsion directionalities in order to identify patterns that 
create collision-free solutions better than others. As mentioned above, spiral 
configurations, where all edges are torsioned in the same direction, allow large 
degrees of torsion with no collisions. It is useful to know this spiral effect, but it has 
practical applicability as a fix to collisions in real-world structures. It is not possible 
to use sprialling nodes, for instance, in continuous tesselations with node degrees 5 
and 6 , as shown in Figure 15. Generally, the spiralling solutions is limited to local 
fixes if the tesselation has an uneven number of edges around each loop or face.  

The most collision-prone patterns we found invlovle torsion combinations 
where adjacent panels fluctuate between positive and negative torsion degrees, as 
illustrated in Figure 14. The figure shows how collisions are less likely when 
poitive and negative torsion values are arranged in sucessive edge groups and more 
likely when positive and negatives alternate from one edge to the next. The worst-
case pattern for collisions occurs when edge torsions alternate with extreme values 
on neighboring edges: �⋯ 𝜏𝑚𝑎𝑥 ,−𝜏𝑚𝑎𝑥 ,  𝜏𝑚𝑎𝑥,−𝜏𝑚𝑎𝑥  ⋯�. 
 



 

Figure 14. All possible combinations using necklace combinatorics for node degree 5. Blue 
indicates negative τ and orange positive τ values for indiviudal edges. Red diagrams denote 
cases where panel collisions occur. 

 

Figure 15. Regular hexagonal (a), quadrangular (b) and triangular (c) tessellations and the 
potential use of spiralling torsion at nodes to avoid collisions. Black arrows indicate the 
torsion direction in which an edge is leaning from a top view. Green and blue rotational 
arrows show the direction of spirals. Pink double arrows indicate edges, which have 
conflicting leaning directions.  

2.1 Collisions caused by angles and curvature 

The exploration of solution space for the double-walled grid structures showed 
that edge torsion was the greatest potential cause for panel collisions (see diagram 
in Figure 6). Without torsion, edge angularity and curvature around a node do not 
produce any collisions alone. But edge angularity and curvature could still 
deteriorate or ameliorate the collision space if combined with torsion.  

To test the effects of edge angles on nodes whose edges already have torsion, 
we created a dataset with a node-degree 4, which has the following parameters: 



 𝜏𝑚𝑎𝑥  = (2.8°, 2.5°, 2.0°, 1.5°, 1.0°), 𝜑 = 0.05 and altered the rotational angles of 
edges at one-degree intervals (Figure 16). We set a constant edge rotation angle 𝛼, 
which increases from 1°, 2° up to 20° on the vertical axis and tested rotations in 
each of the four edges around the node in a positive or negative direction according 
to the given rotation angle 𝛼. In the first column 𝜏𝑚𝑎𝑥 = 2.8° there are six distinct 
sub-columns, where the blue and orange colors denote all possible rotation 
directions with the given angle 𝛼: blue squares indicate edges that were rotated in 
the negative direction using 𝛼 and orange squares indicate edges that were rotated 
in the positive direction using 𝛼. The six sub-columns under each 𝜏𝑚𝑎𝑥  value 
exhaust all possible rotational combinations for four edges. For all of these tests, 
we used the worst torsion pattern, where panels have alternating strongly negative 
and strongly positive torsion angles  �𝜏𝑚𝑎𝑥 ,−𝜏𝑚𝑎𝑥 ,  𝜏𝑚𝑎𝑥 ,−𝜏𝑚𝑎𝑥  � (as shown in the 
last blue and orange column marked 𝜏𝑝𝑎𝑡𝑡𝑒𝑟𝑛 in the far right). The red and gray 
boxes show results, indicating whether collisions occurred (red) or not (gray). 

These test results show that it does matter, which directional pattern the edge 
angles follow (see the blue and orange patterns under each column in Figure 16). 
As with torsion, most collisions occur if neighboring edges alternate between 
negative and positive angles. If all four edges have the same rotation angle in the 
same direction, then the whole node rotates without affecting the collision space 
(left most and right most cells in each column are gray, indicating no collisions). If 
the four edges are rotated in different directions, then collision in 𝜏𝑓,𝜑 are indeed 
affected. Depending on the angular direction pattern, collisions occur more 
frequently for edges with alternating angle directions than grouped angle directions.  

But the findings also allow us to detect the solution space where angular 
rotations create no collisions at all despite the presence of torsion.  The second 
column in Figure 16 illustrates that a four-edge node with  very thin panels (small 
thickness-to-height ratio) τf,0.05 = 2.5° can contain edge rotation angles up to -8° 
and 8° and stay collision free as long as these rotation angles are not alternating 
between each neighboring edge, but rather grouped sequentially by the direction of 
the rotation. For instance,  both angular sequences  (-8°,-8°, 8°,8°) and (-8°,8°, 
8°,8°) are collision free even under the worst alternating torsion pattern. 
 



  

Figure 16. Bottom part of the diagram shows patterns used for angles. Blue boxes indicate 
negaitve and orange positive angle directions. Far right column indicates the torsion 
directionality pattern. Every column simulates one torsion value for six different 
combinations of panel angle degrees, which are repeated for each degree from 1° to 20°. Red 
squares denote cobinations with collisions, gray with no collisions.  

Finally, we also performed similar studies on the effects of curvature (Figure 5), 
but found somewhat surprisingly that curvature has no effect on collisions 
produced by edge torsion. This is logical at a second glance, since curvature does 
not affect loop-node vectors 𝑣𝑙,𝑛 and therefor also does not create any additional 
collisions (see Figure 6).  

 
Conclusions 

The paper has investigated a new method for realizing grid structures, which 
relies on double walls along each network edge. A double-walled nature enables us 
to significantly reduce the geometric complexity of the grid structure’s nodes – 
instead of needing to find a combined geometric intersection for all edges meeting 
at a node, our solution instead requires determining a pair of adjacent planes at a 
time, as many times as a node’s degree. 

The key benefit of this method is that it makes grid structures possible on a 
wide variety of curved surfaces and on a large selection of line-network patterns 
with relatively simple geometric operations. The entire structure can be made out of 
planar components that are fabricated only using two-dimensional cutters, such as 
laser-cutters, blade-cutters, 3-axis routers, etc., making the fabrication significantly 
cheaper than traditional grid structures.  

While the method is fairly robust and flexible with thicker panels (or thinner 
panels with spacer blocks between them), collisions can occur between edges 
around a node when panels are thin or the geometries of the nodes complex. Such 
collisions can prevent the realization of the structure due to joints that do not fit. It 



was therefore important to investigate the solution space that exists for such 
structures without any collisions under different geometrical and material 
parameters. 

First, we found that the easiest solution to avoiding panel collisions around 
nodes involves adding thickness to the panels (or placing spacer blocks between 
parallel panels). This simple move can make relatively complex structural 
geometries collision free (Figure 17). But this fix is not always applicable – for 
either engineering or aesthetic reasons, small thickness-to-height ratios may be 
important or desirable for a structure. 

Second, we found that panel collisions around nodes are almost entirely caused 
by torsion in the edges. The angles and curvature of intersecting edges alone had no 
effect on collisions, they mattered only in conjunction with torsional panels. The 
paper thus mainly investigated the effects of torsion on collisions. We found the 
following. 

The maximum magnitude of torsion observed among all edges converging on a 
node has a significant effect on collisions. The absolute value of the most torsioned 
edge   |𝜏|𝑚𝑎𝑥 =  max(|𝜏1|,⋯ |𝜏𝑖|,⋯ |𝜏𝑒|) in  𝑡𝑛 can alone predict whether or not 
collisions occur. If the highest torsion angle does not create collision, then none of 
the lower torsion angles in edges around the same node  |𝜏𝑖 ∈ 𝑡𝑛| <  |𝜏|max produce 
collision. 

A maximal collision-free torsion magnitude |𝜏|m for a node of degree  𝑑𝑛 = 𝑖 
applies very similarly to any other node degree 𝑑𝑛 ∈ [4, 𝕀]. This means that if we 
find a collision-free torsion limit for a node with four edges ( 𝑑𝑛 = 4), then we can 
use the same limit for 𝑑𝑛 = 6 and so on. This works because the first collision 
occurs with the first adjacent edge each time. 

There are three distinct zones in the collision-free solution space for torsion 
values under all material thickness-to-height ratios. First, smaller values under 𝜏𝑓,𝜑  
, which can contain any combination and direction of torsioned panels until the 
limiting torsion angle 𝜏𝑓,𝜑. Second, large torsion values above 𝜏0,𝜑 where panels 
around a node must all be torsioned as a spiral in the same direction (either 
negative or positive direction). And third, collision-free solutions can also be found 
with intermediary torsion angles between 𝜏𝑓,𝜑 and 𝜏0,𝜑 where the pattern of torsion 
directionality becomes decisive for collisions. For instance, an alternating patter of 
maximum torsion - minimum torsion - maximum torsion between adjacent edges 
around a node is most collision prone, but if the edges with the same torsion 
direction are grouped next to each other, collisions can be avoided. Particular 
numeric limits for allowable torsions angles for each material thickness-to-height 
ratio were determined as part of the tests. 

These findings make it possible to detect potential collisions at a grid-
structure’s nodes computationally, using the torsion, angle, curvature and material 
thickness-to-height ratios. Furthermore, the findings can also help solve these 
collisions computationally, by adjusting the edge geometries around each node 
such that all nodes fall in the solution space. Whereas we have so far produced a 
RhinoPython library for generating the above grid-structures, it will remain a 
research and development task for the future to include automated collision 
detections and collision fixes in the library. 



The presented method of grid structure generation was used to build an 
experimental pavilion at the Singapore University of Technology and Design 
(Figure 17). At the time of construction, the intricacies of the geometric solution 
spaces were not known to us. As a result, we relied heavily on increasing the gap 
size between panels in order to avoid collisions at nodes. The new findings can 
enable analogous structures to be created out of very thin panels with no gaps 
between them. 

 

Figure 17. Completed SUTD gridshell project by the SUTD City Form Lab and ARUP 
engineering. 
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