

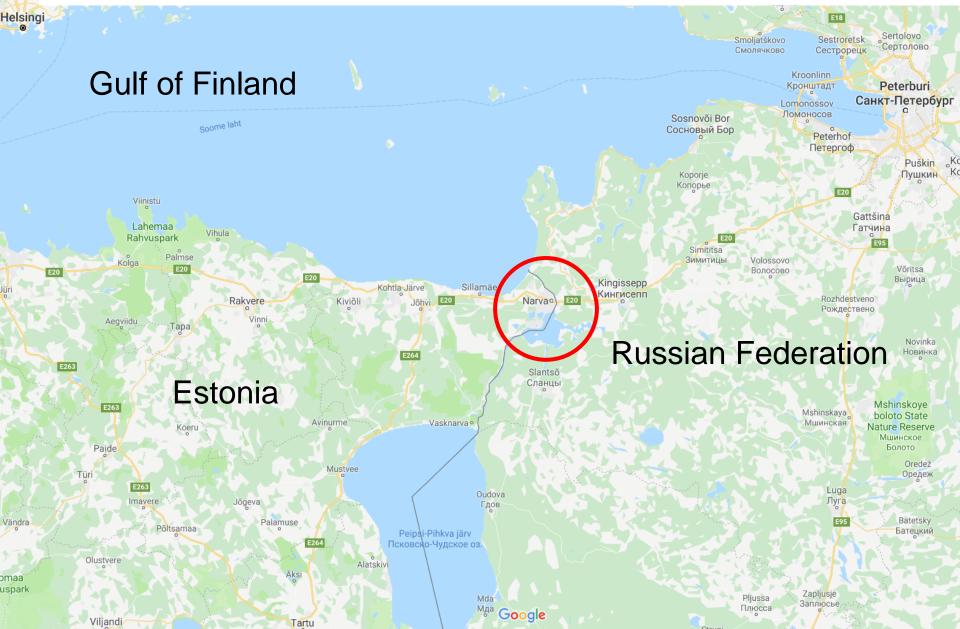
INITIAL TASK

Narva old riverbed revitalization and eel migration project

Prepared by E. Prommik, Skeem OÜ

2019-07-01

LOCATION

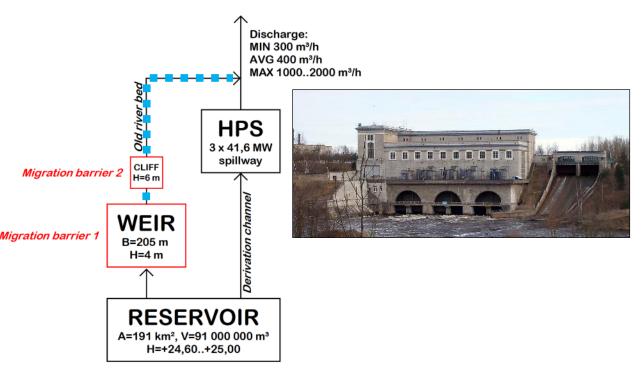

E18

Järvenpää

vald

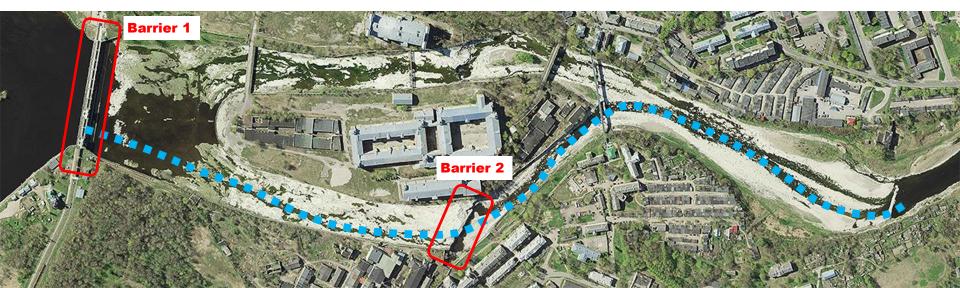
Kotka linn

Loviisa linn Pyhtää vald


Sosnovo

Сосново


LAYOUT AND FLOWSHEET



- 1. Old riverbed (~1,8 km)
- 2. Reservoir
- 3. Dam and weirs for spills regulation
- 4. Derivation channel
- 5. Hydropower station 125 MW

OLD RIVERBED HYDRAULIC PROFILE

BARRIER 1: dam and weirs for spills (4 m)

Old riverbed

Reservoir

BARRIER 2: natural cliff (6 m)

DISCHARGE AND RESERVOIR DATA

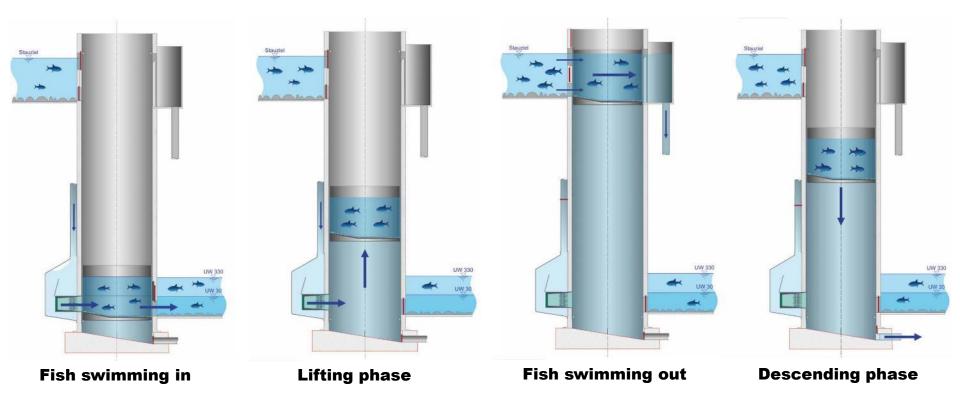
- 1. River discharge rates:
 - $Q_{min} = 300 \text{ m}^3/\text{s}$
 - $Q_{avg} = 400 \text{ m}^{3/s}$
 - $Q_{max} = 1000..2000 \text{ m}^3/\text{s}$
- 2. Reservoir data:
 - MAX water level = +25,00
 - NORMAL water level = +24,90
 - MIN water level = +24,60
 - Surface area = 191 km²
 - Active capacity = 91 000 000 m^3

INITIAL TASK:

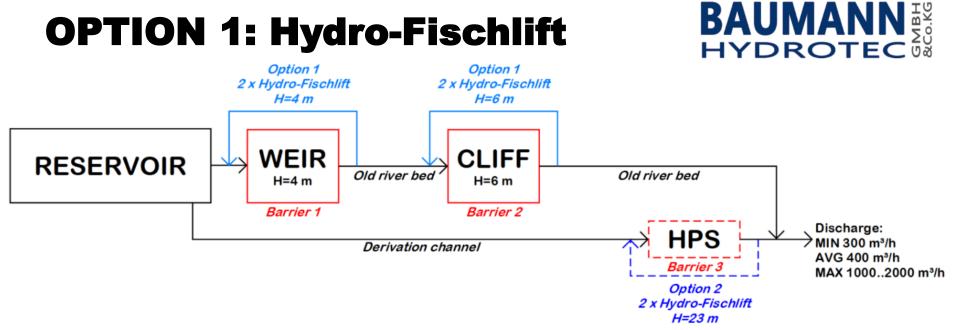
- 1. Determine migration type required for eels:
 - only upstream (downstream through turbines)
 - upstream and downstream
 - upstream and downstream with spawning areas
- 2. Determine the flow required for upstream migration.
- 3. Determine the flow required for eels upstream and downstream migration.
- 4. Determine the flow required to create spawning areas in old river bed (rapids) with eels upstream and downstream migration.
- 5. Compose a technical process requirements with expected process guarantees for further project development stages (feasibility study, conceptual design etc).

TECHNOLOGICAL OPTIONS:

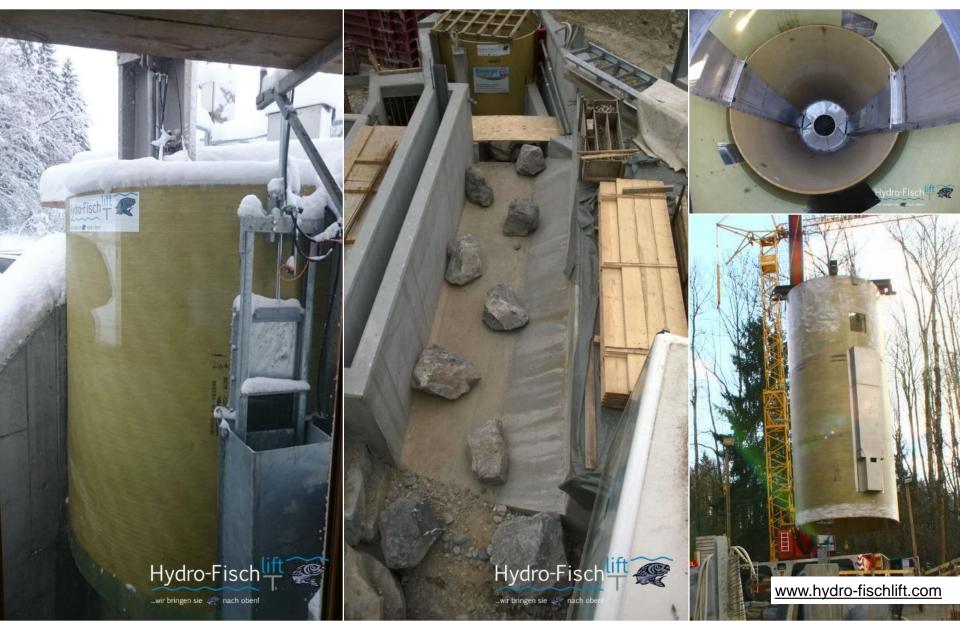
In current preliminary stage there are following options that should be investigated and designed according to local conditions and requirements:

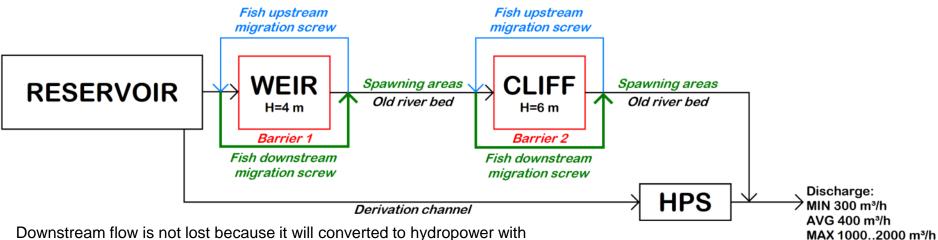

- Hydro-Fischlift
- Archimedean screw

Both options are used in warmer climate conditions, but indoor (covered) solutions are applicable in Narva. For Archimedean screw we have proven references for eel migration and this is the only solution uses resources effectively for downstream migration (good benefit when spawning area generation requires more water). Next slides for basic technical information.

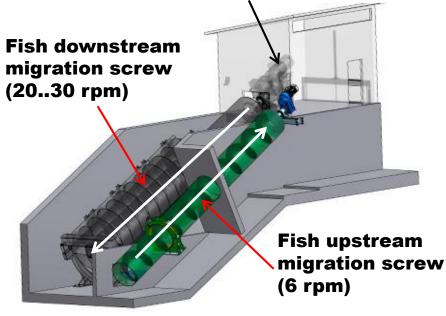

OPTION 1: Hydro-Fischlift

An innovative ecological migration system for high elevation differences at hydropower plants. For operation is required very low flow and two automatic valves (inlet and outlet).


www.hydro-fischlift.com


- 1. Option 1 to use HFL in old riverbed barriers.
- 2. Option 2 to use HFL next to HPS, but head high and that must be discussed with the manufacturer.
- 3. Parallel units are because to provide 24/7 migration possibilities (if only one tower then during lifting or descending there will be waiting gaps).
- 4. Due the low flow through system it is not possible to add enough water for spawning areas in old riverbed.

OPTION 1: Hydro-Fischlift


BAUMANN HYDROTEC

VSD controlled generator. Installed power (kW): $P = Q \times H \times 7,2$

Archimedean screw solution works for eels.

IBGF Ingenieurbüro für Gewässerökologie und Fischerei

Tag	Fische	Datum	Zeit	Person	Fischart	Länge (cm)
40	262	24.05.2019	09.00	/BA	Aalrute	31
41	264	26.05.2019	17.30	FE/BA	Aalrute	27
42	268	28.05.2019	09.00	FE/BA	Aalrute	28
42	269	28.05.2019	09.00	FE/BA	Aal	32
42	270	28.05.2019	09.00	FE/BA	Aal	18
44	274	01.06.2019	09.15	FE/BA	Aalrute	31
44	275	01.06.2019	09.00	FE/BA	Aal	25
45	280	03.06.2019	09.00	FE/BA	Aalrute	3
45	288	03.06.2019	09.00	FE/BA	Aal	33
45	289	03.06.2019	09.00	FE/BA	Aal	31
45	290	03.06.2019	09.00	FE/BA	Aal	23
45	291	03.06.2019	09.00	FE/BA	Aal	20
45	292	03.06.2019	09.00	FE/BA	Aal	20
46	328	05.06.2019	09.00	FE/BA	Aal	35
46	329	05.06.2019	09.00	FE/BA	Aal	32
46	330	05.06.2019	09.00	FE/BA	Aal	30
46	331	05.06.2019	09.00	FE/BA	Aal	32
46	332	05.06.2019	09.00	FE/BA	Aal	28
46	333	05.06.2019	09.00	FE/BA	Aal	26
47	339	06.06.2019	09.00	FE/BA	Aal	53
47	340	06.06.2019	09.00	FE/BA	Aal	50
47	341	06.06.2019	09.00	FE/BA	Aal	32
47	342	06.06.2019	09.00	FE/BA	Aal	30
47	343	06.06.2019	09.00	FE/BA	Aal	28
47	344	06.06.2019	09.00	FE/BA	Aal	23
47	345	06.06.2019	09.00	FE/BA	Aal	22
47	346	06.06.2019	09.00	FE/BA	Aal	26

Aal (in German) = Eel

Archimedean screw solution works for other species (1/2).

Abb. 2: Fischaufstiegsschnecke Barbe (adult)

Abb. 3: Fischaufstiegsschnecke Barbe (juvenil)

Abb. 6: Fischaufstiegsschnecke Barbe (adulter Rogner)

Abb. 4: Fischaufstiegsschnecke Laube

Abb. 5: Fischaufstiegsschnecke Signalkrebs

Abb. 8: Fischaufstiegsschnecke Bachschmerle

Archimedean screw solution works for other species (2/2).

Abb. 7: Fischaufstiegsschnecke Koppe

Abb. 10: Aufgestiegene Huchen 13.12.2014

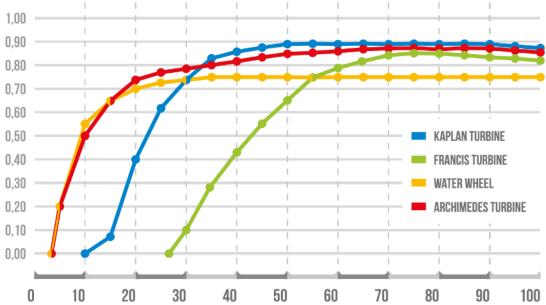
Abb. 11: Aufgestiegener Huchen 16.12.2014

Abb. 9: Fischaufstiegsschnecke Flussbarsch

Abb. 12: Einsetzen des Huchens mit 76cm in den Unterwasserkanal am 23.6.

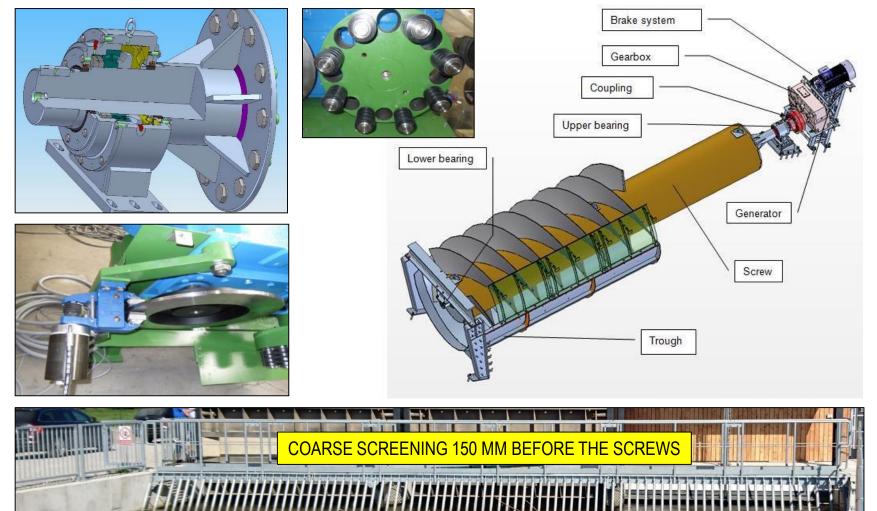
Abb. 13: Dokumentation in der Reuse am 1.7.2015

Archimedean screw solution references:


- Installed and in operation ~100 units (Germany, Austria, France, Italy, UK, Japan, India, Slovenia), some locations in mountains where are hard winter conditions
- Downstream migration screws since 2003
- Upstream migration screws since 2014 Key references:

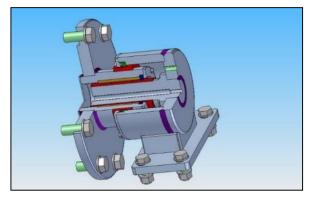
Country	State	Code word	Capacity Q in m³/s	Head H in mm	Electrical power P in kW	Diameter in mm	Bladed length in mm	Number of screws	Type of trough	Status	Year
UK	Northern Ireland	Omagh	6,00	2,70	128,00	3600	8160	1	CS	in operation	2010
Germany	Baden- Wuerttemberg	Hausen	6,00	5,80	2 x 250	3400	15530	2	SH	in operation	2011
UK	Northern Ireland	Shane's Castle	5,50	5,30	208,00	3400	12680	1	BS	in operation	2011
Austria	Lower Austria	Pilsing	3,20	3,60	80,00	2,9	8060	1	BS	in operation	2014
Italia	Veneto	Ponte Mas	5,60	4,05	156,00	3400	11120	1	SH	in operation	2015
Austria	Lower Austria	Ramsbachwehr	3,00	5,00	103,00	2800	10960	1	BS	in operation	2017
Italy	Verona	Lugo	3,30	4,85	115,00	3000	11710	1	SH	in operation	2017
Germany	Bavaria	Hinterstein	2,80	5,50	107,00	2800	12770	1	SH	under construction	2019

Performance range:


- H = 1...8 m
- Q = 1..10 m³/s
- Ŋ = > 0,7
- $P = Q \times H \times 7,2$

Туре	H (m)	Q _{screw} (m³/s)	η > 0,7	rpm
Propeller	225	125	50100%	> 300
Kaplan	225	1800	30100%	> 300
Francis	5800	101000	55100%	> 100
Pelton	1002000	0,580,0	20100%	> 1000
Archimedean screw	1,08	1,010	20100%	< 30

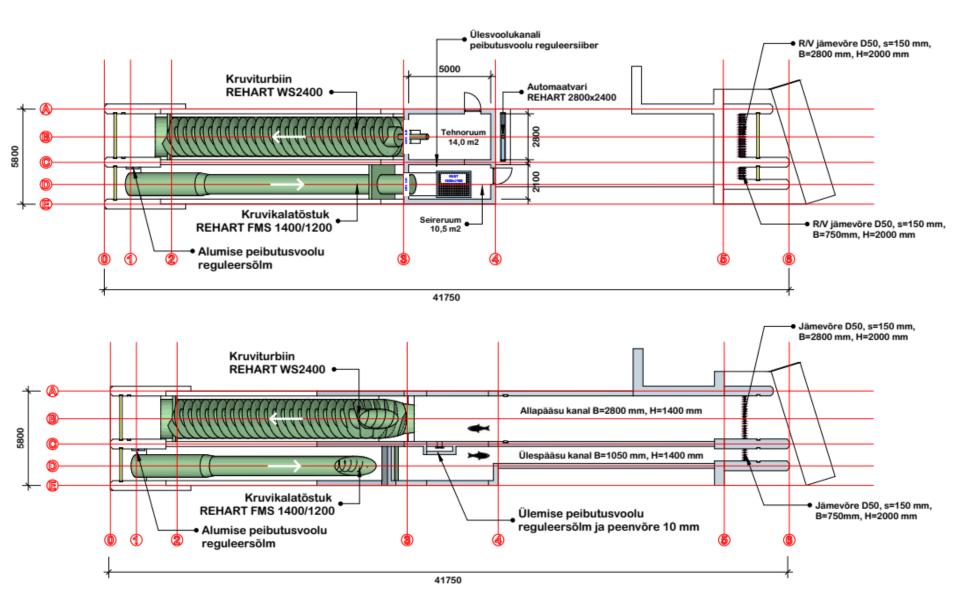
Basic design (downstream migration screw):

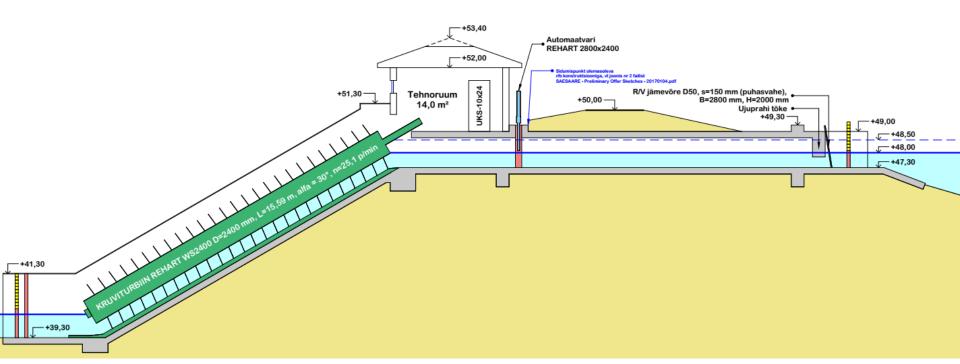


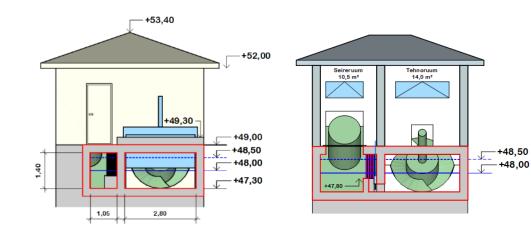
LOWER BEARING

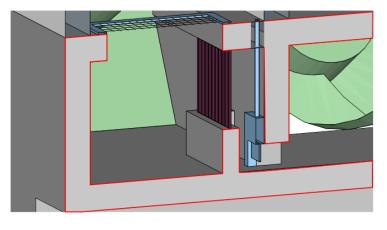
DISCHARGE IS FREE NO LOWER BEARING SUPPORT ON RIVERBED AND RESTRICTIONS

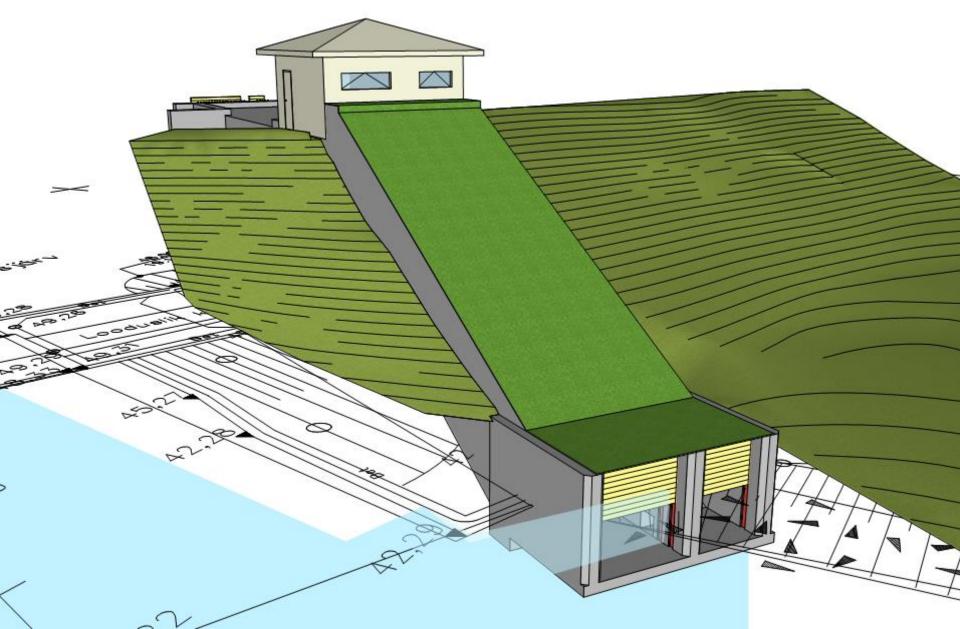
Basic design (upstream migration screw):


- Low rpm (6 rpm) and energy consumption (<5 kW)
- Blades welded to the tube
- Section water volume 100..200 litres
- Diameter 1200..1400 mm
- Attraction current from DMS
- Approved and tested solution
- Inlet close to riverbed
- Works for eels









SIMILAR PROJECT

LIFE+ Project: Budget: Project goal: WWW: Mostviertel-Wachau (2009-2014) 8,831 MEUR old riverbed revitalization in Amstetten http://www.life-mostviertel-wachau.at/

